melonDS/src/ARMJIT.cpp

1207 lines
39 KiB
C++

/*
Copyright 2016-2021 Arisotura, RSDuck
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include "ARMJIT.h"
#include <string.h>
#include <assert.h>
#include <unordered_map>
#define XXH_STATIC_LINKING_ONLY
#include "xxhash/xxhash.h"
#include "Config.h"
#include "ARMJIT_Internal.h"
#include "ARMJIT_Memory.h"
#include "ARMJIT_Compiler.h"
#include "ARMInterpreter_ALU.h"
#include "ARMInterpreter_LoadStore.h"
#include "ARMInterpreter_Branch.h"
#include "ARMInterpreter.h"
#include "DSi.h"
#include "GPU.h"
#include "GPU3D.h"
#include "SPU.h"
#include "Wifi.h"
#include "NDSCart.h"
#include "ARMJIT_x64/ARMJIT_Offsets.h"
static_assert(offsetof(ARM, CPSR) == ARM_CPSR_offset, "");
static_assert(offsetof(ARM, Cycles) == ARM_Cycles_offset, "");
static_assert(offsetof(ARM, StopExecution) == ARM_StopExecution_offset, "");
namespace ARMJIT
{
#define JIT_DEBUGPRINT(msg, ...)
//#define JIT_DEBUGPRINT(msg, ...) printf(msg, ## __VA_ARGS__)
Compiler* JITCompiler;
std::unordered_map<u32, JitBlock*> JitBlocks9;
std::unordered_map<u32, JitBlock*> JitBlocks7;
std::unordered_map<u32, JitBlock*> RestoreCandidates;
TinyVector<u32> InvalidLiterals;
AddressRange CodeIndexITCM[ITCMPhysicalSize / 512];
AddressRange CodeIndexMainRAM[NDS::MainRAMMaxSize / 512];
AddressRange CodeIndexSWRAM[NDS::SharedWRAMSize / 512];
AddressRange CodeIndexVRAM[0x100000 / 512];
AddressRange CodeIndexARM9BIOS[sizeof(NDS::ARM9BIOS) / 512];
AddressRange CodeIndexARM7BIOS[sizeof(NDS::ARM7BIOS) / 512];
AddressRange CodeIndexARM7WRAM[NDS::ARM7WRAMSize / 512];
AddressRange CodeIndexARM7WVRAM[0x40000 / 512];
AddressRange CodeIndexBIOS9DSi[0x10000 / 512];
AddressRange CodeIndexBIOS7DSi[0x10000 / 512];
AddressRange CodeIndexNWRAM_A[DSi::NWRAMSize / 512];
AddressRange CodeIndexNWRAM_B[DSi::NWRAMSize / 512];
AddressRange CodeIndexNWRAM_C[DSi::NWRAMSize / 512];
u64 FastBlockLookupITCM[ITCMPhysicalSize / 2];
u64 FastBlockLookupMainRAM[NDS::MainRAMMaxSize / 2];
u64 FastBlockLookupSWRAM[NDS::SharedWRAMSize / 2];
u64 FastBlockLookupVRAM[0x100000 / 2];
u64 FastBlockLookupARM9BIOS[sizeof(NDS::ARM9BIOS) / 2];
u64 FastBlockLookupARM7BIOS[sizeof(NDS::ARM7BIOS) / 2];
u64 FastBlockLookupARM7WRAM[NDS::ARM7WRAMSize / 2];
u64 FastBlockLookupARM7WVRAM[0x40000 / 2];
u64 FastBlockLookupBIOS9DSi[0x10000 / 2];
u64 FastBlockLookupBIOS7DSi[0x10000 / 2];
u64 FastBlockLookupNWRAM_A[DSi::NWRAMSize / 2];
u64 FastBlockLookupNWRAM_B[DSi::NWRAMSize / 2];
u64 FastBlockLookupNWRAM_C[DSi::NWRAMSize / 2];
const u32 CodeRegionSizes[ARMJIT_Memory::memregions_Count] =
{
0,
ITCMPhysicalSize,
0,
sizeof(NDS::ARM9BIOS),
NDS::MainRAMMaxSize,
NDS::SharedWRAMSize,
0,
0x100000,
sizeof(NDS::ARM7BIOS),
NDS::ARM7WRAMSize,
0,
0,
0x40000,
0x10000,
0x10000,
DSi::NWRAMSize,
DSi::NWRAMSize,
DSi::NWRAMSize,
};
AddressRange* const CodeMemRegions[ARMJIT_Memory::memregions_Count] =
{
NULL,
CodeIndexITCM,
NULL,
CodeIndexARM9BIOS,
CodeIndexMainRAM,
CodeIndexSWRAM,
NULL,
CodeIndexVRAM,
CodeIndexARM7BIOS,
CodeIndexARM7WRAM,
NULL,
NULL,
CodeIndexARM7WVRAM,
CodeIndexBIOS9DSi,
CodeIndexBIOS7DSi,
CodeIndexNWRAM_A,
CodeIndexNWRAM_B,
CodeIndexNWRAM_C
};
u64* const FastBlockLookupRegions[ARMJIT_Memory::memregions_Count] =
{
NULL,
FastBlockLookupITCM,
NULL,
FastBlockLookupARM9BIOS,
FastBlockLookupMainRAM,
FastBlockLookupSWRAM,
NULL,
FastBlockLookupVRAM,
FastBlockLookupARM7BIOS,
FastBlockLookupARM7WRAM,
NULL,
NULL,
FastBlockLookupARM7WVRAM,
FastBlockLookupBIOS9DSi,
FastBlockLookupBIOS7DSi,
FastBlockLookupNWRAM_A,
FastBlockLookupNWRAM_B,
FastBlockLookupNWRAM_C
};
u32 LocaliseCodeAddress(u32 num, u32 addr)
{
int region = num == 0
? ARMJIT_Memory::ClassifyAddress9(addr)
: ARMJIT_Memory::ClassifyAddress7(addr);
if (CodeMemRegions[region])
return ARMJIT_Memory::LocaliseAddress(region, num, addr);
return 0;
}
template <typename T, int ConsoleType>
T SlowRead9(u32 addr, ARMv5* cpu)
{
u32 offset = addr & 0x3;
addr &= ~(sizeof(T) - 1);
T val;
if (addr < cpu->ITCMSize)
val = *(T*)&cpu->ITCM[addr & 0x7FFF];
else if (addr >= cpu->DTCMBase && addr < (cpu->DTCMBase + cpu->DTCMSize))
val = *(T*)&cpu->DTCM[(addr - cpu->DTCMBase) & 0x3FFF];
else if (std::is_same<T, u32>::value)
val = (ConsoleType == 0 ? NDS::ARM9Read32 : DSi::ARM9Read32)(addr);
else if (std::is_same<T, u16>::value)
val = (ConsoleType == 0 ? NDS::ARM9Read16 : DSi::ARM9Read16)(addr);
else
val = (ConsoleType == 0 ? NDS::ARM9Read8 : DSi::ARM9Read8)(addr);
if (std::is_same<T, u32>::value)
return ROR(val, offset << 3);
else
return val;
}
template <typename T, int ConsoleType>
void SlowWrite9(u32 addr, ARMv5* cpu, u32 val)
{
addr &= ~(sizeof(T) - 1);
if (addr < cpu->ITCMSize)
{
CheckAndInvalidate<0, ARMJIT_Memory::memregion_ITCM>(addr);
*(T*)&cpu->ITCM[addr & 0x7FFF] = val;
}
else if (addr >= cpu->DTCMBase && addr < (cpu->DTCMBase + cpu->DTCMSize))
{
*(T*)&cpu->DTCM[(addr - cpu->DTCMBase) & 0x3FFF] = val;
}
else if (std::is_same<T, u32>::value)
{
(ConsoleType == 0 ? NDS::ARM9Write32 : DSi::ARM9Write32)(addr, val);
}
else if (std::is_same<T, u16>::value)
{
(ConsoleType == 0 ? NDS::ARM9Write16 : DSi::ARM9Write16)(addr, val);
}
else
{
(ConsoleType == 0 ? NDS::ARM9Write8 : DSi::ARM9Write8)(addr, val);
}
}
template <typename T, int ConsoleType>
T SlowRead7(u32 addr)
{
u32 offset = addr & 0x3;
addr &= ~(sizeof(T) - 1);
T val;
if (std::is_same<T, u32>::value)
val = (ConsoleType == 0 ? NDS::ARM7Read32 : DSi::ARM7Read32)(addr);
else if (std::is_same<T, u16>::value)
val = (ConsoleType == 0 ? NDS::ARM7Read16 : DSi::ARM7Read16)(addr);
else
val = (ConsoleType == 0 ? NDS::ARM7Read8 : DSi::ARM7Read8)(addr);
if (std::is_same<T, u32>::value)
return ROR(val, offset << 3);
else
return val;
}
template <typename T, int ConsoleType>
void SlowWrite7(u32 addr, u32 val)
{
addr &= ~(sizeof(T) - 1);
if (std::is_same<T, u32>::value)
(ConsoleType == 0 ? NDS::ARM7Write32 : DSi::ARM7Write32)(addr, val);
else if (std::is_same<T, u16>::value)
(ConsoleType == 0 ? NDS::ARM7Write16 : DSi::ARM7Write16)(addr, val);
else
(ConsoleType == 0 ? NDS::ARM7Write8 : DSi::ARM7Write8)(addr, val);
}
template <bool Write, int ConsoleType>
void SlowBlockTransfer9(u32 addr, u64* data, u32 num, ARMv5* cpu)
{
addr &= ~0x3;
for (u32 i = 0; i < num; i++)
{
if (Write)
SlowWrite9<u32, ConsoleType>(addr, cpu, data[i]);
else
data[i] = SlowRead9<u32, ConsoleType>(addr, cpu);
addr += 4;
}
}
template <bool Write, int ConsoleType>
void SlowBlockTransfer7(u32 addr, u64* data, u32 num)
{
addr &= ~0x3;
for (u32 i = 0; i < num; i++)
{
if (Write)
SlowWrite7<u32, ConsoleType>(addr, data[i]);
else
data[i] = SlowRead7<u32, ConsoleType>(addr);
addr += 4;
}
}
#define INSTANTIATE_SLOWMEM(consoleType) \
template void SlowWrite9<u32, consoleType>(u32, ARMv5*, u32); \
template void SlowWrite9<u16, consoleType>(u32, ARMv5*, u32); \
template void SlowWrite9<u8, consoleType>(u32, ARMv5*, u32); \
\
template u32 SlowRead9<u32, consoleType>(u32, ARMv5*); \
template u16 SlowRead9<u16, consoleType>(u32, ARMv5*); \
template u8 SlowRead9<u8, consoleType>(u32, ARMv5*); \
\
template void SlowWrite7<u32, consoleType>(u32, u32); \
template void SlowWrite7<u16, consoleType>(u32, u32); \
template void SlowWrite7<u8, consoleType>(u32, u32); \
\
template u32 SlowRead7<u32, consoleType>(u32); \
template u16 SlowRead7<u16, consoleType>(u32); \
template u8 SlowRead7<u8, consoleType>(u32); \
\
template void SlowBlockTransfer9<false, consoleType>(u32, u64*, u32, ARMv5*); \
template void SlowBlockTransfer9<true, consoleType>(u32, u64*, u32, ARMv5*); \
template void SlowBlockTransfer7<false, consoleType>(u32 addr, u64* data, u32 num); \
template void SlowBlockTransfer7<true, consoleType>(u32 addr, u64* data, u32 num); \
INSTANTIATE_SLOWMEM(0)
INSTANTIATE_SLOWMEM(1)
void Init()
{
JITCompiler = new Compiler();
ARMJIT_Memory::Init();
}
void DeInit()
{
JitEnableWrite();
ResetBlockCache();
ARMJIT_Memory::DeInit();
delete JITCompiler;
}
void Reset()
{
JitEnableWrite();
ResetBlockCache();
ARMJIT_Memory::Reset();
}
void FloodFillSetFlags(FetchedInstr instrs[], int start, u8 flags)
{
for (int j = start; j >= 0; j--)
{
u8 match = instrs[j].Info.WriteFlags & flags;
u8 matchMaybe = (instrs[j].Info.WriteFlags >> 4) & flags;
if (matchMaybe) // writes flags maybe
instrs[j].SetFlags |= matchMaybe;
if (match)
{
instrs[j].SetFlags |= match;
flags &= ~match;
if (!flags)
return;
}
}
}
bool DecodeLiteral(bool thumb, const FetchedInstr& instr, u32& addr)
{
if (!thumb)
{
switch (instr.Info.Kind)
{
case ARMInstrInfo::ak_LDR_IMM:
case ARMInstrInfo::ak_LDRB_IMM:
addr = (instr.Addr + 8) + ((instr.Instr & 0xFFF) * (instr.Instr & (1 << 23) ? 1 : -1));
return true;
case ARMInstrInfo::ak_LDRH_IMM:
addr = (instr.Addr + 8) + (((instr.Instr & 0xF00) >> 4 | (instr.Instr & 0xF)) * (instr.Instr & (1 << 23) ? 1 : -1));
return true;
default:
break;
}
}
else if (instr.Info.Kind == ARMInstrInfo::tk_LDR_PCREL)
{
addr = ((instr.Addr + 4) & ~0x2) + ((instr.Instr & 0xFF) << 2);
return true;
}
JIT_DEBUGPRINT("Literal %08x %x not recognised %d\n", instr.Instr, instr.Addr, instr.Info.Kind);
return false;
}
bool DecodeBranch(bool thumb, const FetchedInstr& instr, u32& cond, bool hasLink, u32 lr, bool& link,
u32& linkAddr, u32& targetAddr)
{
if (thumb)
{
u32 r15 = instr.Addr + 4;
cond = 0xE;
link = instr.Info.Kind == ARMInstrInfo::tk_BL_LONG;
linkAddr = instr.Addr + 4;
if (instr.Info.Kind == ARMInstrInfo::tk_BL_LONG && !(instr.Instr & (1 << 12)))
{
targetAddr = r15 + ((s32)((instr.Instr & 0x7FF) << 21) >> 9);
targetAddr += ((instr.Instr >> 16) & 0x7FF) << 1;
return true;
}
else if (instr.Info.Kind == ARMInstrInfo::tk_B)
{
s32 offset = (s32)((instr.Instr & 0x7FF) << 21) >> 20;
targetAddr = r15 + offset;
return true;
}
else if (instr.Info.Kind == ARMInstrInfo::tk_BCOND)
{
cond = (instr.Instr >> 8) & 0xF;
s32 offset = (s32)(instr.Instr << 24) >> 23;
targetAddr = r15 + offset;
return true;
}
else if (hasLink && instr.Info.Kind == ARMInstrInfo::tk_BX && instr.A_Reg(3) == 14)
{
JIT_DEBUGPRINT("returning!\n");
targetAddr = lr;
return true;
}
}
else
{
link = instr.Info.Kind == ARMInstrInfo::ak_BL;
linkAddr = instr.Addr + 4;
cond = instr.Cond();
if (instr.Info.Kind == ARMInstrInfo::ak_BL
|| instr.Info.Kind == ARMInstrInfo::ak_B)
{
s32 offset = (s32)(instr.Instr << 8) >> 6;
u32 r15 = instr.Addr + 8;
targetAddr = r15 + offset;
return true;
}
else if (hasLink && instr.Info.Kind == ARMInstrInfo::ak_BX && instr.A_Reg(0) == 14)
{
JIT_DEBUGPRINT("returning!\n");
targetAddr = lr;
return true;
}
}
return false;
}
bool IsIdleLoop(bool thumb, FetchedInstr* instrs, int instrsCount)
{
// see https://github.com/dolphin-emu/dolphin/blob/master/Source/Core/Core/PowerPC/PPCAnalyst.cpp#L678
// it basically checks if one iteration of a loop depends on another
// the rules are quite simple
JIT_DEBUGPRINT("checking potential idle loop\n");
u16 regsWrittenTo = 0;
u16 regsDisallowedToWrite = 0;
for (int i = 0; i < instrsCount; i++)
{
JIT_DEBUGPRINT("instr %d %08x regs(%x %x) %x %x\n", i, instrs[i].Instr, instrs[i].Info.DstRegs, instrs[i].Info.SrcRegs, regsWrittenTo, regsDisallowedToWrite);
if (instrs[i].Info.SpecialKind == ARMInstrInfo::special_WriteMem)
return false;
if (!thumb && instrs[i].Info.Kind >= ARMInstrInfo::ak_MSR_IMM && instrs[i].Info.Kind <= ARMInstrInfo::ak_MRC)
return false;
if (i < instrsCount - 1 && instrs[i].Info.Branches())
return false;
u16 srcRegs = instrs[i].Info.SrcRegs & ~(1 << 15);
u16 dstRegs = instrs[i].Info.DstRegs & ~(1 << 15);
regsDisallowedToWrite |= srcRegs & ~regsWrittenTo;
if (dstRegs & regsDisallowedToWrite)
return false;
regsWrittenTo |= dstRegs;
}
return true;
}
typedef void (*InterpreterFunc)(ARM* cpu);
void NOP(ARM* cpu) {}
#define F(x) &ARMInterpreter::A_##x
#define F_ALU(name, s) \
F(name##_REG_LSL_IMM##s), F(name##_REG_LSR_IMM##s), F(name##_REG_ASR_IMM##s), F(name##_REG_ROR_IMM##s), \
F(name##_REG_LSL_REG##s), F(name##_REG_LSR_REG##s), F(name##_REG_ASR_REG##s), F(name##_REG_ROR_REG##s), F(name##_IMM##s)
#define F_MEM_WB(name) \
F(name##_REG_LSL), F(name##_REG_LSR), F(name##_REG_ASR), F(name##_REG_ROR), F(name##_IMM), \
F(name##_POST_REG_LSL), F(name##_POST_REG_LSR), F(name##_POST_REG_ASR), F(name##_POST_REG_ROR), F(name##_POST_IMM)
#define F_MEM_HD(name) \
F(name##_REG), F(name##_IMM), F(name##_POST_REG), F(name##_POST_IMM)
InterpreterFunc InterpretARM[ARMInstrInfo::ak_Count] =
{
F_ALU(AND,), F_ALU(AND,_S),
F_ALU(EOR,), F_ALU(EOR,_S),
F_ALU(SUB,), F_ALU(SUB,_S),
F_ALU(RSB,), F_ALU(RSB,_S),
F_ALU(ADD,), F_ALU(ADD,_S),
F_ALU(ADC,), F_ALU(ADC,_S),
F_ALU(SBC,), F_ALU(SBC,_S),
F_ALU(RSC,), F_ALU(RSC,_S),
F_ALU(ORR,), F_ALU(ORR,_S),
F_ALU(MOV,), F_ALU(MOV,_S),
F_ALU(BIC,), F_ALU(BIC,_S),
F_ALU(MVN,), F_ALU(MVN,_S),
F_ALU(TST,),
F_ALU(TEQ,),
F_ALU(CMP,),
F_ALU(CMN,),
F(MUL), F(MLA), F(UMULL), F(UMLAL), F(SMULL), F(SMLAL), F(SMLAxy), F(SMLAWy), F(SMULWy), F(SMLALxy), F(SMULxy),
F(CLZ), F(QADD), F(QSUB), F(QDADD), F(QDSUB),
F_MEM_WB(STR),
F_MEM_WB(STRB),
F_MEM_WB(LDR),
F_MEM_WB(LDRB),
F_MEM_HD(STRH),
F_MEM_HD(LDRD),
F_MEM_HD(STRD),
F_MEM_HD(LDRH),
F_MEM_HD(LDRSB),
F_MEM_HD(LDRSH),
F(SWP), F(SWPB),
F(LDM), F(STM),
F(B), F(BL), F(BLX_IMM), F(BX), F(BLX_REG),
F(UNK), F(MSR_IMM), F(MSR_REG), F(MRS), F(MCR), F(MRC), F(SVC),
NOP
};
#undef F_ALU
#undef F_MEM_WB
#undef F_MEM_HD
#undef F
void T_BL_LONG(ARM* cpu)
{
ARMInterpreter::T_BL_LONG_1(cpu);
cpu->R[15] += 2;
ARMInterpreter::T_BL_LONG_2(cpu);
}
#define F(x) ARMInterpreter::T_##x
InterpreterFunc InterpretTHUMB[ARMInstrInfo::tk_Count] =
{
F(LSL_IMM), F(LSR_IMM), F(ASR_IMM),
F(ADD_REG_), F(SUB_REG_), F(ADD_IMM_), F(SUB_IMM_),
F(MOV_IMM), F(CMP_IMM), F(ADD_IMM), F(SUB_IMM),
F(AND_REG), F(EOR_REG), F(LSL_REG), F(LSR_REG), F(ASR_REG),
F(ADC_REG), F(SBC_REG), F(ROR_REG), F(TST_REG), F(NEG_REG),
F(CMP_REG), F(CMN_REG), F(ORR_REG), F(MUL_REG), F(BIC_REG), F(MVN_REG),
F(ADD_HIREG), F(CMP_HIREG), F(MOV_HIREG),
F(ADD_PCREL), F(ADD_SPREL), F(ADD_SP),
F(LDR_PCREL), F(STR_REG), F(STRB_REG), F(LDR_REG), F(LDRB_REG), F(STRH_REG),
F(LDRSB_REG), F(LDRH_REG), F(LDRSH_REG), F(STR_IMM), F(LDR_IMM), F(STRB_IMM),
F(LDRB_IMM), F(STRH_IMM), F(LDRH_IMM), F(STR_SPREL), F(LDR_SPREL),
F(PUSH), F(POP), F(LDMIA), F(STMIA),
F(BCOND), F(BX), F(BLX_REG), F(B), F(BL_LONG_1), F(BL_LONG_2),
F(UNK), F(SVC),
T_BL_LONG // BL_LONG psudo opcode
};
#undef F
void RetireJitBlock(JitBlock* block)
{
auto it = RestoreCandidates.find(block->InstrHash);
if (it != RestoreCandidates.end())
{
delete it->second;
it->second = block;
}
else
{
RestoreCandidates[block->InstrHash] = block;
}
}
void CompileBlock(ARM* cpu)
{
bool thumb = cpu->CPSR & 0x20;
if (Config::JIT_MaxBlockSize < 1)
Config::JIT_MaxBlockSize = 1;
if (Config::JIT_MaxBlockSize > 32)
Config::JIT_MaxBlockSize = 32;
u32 blockAddr = cpu->R[15] - (thumb ? 2 : 4);
u32 localAddr = LocaliseCodeAddress(cpu->Num, blockAddr);
if (!localAddr)
{
printf("trying to compile non executable code? %x\n", blockAddr);
}
auto& map = cpu->Num == 0 ? JitBlocks9 : JitBlocks7;
auto existingBlockIt = map.find(blockAddr);
if (existingBlockIt != map.end())
{
// there's already a block, though it's not inside the fast map
// could be that there are two blocks at the same physical addr
// but different mirrors
u32 otherLocalAddr = existingBlockIt->second->StartAddrLocal;
if (localAddr == otherLocalAddr)
{
JIT_DEBUGPRINT("switching out block %x %x %x\n", localAddr, blockAddr, existingBlockIt->second->StartAddr);
u64* entry = &FastBlockLookupRegions[localAddr >> 27][(localAddr & 0x7FFFFFF) / 2];
*entry = ((u64)blockAddr | cpu->Num) << 32;
*entry |= JITCompiler->SubEntryOffset(existingBlockIt->second->EntryPoint);
return;
}
// some memory has been remapped
RetireJitBlock(existingBlockIt->second);
map.erase(existingBlockIt);
}
FetchedInstr instrs[Config::JIT_MaxBlockSize];
int i = 0;
u32 r15 = cpu->R[15];
u32 addressRanges[Config::JIT_MaxBlockSize];
u32 addressMasks[Config::JIT_MaxBlockSize];
memset(addressMasks, 0, Config::JIT_MaxBlockSize * sizeof(u32));
u32 numAddressRanges = 0;
u32 numLiterals = 0;
u32 literalLoadAddrs[Config::JIT_MaxBlockSize];
// they are going to be hashed
u32 literalValues[Config::JIT_MaxBlockSize];
u32 instrValues[Config::JIT_MaxBlockSize];
// due to instruction merging i might not reflect the amount of actual instructions
u32 numInstrs = 0;
u32 writeAddrs[Config::JIT_MaxBlockSize];
u32 numWriteAddrs = 0, writeAddrsTranslated = 0;
cpu->FillPipeline();
u32 nextInstr[2] = {cpu->NextInstr[0], cpu->NextInstr[1]};
u32 nextInstrAddr[2] = {blockAddr, r15};
JIT_DEBUGPRINT("start block %x %08x (%x)\n", blockAddr, cpu->CPSR, localAddr);
u32 lastSegmentStart = blockAddr;
u32 lr;
bool hasLink = false;
bool hasMemoryInstr = false;
do
{
r15 += thumb ? 2 : 4;
instrs[i].BranchFlags = 0;
instrs[i].SetFlags = 0;
instrs[i].Instr = nextInstr[0];
nextInstr[0] = nextInstr[1];
instrs[i].Addr = nextInstrAddr[0];
nextInstrAddr[0] = nextInstrAddr[1];
nextInstrAddr[1] = r15;
JIT_DEBUGPRINT("instr %08x %x\n", instrs[i].Instr & (thumb ? 0xFFFF : ~0), instrs[i].Addr);
instrValues[numInstrs++] = instrs[i].Instr;
u32 translatedAddr = LocaliseCodeAddress(cpu->Num, instrs[i].Addr);
assert(translatedAddr >> 27);
u32 translatedAddrRounded = translatedAddr & ~0x1FF;
if (i == 0 || translatedAddrRounded != addressRanges[numAddressRanges - 1])
{
bool returning = false;
for (u32 j = 0; j < numAddressRanges; j++)
{
if (addressRanges[j] == translatedAddrRounded)
{
std::swap(addressRanges[j], addressRanges[numAddressRanges - 1]);
std::swap(addressMasks[j], addressMasks[numAddressRanges - 1]);
returning = true;
break;
}
}
if (!returning)
addressRanges[numAddressRanges++] = translatedAddrRounded;
}
addressMasks[numAddressRanges - 1] |= 1 << ((translatedAddr & 0x1FF) / 16);
if (cpu->Num == 0)
{
ARMv5* cpuv5 = (ARMv5*)cpu;
if (thumb && r15 & 0x2)
{
nextInstr[1] >>= 16;
instrs[i].CodeCycles = 0;
}
else
{
nextInstr[1] = cpuv5->CodeRead32(r15, false);
instrs[i].CodeCycles = cpu->CodeCycles;
}
}
else
{
ARMv4* cpuv4 = (ARMv4*)cpu;
if (thumb)
nextInstr[1] = cpuv4->CodeRead16(r15);
else
nextInstr[1] = cpuv4->CodeRead32(r15);
instrs[i].CodeCycles = cpu->CodeCycles;
}
instrs[i].Info = ARMInstrInfo::Decode(thumb, cpu->Num, instrs[i].Instr);
hasMemoryInstr |= thumb
? (instrs[i].Info.Kind >= ARMInstrInfo::tk_LDR_PCREL && instrs[i].Info.Kind <= ARMInstrInfo::tk_STMIA)
: (instrs[i].Info.Kind >= ARMInstrInfo::ak_STR_REG_LSL && instrs[i].Info.Kind <= ARMInstrInfo::ak_STM);
cpu->R[15] = r15;
cpu->CurInstr = instrs[i].Instr;
cpu->CodeCycles = instrs[i].CodeCycles;
if (instrs[i].Info.DstRegs & (1 << 14)
|| (!thumb
&& (instrs[i].Info.Kind == ARMInstrInfo::ak_MSR_IMM || instrs[i].Info.Kind == ARMInstrInfo::ak_MSR_REG)
&& instrs[i].Instr & (1 << 16)))
hasLink = false;
if (thumb)
{
InterpretTHUMB[instrs[i].Info.Kind](cpu);
}
else
{
if (cpu->Num == 0 && instrs[i].Info.Kind == ARMInstrInfo::ak_BLX_IMM)
{
ARMInterpreter::A_BLX_IMM(cpu);
}
else
{
u32 icode = ((instrs[i].Instr >> 4) & 0xF) | ((instrs[i].Instr >> 16) & 0xFF0);
assert(InterpretARM[instrs[i].Info.Kind] == ARMInterpreter::ARMInstrTable[icode]
|| instrs[i].Info.Kind == ARMInstrInfo::ak_MOV_REG_LSL_IMM
|| instrs[i].Info.Kind == ARMInstrInfo::ak_Nop
|| instrs[i].Info.Kind == ARMInstrInfo::ak_UNK);
if (cpu->CheckCondition(instrs[i].Cond()))
InterpretARM[instrs[i].Info.Kind](cpu);
else
cpu->AddCycles_C();
}
}
instrs[i].DataCycles = cpu->DataCycles;
instrs[i].DataRegion = cpu->DataRegion;
u32 literalAddr;
if (Config::JIT_LiteralOptimisations
&& instrs[i].Info.SpecialKind == ARMInstrInfo::special_LoadLiteral
&& DecodeLiteral(thumb, instrs[i], literalAddr))
{
u32 translatedAddr = LocaliseCodeAddress(cpu->Num, literalAddr);
if (!translatedAddr)
{
printf("literal in non executable memory?\n");
}
if (InvalidLiterals.Find(translatedAddr) == -1)
{
u32 translatedAddrRounded = translatedAddr & ~0x1FF;
u32 j = 0;
for (; j < numAddressRanges; j++)
if (addressRanges[j] == translatedAddrRounded)
break;
if (j == numAddressRanges)
addressRanges[numAddressRanges++] = translatedAddrRounded;
addressMasks[j] |= 1 << ((translatedAddr & 0x1FF) / 16);
JIT_DEBUGPRINT("literal loading %08x %08x %08x %08x\n", literalAddr, translatedAddr, addressMasks[j], addressRanges[j]);
cpu->DataRead32(literalAddr, &literalValues[numLiterals]);
literalLoadAddrs[numLiterals++] = translatedAddr;
}
}
else if (instrs[i].Info.SpecialKind == ARMInstrInfo::special_WriteMem)
writeAddrs[numWriteAddrs++] = instrs[i].DataRegion;
else if (thumb && instrs[i].Info.Kind == ARMInstrInfo::tk_BL_LONG_2 && i > 0
&& instrs[i - 1].Info.Kind == ARMInstrInfo::tk_BL_LONG_1)
{
i--;
instrs[i].Info.Kind = ARMInstrInfo::tk_BL_LONG;
instrs[i].Instr = (instrs[i].Instr & 0xFFFF) | (instrs[i + 1].Instr << 16);
instrs[i].Info.DstRegs = 0xC000;
instrs[i].Info.SrcRegs = 0;
instrs[i].Info.EndBlock = true;
JIT_DEBUGPRINT("merged BL\n");
}
if (instrs[i].Info.Branches() && Config::JIT_BranchOptimisations
&& instrs[i].Info.Kind != (thumb ? ARMInstrInfo::tk_SVC : ARMInstrInfo::ak_SVC))
{
bool hasBranched = cpu->R[15] != r15;
bool link;
u32 cond, target, linkAddr;
bool staticBranch = DecodeBranch(thumb, instrs[i], cond, hasLink, lr, link, linkAddr, target);
JIT_DEBUGPRINT("branch cond %x target %x (%d)\n", cond, target, hasBranched);
if (staticBranch)
{
instrs[i].BranchFlags |= branch_StaticTarget;
bool isBackJump = false;
if (hasBranched)
{
for (int j = 0; j < i; j++)
{
if (instrs[i].Addr == target)
{
isBackJump = true;
break;
}
}
}
if (cond < 0xE && target < instrs[i].Addr && target >= lastSegmentStart)
{
// we might have an idle loop
u32 backwardsOffset = (instrs[i].Addr - target) / (thumb ? 2 : 4);
if (IsIdleLoop(thumb, &instrs[i - backwardsOffset], backwardsOffset + 1))
{
instrs[i].BranchFlags |= branch_IdleBranch;
JIT_DEBUGPRINT("found %s idle loop %d in block %08x\n", thumb ? "thumb" : "arm", cpu->Num, blockAddr);
}
}
else if (hasBranched && !isBackJump && i + 1 < Config::JIT_MaxBlockSize)
{
if (link)
{
lr = linkAddr;
hasLink = true;
}
r15 = target + (thumb ? 2 : 4);
assert(r15 == cpu->R[15]);
JIT_DEBUGPRINT("block lengthened by static branch (target %x)\n", target);
nextInstr[0] = cpu->NextInstr[0];
nextInstr[1] = cpu->NextInstr[1];
nextInstrAddr[0] = target;
nextInstrAddr[1] = r15;
lastSegmentStart = target;
instrs[i].Info.EndBlock = false;
if (cond < 0xE)
instrs[i].BranchFlags |= branch_FollowCondTaken;
}
}
if (!hasBranched && cond < 0xE && i + 1 < Config::JIT_MaxBlockSize)
{
JIT_DEBUGPRINT("block lengthened by untaken branch\n");
instrs[i].Info.EndBlock = false;
instrs[i].BranchFlags |= branch_FollowCondNotTaken;
}
}
i++;
bool canCompile = JITCompiler->CanCompile(thumb, instrs[i - 1].Info.Kind);
bool secondaryFlagReadCond = !canCompile || (instrs[i - 1].BranchFlags & (branch_FollowCondTaken | branch_FollowCondNotTaken));
if (instrs[i - 1].Info.ReadFlags != 0 || secondaryFlagReadCond)
FloodFillSetFlags(instrs, i - 2, !secondaryFlagReadCond ? instrs[i - 1].Info.ReadFlags : 0xF);
} while(!instrs[i - 1].Info.EndBlock && i < Config::JIT_MaxBlockSize && !cpu->Halted && (!cpu->IRQ || (cpu->CPSR & 0x80)));
if (numLiterals)
{
for (u32 j = 0; j < numWriteAddrs; j++)
{
u32 translatedAddr = LocaliseCodeAddress(cpu->Num, writeAddrs[j]);
if (translatedAddr)
{
for (u32 k = 0; k < numLiterals; k++)
{
if (literalLoadAddrs[k] == translatedAddr)
{
if (InvalidLiterals.Find(translatedAddr) == -1)
InvalidLiterals.Add(translatedAddr);
break;
}
}
}
}
}
u32 literalHash = (u32)XXH3_64bits(literalValues, numLiterals * 4);
u32 instrHash = (u32)XXH3_64bits(instrValues, numInstrs * 4);
auto prevBlockIt = RestoreCandidates.find(instrHash);
JitBlock* prevBlock = NULL;
bool mayRestore = true;
if (prevBlockIt != RestoreCandidates.end())
{
prevBlock = prevBlockIt->second;
RestoreCandidates.erase(prevBlockIt);
mayRestore = prevBlock->StartAddr == blockAddr && prevBlock->LiteralHash == literalHash;
if (mayRestore && prevBlock->NumAddresses == numAddressRanges)
{
for (u32 j = 0; j < numAddressRanges; j++)
{
if (prevBlock->AddressRanges()[j] != addressRanges[j]
|| prevBlock->AddressMasks()[j] != addressMasks[j])
{
mayRestore = false;
break;
}
}
}
else
mayRestore = false;
}
else
{
mayRestore = false;
}
JitBlock* block;
if (!mayRestore)
{
if (prevBlock)
delete prevBlock;
block = new JitBlock(cpu->Num, i, numAddressRanges, numLiterals);
block->LiteralHash = literalHash;
block->InstrHash = instrHash;
for (u32 j = 0; j < numAddressRanges; j++)
block->AddressRanges()[j] = addressRanges[j];
for (u32 j = 0; j < numAddressRanges; j++)
block->AddressMasks()[j] = addressMasks[j];
for (int j = 0; j < numLiterals; j++)
block->Literals()[j] = literalLoadAddrs[j];
block->StartAddr = blockAddr;
block->StartAddrLocal = localAddr;
FloodFillSetFlags(instrs, i - 1, 0xF);
JitEnableWrite();
block->EntryPoint = JITCompiler->CompileBlock(cpu, thumb, instrs, i, hasMemoryInstr);
JitEnableExecute();
JIT_DEBUGPRINT("block start %p\n", block->EntryPoint);
}
else
{
JIT_DEBUGPRINT("restored! %p\n", prevBlock);
block = prevBlock;
}
assert((localAddr & 1) == 0);
for (u32 j = 0; j < numAddressRanges; j++)
{
assert(addressRanges[j] == block->AddressRanges()[j]);
assert(addressMasks[j] == block->AddressMasks()[j]);
assert(addressMasks[j] != 0);
AddressRange* region = CodeMemRegions[addressRanges[j] >> 27];
if (!PageContainsCode(&region[(addressRanges[j] & 0x7FFF000) / 512]))
ARMJIT_Memory::SetCodeProtection(addressRanges[j] >> 27, addressRanges[j] & 0x7FFFFFF, true);
AddressRange* range = &region[(addressRanges[j] & 0x7FFFFFF) / 512];
range->Code |= addressMasks[j];
range->Blocks.Add(block);
}
if (cpu->Num == 0)
JitBlocks9[blockAddr] = block;
else
JitBlocks7[blockAddr] = block;
u64* entry = &FastBlockLookupRegions[(localAddr >> 27)][(localAddr & 0x7FFFFFF) / 2];
*entry = ((u64)blockAddr | cpu->Num) << 32;
*entry |= JITCompiler->SubEntryOffset(block->EntryPoint);
}
void InvalidateByAddr(u32 localAddr)
{
JIT_DEBUGPRINT("invalidating by addr %x\n", localAddr);
AddressRange* region = CodeMemRegions[localAddr >> 27];
AddressRange* range = &region[(localAddr & 0x7FFFFFF) / 512];
u32 mask = 1 << ((localAddr & 0x1FF) / 16);
range->Code = 0;
for (int i = 0; i < range->Blocks.Length;)
{
JitBlock* block = range->Blocks[i];
bool invalidated = false;
u32 mask = 0;
for (int j = 0; j < block->NumAddresses; j++)
{
if (block->AddressRanges()[j] == (localAddr & ~0x1FF))
{
mask = block->AddressMasks()[j];
invalidated = block->AddressMasks()[j] & mask;
assert(mask);
break;
}
}
assert(mask);
if (!invalidated)
{
range->Code |= mask;
i++;
continue;
}
range->Blocks.Remove(i);
if (range->Blocks.Length == 0
&& !PageContainsCode(&region[(localAddr & 0x7FFF000) / 512]))
{
ARMJIT_Memory::SetCodeProtection(localAddr >> 27, localAddr & 0x7FFFFFF, false);
}
bool literalInvalidation = false;
for (int j = 0; j < block->NumLiterals; j++)
{
u32 addr = block->Literals()[j];
if (addr == localAddr)
{
if (InvalidLiterals.Find(localAddr) == -1)
{
InvalidLiterals.Add(localAddr);
JIT_DEBUGPRINT("found invalid literal %d\n", InvalidLiterals.Length);
}
literalInvalidation = true;
break;
}
}
for (int j = 0; j < block->NumAddresses; j++)
{
u32 addr = block->AddressRanges()[j];
if ((addr / 512) != (localAddr / 512))
{
AddressRange* otherRegion = CodeMemRegions[addr >> 27];
AddressRange* otherRange = &otherRegion[(addr & 0x7FFFFFF) / 512];
assert(otherRange != range);
bool removed = otherRange->Blocks.RemoveByValue(block);
assert(removed);
if (otherRange->Blocks.Length == 0)
{
if (!PageContainsCode(&otherRegion[(addr & 0x7FFF000) / 512]))
ARMJIT_Memory::SetCodeProtection(addr >> 27, addr & 0x7FFFFFF, false);
otherRange->Code = 0;
}
}
}
FastBlockLookupRegions[block->StartAddrLocal >> 27][(block->StartAddrLocal & 0x7FFFFFF) / 2] = (u64)UINT32_MAX << 32;
if (block->Num == 0)
JitBlocks9.erase(block->StartAddr);
else
JitBlocks7.erase(block->StartAddr);
if (!literalInvalidation)
{
RetireJitBlock(block);
}
else
{
delete block;
}
}
}
void CheckAndInvalidateITCM()
{
for (u32 i = 0; i < ITCMPhysicalSize; i+=16)
{
if (CodeIndexITCM[i / 512].Code & (1 << ((i & 0x1FF) / 16)))
{
InvalidateByAddr(i | (ARMJIT_Memory::memregion_ITCM << 27));
}
}
}
template <u32 num, int region>
void CheckAndInvalidate(u32 addr)
{
u32 localAddr = ARMJIT_Memory::LocaliseAddress(region, num, addr);
if (CodeMemRegions[region][(localAddr & 0x7FFFFFF) / 512].Code & (1 << ((localAddr & 0x1FF) / 16)))
InvalidateByAddr(localAddr);
}
JitBlockEntry LookUpBlock(u32 num, u64* entries, u32 offset, u32 addr)
{
u64* entry = &entries[offset / 2];
if (*entry >> 32 == (addr | num))
return JITCompiler->AddEntryOffset((u32)*entry);
return NULL;
}
void blockSanityCheck(u32 num, u32 blockAddr, JitBlockEntry entry)
{
u32 localAddr = LocaliseCodeAddress(num, blockAddr);
assert(JITCompiler->AddEntryOffset((u32)FastBlockLookupRegions[localAddr >> 27][(localAddr & 0x7FFFFFF) / 2]) == entry);
}
bool SetupExecutableRegion(u32 num, u32 blockAddr, u64*& entry, u32& start, u32& size)
{
// amazingly ignoring the DTCM is the proper behaviour for code fetches
int region = num == 0
? ARMJIT_Memory::ClassifyAddress9(blockAddr)
: ARMJIT_Memory::ClassifyAddress7(blockAddr);
u32 memoryOffset;
if (FastBlockLookupRegions[region]
&& ARMJIT_Memory::GetMirrorLocation(region, num, blockAddr, memoryOffset, start, size))
{
//printf("setup exec region %d %d %08x %08x %x %x\n", num, region, blockAddr, start, size, memoryOffset);
entry = FastBlockLookupRegions[region] + memoryOffset / 2;
return true;
}
return false;
}
template void CheckAndInvalidate<0, ARMJIT_Memory::memregion_MainRAM>(u32);
template void CheckAndInvalidate<1, ARMJIT_Memory::memregion_MainRAM>(u32);
template void CheckAndInvalidate<0, ARMJIT_Memory::memregion_SharedWRAM>(u32);
template void CheckAndInvalidate<1, ARMJIT_Memory::memregion_SharedWRAM>(u32);
template void CheckAndInvalidate<1, ARMJIT_Memory::memregion_WRAM7>(u32);
template void CheckAndInvalidate<1, ARMJIT_Memory::memregion_VWRAM>(u32);
template void CheckAndInvalidate<0, ARMJIT_Memory::memregion_VRAM>(u32);
template void CheckAndInvalidate<0, ARMJIT_Memory::memregion_ITCM>(u32);
template void CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_A>(u32);
template void CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_A>(u32);
template void CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_B>(u32);
template void CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_B>(u32);
template void CheckAndInvalidate<0, ARMJIT_Memory::memregion_NewSharedWRAM_C>(u32);
template void CheckAndInvalidate<1, ARMJIT_Memory::memregion_NewSharedWRAM_C>(u32);
void ResetBlockCache()
{
printf("Resetting JIT block cache...\n");
// could be replace through a function which only resets
// the permissions but we're too lazy
ARMJIT_Memory::Reset();
InvalidLiterals.Clear();
for (int i = 0; i < ARMJIT_Memory::memregions_Count; i++)
{
if (FastBlockLookupRegions[i])
memset(FastBlockLookupRegions[i], 0xFF, CodeRegionSizes[i] * sizeof(u64) / 2);
}
for (auto it = RestoreCandidates.begin(); it != RestoreCandidates.end(); it++)
delete it->second;
RestoreCandidates.clear();
for (auto it : JitBlocks9)
{
JitBlock* block = it.second;
for (int j = 0; j < block->NumAddresses; j++)
{
u32 addr = block->AddressRanges()[j];
AddressRange* range = &CodeMemRegions[addr >> 27][(addr & 0x7FFFFFF) / 512];
range->Blocks.Clear();
range->Code = 0;
}
delete block;
}
for (auto it : JitBlocks7)
{
JitBlock* block = it.second;
for (int j = 0; j < block->NumAddresses; j++)
{
u32 addr = block->AddressRanges()[j];
AddressRange* range = &CodeMemRegions[addr >> 27][(addr & 0x7FFFFFF) / 512];
range->Blocks.Clear();
range->Code = 0;
}
delete block;
}
JitBlocks9.clear();
JitBlocks7.clear();
JITCompiler->Reset();
}
void JitEnableWrite()
{
#if defined(__APPLE__) && defined(__aarch64__)
if (__builtin_available(macOS 11.0, *))
pthread_jit_write_protect_np(false);
#endif
}
void JitEnableExecute()
{
#if defined(__APPLE__) && defined(__aarch64__)
if (__builtin_available(macOS 11.0, *))
pthread_jit_write_protect_np(true);
#endif
}
}