1337 lines
31 KiB
C++
1337 lines
31 KiB
C++
/*
|
|
Copyright 2016-2017 StapleButter
|
|
|
|
This file is part of melonDS.
|
|
|
|
melonDS is free software: you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation, either version 3 of the License, or (at your option)
|
|
any later version.
|
|
|
|
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with melonDS. If not, see http://www.gnu.org/licenses/.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "ARM.h"
|
|
|
|
|
|
#define CARRY_ADD(a, b) ((0xFFFFFFFF-a) < b)
|
|
#define CARRY_SUB(a, b) (a >= b)
|
|
|
|
#define OVERFLOW_ADD(a, b, res) ((!(((a) ^ (b)) & 0x80000000)) && (((a) ^ (res)) & 0x80000000))
|
|
#define OVERFLOW_SUB(a, b, res) ((((a) ^ (b)) & 0x80000000) && (((a) ^ (res)) & 0x80000000))
|
|
|
|
|
|
namespace ARMInterpreter
|
|
{
|
|
|
|
|
|
#define LSL_IMM(x, s) \
|
|
x <<= s;
|
|
|
|
#define LSR_IMM(x, s) \
|
|
if (s == 0) x = 0; \
|
|
else x >>= s;
|
|
|
|
#define ASR_IMM(x, s) \
|
|
if (s == 0) x = ((s32)x) >> 31; \
|
|
else x = ((s32)x) >> s;
|
|
|
|
#define ROR_IMM(x, s) \
|
|
if (s == 0) \
|
|
{ \
|
|
x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \
|
|
} \
|
|
else \
|
|
{ \
|
|
x = ROR(x, s); \
|
|
}
|
|
|
|
#define LSL_IMM_S(x, s) \
|
|
if (s > 0) \
|
|
{ \
|
|
cpu->SetC(x & (1<<(32-s))); \
|
|
x <<= s; \
|
|
}
|
|
|
|
#define LSR_IMM_S(x, s) \
|
|
if (s == 0) { \
|
|
cpu->SetC(x & (1<<31)); \
|
|
x = 0; \
|
|
} else { \
|
|
cpu->SetC(x & (1<<(s-1))); \
|
|
x >>= s; \
|
|
}
|
|
|
|
#define ASR_IMM_S(x, s) \
|
|
if (s == 0) { \
|
|
cpu->SetC(x & (1<<31)); \
|
|
x = ((s32)x) >> 31; \
|
|
} else { \
|
|
cpu->SetC(x & (1<<(s-1))); \
|
|
x = ((s32)x) >> s; \
|
|
}
|
|
|
|
#define ROR_IMM_S(x, s) \
|
|
if (s == 0) \
|
|
{ \
|
|
u32 newc = (x & 1); \
|
|
x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \
|
|
cpu->SetC(newc); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->SetC(x & (1<<(s-1))); \
|
|
x = ROR(x, s); \
|
|
}
|
|
|
|
#define LSL_REG(x, s) \
|
|
if (s > 31) x = 0; \
|
|
else x <<= s;
|
|
|
|
#define LSR_REG(x, s) \
|
|
if (s > 31) x = 0; \
|
|
else x >>= s;
|
|
|
|
#define ASR_REG(x, s) \
|
|
if (s > 31) x = ((s32)x) >> 31; \
|
|
else x = ((s32)x) >> s;
|
|
|
|
#define ROR_REG(x, s) \
|
|
x = ROR(x, (s&0x1F));
|
|
|
|
#define LSL_REG_S(x, s) \
|
|
if (s > 31) { cpu->SetC(x & (1<<0)); x = 0; } \
|
|
else if (s > 0) { cpu->SetC(x & (1<<(32-s))); x <<= s; }
|
|
|
|
#define LSR_REG_S(x, s) \
|
|
if (s > 31) { cpu->SetC(x & (1<<31)); x = 0; } \
|
|
else if (s > 0) { cpu->SetC(x & (1<<(s-1))); x >>= s; }
|
|
|
|
#define ASR_REG_S(x, s) \
|
|
if (s > 31) { cpu->SetC(x & (1<<31)); x = ((s32)x) >> 31; } \
|
|
else if (s > 0) { cpu->SetC(x & (1<<(s-1))); x = ((s32)x) >> s; }
|
|
|
|
#define ROR_REG_S(x, s) \
|
|
if (s > 0) cpu->SetC(x & (1<<(s-1))); \
|
|
x = ROR(x, (s&0x1F));
|
|
|
|
|
|
|
|
#define A_CALC_OP2_IMM \
|
|
u32 b = ROR(cpu->CurInstr&0xFF, (cpu->CurInstr>>7)&0x1E);
|
|
|
|
#define A_CALC_OP2_REG_SHIFT_IMM(shiftop) \
|
|
u32 b = cpu->R[cpu->CurInstr&0xF]; \
|
|
u32 s = (cpu->CurInstr>>7)&0x1F; \
|
|
shiftop(b, s);
|
|
|
|
#define A_CALC_OP2_REG_SHIFT_REG(shiftop) \
|
|
u32 b = cpu->R[cpu->CurInstr&0xF]; \
|
|
if ((cpu->CurInstr&0xF)==15) b += 4; \
|
|
shiftop(b, cpu->R[(cpu->CurInstr>>8)&0xF]);
|
|
|
|
|
|
#define A_IMPLEMENT_ALU_OP(x) \
|
|
\
|
|
s32 A_##x##_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_IMM \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSL_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM) \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSR_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM) \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_ASR_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM) \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_ROR_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM) \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSL_REG(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(LSL_REG) \
|
|
A_##x(1) \
|
|
} \
|
|
s32 A_##x##_REG_LSR_REG(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(LSR_REG) \
|
|
A_##x(1) \
|
|
} \
|
|
s32 A_##x##_REG_ASR_REG(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(ASR_REG) \
|
|
A_##x(1) \
|
|
} \
|
|
s32 A_##x##_REG_ROR_REG(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(ROR_REG) \
|
|
A_##x(1) \
|
|
} \
|
|
s32 A_##x##_IMM_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_IMM \
|
|
A_##x##_S(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSL_IMM_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM_S) \
|
|
A_##x##_S(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSR_IMM_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM_S) \
|
|
A_##x##_S(0) \
|
|
} \
|
|
s32 A_##x##_REG_ASR_IMM_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM_S) \
|
|
A_##x##_S(0) \
|
|
} \
|
|
s32 A_##x##_REG_ROR_IMM_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM_S) \
|
|
A_##x##_S(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSL_REG_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(LSL_REG_S) \
|
|
A_##x##_S(1) \
|
|
} \
|
|
s32 A_##x##_REG_LSR_REG_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(LSR_REG_S) \
|
|
A_##x##_S(1) \
|
|
} \
|
|
s32 A_##x##_REG_ASR_REG_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(ASR_REG_S) \
|
|
A_##x##_S(1) \
|
|
} \
|
|
s32 A_##x##_REG_ROR_REG_S(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(ROR_REG_S) \
|
|
A_##x##_S(1) \
|
|
}
|
|
|
|
#define A_IMPLEMENT_ALU_TEST(x) \
|
|
\
|
|
s32 A_##x##_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_IMM \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSL_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM_S) \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSR_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM_S) \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_ASR_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM_S) \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_ROR_IMM(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM_S) \
|
|
A_##x(0) \
|
|
} \
|
|
s32 A_##x##_REG_LSL_REG(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(LSL_REG_S) \
|
|
A_##x(1) \
|
|
} \
|
|
s32 A_##x##_REG_LSR_REG(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(LSR_REG_S) \
|
|
A_##x(1) \
|
|
} \
|
|
s32 A_##x##_REG_ASR_REG(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(ASR_REG_S) \
|
|
A_##x(1) \
|
|
} \
|
|
s32 A_##x##_REG_ROR_REG(ARM* cpu) \
|
|
{ \
|
|
A_CALC_OP2_REG_SHIFT_REG(ROR_REG_S) \
|
|
A_##x(1) \
|
|
}
|
|
|
|
|
|
#define A_AND(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a & b; \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_AND_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a & b; \
|
|
cpu->SetNZ(res & 0x80000000, \
|
|
!res); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(AND)
|
|
|
|
|
|
#define A_EOR(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a ^ b; \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_EOR_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a ^ b; \
|
|
cpu->SetNZ(res & 0x80000000, \
|
|
!res); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(EOR)
|
|
|
|
|
|
#define A_SUB(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a - b; \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_SUB_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a - b; \
|
|
cpu->SetNZCV(res & 0x80000000, \
|
|
!res, \
|
|
CARRY_SUB(a, b), \
|
|
OVERFLOW_SUB(a, b, res)); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(SUB)
|
|
|
|
|
|
#define A_RSB(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = b - a; \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_RSB_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = b - a; \
|
|
cpu->SetNZCV(res & 0x80000000, \
|
|
!res, \
|
|
CARRY_SUB(b, a), \
|
|
OVERFLOW_SUB(b, a, res)); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(RSB)
|
|
|
|
|
|
#define A_ADD(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a + b; \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_ADD_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a + b; \
|
|
cpu->SetNZCV(res & 0x80000000, \
|
|
!res, \
|
|
CARRY_ADD(a, b), \
|
|
OVERFLOW_ADD(a, b, res)); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(ADD)
|
|
|
|
|
|
#define A_ADC(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a + b + (cpu->CPSR&0x20000000 ? 1:0); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_ADC_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res_tmp = a + b; \
|
|
u32 carry = (cpu->CPSR&0x20000000 ? 1:0); \
|
|
u32 res = res_tmp + carry; \
|
|
cpu->SetNZCV(res & 0x80000000, \
|
|
!res, \
|
|
CARRY_ADD(a, b) | CARRY_ADD(res_tmp, carry), \
|
|
OVERFLOW_ADD(a, b, res_tmp) | OVERFLOW_ADD(res_tmp, carry, res)); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(ADC)
|
|
|
|
|
|
#define A_SBC(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a - b - (cpu->CPSR&0x20000000 ? 0:1); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_SBC_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res_tmp = a - b; \
|
|
u32 carry = (cpu->CPSR&0x20000000 ? 0:1); \
|
|
u32 res = res_tmp - carry; \
|
|
cpu->SetNZCV(res & 0x80000000, \
|
|
!res, \
|
|
CARRY_SUB(a, b) & CARRY_SUB(res_tmp, carry), \
|
|
OVERFLOW_SUB(a, b, res_tmp) | OVERFLOW_SUB(res_tmp, carry, res)); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(SBC)
|
|
|
|
|
|
#define A_RSC(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = b - a - (cpu->CPSR&0x20000000 ? 0:1); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_RSC_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res_tmp = b - a; \
|
|
u32 carry = (cpu->CPSR&0x20000000 ? 0:1); \
|
|
u32 res = res_tmp - carry; \
|
|
cpu->SetNZCV(res & 0x80000000, \
|
|
!res, \
|
|
CARRY_SUB(b, a) & CARRY_SUB(res_tmp, carry), \
|
|
OVERFLOW_SUB(b, a, res_tmp) | OVERFLOW_SUB(res_tmp, carry, res)); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(RSC)
|
|
|
|
|
|
#define A_TST(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a & b; \
|
|
cpu->SetNZ(res & 0x80000000, \
|
|
!res); \
|
|
return C_S(1) + C_I(c);
|
|
|
|
A_IMPLEMENT_ALU_TEST(TST)
|
|
|
|
|
|
#define A_TEQ(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a ^ b; \
|
|
cpu->SetNZ(res & 0x80000000, \
|
|
!res); \
|
|
return C_S(1) + C_I(c);
|
|
|
|
A_IMPLEMENT_ALU_TEST(TEQ)
|
|
|
|
|
|
#define A_CMP(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a - b; \
|
|
cpu->SetNZCV(res & 0x80000000, \
|
|
!res, \
|
|
CARRY_SUB(a, b), \
|
|
OVERFLOW_SUB(a, b, res)); \
|
|
return C_S(1) + C_I(c);
|
|
|
|
A_IMPLEMENT_ALU_TEST(CMP)
|
|
|
|
|
|
#define A_CMN(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a + b; \
|
|
cpu->SetNZCV(res & 0x80000000, \
|
|
!res, \
|
|
CARRY_ADD(a, b), \
|
|
OVERFLOW_ADD(a, b, res)); \
|
|
return C_S(1) + C_I(c);
|
|
|
|
A_IMPLEMENT_ALU_TEST(CMN)
|
|
|
|
|
|
#define A_ORR(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a | b; \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_ORR_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a | b; \
|
|
cpu->SetNZ(res & 0x80000000, \
|
|
!res); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(ORR)
|
|
|
|
|
|
#define A_MOV(c) \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(b); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_MOV_S(c) \
|
|
cpu->SetNZ(b & 0x80000000, \
|
|
!b); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(b, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(MOV)
|
|
|
|
|
|
#define A_BIC(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a & ~b; \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_BIC_S(c) \
|
|
u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
|
|
u32 res = a & ~b; \
|
|
cpu->SetNZ(res & 0x80000000, \
|
|
!res); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(res, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(BIC)
|
|
|
|
|
|
#define A_MVN(c) \
|
|
b = ~b; \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(b); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
#define A_MVN_S(c) \
|
|
b = ~b; \
|
|
cpu->SetNZ(b & 0x80000000, \
|
|
!b); \
|
|
if (((cpu->CurInstr>>12) & 0xF) == 15) \
|
|
{ \
|
|
cpu->JumpTo(b, true); \
|
|
return C_S(2) + C_I(c) + C_N(1); \
|
|
} \
|
|
else \
|
|
{ \
|
|
cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \
|
|
return C_S(1) + C_I(c); \
|
|
}
|
|
|
|
A_IMPLEMENT_ALU_OP(MVN)
|
|
|
|
|
|
|
|
s32 A_MUL(ARM* cpu)
|
|
{
|
|
u32 rm = cpu->R[cpu->CurInstr & 0xF];
|
|
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
|
|
|
|
u32 res = rm * rs;
|
|
|
|
cpu->R[(cpu->CurInstr >> 16) & 0xF] = res;
|
|
if (cpu->CurInstr & (1<<20))
|
|
{
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
if (cpu->Num==1) cpu->SetC(0);
|
|
}
|
|
|
|
u32 cycles;
|
|
if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 1;
|
|
else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 2;
|
|
else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 3;
|
|
else cycles = 4;
|
|
|
|
return C_S(1) + C_I(cycles);
|
|
}
|
|
|
|
s32 A_MLA(ARM* cpu)
|
|
{
|
|
u32 rm = cpu->R[cpu->CurInstr & 0xF];
|
|
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
|
|
u32 rn = cpu->R[(cpu->CurInstr >> 12) & 0xF];
|
|
|
|
u32 res = (rm * rs) + rn;
|
|
|
|
cpu->R[(cpu->CurInstr >> 16) & 0xF] = res;
|
|
if (cpu->CurInstr & (1<<20))
|
|
{
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
if (cpu->Num==1) cpu->SetC(0);
|
|
}
|
|
|
|
u32 cycles;
|
|
if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2;
|
|
else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3;
|
|
else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4;
|
|
else cycles = 5;
|
|
|
|
return C_S(1) + C_I(cycles);
|
|
}
|
|
|
|
s32 A_UMULL(ARM* cpu)
|
|
{
|
|
u32 rm = cpu->R[cpu->CurInstr & 0xF];
|
|
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
|
|
|
|
u64 res = (u64)rm * (u64)rs;
|
|
|
|
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
|
|
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
|
|
if (cpu->CurInstr & (1<<20))
|
|
{
|
|
cpu->SetNZ((u32)(res >> 63ULL),
|
|
!res);
|
|
if (cpu->Num==1) cpu->SetC(0);
|
|
}
|
|
|
|
u32 cycles;
|
|
if ((rs & 0xFFFFFF00) == 0x00000000) cycles = 2;
|
|
else if ((rs & 0xFFFF0000) == 0x00000000) cycles = 3;
|
|
else if ((rs & 0xFF000000) == 0x00000000) cycles = 4;
|
|
else cycles = 5;
|
|
|
|
return C_S(1) + C_I(cycles);
|
|
}
|
|
|
|
s32 A_UMLAL(ARM* cpu)
|
|
{
|
|
u32 rm = cpu->R[cpu->CurInstr & 0xF];
|
|
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
|
|
|
|
u64 res = (u64)rm * (u64)rs;
|
|
|
|
u64 rd = (u64)cpu->R[(cpu->CurInstr >> 12) & 0xF] | ((u64)cpu->R[(cpu->CurInstr >> 16) & 0xF] << 32ULL);
|
|
res += rd;
|
|
|
|
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
|
|
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
|
|
if (cpu->CurInstr & (1<<20))
|
|
{
|
|
cpu->SetNZ((u32)(res >> 63ULL),
|
|
!res);
|
|
if (cpu->Num==1) cpu->SetC(0);
|
|
}
|
|
|
|
u32 cycles;
|
|
if ((rs & 0xFFFFFF00) == 0x00000000) cycles = 2;
|
|
else if ((rs & 0xFFFF0000) == 0x00000000) cycles = 3;
|
|
else if ((rs & 0xFF000000) == 0x00000000) cycles = 4;
|
|
else cycles = 5;
|
|
|
|
return C_S(1) + C_I(cycles);
|
|
}
|
|
|
|
s32 A_SMULL(ARM* cpu)
|
|
{
|
|
u32 rm = cpu->R[cpu->CurInstr & 0xF];
|
|
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
|
|
|
|
s64 res = (s64)(s32)rm * (s64)(s32)rs;
|
|
|
|
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
|
|
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
|
|
if (cpu->CurInstr & (1<<20))
|
|
{
|
|
cpu->SetNZ((u32)(res >> 63ULL),
|
|
!res);
|
|
if (cpu->Num==1) cpu->SetC(0);
|
|
}
|
|
|
|
u32 cycles;
|
|
if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2;
|
|
else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3;
|
|
else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4;
|
|
else cycles = 5;
|
|
|
|
return C_S(1) + C_I(cycles);
|
|
}
|
|
|
|
s32 A_SMLAL(ARM* cpu)
|
|
{
|
|
u32 rm = cpu->R[cpu->CurInstr & 0xF];
|
|
u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF];
|
|
|
|
s64 res = (s64)(s32)rm * (s64)(s32)rs;
|
|
|
|
s64 rd = (s64)((u64)cpu->R[(cpu->CurInstr >> 12) & 0xF] | ((u64)cpu->R[(cpu->CurInstr >> 16) & 0xF] << 32ULL));
|
|
res += rd;
|
|
|
|
cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res;
|
|
cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL);
|
|
if (cpu->CurInstr & (1<<20))
|
|
{
|
|
cpu->SetNZ((u32)(res >> 63ULL),
|
|
!res);
|
|
if (cpu->Num==1) cpu->SetC(0);
|
|
}
|
|
|
|
u32 cycles;
|
|
if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2;
|
|
else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3;
|
|
else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4;
|
|
else cycles = 5;
|
|
|
|
return C_S(1) + C_I(cycles);
|
|
}
|
|
|
|
|
|
|
|
s32 A_CLZ(ARM* cpu)
|
|
{
|
|
// TODO: ARM9 only
|
|
|
|
u32 val = cpu->R[cpu->CurInstr & 0xF];
|
|
|
|
u32 res = 0;
|
|
while ((val & 0xFF000000) == 0)
|
|
{
|
|
res += 8;
|
|
val <<= 8;
|
|
val |= 0xFF;
|
|
}
|
|
while ((val & 0x80000000) == 0)
|
|
{
|
|
res++;
|
|
val <<= 1;
|
|
val |= 0x1;
|
|
}
|
|
|
|
cpu->R[(cpu->CurInstr >> 12) & 0xF] = res;
|
|
|
|
return C_S(1);
|
|
}
|
|
|
|
|
|
|
|
// ---- THUMB ----------------------------------
|
|
|
|
|
|
|
|
s32 T_LSL_IMM(ARM* cpu)
|
|
{
|
|
u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 s = (cpu->CurInstr >> 6) & 0x1F;
|
|
LSL_IMM_S(op, s);
|
|
cpu->R[cpu->CurInstr & 0x7] = op;
|
|
cpu->SetNZ(op & 0x80000000,
|
|
!op);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_LSR_IMM(ARM* cpu)
|
|
{
|
|
u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 s = (cpu->CurInstr >> 6) & 0x1F;
|
|
LSR_IMM_S(op, s);
|
|
cpu->R[cpu->CurInstr & 0x7] = op;
|
|
cpu->SetNZ(op & 0x80000000,
|
|
!op);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_ASR_IMM(ARM* cpu)
|
|
{
|
|
u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 s = (cpu->CurInstr >> 6) & 0x1F;
|
|
ASR_IMM_S(op, s);
|
|
cpu->R[cpu->CurInstr & 0x7] = op;
|
|
cpu->SetNZ(op & 0x80000000,
|
|
!op);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_ADD_REG_(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 6) & 0x7];
|
|
u32 res = a + b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_ADD(a, b),
|
|
OVERFLOW_ADD(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_SUB_REG_(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 6) & 0x7];
|
|
u32 res = a - b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_SUB(a, b),
|
|
OVERFLOW_SUB(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_ADD_IMM_(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 b = (cpu->CurInstr >> 6) & 0x7;
|
|
u32 res = a + b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_ADD(a, b),
|
|
OVERFLOW_ADD(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_SUB_IMM_(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 b = (cpu->CurInstr >> 6) & 0x7;
|
|
u32 res = a - b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_SUB(a, b),
|
|
OVERFLOW_SUB(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_MOV_IMM(ARM* cpu)
|
|
{
|
|
u32 b = cpu->CurInstr & 0xFF;
|
|
cpu->R[(cpu->CurInstr >> 8) & 0x7] = b;
|
|
cpu->SetNZ(0,
|
|
!b);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_CMP_IMM(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7];
|
|
u32 b = cpu->CurInstr & 0xFF;
|
|
u32 res = a - b;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_SUB(a, b),
|
|
OVERFLOW_SUB(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_ADD_IMM(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7];
|
|
u32 b = cpu->CurInstr & 0xFF;
|
|
u32 res = a + b;
|
|
cpu->R[(cpu->CurInstr >> 8) & 0x7] = res;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_ADD(a, b),
|
|
OVERFLOW_ADD(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_SUB_IMM(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7];
|
|
u32 b = cpu->CurInstr & 0xFF;
|
|
u32 res = a - b;
|
|
cpu->R[(cpu->CurInstr >> 8) & 0x7] = res;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_SUB(a, b),
|
|
OVERFLOW_SUB(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
|
|
s32 T_AND_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = a & b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_EOR_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = a ^ b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_LSL_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF;
|
|
LSL_REG_S(a, b);
|
|
cpu->R[cpu->CurInstr & 0x7] = a;
|
|
cpu->SetNZ(a & 0x80000000,
|
|
!a);
|
|
return C_S(1) + C_I(1);
|
|
}
|
|
|
|
s32 T_LSR_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF;
|
|
LSR_REG_S(a, b);
|
|
cpu->R[cpu->CurInstr & 0x7] = a;
|
|
cpu->SetNZ(a & 0x80000000,
|
|
!a);
|
|
return C_S(1) + C_I(1);
|
|
}
|
|
|
|
s32 T_ASR_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF;
|
|
ASR_REG_S(a, b);
|
|
cpu->R[cpu->CurInstr & 0x7] = a;
|
|
cpu->SetNZ(a & 0x80000000,
|
|
!a);
|
|
return C_S(1) + C_I(1);
|
|
}
|
|
|
|
s32 T_ADC_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res_tmp = a + b;
|
|
u32 carry = (cpu->CPSR&0x20000000 ? 1:0);
|
|
u32 res = res_tmp + carry;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_ADD(a, b) | CARRY_ADD(res_tmp, carry),
|
|
OVERFLOW_ADD(a, b, res_tmp) | OVERFLOW_ADD(res_tmp, carry, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_SBC_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res_tmp = a - b;
|
|
u32 carry = (cpu->CPSR&0x20000000 ? 0:1);
|
|
u32 res = res_tmp - carry;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_SUB(a, b) & CARRY_SUB(res_tmp, carry),
|
|
OVERFLOW_SUB(a, b, res_tmp) | OVERFLOW_SUB(res_tmp, carry, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_ROR_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF;
|
|
ROR_REG_S(a, b);
|
|
cpu->R[cpu->CurInstr & 0x7] = a;
|
|
cpu->SetNZ(a & 0x80000000,
|
|
!a);
|
|
return C_S(1) + C_I(1);
|
|
}
|
|
|
|
s32 T_TST_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = a & b;
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_NEG_REG(ARM* cpu)
|
|
{
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = -b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_CMP_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = a - b;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_SUB(a, b),
|
|
OVERFLOW_SUB(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_CMN_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = a + b;
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_ADD(a, b),
|
|
OVERFLOW_ADD(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_ORR_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = a | b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_MUL_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = a * b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
|
|
s32 cycles = C_S(1);
|
|
if (cpu->Num == 0)
|
|
{
|
|
cycles += C_I(3);
|
|
}
|
|
else
|
|
{
|
|
cpu->SetC(0); // carry flag destroyed, they say. whatever that means...
|
|
if (a & 0xFF000000) cycles += C_I(4);
|
|
else if (a & 0x00FF0000) cycles += C_I(3);
|
|
else if (a & 0x0000FF00) cycles += C_I(2);
|
|
else cycles += C_I(1);
|
|
}
|
|
return cycles;
|
|
}
|
|
|
|
s32 T_BIC_REG(ARM* cpu)
|
|
{
|
|
u32 a = cpu->R[cpu->CurInstr & 0x7];
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = a & ~b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_MVN_REG(ARM* cpu)
|
|
{
|
|
u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7];
|
|
u32 res = ~b;
|
|
cpu->R[cpu->CurInstr & 0x7] = res;
|
|
cpu->SetNZ(res & 0x80000000,
|
|
!res);
|
|
return C_S(1);
|
|
}
|
|
|
|
|
|
s32 T_ADD_HIREG(ARM* cpu)
|
|
{
|
|
u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8);
|
|
u32 rs = (cpu->CurInstr >> 3) & 0xF;
|
|
|
|
u32 a = cpu->R[rd];
|
|
u32 b = cpu->R[rs];
|
|
|
|
if (rd == 15)
|
|
{
|
|
cpu->JumpTo((a + b) | 1);
|
|
return C_S(2) + C_N(1);
|
|
}
|
|
else
|
|
{
|
|
cpu->R[rd] = a + b;
|
|
return C_S(1);
|
|
}
|
|
}
|
|
|
|
s32 T_CMP_HIREG(ARM* cpu)
|
|
{
|
|
u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8);
|
|
u32 rs = (cpu->CurInstr >> 3) & 0xF;
|
|
|
|
u32 a = cpu->R[rd];
|
|
u32 b = cpu->R[rs];
|
|
u32 res = a - b;
|
|
|
|
cpu->SetNZCV(res & 0x80000000,
|
|
!res,
|
|
CARRY_SUB(a, b),
|
|
OVERFLOW_SUB(a, b, res));
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_MOV_HIREG(ARM* cpu)
|
|
{
|
|
u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8);
|
|
u32 rs = (cpu->CurInstr >> 3) & 0xF;
|
|
|
|
if (rd == 15)
|
|
{
|
|
cpu->JumpTo(cpu->R[rs] | 1);
|
|
return C_S(2) + C_N(1);
|
|
}
|
|
else
|
|
{
|
|
cpu->R[rd] = cpu->R[rs];
|
|
return C_S(1);
|
|
}
|
|
}
|
|
|
|
|
|
s32 T_ADD_PCREL(ARM* cpu)
|
|
{
|
|
u32 val = cpu->R[15] & ~2;
|
|
val += ((cpu->CurInstr & 0xFF) << 2);
|
|
cpu->R[(cpu->CurInstr >> 8) & 0x7] = val;
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_ADD_SPREL(ARM* cpu)
|
|
{
|
|
u32 val = cpu->R[13];
|
|
val += ((cpu->CurInstr & 0xFF) << 2);
|
|
cpu->R[(cpu->CurInstr >> 8) & 0x7] = val;
|
|
return C_S(1);
|
|
}
|
|
|
|
s32 T_ADD_SP(ARM* cpu)
|
|
{
|
|
u32 val = cpu->R[13];
|
|
if (cpu->CurInstr & (1<<7))
|
|
val -= ((cpu->CurInstr & 0x7F) << 2);
|
|
else
|
|
val += ((cpu->CurInstr & 0x7F) << 2);
|
|
cpu->R[13] = val;
|
|
return C_S(1);
|
|
}
|
|
|
|
|
|
}
|