melonDS/GPU2D.cpp

1605 lines
43 KiB
C++

/*
Copyright 2016-2017 StapleButter
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "GPU.h"
// notes on color conversion
//
// * BLDCNT special effects are applied on 18bit colors
// -> layers are converted to 18bit before being composited
// -> 'brightness up' effect does: x = x + (63-x)*factor
// * colors are converted as follows: 18bit = 15bit * 2
// -> white comes out as 62,62,62 and not 63,63,63
// * VRAM/FIFO display modes convert colors the same way
// * 3D engine converts colors differently (18bit = 15bit * 2 + 1, except 0 = 0)
// * 'screen disabled' white is 63,63,63
//
// oh also, changing DISPCNT bit16-17 midframe doesn't work (ignored? applied for next frame?)
// TODO, eventually: check whether other DISPCNT bits can be changed midframe
//
// for VRAM display mode, VRAM must be mapped to LCDC
//
// sprite blending rules
// * destination must be selected as 2nd target
// * sprite must be semitransparent or bitmap sprite
// * blending is applied instead of the selected color effect, even if it is 'none'.
// * for bitmap sprites: EVA = alpha+1, EVB = 16-EVA
// * for bitmap sprites: alpha=0 is always transparent, even if blending doesn't apply
//
// 3D blending rules
//
// 3D/3D blending seems to follow these equations:
// dstColor = srcColor*srcAlpha + dstColor*(1-srcAlpha)
// dstAlpha = max(srcAlpha, dstAlpha)
// blending isn't applied if dstAlpha is zero.
//
// 3D/2D blending rules
// * if destination selected as 2nd target:
// blending is applied instead of the selected color effect, using full 5bit alpha from 3D layer
// this even if the selected color effect is 'none'.
// apparently this works even if BG0 isn't selected as 1st target
// * if BG0 is selected as 1st target, destination not selected as 2nd target:
// brightness up/down effect is applied if selected. if blending is selected, it doesn't apply.
// * 3D layer pixels with alpha=0 are always transparent.
GPU2D::GPU2D(u32 num)
{
Num = num;
}
GPU2D::~GPU2D()
{
}
void GPU2D::Reset()
{
DispCnt = 0;
memset(BGCnt, 0, 4*2);
memset(BGXPos, 0, 4*2);
memset(BGYPos, 0, 4*2);
memset(BGXRef, 0, 2*4);
memset(BGYRef, 0, 2*4);
memset(BGXRefInternal, 0, 2*4);
memset(BGYRefInternal, 0, 2*4);
memset(BGRotA, 0, 2*2);
memset(BGRotB, 0, 2*2);
memset(BGRotC, 0, 2*2);
memset(BGRotD, 0, 2*2);
BlendCnt = 0;
EVA = 16;
EVB = 0;
EVY = 0;
CaptureCnt = 0;
MasterBrightness = 0;
BGExtPalStatus[0] = 0;
BGExtPalStatus[1] = 0;
BGExtPalStatus[2] = 0;
BGExtPalStatus[3] = 0;
OBJExtPalStatus = 0;
}
void GPU2D::SetFramebuffer(u32* buf)
{
Framebuffer = buf;
}
u8 GPU2D::Read8(u32 addr)
{
printf("!! GPU2D READ8 %08X\n", addr);
return 0;
}
u16 GPU2D::Read16(u32 addr)
{
switch (addr & 0x00000FFF)
{
case 0x000: return DispCnt&0xFFFF;
case 0x002: return DispCnt>>16;
case 0x008: return BGCnt[0];
case 0x00A: return BGCnt[1];
case 0x00C: return BGCnt[2];
case 0x00E: return BGCnt[3];
case 0x050: return BlendCnt;
case 0x064: return CaptureCnt & 0xFFFF;
case 0x066: return CaptureCnt >> 16;
}
printf("unknown GPU read16 %08X\n", addr);
return 0;
}
u32 GPU2D::Read32(u32 addr)
{
switch (addr & 0x00000FFF)
{
case 0x000: return DispCnt;
case 0x064: return CaptureCnt;
}
return Read16(addr) | (Read16(addr+2) << 16);
}
void GPU2D::Write8(u32 addr, u8 val)
{
printf("!! GPU2D WRITE8 %08X %02X\n", addr, val);
}
void GPU2D::Write16(u32 addr, u16 val)
{
switch (addr & 0x00000FFF)
{
case 0x000:
DispCnt = (DispCnt & 0xFFFF0000) | val;
//printf("[L] DISPCNT=%08X\n", DispCnt);
return;
case 0x002:
DispCnt = (DispCnt & 0x0000FFFF) | (val << 16);
//printf("[H] DISPCNT=%08X\n", DispCnt);
return;
case 0x008: BGCnt[0] = val; return;
case 0x00A: BGCnt[1] = val; return;
case 0x00C: BGCnt[2] = val; return;
case 0x00E: BGCnt[3] = val; return;
case 0x010: BGXPos[0] = val; return;
case 0x012: BGYPos[0] = val; return;
case 0x014: BGXPos[1] = val; return;
case 0x016: BGYPos[1] = val; return;
case 0x018: BGXPos[2] = val; return;
case 0x01A: BGYPos[2] = val; return;
case 0x01C: BGXPos[3] = val; return;
case 0x01E: BGYPos[3] = val; return;
case 0x020: BGRotA[0] = val; return;
case 0x022: BGRotB[0] = val; return;
case 0x024: BGRotC[0] = val; return;
case 0x026: BGRotD[0] = val; return;
case 0x028:
BGXRef[0] = (BGXRef[0] & 0xFFFF0000) | val;
if (GPU::VCount < 192) BGXRefInternal[0] = BGXRef[0];
return;
case 0x02A:
if (val & 0x0800) val |= 0xF000;
BGXRef[0] = (BGXRef[0] & 0xFFFF) | (val << 16);
if (GPU::VCount < 192) BGXRefInternal[0] = BGXRef[0];
return;
case 0x02C:
BGYRef[0] = (BGYRef[0] & 0xFFFF0000) | val;
if (GPU::VCount < 192) BGYRefInternal[0] = BGYRef[0];
return;
case 0x02E:
if (val & 0x0800) val |= 0xF000;
BGYRef[0] = (BGYRef[0] & 0xFFFF) | (val << 16);
if (GPU::VCount < 192) BGYRefInternal[0] = BGYRef[0];
return;
case 0x030: BGRotA[1] = val; return;
case 0x032: BGRotB[1] = val; return;
case 0x034: BGRotC[1] = val; return;
case 0x036: BGRotD[1] = val; return;
case 0x038:
BGXRef[1] = (BGXRef[1] & 0xFFFF0000) | val;
if (GPU::VCount < 192) BGXRefInternal[1] = BGXRef[1];
return;
case 0x03A:
if (val & 0x0800) val |= 0xF000;
BGXRef[1] = (BGXRef[1] & 0xFFFF) | (val << 16);
if (GPU::VCount < 192) BGXRefInternal[1] = BGXRef[1];
return;
case 0x03C:
BGYRef[1] = (BGYRef[1] & 0xFFFF0000) | val;
if (GPU::VCount < 192) BGYRefInternal[1] = BGYRef[1];
return;
case 0x03E:
if (val & 0x0800) val |= 0xF000;
BGYRef[1] = (BGYRef[1] & 0xFFFF) | (val << 16);
if (GPU::VCount < 192) BGYRefInternal[1] = BGYRef[1];
return;
case 0x050: BlendCnt = val; return;
case 0x052:
EVA = val & 0x1F;
if (EVA > 16) EVA = 16;
EVB = (val >> 8) & 0x1F;
if (EVB > 16) EVB = 16;
return;
case 0x054:
EVY = val & 0x1F;
if (EVY > 16) EVY = 16;
return;
case 0x06C: MasterBrightness = val; return;
}
//printf("unknown GPU write16 %08X %04X\n", addr, val);
}
void GPU2D::Write32(u32 addr, u32 val)
{
switch (addr & 0x00000FFF)
{
case 0x000:
//printf("DISPCNT=%08X\n", val);
DispCnt = val;
return;
case 0x028:
if (val & 0x08000000) val |= 0xF0000000;
BGXRef[0] = val;
if (GPU::VCount < 192) BGXRefInternal[0] = BGXRef[0];
return;
case 0x02C:
if (val & 0x08000000) val |= 0xF0000000;
BGYRef[0] = val;
if (GPU::VCount < 192) BGYRefInternal[0] = BGYRef[0];
return;
case 0x038:
if (val & 0x08000000) val |= 0xF0000000;
BGXRef[1] = val;
if (GPU::VCount < 192) BGXRefInternal[1] = BGXRef[1];
return;
case 0x03C:
if (val & 0x08000000) val |= 0xF0000000;
BGYRef[1] = val;
if (GPU::VCount < 192) BGYRefInternal[1] = BGYRef[1];
return;
case 0x064:
// TODO: check what happens when writing to it during display
// esp. if a capture is happening
CaptureCnt = val & 0xEF3F1F1F;
return;
}
Write16(addr, val&0xFFFF);
Write16(addr+2, val>>16);
}
void GPU2D::DrawScanline(u32 line)
{
u32* dst = &Framebuffer[256*line];
u32 dispmode = DispCnt >> 16;
dispmode &= (Num ? 0x1 : 0x3);
switch (dispmode)
{
case 0: // screen off
{
for (int i = 0; i < 256; i++)
dst[i] = 0xFF3F3F3F;
}
break;
case 1: // regular display
{
DrawScanline_Mode1(line, dst);
}
break;
case 2: // VRAM display
{
u32 vrambank = (DispCnt >> 18) & 0x3;
if (GPU::VRAMMap_LCDC & (1<<vrambank))
{
u16* vram = (u16*)GPU::VRAM[vrambank];
vram = &vram[line * 256];
for (int i = 0; i < 256; i++)
{
u16 color = vram[i];
u8 r = (color & 0x001F) << 1;
u8 g = (color & 0x03E0) >> 4;
u8 b = (color & 0x7C00) >> 9;
dst[i] = r | (g << 8) | (b << 16);
}
}
else
{
for (int i = 0; i < 256; i++)
{
dst[i] = 0;
}
}
}
break;
case 3: // FIFO display
{
// TODO
}
break;
}
// capture
if ((!Num) && (CaptureCnt & (1<<31)))
{
u32 capwidth, capheight;
switch ((CaptureCnt >> 20) & 0x3)
{
case 0: capwidth = 128; capheight = 128; break;
case 1: capwidth = 256; capheight = 64; break;
case 2: capwidth = 256; capheight = 128; break;
case 3: capwidth = 256; capheight = 192; break;
}
if (line < capheight)
DoCapture(line, capwidth, dst);
}
// master brightness
if (dispmode != 0)
{
if ((MasterBrightness >> 14) == 1)
{
// up
u32 factor = MasterBrightness & 0x1F;
if (factor > 16) factor = 16;
for (int i = 0; i < 256; i++)
{
u32 val = dst[i];
u32 r = val & 0x00003F;
u32 g = val & 0x003F00;
u32 b = val & 0x3F0000;
r += (((0x00003F - r) * factor) >> 4);
g += ((((0x003F00 - g) * factor) >> 4) & 0x003F00);
b += ((((0x3F0000 - b) * factor) >> 4) & 0x3F0000);
dst[i] = r | g | b;
}
}
else if ((MasterBrightness >> 14) == 2)
{
// down
u32 factor = MasterBrightness & 0x1F;
if (factor > 16) factor = 16;
for (int i = 0; i < 256; i++)
{
u32 val = dst[i];
u32 r = val & 0x00003F;
u32 g = val & 0x003F00;
u32 b = val & 0x3F0000;
r -= ((r * factor) >> 4);
g -= (((g * factor) >> 4) & 0x003F00);
b -= (((b * factor) >> 4) & 0x3F0000);
dst[i] = r | g | b;
}
}
}
// convert to 32-bit RGBA
for (int i = 0; i < 256; i++)
dst[i] = ((dst[i] & 0x003F3F3F) << 2) |
((dst[i] & 0x00303030) >> 4) |
0xFF000000;
}
void GPU2D::VBlank()
{
BGXRefInternal[0] = BGXRef[0];
BGXRefInternal[1] = BGXRef[1];
BGYRefInternal[0] = BGYRef[0];
BGYRefInternal[1] = BGYRef[1];
CaptureCnt &= ~(1<<31);
}
void GPU2D::DoCapture(u32 line, u32 width, u32* src)
{
u32 dstvram = (CaptureCnt >> 16) & 0x3;
// TODO: confirm this
// it should work like VRAM display mode, which requires VRAM to be mapped to LCDC
if (!(GPU::VRAMMap_LCDC & (1<<dstvram)))
return;
u16* dst = (u16*)GPU::VRAM[dstvram];
u32 dstaddr = (((CaptureCnt >> 18) & 0x3) << 14) + (line * width);
if (CaptureCnt & (1<<24))
src = (u32*)GPU3D::GetLine(line);
u16* srcB = NULL;
u32 srcBaddr = line * 256;
if (CaptureCnt & (1<<25))
{
// TODO: FIFO mode
}
else
{
u32 srcvram = (DispCnt >> 18) & 0x3;
if (GPU::VRAMMap_LCDC & (1<<srcvram))
srcB = (u16*)GPU::VRAM[srcvram];
if (((DispCnt >> 16) & 0x3) != 2)
srcBaddr += ((CaptureCnt >> 26) & 0x3) << 14;
}
dstaddr &= 0xFFFF;
srcBaddr &= 0xFFFF;
switch ((DispCnt >> 29) & 0x3)
{
case 0: // source A
{
for (u32 i = 0; i < width; i++)
{
u32 val = src[i];
// TODO: check what happens when alpha=0
u32 r = (val >> 1) & 0x1F;
u32 g = (val >> 9) & 0x1F;
u32 b = (val >> 17) & 0x1F;
u32 a = ((val >> 24) != 0) ? 0x8000 : 0;
dst[dstaddr] = r | (g << 5) | (b << 10) | a;
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
break;
case 1: // source B
{
if (srcB)
{
for (u32 i = 0; i < width; i++)
{
dst[dstaddr] = srcB[srcBaddr];
srcBaddr = (srcBaddr + 1) & 0xFFFF;
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
else
{
for (u32 i = 0; i < width; i++)
{
dst[dstaddr] = 0;
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
}
break;
case 2: // sources A+B
case 3:
{
u32 eva = DispCnt & 0x1F;
u32 evb = (DispCnt >> 8) & 0x1F;
// checkme
if (eva > 16) eva = 16;
if (evb > 16) evb = 16;
if (srcB)
{
for (u32 i = 0; i < width; i++)
{
u32 val = src[i];
// TODO: check what happens when alpha=0
u32 rA = (val >> 1) & 0x1F;
u32 gA = (val >> 9) & 0x1F;
u32 bA = (val >> 17) & 0x1F;
u32 aA = ((val >> 24) != 0) ? 1 : 0;
val = srcB[srcBaddr];
u32 rB = val & 0x1F;
u32 gB = (val >> 5) & 0x1F;
u32 bB = (val >> 10) & 0x1F;
u32 aB = val >> 15;
u32 rD = ((rA * aA * eva) + (rB * aB * evb)) >> 4;
u32 gD = ((gA * aA * eva) + (gB * aB * evb)) >> 4;
u32 bD = ((bA * aA * eva) + (bB * aB * evb)) >> 4;
u32 aD = (eva>0 ? aA : 0) | (evb>0 ? aB : 0);
dst[dstaddr] = rD | (gD << 5) | (bD << 10) | (aD << 15);
srcBaddr = (srcBaddr + 1) & 0xFFFF;
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
else
{
for (u32 i = 0; i < width; i++)
{
u32 val = src[i];
// TODO: check what happens when alpha=0
u32 rA = (val >> 1) & 0x1F;
u32 gA = (val >> 9) & 0x1F;
u32 bA = (val >> 17) & 0x1F;
u32 aA = ((val >> 24) != 0) ? 1 : 0;
u32 rD = (rA * aA * eva) >> 4;
u32 gD = (gA * aA * eva) >> 4;
u32 bD = (bA * aA * eva) >> 4;
u32 aD = (eva>0 ? aA : 0);
dst[dstaddr] = rD | (gD << 5) | (bD << 10) | (aD << 15);
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
}
break;
}
}
void GPU2D::BGExtPalDirty(u32 base)
{
BGExtPalStatus[base] = 0;
BGExtPalStatus[base+1] = 0;
}
void GPU2D::OBJExtPalDirty()
{
OBJExtPalStatus = 0;
}
u16* GPU2D::GetBGExtPal(u32 slot, u32 pal)
{
u16* dst = &BGExtPalCache[slot][pal << 8];
if (!(BGExtPalStatus[slot] & (1<<pal)))
{
if (Num)
{
if (GPU::VRAMMap_BBGExtPal[slot] & (1<<7))
memcpy(dst, &GPU::VRAM_H[(slot << 13) + (pal << 9)], 256*2);
else
memset(dst, 0, 256*2);
}
else
{
memset(dst, 0, 256*2);
if (GPU::VRAMMap_ABGExtPal[slot] & (1<<4))
for (int i = 0; i < 256; i+=2)
*(u32*)&dst[i] |= *(u32*)&GPU::VRAM_E[(slot << 13) + (pal << 9) + (i << 1)];
if (GPU::VRAMMap_ABGExtPal[slot] & (1<<5))
for (int i = 0; i < 256; i+=2)
*(u32*)&dst[i] |= *(u32*)&GPU::VRAM_F[((slot&1) << 13) + (pal << 9) + (i << 1)];
if (GPU::VRAMMap_ABGExtPal[slot] & (1<<6))
for (int i = 0; i < 256; i+=2)
*(u32*)&dst[i] |= *(u32*)&GPU::VRAM_G[((slot&1) << 13) + (pal << 9) + (i << 1)];
}
BGExtPalStatus[slot] |= (1<<pal);
}
return dst;
}
u16* GPU2D::GetOBJExtPal(u32 pal)
{
u16* dst = &OBJExtPalCache[pal << 8];
if (!(OBJExtPalStatus & (1<<pal)))
{
if (Num)
{
if (GPU::VRAMMap_BOBJExtPal & (1<<8))
memcpy(dst, &GPU::VRAM_I[(pal << 9)], 256*2);
else
memset(dst, 0, 256*2);
}
else
{
memset(dst, 0, 256*2);
if (GPU::VRAMMap_AOBJExtPal & (1<<5))
for (int i = 0; i < 256; i+=2)
*(u32*)&dst[i] |= *(u32*)&GPU::VRAM_F[(pal << 9) + (i << 1)];
if (GPU::VRAMMap_AOBJExtPal & (1<<6))
for (int i = 0; i < 256; i+=2)
*(u32*)&dst[i] |= *(u32*)&GPU::VRAM_G[(pal << 9) + (i << 1)];
}
OBJExtPalStatus |= (1<<pal);
}
return dst;
}
template<u32 bgmode>
void GPU2D::DrawScanlineBGMode(u32 line, u32* spritebuf, u32* dst)
{
for (int i = 3; i >= 0; i--)
{
if ((BGCnt[3] & 0x3) == i)
{
if (DispCnt & 0x0800)
{
if (bgmode >= 3)
DrawBG_Extended(line, dst, 3);
else if (bgmode >= 1)
{} // todo: rotscale
else
DrawBG_Text(line, dst, 3);
}
}
if ((BGCnt[2] & 0x3) == i)
{
if (DispCnt & 0x0400)
{
if (bgmode == 5)
DrawBG_Extended(line, dst, 2);
else if (bgmode == 4 || bgmode == 2)
{} // todo: rotscale
else
DrawBG_Text(line, dst, 2);
}
}
if ((BGCnt[1] & 0x3) == i)
{
if (DispCnt & 0x0200)
{
DrawBG_Text(line, dst, 1);
}
}
if ((BGCnt[0] & 0x3) == i)
{
if (DispCnt & 0x0100)
{
if ((!Num) && (DispCnt & 0x8))
DrawBG_3D(line, dst);
else
DrawBG_Text(line, dst, 0);
}
}
if (DispCnt & 0x1000)
InterleaveSprites(spritebuf, 0x8000 | (i<<16), dst);
}
}
void GPU2D::DrawScanline_Mode1(u32 line, u32* dst)
{
u32 linebuf[256*2];
u32 backdrop;
if (Num) backdrop = *(u16*)&GPU::Palette[0x400];
else backdrop = *(u16*)&GPU::Palette[0];
{
u8 r = (backdrop & 0x001F) << 1;
u8 g = (backdrop & 0x03E0) >> 4;
u8 b = (backdrop & 0x7C00) >> 9;
backdrop = r | (g << 8) | (b << 16) | 0x20000000;
for (int i = 0; i < 256; i++)
linebuf[i] = backdrop;
}
// prerender sprites
u32 spritebuf[256];
memset(spritebuf, 0, 256*4);
if (DispCnt & 0x1000) DrawSprites(line, spritebuf);
switch (DispCnt & 0x7)
{
case 0: DrawScanlineBGMode<0>(line, spritebuf, linebuf); break;
case 1: DrawScanlineBGMode<1>(line, spritebuf, linebuf); break;
case 2: DrawScanlineBGMode<2>(line, spritebuf, linebuf); break;
case 3: DrawScanlineBGMode<3>(line, spritebuf, linebuf); break;
case 4: DrawScanlineBGMode<4>(line, spritebuf, linebuf); break;
case 5: DrawScanlineBGMode<5>(line, spritebuf, linebuf); break;
}
// color special effects
// can likely be optimized
u32 bldcnteffect = (BlendCnt >> 6) & 0x3;
for (int i = 0; i < 256; i++)
{
u32 val1 = linebuf[i];
u32 val2 = linebuf[256+i];
u32 coloreffect, eva, evb;
u32 flag1 = val1 >> 24;
if ((flag1 & 0x80) && (BlendCnt & ((val2 >> 16) & 0xFF00)))
{
// sprite blending
coloreffect = 1;
if (flag1 & 0x40)
{
eva = flag1 & 0x1F;
evb = 16 - eva;
}
else
{
eva = EVA;
evb = EVB;
}
}
else if ((flag1 & 0x40) && (BlendCnt & ((val2 >> 16) & 0xFF00)))
{
// 3D layer blending
eva = (flag1 & 0x1F) + 1;
evb = 32 - eva;
u32 r = (((val1 & 0x00003F) * eva) + ((val2 & 0x00003F) * evb)) >> 5;
u32 g = ((((val1 & 0x003F00) * eva) + ((val2 & 0x003F00) * evb)) >> 5) & 0x007F00;
u32 b = ((((val1 & 0x3F0000) * eva) + ((val2 & 0x3F0000) * evb)) >> 5) & 0x7F0000;
if (eva <= 16)
{
r += 0x000001;
g += 0x000100;
b += 0x010000;
}
if (r > 0x00003F) r = 0x00003F;
if (g > 0x003F00) g = 0x003F00;
if (b > 0x3F0000) b = 0x3F0000;
dst[i] = r | g | b | 0xFF000000;
continue;
}
else if (BlendCnt & flag1)
{
if ((bldcnteffect == 1) && (BlendCnt & ((val2 >> 16) & 0xFF00)))
{
coloreffect = 1;
eva = EVA;
evb = EVB;
}
else if (bldcnteffect >= 2)
coloreffect = bldcnteffect;
else
coloreffect = 0;
}
else
coloreffect = 0;
switch (coloreffect)
{
case 0:
dst[i] = val1;
break;
case 1:
{
u32 r = (((val1 & 0x00003F) * eva) + ((val2 & 0x00003F) * evb)) >> 4;
u32 g = ((((val1 & 0x003F00) * eva) + ((val2 & 0x003F00) * evb)) >> 4) & 0x007F00;
u32 b = ((((val1 & 0x3F0000) * eva) + ((val2 & 0x3F0000) * evb)) >> 4) & 0x7F0000;
if (r > 0x00003F) r = 0x00003F;
if (g > 0x003F00) g = 0x003F00;
if (b > 0x3F0000) b = 0x3F0000;
dst[i] = r | g | b | 0xFF000000;
}
break;
case 2:
{
u32 r = val1 & 0x00003F;
u32 g = val1 & 0x003F00;
u32 b = val1 & 0x3F0000;
r += ((0x00003F - r) * EVY) >> 4;
g += (((0x003F00 - g) * EVY) >> 4) & 0x003F00;
b += (((0x3F0000 - b) * EVY) >> 4) & 0x3F0000;
dst[i] = r | g | b | 0xFF000000;
}
break;
case 3:
{
u32 r = val1 & 0x00003F;
u32 g = val1 & 0x003F00;
u32 b = val1 & 0x3F0000;
r -= (r * EVY) >> 4;
g -= ((g * EVY) >> 4) & 0x003F00;
b -= ((b * EVY) >> 4) & 0x3F0000;
dst[i] = r | g | b | 0xFF000000;
}
break;
}
}
}
void GPU2D::DrawPixel(u32* dst, u16 color, u32 flag)
{
u8 r = (color & 0x001F) << 1;
u8 g = (color & 0x03E0) >> 4;
u8 b = (color & 0x7C00) >> 9;
*(dst+256) = *dst;
*dst = r | (g << 8) | (b << 16) | flag;
}
void GPU2D::DrawBG_3D(u32 line, u32* dst)
{
// TODO: window, as for everything
// also check if window can prevent blending from happening
u32* src = GPU3D::GetLine(line);
u16 xoff = BGXPos[0];
int i = 0;
int iend = 256;
if (xoff & 0x100)
{
i = (0x100 - (xoff & 0xFF));
xoff += i;
}
if ((xoff - i + iend - 1) & 0x100)
{
iend -= (xoff & 0xFF);
}
for (; i < iend; i++)
{
u32 c = src[xoff];
xoff++;
if ((c >> 24) == 0) continue;
dst[i+256] = dst[i];
dst[i] = c | 0x40000000;
}
}
void GPU2D::DrawBG_Text(u32 line, u32* dst, u32 bgnum)
{
u16 bgcnt = BGCnt[bgnum];
u32 tilesetaddr, tilemapaddr;
u16* pal;
u32 extpal, extpalslot;
u16 xoff = BGXPos[bgnum];
u16 yoff = BGYPos[bgnum] + line;
u32 widexmask = (bgcnt & 0x4000) ? 0x100 : 0;
extpal = (DispCnt & 0x40000000);
if (extpal) extpalslot = ((bgnum<2) && (bgcnt&0x2000)) ? (2+bgnum) : bgnum;
if (Num)
{
tilesetaddr = 0x06200000 + ((bgcnt & 0x003C) << 12);
tilemapaddr = 0x06200000 + ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0x400];
}
else
{
tilesetaddr = 0x06000000 + ((DispCnt & 0x07000000) >> 8) + ((bgcnt & 0x003C) << 12);
tilemapaddr = 0x06000000 + ((DispCnt & 0x38000000) >> 11) + ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0];
}
// adjust Y position in tilemap
if (bgcnt & 0x8000)
{
tilemapaddr += ((yoff & 0x1F8) << 3);
if (bgcnt & 0x4000)
tilemapaddr += ((yoff & 0x100) << 3);
}
else
tilemapaddr += ((yoff & 0xF8) << 3);
u16 curtile;
u16* curpal;
u32 pixelsaddr;
if (bgcnt & 0x0080)
{
// 256-color
// preload shit as needed
if (xoff & 0x7)
{
// load a new tile
curtile = GPU::ReadVRAM_BG<u16>(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3));
if (extpal) curpal = GetBGExtPal(extpalslot, curtile>>12);
else curpal = pal;
pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 6)
+ (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 3);
}
for (int i = 0; i < 256; i++)
{
if (!(xoff & 0x7))
{
// load a new tile
curtile = GPU::ReadVRAM_BG<u16>(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3));
if (extpal) curpal = GetBGExtPal(extpalslot, curtile>>12);
else curpal = pal;
pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 6)
+ (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 3);
}
// draw pixel
u8 color;
u32 tilexoff = (curtile & 0x0400) ? (7-(xoff&0x7)) : (xoff&0x7);
color = GPU::ReadVRAM_BG<u8>(pixelsaddr + tilexoff);
if (color)
DrawPixel(&dst[i], curpal[color], 0x01000000<<bgnum);
xoff++;
}
}
else
{
// 16-color
// preload shit as needed
if (xoff & 0x7)
{
// load a new tile
curtile = GPU::ReadVRAM_BG<u16>(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3));
curpal = pal + ((curtile & 0xF000) >> 8);
pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 5)
+ (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 2);
}
for (int i = 0; i < 256; i++)
{
if (!(xoff & 0x7))
{
// load a new tile
curtile = GPU::ReadVRAM_BG<u16>(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3));
curpal = pal + ((curtile & 0xF000) >> 8);
pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 5)
+ (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 2);
}
// draw pixel
// TODO: optimize VRAM access
u8 color;
u32 tilexoff = (curtile & 0x0400) ? (7-(xoff&0x7)) : (xoff&0x7);
if (tilexoff & 0x1)
{
color = GPU::ReadVRAM_BG<u8>(pixelsaddr + (tilexoff >> 1)) >> 4;
}
else
{
color = GPU::ReadVRAM_BG<u8>(pixelsaddr + (tilexoff >> 1)) & 0x0F;
}
if (color)
DrawPixel(&dst[i], curpal[color], 0x01000000<<bgnum);
xoff++;
}
}
}
void GPU2D::DrawBG_Extended(u32 line, u32* dst, u32 bgnum)
{
u16 bgcnt = BGCnt[bgnum];
u32 tilesetaddr, tilemapaddr;
u16* pal;
u32 extpal;
u32 coordmask;
u32 yshift;
switch (bgcnt & 0xC000)
{
case 0x0000: coordmask = 0x07800; yshift = 7; break;
case 0x4000: coordmask = 0x0F800; yshift = 8; break;
case 0x8000: coordmask = 0x1F800; yshift = 9; break;
case 0xC000: coordmask = 0x3F800; yshift = 10; break;
}
u32 overflowmask;
if (bgcnt & 0x2000) overflowmask = 0;
else overflowmask = ~(coordmask | 0x7FF);
extpal = (DispCnt & 0x40000000);
s16 rotA = BGRotA[bgnum-2];
s16 rotB = BGRotB[bgnum-2];
s16 rotC = BGRotC[bgnum-2];
s16 rotD = BGRotD[bgnum-2];
s32 rotX = BGXRefInternal[bgnum-2];
s32 rotY = BGYRefInternal[bgnum-2];
if (bgcnt & 0x0080)
{
// bitmap modes
if (Num) tilemapaddr = 0x06200000 + ((bgcnt & 0x1F00) << 6);
else tilemapaddr = 0x06000000 + ((bgcnt & 0x1F00) << 6);
coordmask |= 0x7FF;
if (bgcnt & 0x0004)
{
// direct color bitmap
for (int i = 0; i < 256; i++)
{
if (!((rotX|rotY) & overflowmask))
{
u16 color = GPU::ReadVRAM_BG<u16>(tilemapaddr + (((((rotY & coordmask) >> 8) << yshift) + ((rotX & coordmask) >> 8)) << 1));
if (color & 0x8000)
DrawPixel(&dst[i], color, 0x01000000<<bgnum);
}
rotX += rotA;
rotY += rotC;
}
}
else
{
// 256-color bitmap
if (Num) pal = (u16*)&GPU::Palette[0x400];
else pal = (u16*)&GPU::Palette[0];
for (int i = 0; i < 256; i++)
{
if (!((rotX|rotY) & overflowmask))
{
u8 color = GPU::ReadVRAM_BG<u8>(tilemapaddr + (((rotY & coordmask) >> 8) << yshift) + ((rotX & coordmask) >> 8));
if (color)
DrawPixel(&dst[i], pal[color], 0x01000000<<bgnum);
}
rotX += rotA;
rotY += rotC;
}
}
}
else
{
// mixed affine/text mode
if (Num)
{
tilesetaddr = 0x06200000 + ((bgcnt & 0x003C) << 12);
tilemapaddr = 0x06200000 + ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0x400];
}
else
{
tilesetaddr = 0x06000000 + ((DispCnt & 0x07000000) >> 8) + ((bgcnt & 0x003C) << 12);
tilemapaddr = 0x06000000 + ((DispCnt & 0x38000000) >> 11) + ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0];
}
u16 curtile;
u16* curpal;
yshift -= 3;
for (int i = 0; i < 256; i++)
{
if (!((rotX|rotY) & overflowmask))
{
curtile = GPU::ReadVRAM_BG<u16>(tilemapaddr + (((((rotY & coordmask) >> 11) << yshift) + ((rotX & coordmask) >> 11)) << 1));
if (extpal) curpal = GetBGExtPal(bgnum, curtile>>12);
else curpal = pal;
// draw pixel
u8 color;
u32 tilexoff = (rotX >> 8) & 0x7;
u32 tileyoff = (rotY >> 8) & 0x7;
if (curtile & 0x0400) tilexoff = 7-tilexoff;
if (curtile & 0x0800) tileyoff = 7-tileyoff;
color = GPU::ReadVRAM_BG<u8>(tilesetaddr + ((curtile & 0x03FF) << 6) + (tileyoff << 3) + tilexoff);
if (color)
DrawPixel(&dst[i], curpal[color], 0x01000000<<bgnum);
}
rotX += rotA;
rotY += rotC;
}
}
BGXRefInternal[bgnum-2] += rotB;
BGYRefInternal[bgnum-2] += rotD;
}
void GPU2D::InterleaveSprites(u32* buf, u32 prio, u32* dst)
{
for (u32 i = 0; i < 256; i++)
{
if ((buf[i] & 0xF8000) == prio)
{
u32 blendfunc = 0;
DrawPixel(&dst[i], buf[i] & 0x7FFF, buf[i] & 0xFF000000);
}
}
}
void GPU2D::DrawSprites(u32 line, u32* dst)
{
u16* oam = (u16*)&GPU::OAM[Num ? 0x400 : 0];
const s32 spritewidth[16] =
{
8, 16, 8, 0,
16, 32, 8, 0,
32, 32, 16, 0,
64, 64, 32, 0
};
const s32 spriteheight[16] =
{
8, 8, 16, 0,
16, 8, 32, 0,
32, 16, 32, 0,
64, 32, 64, 0
};
for (int bgnum = 0x0C00; bgnum >= 0x0000; bgnum -= 0x0400)
{
for (int sprnum = 127; sprnum >= 0; sprnum--)
{
u16* attrib = &oam[sprnum*4];
if ((attrib[2] & 0x0C00) != bgnum)
continue;
if (attrib[0] & 0x0100)
{
u32 sizeparam = (attrib[0] >> 14) | ((attrib[1] & 0xC000) >> 12);
s32 width = spritewidth[sizeparam];
s32 height = spriteheight[sizeparam];
s32 boundwidth = width;
s32 boundheight = height;
if (attrib[0] & 0x0200)
{
boundwidth <<= 1;
boundheight <<= 1;
}
u32 ypos = attrib[0] & 0xFF;
ypos = (line - ypos) & 0xFF;
if (ypos >= (u32)boundheight)
continue;
s32 xpos = (s32)(attrib[1] << 23) >> 23;
if (xpos <= -boundwidth)
continue;
u32 rotparamgroup = (attrib[1] >> 9) & 0x1F;
DrawSprite_Rotscale(attrib, &oam[(rotparamgroup*16) + 3], boundwidth, boundheight, width, height, xpos, ypos, dst);
}
else
{
if (attrib[0] & 0x0200)
continue;
u32 sizeparam = (attrib[0] >> 14) | ((attrib[1] & 0xC000) >> 12);
s32 width = spritewidth[sizeparam];
s32 height = spriteheight[sizeparam];
u32 ypos = attrib[0] & 0xFF;
ypos = (line - ypos) & 0xFF;
if (ypos >= (u32)height)
continue;
s32 xpos = (s32)(attrib[1] << 23) >> 23;
if (xpos <= -width)
continue;
// yflip
if (attrib[1] & 0x2000)
ypos = height-1 - ypos;
DrawSprite_Normal(attrib, width, xpos, ypos, dst);
}
}
}
}
void GPU2D::DrawSprite_Rotscale(u16* attrib, u16* rotparams, u32 boundwidth, u32 boundheight, u32 width, u32 height, s32 xpos, u32 ypos, u32* dst)
{
u32 prio = ((attrib[2] & 0x0C00) << 6) | 0x8000;
u32 tilenum = attrib[2] & 0x03FF;
u32 spritemode = (attrib[0] >> 10) & 0x3;
u32 ytilefactor;
if (DispCnt & 0x10)
{
tilenum <<= ((DispCnt >> 20) & 0x3);
ytilefactor = (width >> 3) << ((attrib[0] & 0x2000) ? 1:0);
}
else
{
ytilefactor = 0x20;
}
s32 centerX = boundwidth >> 1;
s32 centerY = boundheight >> 1;
u32 xoff;
if (xpos >= 0)
{
xoff = 0;
if ((xpos+boundwidth) > 256)
boundwidth = 256-xpos;
}
else
{
xoff = -xpos;
xpos = 0;
}
s16 rotA = (s16)rotparams[0];
s16 rotB = (s16)rotparams[4];
s16 rotC = (s16)rotparams[8];
s16 rotD = (s16)rotparams[12];
s32 rotX = ((xoff-centerX) * rotA) + ((ypos-centerY) * rotB) + (width << 7);
s32 rotY = ((xoff-centerX) * rotC) + ((ypos-centerY) * rotD) + (height << 7);
width <<= 8;
height <<= 8;
if (spritemode == 3)
{
// TODO
u32 alpha = attrib[2] >> 12;
if (!alpha) return;
alpha++;
prio |= (0xC0000000 | (alpha << 24));
// TODO
}
else
{
if (spritemode == 1) prio |= 0x80000000;
else prio |= 0x10000000;
if (attrib[0] & 0x2000)
{
// 256-color
tilenum <<= 5;
ytilefactor <<= 5;
u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum;
u32 extpal = (DispCnt & 0x80000000);
u16* pal;
if (extpal) pal = GetOBJExtPal(attrib[2] >> 12);
else pal = (u16*)&GPU::Palette[Num ? 0x600 : 0x200];
for (; xoff < boundwidth;)
{
if ((u32)rotX < width && (u32)rotY < height)
{
u8 color;
// blaaaarg
color = GPU::ReadVRAM_OBJ<u8>(pixelsaddr + ((rotY>>11)*ytilefactor) + ((rotY&0x700)>>5) + ((rotX>>11)*64) + ((rotX&0x700)>>8));
if (color)
dst[xpos] = pal[color] | prio;
}
rotX += rotA;
rotY += rotC;
xoff++;
xpos++;
}
}
else
{
// 16-color
tilenum <<= 5;
ytilefactor <<= 5;
u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum;
u16* pal = (u16*)&GPU::Palette[Num ? 0x600 : 0x200];
pal += (attrib[2] & 0xF000) >> 8;
for (; xoff < boundwidth;)
{
if ((u32)rotX < width && (u32)rotY < height)
{
u8 color;
// blaaaarg
color = GPU::ReadVRAM_OBJ<u8>(pixelsaddr + ((rotY>>11)*ytilefactor) + ((rotY&0x700)>>6) + ((rotX>>11)*32) + ((rotX&0x700)>>9));
if (rotX & 0x100)
color >>= 4;
else
color &= 0x0F;
if (color)
dst[xpos] = pal[color] | prio;
}
rotX += rotA;
rotY += rotC;
xoff++;
xpos++;
}
}
}
}
void GPU2D::DrawSprite_Normal(u16* attrib, u32 width, s32 xpos, u32 ypos, u32* dst)
{
u32 prio = ((attrib[2] & 0x0C00) << 6) | 0x8000;
u32 tilenum = attrib[2] & 0x03FF;
u32 spritemode = (attrib[0] >> 10) & 0x3;
u32 wmask = width - 8; // really ((width - 1) & ~0x7)
u32 xoff;
u32 xend = width;
if (xpos >= 0)
{
xoff = 0;
if ((xpos+xend) > 256)
xend = 256-xpos;
}
else
{
xoff = -xpos;
xpos = 0;
}
if (spritemode == 3)
{
// bitmap sprite
if (DispCnt & 0x40)
{
if (DispCnt & 0x20)
{
// TODO ("reserved")
}
else
{
tilenum <<= (7 + ((DispCnt >> 22) & 0x1));
tilenum += (ypos * width * 2);
}
}
else
{
if (DispCnt & 0x20)
{
tilenum = ((tilenum & 0x01F) << 4) + ((tilenum & 0x3E0) << 7);
tilenum += (ypos * 256 * 2);
}
else
{
tilenum = ((tilenum & 0x00F) << 4) + ((tilenum & 0x3F0) << 7);
tilenum += (ypos * 128 * 2);
}
}
u32 alpha = attrib[2] >> 12;
if (!alpha) return;
alpha++;
prio |= (0xC0000000 | (alpha << 24));
u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum;
pixelsaddr += (xoff << 1);
for (; xoff < xend;)
{
u16 color = GPU::ReadVRAM_OBJ<u16>(pixelsaddr);
pixelsaddr += 2;
if (color & 0x8000)
dst[xpos] = color | prio;
xoff++;
xpos++;
}
}
else
{
if (DispCnt & 0x10)
{
tilenum <<= ((DispCnt >> 20) & 0x3);
tilenum += ((ypos >> 3) * (width >> 3)) << ((attrib[0] & 0x2000) ? 1:0);
}
else
{
tilenum += ((ypos >> 3) * 0x20);
}
if (spritemode == 1) prio |= 0x80000000;
else prio |= 0x10000000;
if (attrib[0] & 0x2000)
{
// 256-color
tilenum <<= 5;
u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum;
pixelsaddr += ((ypos & 0x7) << 3);
u32 extpal = (DispCnt & 0x80000000);
u16* pal;
if (extpal) pal = GetOBJExtPal(attrib[2] >> 12);
else pal = (u16*)&GPU::Palette[Num ? 0x600 : 0x200];
if (attrib[1] & 0x1000) // xflip. TODO: do better? oh well for now this works
{
pixelsaddr += (((width-1 - xoff) & wmask) << 3);
pixelsaddr += ((width-1 - xoff) & 0x7);
for (; xoff < xend;)
{
u8 color = GPU::ReadVRAM_OBJ<u8>(pixelsaddr);
pixelsaddr--;
if (color)
dst[xpos] = pal[color] | prio;
xoff++;
xpos++;
if (!(xoff & 0x7)) pixelsaddr -= 56;
}
}
else
{
pixelsaddr += ((xoff & wmask) << 3);
pixelsaddr += (xoff & 0x7);
for (; xoff < xend;)
{
u8 color = GPU::ReadVRAM_OBJ<u8>(pixelsaddr);
pixelsaddr++;
if (color)
dst[xpos] = pal[color] | prio;
xoff++;
xpos++;
if (!(xoff & 0x7)) pixelsaddr += 56;
}
}
}
else
{
// 16-color
tilenum <<= 5;
u32 pixelsaddr = (Num ? 0x06600000 : 0x06400000) + tilenum;
pixelsaddr += ((ypos & 0x7) << 2);
u16* pal = (u16*)&GPU::Palette[Num ? 0x600 : 0x200];
pal += (attrib[2] & 0xF000) >> 8;
if (attrib[1] & 0x1000) // xflip. TODO: do better? oh well for now this works
{
pixelsaddr += (((width-1 - xoff) & wmask) << 2);
pixelsaddr += (((width-1 - xoff) & 0x7) >> 1);
for (; xoff < xend;)
{
u8 color;
if (xoff & 0x1)
{
color = GPU::ReadVRAM_OBJ<u8>(pixelsaddr) & 0x0F;
pixelsaddr--;
}
else
{
color = GPU::ReadVRAM_OBJ<u8>(pixelsaddr) >> 4;
}
if (color)
dst[xpos] = pal[color] | prio;
xoff++;
xpos++;
if (!(xoff & 0x7)) pixelsaddr -= 28;
}
}
else
{
pixelsaddr += ((xoff & wmask) << 2);
pixelsaddr += ((xoff & 0x7) >> 1);
for (; xoff < xend;)
{
u8 color;
if (xoff & 0x1)
{
color = GPU::ReadVRAM_OBJ<u8>(pixelsaddr) >> 4;
pixelsaddr++;
}
else
{
color = GPU::ReadVRAM_OBJ<u8>(pixelsaddr) & 0x0F;
}
if (color)
dst[xpos] = pal[color] | prio;
xoff++;
xpos++;
if (!(xoff & 0x7)) pixelsaddr += 28;
}
}
}
}
}