/* Copyright 2016-2019 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "Config.h" #include "NDS.h" #include "ARM.h" #include "NDSCart.h" #include "DMA.h" #include "FIFO.h" #include "GPU.h" #include "SPU.h" #include "SPI.h" #include "RTC.h" #include "Wifi.h" #include "Platform.h" #include "melon_fopen.h" namespace NDS { #ifdef DEBUG_CHECK_DESYNC u64 dbg_CyclesSys; u64 dbg_CyclesARM9; u64 dbg_CyclesTimer9; u64 dbg_CyclesARM7; u64 dbg_CyclesTimer7; #endif // timing notes // // * this implementation is technically wrong for VRAM // each bank is considered a separate region // but this would only matter in specific VRAM->VRAM DMA transfers or // when running code in VRAM, which is way unlikely // // bus/basedelay/nspenalty // // bus types: // * 0 / 32-bit: nothing special // * 1 / 16-bit: 32-bit accesses split into two 16-bit accesses, second is always sequential // * 2 / 8-bit/GBARAM: (presumably) split into multiple 8-bit accesses? // * 3 / ARM9 internal: cache/TCM // // ARM9 always gets 3c nonseq penalty when using the bus (except for mainRAM where the penalty is 7c) // // ARM7 only gets nonseq penalty when accessing mainRAM (7c as for ARM9) // // timings for GBA slot and wifi are set up at runtime u8 ARM9MemTimings[0x40000][4]; u8 ARM7MemTimings[0x20000][4]; ARMv5* ARM9; ARMv4* ARM7; u32 NumFrames; u64 SysClockCycles; u64 LastSysClockCycles; u32 FrameSysClockCycles; s32 CurIterationCycles; s32 ARM7Offset; int CurCPU; SchedEvent SchedList[Event_MAX]; u32 SchedListMask; u32 CPUStop; u8 ARM9BIOS[0x1000]; u8 ARM7BIOS[0x4000]; u8 MainRAM[MAIN_RAM_SIZE]; u8 SharedWRAM[0x8000]; u8 WRAMCnt; u8* SWRAM_ARM9; u8* SWRAM_ARM7; u32 SWRAM_ARM9Mask; u32 SWRAM_ARM7Mask; u8 ARM7WRAM[0x10000]; u16 ExMemCnt[2]; u8 ROMSeed0[2*8]; u8 ROMSeed1[2*8]; // IO shit u32 IME[2]; u32 IE[2], IF[2]; u8 PostFlag9; u8 PostFlag7; u16 PowerControl9; u16 PowerControl7; u16 WifiWaitCnt; u16 ARM7BIOSProt; Timer Timers[8]; u8 TimerCheckMask[2]; DMA* DMAs[8]; u32 DMA9Fill[4]; u16 IPCSync9, IPCSync7; u16 IPCFIFOCnt9, IPCFIFOCnt7; FIFO* IPCFIFO9; // FIFO in which the ARM9 writes FIFO* IPCFIFO7; u16 DivCnt; u32 DivNumerator[2]; u32 DivDenominator[2]; u32 DivQuotient[2]; u32 DivRemainder[2]; u16 SqrtCnt; u32 SqrtVal[2]; u32 SqrtRes; u32 KeyInput; u16 KeyCnt; u16 RCnt; bool Running; void DivDone(u32 param); void SqrtDone(u32 param); void RunTimer(u32 tid, s32 cycles); void SetWifiWaitCnt(u16 val); void SetGBASlotTimings(); bool Init() { ARM9 = new ARMv5(); ARM7 = new ARMv4(); DMAs[0] = new DMA(0, 0); DMAs[1] = new DMA(0, 1); DMAs[2] = new DMA(0, 2); DMAs[3] = new DMA(0, 3); DMAs[4] = new DMA(1, 0); DMAs[5] = new DMA(1, 1); DMAs[6] = new DMA(1, 2); DMAs[7] = new DMA(1, 3); IPCFIFO9 = new FIFO(16); IPCFIFO7 = new FIFO(16); if (!NDSCart::Init()) return false; if (!GPU::Init()) return false; if (!SPU::Init()) return false; if (!SPI::Init()) return false; if (!RTC::Init()) return false; if (!Wifi::Init()) return false; return true; } void DeInit() { delete ARM9; delete ARM7; for (int i = 0; i < 8; i++) delete DMAs[i]; delete IPCFIFO9; delete IPCFIFO7; NDSCart::DeInit(); GPU::DeInit(); SPU::DeInit(); SPI::DeInit(); RTC::DeInit(); Wifi::DeInit(); } void SetARM9RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq, int seq) { addrstart >>= 14; addrend >>= 14; if (addrend == 0x3FFFF) addrend++; int N16, S16, N32, S32; N16 = nonseq; S16 = seq; if (buswidth == 16) { N32 = N16 + S16; S32 = S16 + S16; } else { N32 = N16; S32 = S16; } for (u32 i = addrstart; i < addrend; i++) { ARM9MemTimings[i][0] = N16; ARM9MemTimings[i][1] = S16; ARM9MemTimings[i][2] = N32; ARM9MemTimings[i][3] = S32; } ARM9->UpdateRegionTimings(addrstart<<14, addrend<<14); } void SetARM7RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq, int seq) { addrstart >>= 15; addrend >>= 15; if (addrend == 0x1FFFF) addrend++; int N16, S16, N32, S32; N16 = nonseq; S16 = seq; if (buswidth == 16) { N32 = N16 + S16; S32 = S16 + S16; } else { N32 = N16; S32 = S16; } for (u32 i = addrstart; i < addrend; i++) { ARM7MemTimings[i][0] = N16; ARM7MemTimings[i][1] = S16; ARM7MemTimings[i][2] = N32; ARM7MemTimings[i][3] = S32; } } void InitTimings() { // TODO, eventually: // VRAM is initially unmapped. The timings should be those of void regions. // Similarly for any unmapped VRAM area. // Need to check whether supporting these timing characteristics would impact performance // (especially wrt VRAM mirroring and overlapping and whatnot). // ARM9 SetARM9RegionTimings(0x00000000, 0xFFFFFFFF, 32, 1 + 3, 1); // void SetARM9RegionTimings(0xFFFF0000, 0xFFFFFFFF, 32, 1 + 3, 1); // BIOS SetARM9RegionTimings(0x02000000, 0x03000000, 16, 8, 1); // main RAM SetARM9RegionTimings(0x03000000, 0x04000000, 32, 1 + 3, 1); // ARM9/shared WRAM SetARM9RegionTimings(0x04000000, 0x05000000, 32, 1 + 3, 1); // IO SetARM9RegionTimings(0x05000000, 0x06000000, 16, 1 + 3, 1); // palette SetARM9RegionTimings(0x06000000, 0x07000000, 16, 1 + 3, 1); // VRAM SetARM9RegionTimings(0x07000000, 0x08000000, 32, 1 + 3, 1); // OAM // ARM7 SetARM7RegionTimings(0x00000000, 0xFFFFFFFF, 32, 1, 1); // void SetARM7RegionTimings(0x00000000, 0x00010000, 32, 1, 1); // BIOS SetARM7RegionTimings(0x02000000, 0x03000000, 16, 8, 1); // main RAM SetARM7RegionTimings(0x03000000, 0x04000000, 32, 1, 1); // ARM7/shared WRAM SetARM7RegionTimings(0x04000000, 0x04800000, 32, 1, 1); // IO SetARM7RegionTimings(0x06000000, 0x07000000, 16, 1, 1); // ARM7 VRAM // handled later: GBA slot, wifi } void SetupDirectBoot() { u32 bootparams[8]; memcpy(bootparams, &NDSCart::CartROM[0x20], 8*4); printf("ARM9: offset=%08X entry=%08X RAM=%08X size=%08X\n", bootparams[0], bootparams[1], bootparams[2], bootparams[3]); printf("ARM7: offset=%08X entry=%08X RAM=%08X size=%08X\n", bootparams[4], bootparams[5], bootparams[6], bootparams[7]); MapSharedWRAM(3); for (u32 i = 0; i < bootparams[3]; i+=4) { u32 tmp = *(u32*)&NDSCart::CartROM[bootparams[0]+i]; ARM9Write32(bootparams[2]+i, tmp); } for (u32 i = 0; i < bootparams[7]; i+=4) { u32 tmp = *(u32*)&NDSCart::CartROM[bootparams[4]+i]; ARM7Write32(bootparams[6]+i, tmp); } for (u32 i = 0; i < 0x170; i+=4) { u32 tmp = *(u32*)&NDSCart::CartROM[i]; ARM9Write32(0x027FFE00+i, tmp); } ARM9Write32(0x027FF800, NDSCart::CartID); ARM9Write32(0x027FF804, NDSCart::CartID); ARM9Write16(0x027FF808, *(u16*)&NDSCart::CartROM[0x15E]); ARM9Write16(0x027FF80A, *(u16*)&NDSCart::CartROM[0x6C]); ARM9Write16(0x027FF850, 0x5835); ARM9Write32(0x027FFC00, NDSCart::CartID); ARM9Write32(0x027FFC04, NDSCart::CartID); ARM9Write16(0x027FFC08, *(u16*)&NDSCart::CartROM[0x15E]); ARM9Write16(0x027FFC0A, *(u16*)&NDSCart::CartROM[0x6C]); ARM9Write16(0x027FFC10, 0x5835); ARM9Write16(0x027FFC30, 0xFFFF); ARM9Write16(0x027FFC40, 0x0001); ARM9->CP15Write(0x910, 0x0300000A); ARM9->CP15Write(0x911, 0x00000020); ARM9->CP15Write(0x100, 0x00050000); ARM9->R[12] = bootparams[1]; ARM9->R[13] = 0x03002F7C; ARM9->R[14] = bootparams[1]; ARM9->R_IRQ[0] = 0x03003F80; ARM9->R_SVC[0] = 0x03003FC0; ARM7->R[12] = bootparams[5]; ARM7->R[13] = 0x0380FD80; ARM7->R[14] = bootparams[5]; ARM7->R_IRQ[0] = 0x0380FF80; ARM7->R_SVC[0] = 0x0380FFC0; ARM9->JumpTo(bootparams[1]); ARM7->JumpTo(bootparams[5]); PostFlag9 = 0x01; PostFlag7 = 0x01; PowerControl9 = 0x820F; GPU::DisplaySwap(PowerControl9); // checkme RCnt = 0x8000; NDSCart::SPICnt = 0x8000; SPU::SetBias(0x200); SetWifiWaitCnt(0x0030); ARM7BIOSProt = 0x1204; SPI_Firmware::SetupDirectBoot(); } void Reset() { FILE* f; u32 i; #ifdef DEBUG_CHECK_DESYNC dbg_CyclesSys = 0; dbg_CyclesARM9 = 0; dbg_CyclesTimer9 = 0; dbg_CyclesARM7 = 0; dbg_CyclesTimer7 = 0; #endif // DEBUG_CHECK_DESYNC SysClockCycles = 0; LastSysClockCycles = 0; f = melon_fopen_local("bios9.bin", "rb"); if (!f) { printf("ARM9 BIOS not found\n"); for (i = 0; i < 16; i++) ((u32*)ARM9BIOS)[i] = 0xE7FFDEFF; } else { fseek(f, 0, SEEK_SET); fread(ARM9BIOS, 0x1000, 1, f); printf("ARM9 BIOS loaded\n"); fclose(f); } f = melon_fopen_local("bios7.bin", "rb"); if (!f) { printf("ARM7 BIOS not found\n"); for (i = 0; i < 16; i++) ((u32*)ARM7BIOS)[i] = 0xE7FFDEFF; } else { fseek(f, 0, SEEK_SET); fread(ARM7BIOS, 0x4000, 1, f); printf("ARM7 BIOS loaded\n"); fclose(f); } ARM9->SetClockShift(1); ARM7->SetClockShift(0); InitTimings(); memset(MainRAM, 0, MAIN_RAM_SIZE); memset(SharedWRAM, 0, 0x8000); memset(ARM7WRAM, 0, 0x10000); MapSharedWRAM(0); ExMemCnt[0] = 0; ExMemCnt[1] = 0; memset(ROMSeed0, 0, 2*8); memset(ROMSeed1, 0, 2*8); SetGBASlotTimings(); IME[0] = 0; IE[0] = 0; IF[0] = 0; IME[1] = 0; IE[1] = 0; IF[1] = 0; PostFlag9 = 0x00; PostFlag7 = 0x00; PowerControl9 = 0x0001; PowerControl7 = 0x0001; WifiWaitCnt = 0xFFFF; // temp SetWifiWaitCnt(0); ARM7BIOSProt = 0; IPCSync9 = 0; IPCSync7 = 0; IPCFIFOCnt9 = 0; IPCFIFOCnt7 = 0; IPCFIFO9->Clear(); IPCFIFO7->Clear(); DivCnt = 0; SqrtCnt = 0; ARM9->Reset(); ARM7->Reset(); CPUStop = 0; memset(Timers, 0, 8*sizeof(Timer)); TimerCheckMask[0] = 0; TimerCheckMask[1] = 0; for (i = 0; i < 8; i++) DMAs[i]->Reset(); memset(DMA9Fill, 0, 4*4); memset(SchedList, 0, sizeof(SchedList)); SchedListMask = 0; CurIterationCycles = 0; ARM7Offset = 0; KeyInput = 0x007F03FF; KeyCnt = 0; RCnt = 0; NDSCart::Reset(); GPU::Reset(); SPU::Reset(); SPI::Reset(); RTC::Reset(); Wifi::Reset(); } void Stop() { printf("Stopping: shutdown\n"); Running = false; Platform::StopEmu(); GPU::Stop(); SPU::Stop(); } bool DoSavestate_Scheduler(Savestate* file) { // this is a bit of a hack // but uh, your local coder realized that the scheduler list contains function pointers // and that storing those as-is is not a very good idea // unless you want it to crash and burn // this is the solution your local coder came up with. // it's gross but I think it's the best solution for this problem. // just remember to add here if you add more event callbacks, kay? // atleast until we come up with something more elegant. void (*eventfuncs[])(u32) = { GPU::StartScanline, GPU::StartHBlank, GPU::FinishFrame, SPU::Mix, Wifi::USTimer, GPU::DisplayFIFO, NDSCart::ROMPrepareData, NDSCart::ROMEndTransfer, NDSCart::SPITransferDone, SPI::TransferDone, DivDone, SqrtDone, NULL }; int len = Event_MAX; if (file->Saving) { for (int i = 0; i < len; i++) { SchedEvent* evt = &SchedList[i]; u32 funcid = -1; if (evt->Func) { for (int j = 0; eventfuncs[j]; j++) { if (evt->Func == eventfuncs[j]) { funcid = j; break; } } if (funcid == -1) { printf("savestate: VERY BAD!!!!! FUNCTION POINTER FOR EVENT %d NOT IN HACKY LIST. CANNOT SAVE. SMACK STAPLEBUTTER.\n", i); return false; } } file->Var32(&funcid); file->Var32((u32*)&evt->WaitCycles); file->Var32(&evt->Param); } } else { for (int i = 0; i < len; i++) { SchedEvent* evt = &SchedList[i]; u32 funcid; file->Var32(&funcid); if (funcid != -1) { for (int j = 0; ; j++) { if (!eventfuncs[j]) { printf("savestate: VERY BAD!!!!!! EVENT FUNCTION POINTER ID %d IS OUT OF RANGE. HAX?????\n", j); return false; } if (j == funcid) break; } evt->Func = eventfuncs[funcid]; } else evt->Func = NULL; file->Var32((u32*)&evt->WaitCycles); file->Var32(&evt->Param); } } return true; } bool DoSavestate(Savestate* file) { file->Section("NDSG"); file->VarArray(MainRAM, 0x400000); file->VarArray(SharedWRAM, 0x8000); file->VarArray(ARM7WRAM, 0x10000); file->VarArray(ExMemCnt, 2*sizeof(u16)); file->VarArray(ROMSeed0, 2*8); file->VarArray(ROMSeed1, 2*8); file->Var16(&WifiWaitCnt); file->VarArray(IME, 2*sizeof(u32)); file->VarArray(IE, 2*sizeof(u32)); file->VarArray(IF, 2*sizeof(u32)); file->Var8(&PostFlag9); file->Var8(&PostFlag7); file->Var16(&PowerControl9); file->Var16(&PowerControl7); file->Var16(&ARM7BIOSProt); file->Var16(&IPCSync9); file->Var16(&IPCSync7); file->Var16(&IPCFIFOCnt9); file->Var16(&IPCFIFOCnt7); IPCFIFO9->DoSavestate(file); IPCFIFO7->DoSavestate(file); file->Var16(&DivCnt); file->Var16(&SqrtCnt); file->Var32(&CPUStop); for (int i = 0; i < 8; i++) { Timer* timer = &Timers[i]; file->Var16(&timer->Reload); file->Var16(&timer->Cnt); file->Var32(&timer->Counter); file->Var32(&timer->CycleShift); } file->VarArray(TimerCheckMask, 2*sizeof(u8)); file->VarArray(DMA9Fill, 4*sizeof(u32)); if (!DoSavestate_Scheduler(file)) return false; file->Var32(&SchedListMask); file->Var32((u32*)&CurIterationCycles); file->Var32((u32*)&ARM7Offset); // TODO: save KeyInput???? file->Var16(&KeyCnt); file->Var16(&RCnt); for (int i = 0; i < 8; i++) DMAs[i]->DoSavestate(file); file->Var8(&WRAMCnt); if (!file->Saving) { // 'dept of redundancy dept' // but we do need to update the mappings MapSharedWRAM(WRAMCnt); } if (!file->Saving) { GPU::DisplaySwap(PowerControl9>>15); InitTimings(); SetGBASlotTimings(); u16 tmp = WifiWaitCnt; WifiWaitCnt = 0xFFFF; SetWifiWaitCnt(tmp); // force timing table update } ARM9->DoSavestate(file); ARM7->DoSavestate(file); NDSCart::DoSavestate(file); GPU::DoSavestate(file); SPU::DoSavestate(file); SPI::DoSavestate(file); RTC::DoSavestate(file); Wifi::DoSavestate(file); return true; } bool LoadROM(const char* path, const char* sram, bool direct) { if (NDSCart::LoadROM(path, sram, direct)) { Running = true; return true; } else { printf("Failed to load ROM %s\n", path); return false; } } void LoadBIOS() { Reset(); Running = true; } void RelocateSave(const char* path, bool write) { printf("SRAM: relocating to %s (write=%s)\n", path, write?"true":"false"); NDSCart::RelocateSave(path, write); } void CalcIterationCycles() { CurIterationCycles = 16; for (int i = 0; i < Event_MAX; i++) { if (!(SchedListMask & (1<Run(cycles); if (cycles > 0 && !(CPUStop & 0x80000000)) cycles = DMAs[1]->Run(cycles); if (cycles > 0 && !(CPUStop & 0x80000000)) cycles = DMAs[2]->Run(cycles); if (cycles > 0 && !(CPUStop & 0x80000000)) cycles = DMAs[3]->Run(cycles); arm9cycles = CurIterationCycles - cycles; } else { ARM9->CyclesToRun = CurIterationCycles << 1; CurCPU = 1; ARM9->Execute(); CurCPU = 0; arm9cycles = ARM9->Cycles >> 1; RunTightTimers(0, arm9cycles); } RunLooseTimers(0, arm9cycles); GPU3D::Run(arm9cycles); s32 ndscyclestorun = arm9cycles; // ARM7Offset > ndscyclestorun means we are too far ahead of the ARM9 if (ARM7Offset > ndscyclestorun) { ARM7Offset -= ndscyclestorun; } else if (CPUStop & 0x0FFF0000) { s32 cycles = ndscyclestorun - ARM7Offset; cycles = DMAs[4]->Run(cycles); if (cycles > 0) cycles = DMAs[5]->Run(cycles); if (cycles > 0) cycles = DMAs[6]->Run(cycles); if (cycles > 0) cycles = DMAs[7]->Run(cycles); ARM7Offset = -cycles; } else { ARM7->CyclesToRun = ndscyclestorun - ARM7Offset; CurCPU = 2; ARM7->Execute(); CurCPU = 0; ARM7Offset = ARM7->Cycles - ARM7->CyclesToRun; RunTightTimers(1, ARM7->Cycles); } #ifdef DEBUG_CHECK_DESYNC dbg_CyclesSys += ndscyclestorun; #endif // DEBUG_CHECK_DESYNC RunLooseTimers(1, ndscyclestorun); RunSystem(ndscyclestorun); SysClockCycles += ndscyclestorun; LastSysClockCycles += ndscyclestorun; FrameSysClockCycles += ndscyclestorun; } #ifdef DEBUG_CHECK_DESYNC printf("[%08X%08X] ARM9=%ld timer9=%ld, ARM7=%ld timer7=%ld\n", (u32)(dbg_CyclesSys>>32), (u32)dbg_CyclesSys, dbg_CyclesARM9-dbg_CyclesSys, dbg_CyclesTimer9-dbg_CyclesSys, dbg_CyclesARM7-dbg_CyclesSys, dbg_CyclesTimer7-dbg_CyclesSys); #endif NumFrames++; return GPU::TotalScanlines; } void Reschedule() { s32 oldcycles = CurIterationCycles; CalcIterationCycles(); if (CurIterationCycles >= oldcycles) { CurIterationCycles = oldcycles; return; } if (CurCPU == 0) { CurIterationCycles = oldcycles; return; } if (CurCPU == 1) ARM9->CyclesToRun = CurIterationCycles << 1; else if (CurCPU == 2) ARM7->CyclesToRun = CurIterationCycles - ARM7Offset; // this is all. a reschedule shouldn't happen during DMA or GXFIFO stall. } void ScheduleEvent(u32 id, bool periodic, s32 delay, void (*func)(u32), u32 param) { if (SchedListMask & (1<WaitCycles += delay; else { if (CurCPU == 1) evt->WaitCycles = delay + (ARM9->Cycles >> 1); else if (CurCPU == 2) evt->WaitCycles = delay + ARM7->Cycles; else evt->WaitCycles = delay; } evt->Func = func; evt->Param = param; SchedListMask |= (1<> 10) & 0x3; KeyInput &= 0xFFFCFC00; KeyInput |= key_lo | (key_hi << 16); } void MicInputFrame(s16* data, int samples) { return SPI_TSC::MicInputFrame(data, samples); } void Halt() { printf("Halt()\n"); Running = false; } void MapSharedWRAM(u8 val) { WRAMCnt = val; switch (WRAMCnt & 0x3) { case 0: SWRAM_ARM9 = &SharedWRAM[0]; SWRAM_ARM9Mask = 0x7FFF; SWRAM_ARM7 = NULL; SWRAM_ARM7Mask = 0; break; case 1: SWRAM_ARM9 = &SharedWRAM[0x4000]; SWRAM_ARM9Mask = 0x3FFF; SWRAM_ARM7 = &SharedWRAM[0]; SWRAM_ARM7Mask = 0x3FFF; break; case 2: SWRAM_ARM9 = &SharedWRAM[0]; SWRAM_ARM9Mask = 0x3FFF; SWRAM_ARM7 = &SharedWRAM[0x4000]; SWRAM_ARM7Mask = 0x3FFF; break; case 3: SWRAM_ARM9 = NULL; SWRAM_ARM9Mask = 0; SWRAM_ARM7 = &SharedWRAM[0]; SWRAM_ARM7Mask = 0x7FFF; break; } } void SetWifiWaitCnt(u16 val) { if (WifiWaitCnt == val) return; WifiWaitCnt = val; const int ntimings[4] = {10, 8, 6, 18}; SetARM7RegionTimings(0x04800000, 0x04808000, 16, ntimings[val & 0x3], (val & 0x4) ? 4 : 6); SetARM7RegionTimings(0x04808000, 0x04810000, 16, ntimings[(val>>3) & 0x3], (val & 0x20) ? 4 : 10); } void SetGBASlotTimings() { int curcpu = (ExMemCnt[0] >> 7) & 0x1; const int ntimings[4] = {10, 8, 6, 18}; u16 curcnt = ExMemCnt[curcpu]; int ramN = ntimings[curcnt & 0x3]; int romN = ntimings[(curcnt>>2) & 0x3]; int romS = (curcnt & 0x10) ? 4 : 6; // TODO: PHI pin thing? if (curcpu == 0) { SetARM9RegionTimings(0x08000000, 0x0A000000, 16, romN + 3, romS); SetARM9RegionTimings(0x0A000000, 0x0B000000, 8, ramN + 3, ramN); SetARM7RegionTimings(0x08000000, 0x0A000000, 32, 1, 1); SetARM7RegionTimings(0x0A000000, 0x0B000000, 32, 1, 1); } else { SetARM9RegionTimings(0x08000000, 0x0A000000, 32, 1, 1); SetARM9RegionTimings(0x0A000000, 0x0B000000, 32, 1, 1); SetARM7RegionTimings(0x08000000, 0x0A000000, 16, romN, romS); SetARM7RegionTimings(0x0A000000, 0x0B000000, 8, ramN, ramN); } } void SetIRQ(u32 cpu, u32 irq) { IF[cpu] |= (1 << irq); } void ClearIRQ(u32 cpu, u32 irq) { IF[cpu] &= ~(1 << irq); } bool HaltInterrupted(u32 cpu) { if (cpu == 0) { if (!(IME[0] & 0x1)) return false; } if (IF[cpu] & IE[cpu]) return true; return false; } void StopCPU(u32 cpu, u32 mask) { if (cpu) { CPUStop |= (mask << 16); ARM7->Halt(2); } else { CPUStop |= mask; ARM9->Halt(2); } } void ResumeCPU(u32 cpu, u32 mask) { if (cpu) mask <<= 16; CPUStop &= ~mask; } void GXFIFOStall() { if (CPUStop & 0x80000000) return; CPUStop |= 0x80000000; if (CurCPU == 1) ARM9->Halt(2); else { DMAs[0]->StallIfRunning(); DMAs[1]->StallIfRunning(); DMAs[2]->StallIfRunning(); DMAs[3]->StallIfRunning(); } } void GXFIFOUnstall() { CPUStop &= ~0x80000000; } u32 GetPC(u32 cpu) { return cpu ? ARM7->R[15] : ARM9->R[15]; } u64 GetSysClockCycles(int num) { u64 ret; if (num == 0 || num == 2) { if (num == 0) ret = SysClockCycles; else if (num == 2) ret = FrameSysClockCycles; if (CurCPU == 1) ret += (ARM9->Cycles >> 1); else if (CurCPU == 2) ret += ARM7->Cycles; } else if (num == 1) { ret = LastSysClockCycles; LastSysClockCycles = 0; if (CurCPU == 1) { ret += (ARM9->Cycles >> 1); LastSysClockCycles = -(ARM9->Cycles >> 1); } else if (CurCPU == 2) { ret += ARM7->Cycles; LastSysClockCycles = -ARM7->Cycles; } } return ret; } void NocashPrint(u32 ncpu, u32 addr) { // addr: u16 flags (TODO: research? libnds doesn't use those) // addr+2: debug string addr += 2; ARM* cpu = ncpu ? (ARM*)ARM7 : (ARM*)ARM9; u8 (*readfn)(u32) = ncpu ? NDS::ARM7Read8 : NDS::ARM9Read8; char output[1024]; int ptr = 0; for (int i = 0; i < 120 && ptr < 1023; ) { char ch = readfn(addr++); i++; if (ch == '%') { char cmd[16]; int j; for (j = 0; j < 15; ) { char ch2 = readfn(addr++); i++; if (i >= 120) break; if (ch2 == '%') break; cmd[j++] = ch2; } cmd[j] = '\0'; char subs[64]; if (cmd[0] == 'r') { if (!strcmp(cmd, "r0")) sprintf(subs, "%08X", cpu->R[0]); else if (!strcmp(cmd, "r1")) sprintf(subs, "%08X", cpu->R[1]); else if (!strcmp(cmd, "r2")) sprintf(subs, "%08X", cpu->R[2]); else if (!strcmp(cmd, "r3")) sprintf(subs, "%08X", cpu->R[3]); else if (!strcmp(cmd, "r4")) sprintf(subs, "%08X", cpu->R[4]); else if (!strcmp(cmd, "r5")) sprintf(subs, "%08X", cpu->R[5]); else if (!strcmp(cmd, "r6")) sprintf(subs, "%08X", cpu->R[6]); else if (!strcmp(cmd, "r7")) sprintf(subs, "%08X", cpu->R[7]); else if (!strcmp(cmd, "r8")) sprintf(subs, "%08X", cpu->R[8]); else if (!strcmp(cmd, "r9")) sprintf(subs, "%08X", cpu->R[9]); else if (!strcmp(cmd, "r10")) sprintf(subs, "%08X", cpu->R[10]); else if (!strcmp(cmd, "r11")) sprintf(subs, "%08X", cpu->R[11]); else if (!strcmp(cmd, "r12")) sprintf(subs, "%08X", cpu->R[12]); else if (!strcmp(cmd, "r13")) sprintf(subs, "%08X", cpu->R[13]); else if (!strcmp(cmd, "r14")) sprintf(subs, "%08X", cpu->R[14]); else if (!strcmp(cmd, "r15")) sprintf(subs, "%08X", cpu->R[15]); } else { if (!strcmp(cmd, "sp")) sprintf(subs, "%08X", cpu->R[13]); else if (!strcmp(cmd, "lr")) sprintf(subs, "%08X", cpu->R[14]); else if (!strcmp(cmd, "pc")) sprintf(subs, "%08X", cpu->R[15]); else if (!strcmp(cmd, "frame")) sprintf(subs, "%u", NumFrames); else if (!strcmp(cmd, "scanline")) sprintf(subs, "%u", GPU::VCount); else if (!strcmp(cmd, "totalclks")) sprintf(subs, "%lu", GetSysClockCycles(0)); else if (!strcmp(cmd, "lastclks")) sprintf(subs, "%lu", GetSysClockCycles(1)); else if (!strcmp(cmd, "zeroclks")) { sprintf(subs, ""); GetSysClockCycles(1); } } int slen = strlen(subs); if ((ptr+slen) > 1023) slen = 1023-ptr; strncpy(&output[ptr], subs, slen); ptr += slen; } else { output[ptr++] = ch; if (ch == '\0') break; } } output[ptr] = '\0'; printf("%s", output); } void HandleTimerOverflow(u32 tid) { Timer* timer = &Timers[tid]; //if ((timer->Cnt & 0x84) != 0x80) return; timer->Counter += timer->Reload << 16; if (timer->Cnt & (1<<6)) SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3)); //u32 delay = (0x10000 - timer->Reload) << (16 - timer->CycleShift); //delay -= (timer->Counter - timer->Reload) >> timer->CycleShift; //printf("timer%d IRQ: resched %d, reload=%04X cnt=%08X\n", tid, delay, timer->Reload, timer->Counter); //ScheduleEvent(Event_TimerIRQ_0 + tid, true, delay, HandleTimerOverflow, tid); if ((tid & 0x3) == 3) return; for (;;) { tid++; timer = &Timers[tid]; if ((timer->Cnt & 0x84) != 0x84) break; timer->Counter += 0x10000; if (timer->Counter >> 16) break; timer->Counter = timer->Reload << 16; if (timer->Cnt & (1<<6)) SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3)); if ((tid & 0x3) == 3) break; } } void RunTimer(u32 tid, s32 cycles) { Timer* timer = &Timers[tid]; //if ((timer->Cnt & 0x84) != 0x80) // return; u32 oldcount = timer->Counter; timer->Counter += (cycles << timer->CycleShift); if (timer->Counter < oldcount) HandleTimerOverflow(tid); } void RunTightTimers(u32 cpu, s32 cycles) { register u32 timermask = TimerCheckMask[cpu]; if (timermask & 0x1) RunTimer((cpu<<2)+0, cycles); if (timermask & 0x2) RunTimer((cpu<<2)+1, cycles); if (timermask & 0x4) RunTimer((cpu<<2)+2, cycles); if (timermask & 0x8) RunTimer((cpu<<2)+3, cycles); #ifdef DEBUG_CHECK_DESYNC if (cpu) dbg_CyclesTimer7 += cycles; else dbg_CyclesTimer9 += cycles; #endif // DEBUG_CHECK_DESYNC } void RunLooseTimers(u32 cpu, s32 cycles) { register u32 timermask = TimerCheckMask[cpu]; if (timermask & 0x10) RunTimer((cpu<<2)+0, cycles); if (timermask & 0x20) RunTimer((cpu<<2)+1, cycles); if (timermask & 0x40) RunTimer((cpu<<2)+2, cycles); if (timermask & 0x80) RunTimer((cpu<<2)+3, cycles); } bool DMAsInMode(u32 cpu, u32 mode) { cpu <<= 2; if (DMAs[cpu+0]->IsInMode(mode)) return true; if (DMAs[cpu+1]->IsInMode(mode)) return true; if (DMAs[cpu+2]->IsInMode(mode)) return true; if (DMAs[cpu+3]->IsInMode(mode)) return true; return false; } bool DMAsRunning(u32 cpu) { cpu <<= 2; if (DMAs[cpu+0]->IsRunning()) return true; if (DMAs[cpu+1]->IsRunning()) return true; if (DMAs[cpu+2]->IsRunning()) return true; if (DMAs[cpu+3]->IsRunning()) return true; return false; } void CheckDMAs(u32 cpu, u32 mode) { cpu <<= 2; DMAs[cpu+0]->StartIfNeeded(mode); DMAs[cpu+1]->StartIfNeeded(mode); DMAs[cpu+2]->StartIfNeeded(mode); DMAs[cpu+3]->StartIfNeeded(mode); } void StopDMAs(u32 cpu, u32 mode) { cpu <<= 2; DMAs[cpu+0]->StopIfNeeded(mode); DMAs[cpu+1]->StopIfNeeded(mode); DMAs[cpu+2]->StopIfNeeded(mode); DMAs[cpu+3]->StopIfNeeded(mode); } const s32 TimerPrescaler[4] = {0, 6, 8, 10}; u16 TimerGetCounter(u32 timer) { u32 ret = Timers[timer].Counter; return ret >> 16; } void TimerStart(u32 id, u16 cnt) { Timer* timer = &Timers[id]; u16 curstart = timer->Cnt & (1<<7); u16 newstart = cnt & (1<<7); timer->Cnt = cnt; timer->CycleShift = 16 - TimerPrescaler[cnt & 0x03]; if ((!curstart) && newstart) { timer->Counter = timer->Reload << 16; /*if ((cnt & 0x84) == 0x80) { u32 delay = (0x10000 - timer->Reload) << TimerPrescaler[cnt & 0x03]; printf("timer%d IRQ: start %d, reload=%04X cnt=%08X\n", id, delay, timer->Reload, timer->Counter); CancelEvent(Event_TimerIRQ_0 + id); ScheduleEvent(Event_TimerIRQ_0 + id, false, delay, HandleTimerOverflow, id); }*/ } if ((cnt & 0x84) == 0x80) { u32 tmask; if ((cnt & 0x03) == 0) tmask = 0x01 << (id&0x3); else tmask = 0x10 << (id&0x3); TimerCheckMask[id>>2] |= tmask; } else TimerCheckMask[id>>2] &= ~(0x11 << (id&0x3)); } void DivDone(u32 param) { DivCnt &= ~0xC000; switch (DivCnt & 0x0003) { case 0x0000: { s32 num = (s32)DivNumerator[0]; s32 den = (s32)DivDenominator[0]; if (den == 0) { DivQuotient[0] = (num<0) ? 1:-1; DivQuotient[1] = (num<0) ? -1:1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x80000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x80000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; case 0x0001: case 0x0003: { s64 num = *(s64*)&DivNumerator[0]; s32 den = (s32)DivDenominator[0]; if (den == 0) { *(s64*)&DivQuotient[0] = (num<0) ? 1:-1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x8000000000000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x8000000000000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; case 0x0002: { s64 num = *(s64*)&DivNumerator[0]; s64 den = *(s64*)&DivDenominator[0]; if (den == 0) { *(s64*)&DivQuotient[0] = (num<0) ? 1:-1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x8000000000000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x8000000000000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; } if ((DivDenominator[0] | DivDenominator[1]) == 0) DivCnt |= 0x4000; } void StartDiv() { NDS::CancelEvent(NDS::Event_Div); DivCnt |= 0x8000; NDS::ScheduleEvent(NDS::Event_Div, false, ((DivCnt&0x3)==0) ? 18:34, DivDone, 0); } // http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2 void SqrtDone(u32 param) { u64 val; u32 res = 0; u64 rem = 0; u32 prod = 0; u32 nbits, topshift; SqrtCnt &= ~0x8000; if (SqrtCnt & 0x0001) { val = *(u64*)&SqrtVal[0]; nbits = 32; topshift = 62; } else { val = (u64)SqrtVal[0]; // 32bit nbits = 16; topshift = 30; } for (u32 i = 0; i < nbits; i++) { rem = (rem << 2) + ((val >> topshift) & 0x3); val <<= 2; res <<= 1; prod = (res << 1) + 1; if (rem >= prod) { rem -= prod; res++; } } SqrtRes = res; } void StartSqrt() { NDS::CancelEvent(NDS::Event_Sqrt); SqrtCnt |= 0x8000; NDS::ScheduleEvent(NDS::Event_Sqrt, false, 13, SqrtDone, 0); } void debug(u32 param) { printf("ARM9 PC=%08X LR=%08X %08X\n", ARM9->R[15], ARM9->R[14], ARM9->R_IRQ[1]); printf("ARM7 PC=%08X LR=%08X %08X\n", ARM7->R[15], ARM7->R[14], ARM7->R_IRQ[1]); printf("ARM9 IME=%08X IE=%08X IF=%08X\n", IME[0], IE[0], IF[0]); printf("ARM7 IME=%08X IE=%08X IF=%08X\n", IME[1], IE[1], IF[1]); //for (int i = 0; i < 9; i++) // printf("VRAM %c: %02X\n", 'A'+i, GPU::VRAMCNT[i]); /*FILE* shit = fopen("debug/jam.bin", "wb"); for (u32 i = 0x02000000; i < 0x02400000; i+=4) { u32 val = ARM7Read32(i); fwrite(&val, 4, 1, shit); } for (u32 i = 0x037F0000; i < 0x03810000; i+=4) { u32 val = ARM7Read32(i); fwrite(&val, 4, 1, shit); } fclose(shit);*/ } u8 ARM9Read8(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u8*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM9) { return *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; } else { return 0; } case 0x04000000: return ARM9IORead8(addr); case 0x05000000: return *(u8*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: return GPU::ReadVRAM_ABG(addr); case 0x00200000: return GPU::ReadVRAM_BBG(addr); case 0x00400000: return GPU::ReadVRAM_AOBJ(addr); case 0x00600000: return GPU::ReadVRAM_BOBJ(addr); default: return GPU::ReadVRAM_LCDC(addr); } case 0x07000000: return *(u8*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: if (ExMemCnt[0] & (1<<7)) return 0xFF; // TODO: proper open bus //return *(u8*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read8 %08X\n", addr); // TODO!!! return 0xFF; case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return 0xFF; // TODO: proper open bus // TODO!!! return 0xFF; } printf("unknown arm9 read8 %08X\n", addr); return 0; } u16 ARM9Read16(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u16*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM9) { return *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; } else { return 0; } case 0x04000000: return ARM9IORead16(addr); case 0x05000000: return *(u16*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: return GPU::ReadVRAM_ABG(addr); case 0x00200000: return GPU::ReadVRAM_BBG(addr); case 0x00400000: return GPU::ReadVRAM_AOBJ(addr); case 0x00600000: return GPU::ReadVRAM_BOBJ(addr); default: return GPU::ReadVRAM_LCDC(addr); } case 0x07000000: return *(u16*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: if (ExMemCnt[0] & (1<<7)) return 0xFFFF; // TODO: proper open bus //return *(u8*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read8 %08X\n", addr); // TODO!!! return 0xFFFF; case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return 0xFFFF; // TODO: proper open bus // TODO!!! return 0xFFFF; } //printf("unknown arm9 read16 %08X %08X\n", addr, ARM9->R[15]); return 0; } u32 ARM9Read32(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u32*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM9) { return *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; } else { return 0; } case 0x04000000: return ARM9IORead32(addr); case 0x05000000: return *(u32*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: return GPU::ReadVRAM_ABG(addr); case 0x00200000: return GPU::ReadVRAM_BBG(addr); case 0x00400000: return GPU::ReadVRAM_AOBJ(addr); case 0x00600000: return GPU::ReadVRAM_BOBJ(addr); default: return GPU::ReadVRAM_LCDC(addr); } case 0x07000000: return *(u32*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: if (ExMemCnt[0] & (1<<7)) return 0xFFFFFFFF; // TODO: proper open bus //return *(u8*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read8 %08X\n", addr); // TODO!!! return 0xFFFFFFFF; case 0x0A000000: if (ExMemCnt[0] & (1<<7)) return 0xFFFFFFFF; // TODO: proper open bus // TODO!!! return 0xFFFFFFFF; } printf("unknown arm9 read32 %08X | %08X %08X\n", addr, ARM9->R[15], ARM9->R[12]); return 0; } void ARM9Write8(u32 addr, u8 val) { switch (addr & 0xFF000000) { case 0x02000000: *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM9) { *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; } return; case 0x04000000: ARM9IOWrite8(addr, val); return; case 0x05000000: case 0x06000000: case 0x07000000: // checkme return; } printf("unknown arm9 write8 %08X %02X\n", addr, val); } void ARM9Write16(u32 addr, u16 val) { switch (addr & 0xFF000000) { case 0x02000000: *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM9) { *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; } return; case 0x04000000: ARM9IOWrite16(addr, val); return; case 0x05000000: *(u16*)&GPU::Palette[addr & 0x7FF] = val; return; case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: GPU::WriteVRAM_ABG(addr, val); return; case 0x00200000: GPU::WriteVRAM_BBG(addr, val); return; case 0x00400000: GPU::WriteVRAM_AOBJ(addr, val); return; case 0x00600000: GPU::WriteVRAM_BOBJ(addr, val); return; default: GPU::WriteVRAM_LCDC(addr, val); return; } case 0x07000000: *(u16*)&GPU::OAM[addr & 0x7FF] = val; return; } //printf("unknown arm9 write16 %08X %04X\n", addr, val); } void ARM9Write32(u32 addr, u32 val) { switch (addr & 0xFF000000) { case 0x02000000: *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return ; case 0x03000000: if (SWRAM_ARM9) { *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; } return; case 0x04000000: ARM9IOWrite32(addr, val); return; case 0x05000000: *(u32*)&GPU::Palette[addr & 0x7FF] = val; return; case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: GPU::WriteVRAM_ABG(addr, val); return; case 0x00200000: GPU::WriteVRAM_BBG(addr, val); return; case 0x00400000: GPU::WriteVRAM_AOBJ(addr, val); return; case 0x00600000: GPU::WriteVRAM_BOBJ(addr, val); return; default: GPU::WriteVRAM_LCDC(addr, val); return; } case 0x07000000: *(u32*)&GPU::OAM[addr & 0x7FF] = val; return; } printf("unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9->R[15]); } bool ARM9GetMemRegion(u32 addr, bool write, MemRegion* region) { switch (addr & 0xFF000000) { case 0x02000000: region->Mem = MainRAM; region->Mask = MAIN_RAM_SIZE-1; return true; case 0x03000000: if (SWRAM_ARM9) { region->Mem = SWRAM_ARM9; region->Mask = SWRAM_ARM9Mask; return true; } break; } if ((addr & 0xFFFFF000) == 0xFFFF0000 && !write) { region->Mem = ARM9BIOS; region->Mask = 0xFFF; return true; } region->Mem = NULL; return false; } u8 ARM7Read8(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] >= 0x4000) return 0xFF; if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt) return 0xFF; return *(u8*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM7) { return *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; } else { return *(u8*)&ARM7WRAM[addr & 0xFFFF]; } case 0x03800000: return *(u8*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead8(addr); case 0x06000000: case 0x06800000: return GPU::ReadVRAM_ARM7(addr); case 0x08000000: case 0x09000000: if (!(ExMemCnt[0] & (1<<7))) return 0xFF; // TODO: proper open bus //return *(u8*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read8 %08X\n", addr); // TODO!!! return 0xFF; case 0x0A000000: if (!(ExMemCnt[0] & (1<<7))) return 0xFF; // TODO: proper open bus // TODO!!! return 0xFF; } printf("unknown arm7 read8 %08X %08X %08X/%08X\n", addr, ARM7->R[15], ARM7->R[0], ARM7->R[1]); return 0; } u16 ARM7Read16(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] >= 0x4000) return 0xFFFF; if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt) return 0xFFFF; return *(u16*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM7) { return *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; } else { return *(u16*)&ARM7WRAM[addr & 0xFFFF]; } case 0x03800000: return *(u16*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead16(addr); case 0x04800000: if (addr < 0x04810000) { return Wifi::Read(addr); } break; case 0x06000000: case 0x06800000: return GPU::ReadVRAM_ARM7(addr); case 0x08000000: case 0x09000000: if (!(ExMemCnt[0] & (1<<7))) return 0xFFFF; // TODO: proper open bus //return *(u8*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read8 %08X\n", addr); // TODO!!! return 0xFFFF; case 0x0A000000: if (!(ExMemCnt[0] & (1<<7))) return 0xFFFF; // TODO: proper open bus // TODO!!! return 0xFFFF; } printf("unknown arm7 read16 %08X %08X\n", addr, ARM7->R[15]); return 0; } u32 ARM7Read32(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] >= 0x4000) return 0xFFFFFFFF; if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt) return 0xFFFFFFFF; return *(u32*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM7) { return *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; } else { return *(u32*)&ARM7WRAM[addr & 0xFFFF]; } case 0x03800000: return *(u32*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead32(addr); case 0x04800000: if (addr < 0x04810000) { return Wifi::Read(addr) | (Wifi::Read(addr+2) << 16); } break; case 0x06000000: case 0x06800000: return GPU::ReadVRAM_ARM7(addr); case 0x08000000: case 0x09000000: if (!(ExMemCnt[0] & (1<<7))) return 0xFFFFFFFF; // TODO: proper open bus //return *(u8*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read8 %08X\n", addr); // TODO!!! return 0xFFFFFFFF; case 0x0A000000: if (!(ExMemCnt[0] & (1<<7))) return 0xFFFFFFFF; // TODO: proper open bus // TODO!!! return 0xFFFFFFFF; } printf("unknown arm7 read32 %08X | %08X\n", addr, ARM7->R[15]); return 0; } void ARM7Write8(u32 addr, u8 val) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM7) { *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; return; } else { *(u8*)&ARM7WRAM[addr & 0xFFFF] = val; return; } case 0x03800000: *(u8*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite8(addr, val); return; case 0x06000000: case 0x06800000: GPU::WriteVRAM_ARM7(addr, val); return; } printf("unknown arm7 write8 %08X %02X @ %08X\n", addr, val, ARM7->R[15]); } void ARM7Write16(u32 addr, u16 val) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM7) { *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; return; } else { *(u16*)&ARM7WRAM[addr & 0xFFFF] = val; return; } case 0x03800000: *(u16*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite16(addr, val); return; case 0x04800000: if (addr < 0x04810000) { Wifi::Write(addr, val); return; } break; case 0x06000000: case 0x06800000: GPU::WriteVRAM_ARM7(addr, val); return; } //printf("unknown arm7 write16 %08X %04X @ %08X\n", addr, val, ARM7->R[15]); } void ARM7Write32(u32 addr, u32 val) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM7) { *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; return; } else { *(u32*)&ARM7WRAM[addr & 0xFFFF] = val; return; } case 0x03800000: *(u32*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite32(addr, val); return; case 0x04800000: if (addr < 0x04810000) { Wifi::Write(addr, val & 0xFFFF); Wifi::Write(addr+2, val >> 16); return; } break; case 0x06000000: case 0x06800000: GPU::WriteVRAM_ARM7(addr, val); return; } //printf("unknown arm7 write32 %08X %08X @ %08X\n", addr, val, ARM7->R[15]); } bool ARM7GetMemRegion(u32 addr, bool write, MemRegion* region) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: region->Mem = MainRAM; region->Mask = MAIN_RAM_SIZE-1; return true; case 0x03000000: // note on this, and why we can only cover it in one particular case: // it is typical for games to map all shared WRAM to the ARM7 // then access all the WRAM as one contiguous block starting at 0x037F8000 // this case needs a bit of a hack to cover // it's not really worth bothering anyway if (!SWRAM_ARM7) { region->Mem = ARM7WRAM; region->Mask = 0xFFFF; return true; } break; case 0x03800000: region->Mem = ARM7WRAM; region->Mask = 0xFFFF; return true; } // BIOS. ARM7 PC has to be within range. if (addr < 0x00004000 && !write) { if (ARM7->R[15] < 0x4000 && (addr >= ARM7BIOSProt || ARM7->R[15] < ARM7BIOSProt)) { region->Mem = ARM7BIOS; region->Mask = 0x3FFF; return true; } } region->Mem = NULL; return false; } #define CASE_READ8_16BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return (val) >> 8; #define CASE_READ8_32BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return ((val) >> 8) & 0xFF; \ case (addr+2): return ((val) >> 16) & 0xFF; \ case (addr+3): return (val) >> 24; u8 ARM9IORead8(u32 addr) { switch (addr) { case 0x04000130: return KeyInput & 0xFF; case 0x04000131: return (KeyInput >> 8) & 0xFF; case 0x04000132: return KeyCnt & 0xFF; case 0x04000133: return KeyCnt >> 8; case 0x040001A2: return NDSCart::ReadSPIData(); case 0x040001A8: return NDSCart::ROMCommand[0]; case 0x040001A9: return NDSCart::ROMCommand[1]; case 0x040001AA: return NDSCart::ROMCommand[2]; case 0x040001AB: return NDSCart::ROMCommand[3]; case 0x040001AC: return NDSCart::ROMCommand[4]; case 0x040001AD: return NDSCart::ROMCommand[5]; case 0x040001AE: return NDSCart::ROMCommand[6]; case 0x040001AF: return NDSCart::ROMCommand[7]; case 0x04000208: return IME[0]; case 0x04000240: return GPU::VRAMCNT[0]; case 0x04000241: return GPU::VRAMCNT[1]; case 0x04000242: return GPU::VRAMCNT[2]; case 0x04000243: return GPU::VRAMCNT[3]; case 0x04000244: return GPU::VRAMCNT[4]; case 0x04000245: return GPU::VRAMCNT[5]; case 0x04000246: return GPU::VRAMCNT[6]; case 0x04000247: return WRAMCnt; case 0x04000248: return GPU::VRAMCNT[7]; case 0x04000249: return GPU::VRAMCNT[8]; CASE_READ8_16BIT(0x04000280, DivCnt) CASE_READ8_32BIT(0x04000290, DivNumerator[0]) CASE_READ8_32BIT(0x04000294, DivNumerator[1]) CASE_READ8_32BIT(0x04000298, DivDenominator[0]) CASE_READ8_32BIT(0x0400029C, DivDenominator[1]) CASE_READ8_32BIT(0x040002A0, DivQuotient[0]) CASE_READ8_32BIT(0x040002A4, DivQuotient[1]) CASE_READ8_32BIT(0x040002A8, DivRemainder[0]) CASE_READ8_32BIT(0x040002AC, DivRemainder[1]) CASE_READ8_16BIT(0x040002B0, SqrtCnt) CASE_READ8_32BIT(0x040002B4, SqrtRes) CASE_READ8_32BIT(0x040002B8, SqrtVal[0]) CASE_READ8_32BIT(0x040002BC, SqrtVal[1]) case 0x04000300: return PostFlag9; } if (addr >= 0x04000000 && addr < 0x04000060) { return GPU::GPU2D_A->Read8(addr); } if (addr >= 0x04001000 && addr < 0x04001060) { return GPU::GPU2D_B->Read8(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU3D::Read8(addr); } printf("unknown ARM9 IO read8 %08X %08X\n", addr, ARM9->R[15]); return 0; } u16 ARM9IORead16(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[0]; case 0x04000006: return GPU::VCount; case 0x04000060: return GPU3D::Read16(addr); case 0x04000064: case 0x04000066: return GPU::GPU2D_A->Read16(addr); case 0x040000B8: return DMAs[0]->Cnt & 0xFFFF; case 0x040000BA: return DMAs[0]->Cnt >> 16; case 0x040000C4: return DMAs[1]->Cnt & 0xFFFF; case 0x040000C6: return DMAs[1]->Cnt >> 16; case 0x040000D0: return DMAs[2]->Cnt & 0xFFFF; case 0x040000D2: return DMAs[2]->Cnt >> 16; case 0x040000DC: return DMAs[3]->Cnt & 0xFFFF; case 0x040000DE: return DMAs[3]->Cnt >> 16; case 0x040000E0: return ((u16*)DMA9Fill)[0]; case 0x040000E2: return ((u16*)DMA9Fill)[1]; case 0x040000E4: return ((u16*)DMA9Fill)[2]; case 0x040000E6: return ((u16*)DMA9Fill)[3]; case 0x040000E8: return ((u16*)DMA9Fill)[4]; case 0x040000EA: return ((u16*)DMA9Fill)[5]; case 0x040000EC: return ((u16*)DMA9Fill)[6]; case 0x040000EE: return ((u16*)DMA9Fill)[7]; case 0x04000100: return TimerGetCounter(0); case 0x04000102: return Timers[0].Cnt; case 0x04000104: return TimerGetCounter(1); case 0x04000106: return Timers[1].Cnt; case 0x04000108: return TimerGetCounter(2); case 0x0400010A: return Timers[2].Cnt; case 0x0400010C: return TimerGetCounter(3); case 0x0400010E: return Timers[3].Cnt; case 0x04000130: return KeyInput & 0xFFFF; case 0x04000132: return KeyCnt; case 0x04000180: return IPCSync9; case 0x04000184: { u16 val = IPCFIFOCnt9; if (IPCFIFO9->IsEmpty()) val |= 0x0001; else if (IPCFIFO9->IsFull()) val |= 0x0002; if (IPCFIFO7->IsEmpty()) val |= 0x0100; else if (IPCFIFO7->IsFull()) val |= 0x0200; return val; } case 0x040001A0: return NDSCart::SPICnt; case 0x040001A2: return NDSCart::ReadSPIData(); case 0x040001A8: return NDSCart::ROMCommand[0] | (NDSCart::ROMCommand[1] << 8); case 0x040001AA: return NDSCart::ROMCommand[2] | (NDSCart::ROMCommand[3] << 8); case 0x040001AC: return NDSCart::ROMCommand[4] | (NDSCart::ROMCommand[5] << 8); case 0x040001AE: return NDSCart::ROMCommand[6] | (NDSCart::ROMCommand[7] << 8); case 0x04000204: return ExMemCnt[0]; case 0x04000208: return IME[0]; case 0x04000210: return IE[0] & 0xFFFF; case 0x04000212: return IE[0] >> 16; case 0x04000240: return GPU::VRAMCNT[0] | (GPU::VRAMCNT[1] << 8); case 0x04000242: return GPU::VRAMCNT[2] | (GPU::VRAMCNT[3] << 8); case 0x04000244: return GPU::VRAMCNT[4] | (GPU::VRAMCNT[5] << 8); case 0x04000246: return GPU::VRAMCNT[6] | (WRAMCnt << 8); case 0x04000248: return GPU::VRAMCNT[7] | (GPU::VRAMCNT[8] << 8); case 0x04000280: return DivCnt; case 0x04000290: return DivNumerator[0] & 0xFFFF; case 0x04000292: return DivNumerator[0] >> 16; case 0x04000294: return DivNumerator[1] & 0xFFFF; case 0x04000296: return DivNumerator[1] >> 16; case 0x04000298: return DivDenominator[0] & 0xFFFF; case 0x0400029A: return DivDenominator[0] >> 16; case 0x0400029C: return DivDenominator[1] & 0xFFFF; case 0x0400029E: return DivDenominator[1] >> 16; case 0x040002A0: return DivQuotient[0] & 0xFFFF; case 0x040002A2: return DivQuotient[0] >> 16; case 0x040002A4: return DivQuotient[1] & 0xFFFF; case 0x040002A6: return DivQuotient[1] >> 16; case 0x040002A8: return DivRemainder[0] & 0xFFFF; case 0x040002AA: return DivRemainder[0] >> 16; case 0x040002AC: return DivRemainder[1] & 0xFFFF; case 0x040002AE: return DivRemainder[1] >> 16; case 0x040002B0: return SqrtCnt; case 0x040002B4: return SqrtRes & 0xFFFF; case 0x040002B6: return SqrtRes >> 16; case 0x040002B8: return SqrtVal[0] & 0xFFFF; case 0x040002BA: return SqrtVal[0] >> 16; case 0x040002BC: return SqrtVal[1] & 0xFFFF; case 0x040002BE: return SqrtVal[1] >> 16; case 0x04000300: return PostFlag9; case 0x04000304: return PowerControl9; } if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C)) { return GPU::GPU2D_A->Read16(addr); } if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C)) { return GPU::GPU2D_B->Read16(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU3D::Read16(addr); } printf("unknown ARM9 IO read16 %08X %08X\n", addr, ARM9->R[15]); return 0; } u32 ARM9IORead32(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[0] | (GPU::VCount << 16); case 0x04000060: return GPU3D::Read32(addr); case 0x04000064: return GPU::GPU2D_A->Read32(addr); case 0x040000B0: return DMAs[0]->SrcAddr; case 0x040000B4: return DMAs[0]->DstAddr; case 0x040000B8: return DMAs[0]->Cnt; case 0x040000BC: return DMAs[1]->SrcAddr; case 0x040000C0: return DMAs[1]->DstAddr; case 0x040000C4: return DMAs[1]->Cnt; case 0x040000C8: return DMAs[2]->SrcAddr; case 0x040000CC: return DMAs[2]->DstAddr; case 0x040000D0: return DMAs[2]->Cnt; case 0x040000D4: return DMAs[3]->SrcAddr; case 0x040000D8: return DMAs[3]->DstAddr; case 0x040000DC: return DMAs[3]->Cnt; case 0x040000E0: return DMA9Fill[0]; case 0x040000E4: return DMA9Fill[1]; case 0x040000E8: return DMA9Fill[2]; case 0x040000EC: return DMA9Fill[3]; case 0x040000F4: return 0; // ???? Golden Sun Dark Dawn keeps reading this case 0x04000100: return TimerGetCounter(0) | (Timers[0].Cnt << 16); case 0x04000104: return TimerGetCounter(1) | (Timers[1].Cnt << 16); case 0x04000108: return TimerGetCounter(2) | (Timers[2].Cnt << 16); case 0x0400010C: return TimerGetCounter(3) | (Timers[3].Cnt << 16); case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt << 16); case 0x04000180: return IPCSync9; case 0x040001A0: return NDSCart::SPICnt | (NDSCart::ReadSPIData() << 16); case 0x040001A4: return NDSCart::ROMCnt; case 0x040001A8: return NDSCart::ROMCommand[0] | (NDSCart::ROMCommand[1] << 8) | (NDSCart::ROMCommand[2] << 16) | (NDSCart::ROMCommand[3] << 24); case 0x040001AC: return NDSCart::ROMCommand[4] | (NDSCart::ROMCommand[5] << 8) | (NDSCart::ROMCommand[6] << 16) | (NDSCart::ROMCommand[7] << 24); case 0x04000208: return IME[0]; case 0x04000210: return IE[0]; case 0x04000214: return IF[0]; case 0x04000240: return GPU::VRAMCNT[0] | (GPU::VRAMCNT[1] << 8) | (GPU::VRAMCNT[2] << 16) | (GPU::VRAMCNT[3] << 24); case 0x04000244: return GPU::VRAMCNT[4] | (GPU::VRAMCNT[5] << 8) | (GPU::VRAMCNT[6] << 16) | (WRAMCnt << 24); case 0x04000248: return GPU::VRAMCNT[7] | (GPU::VRAMCNT[8] << 8); case 0x04000280: return DivCnt; case 0x04000290: return DivNumerator[0]; case 0x04000294: return DivNumerator[1]; case 0x04000298: return DivDenominator[0]; case 0x0400029C: return DivDenominator[1]; case 0x040002A0: return DivQuotient[0]; case 0x040002A4: return DivQuotient[1]; case 0x040002A8: return DivRemainder[0]; case 0x040002AC: return DivRemainder[1]; case 0x040002B0: return SqrtCnt; case 0x040002B4: return SqrtRes; case 0x040002B8: return SqrtVal[0]; case 0x040002BC: return SqrtVal[1]; case 0x04000300: return PostFlag9; case 0x04000304: return PowerControl9; case 0x04100000: if (IPCFIFOCnt9 & 0x8000) { u32 ret; if (IPCFIFO7->IsEmpty()) { IPCFIFOCnt9 |= 0x4000; ret = IPCFIFO7->Peek(); } else { ret = IPCFIFO7->Read(); if (IPCFIFO7->IsEmpty() && (IPCFIFOCnt7 & 0x0004)) SetIRQ(1, IRQ_IPCSendDone); } return ret; } else return IPCFIFO7->Peek(); case 0x04100010: if (!(ExMemCnt[0] & (1<<11))) return NDSCart::ReadROMData(); return 0; } if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C)) { return GPU::GPU2D_A->Read32(addr); } if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C)) { return GPU::GPU2D_B->Read32(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU3D::Read32(addr); } printf("unknown ARM9 IO read32 %08X %08X\n", addr, ARM9->R[15]); return 0; } void ARM9IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x0400006C: case 0x0400006D: GPU::GPU2D_A->Write8(addr, val); return; case 0x0400106C: case 0x0400106D: GPU::GPU2D_B->Write8(addr, val); return; case 0x04000132: KeyCnt = (KeyCnt & 0xFF00) | val; return; case 0x04000133: KeyCnt = (KeyCnt & 0x00FF) | (val << 8); return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::WriteSPICnt((NDSCart::SPICnt & 0xFF00) | val); } return; case 0x040001A1: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::WriteSPICnt((NDSCart::SPICnt & 0x00FF) | (val << 8)); } return; case 0x040001A2: NDSCart::WriteSPIData(val); return; case 0x040001A8: NDSCart::ROMCommand[0] = val; return; case 0x040001A9: NDSCart::ROMCommand[1] = val; return; case 0x040001AA: NDSCart::ROMCommand[2] = val; return; case 0x040001AB: NDSCart::ROMCommand[3] = val; return; case 0x040001AC: NDSCart::ROMCommand[4] = val; return; case 0x040001AD: NDSCart::ROMCommand[5] = val; return; case 0x040001AE: NDSCart::ROMCommand[6] = val; return; case 0x040001AF: NDSCart::ROMCommand[7] = val; return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000240: GPU::MapVRAM_AB(0, val); return; case 0x04000241: GPU::MapVRAM_AB(1, val); return; case 0x04000242: GPU::MapVRAM_CD(2, val); return; case 0x04000243: GPU::MapVRAM_CD(3, val); return; case 0x04000244: GPU::MapVRAM_E(4, val); return; case 0x04000245: GPU::MapVRAM_FG(5, val); return; case 0x04000246: GPU::MapVRAM_FG(6, val); return; case 0x04000247: MapSharedWRAM(val); return; case 0x04000248: GPU::MapVRAM_H(7, val); return; case 0x04000249: GPU::MapVRAM_I(8, val); return; case 0x04000300: if (PostFlag9 & 0x01) val |= 0x01; PostFlag9 = val & 0x03; return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write8(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write8(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU3D::Write8(addr, val); return; } printf("unknown ARM9 IO write8 %08X %02X %08X\n", addr, val, ARM9->R[15]); } void ARM9IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000004: GPU::SetDispStat(0, val); return; case 0x04000006: GPU::SetVCount(val); return; case 0x04000060: GPU3D::Write16(addr, val); return; case 0x04000068: case 0x0400006A: GPU::GPU2D_A->Write16(addr, val); return; case 0x0400006C: GPU::GPU2D_A->Write16(addr, val); return; case 0x0400106C: GPU::GPU2D_B->Write16(addr, val); return; case 0x040000B8: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0xFFFF0000) | val); return; case 0x040000BA: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000C4: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0xFFFF0000) | val); return; case 0x040000C6: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000D0: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0xFFFF0000) | val); return; case 0x040000D2: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000DC: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0xFFFF0000) | val); return; case 0x040000DE: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000E0: DMA9Fill[0] = (DMA9Fill[0] & 0xFFFF0000) | val; return; case 0x040000E2: DMA9Fill[0] = (DMA9Fill[0] & 0x0000FFFF) | (val << 16); return; case 0x040000E4: DMA9Fill[1] = (DMA9Fill[1] & 0xFFFF0000) | val; return; case 0x040000E6: DMA9Fill[1] = (DMA9Fill[1] & 0x0000FFFF) | (val << 16); return; case 0x040000E8: DMA9Fill[2] = (DMA9Fill[2] & 0xFFFF0000) | val; return; case 0x040000EA: DMA9Fill[2] = (DMA9Fill[2] & 0x0000FFFF) | (val << 16); return; case 0x040000EC: DMA9Fill[3] = (DMA9Fill[3] & 0xFFFF0000) | val; return; case 0x040000EE: DMA9Fill[3] = (DMA9Fill[3] & 0x0000FFFF) | (val << 16); return; case 0x04000100: Timers[0].Reload = val; return; case 0x04000102: TimerStart(0, val); return; case 0x04000104: Timers[1].Reload = val; return; case 0x04000106: TimerStart(1, val); return; case 0x04000108: Timers[2].Reload = val; return; case 0x0400010A: TimerStart(2, val); return; case 0x0400010C: Timers[3].Reload = val; return; case 0x0400010E: TimerStart(3, val); return; case 0x04000132: KeyCnt = val; return; case 0x04000180: IPCSync7 &= 0xFFF0; IPCSync7 |= ((val & 0x0F00) >> 8); IPCSync9 &= 0xB0FF; IPCSync9 |= (val & 0x4F00); if ((val & 0x2000) && (IPCSync7 & 0x4000)) { SetIRQ(1, IRQ_IPCSync); } return; case 0x04000184: if (val & 0x0008) IPCFIFO9->Clear(); if ((val & 0x0004) && (!(IPCFIFOCnt9 & 0x0004)) && IPCFIFO9->IsEmpty()) SetIRQ(0, IRQ_IPCSendDone); if ((val & 0x0400) && (!(IPCFIFOCnt9 & 0x0400)) && (!IPCFIFO7->IsEmpty())) SetIRQ(0, IRQ_IPCRecv); if (val & 0x4000) IPCFIFOCnt9 &= ~0x4000; IPCFIFOCnt9 = val & 0x8404; return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteSPICnt(val); return; case 0x040001A2: NDSCart::WriteSPIData(val & 0xFF); return; case 0x040001A8: NDSCart::ROMCommand[0] = val & 0xFF; NDSCart::ROMCommand[1] = val >> 8; return; case 0x040001AA: NDSCart::ROMCommand[2] = val & 0xFF; NDSCart::ROMCommand[3] = val >> 8; return; case 0x040001AC: NDSCart::ROMCommand[4] = val & 0xFF; NDSCart::ROMCommand[5] = val >> 8; return; case 0x040001AE: NDSCart::ROMCommand[6] = val & 0xFF; NDSCart::ROMCommand[7] = val >> 8; return; case 0x040001B8: ROMSeed0[4] = val & 0x7F; return; case 0x040001BA: ROMSeed1[4] = val & 0x7F; return; case 0x04000204: ExMemCnt[0] = val; ExMemCnt[1] = (ExMemCnt[1] & 0x007F) | (val & 0xFF80); SetGBASlotTimings(); return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000210: IE[0] = (IE[0] & 0xFFFF0000) | val; return; case 0x04000212: IE[0] = (IE[0] & 0x0000FFFF) | (val << 16); return; // TODO: what happens when writing to IF this way?? case 0x04000240: GPU::MapVRAM_AB(0, val & 0xFF); GPU::MapVRAM_AB(1, val >> 8); return; case 0x04000242: GPU::MapVRAM_CD(2, val & 0xFF); GPU::MapVRAM_CD(3, val >> 8); return; case 0x04000244: GPU::MapVRAM_E(4, val & 0xFF); GPU::MapVRAM_FG(5, val >> 8); return; case 0x04000246: GPU::MapVRAM_FG(6, val & 0xFF); MapSharedWRAM(val >> 8); return; case 0x04000248: GPU::MapVRAM_H(7, val & 0xFF); GPU::MapVRAM_I(8, val >> 8); return; case 0x04000280: DivCnt = val; StartDiv(); return; case 0x040002B0: SqrtCnt = val; StartSqrt(); return; case 0x04000300: if (PostFlag9 & 0x01) val |= 0x01; PostFlag9 = val & 0x03; return; case 0x04000304: PowerControl9 = val; GPU::DisplaySwap(PowerControl9>>15); return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write16(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write16(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU3D::Write16(addr, val); return; } printf("unknown ARM9 IO write16 %08X %04X %08X\n", addr, val, ARM9->R[15]); } void ARM9IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x04000060: GPU3D::Write32(addr, val); return; case 0x04000064: case 0x04000068: GPU::GPU2D_A->Write32(addr, val); return; case 0x0400006C: GPU::GPU2D_A->Write16(addr, val&0xFFFF); return; case 0x0400106C: GPU::GPU2D_B->Write16(addr, val&0xFFFF); return; case 0x040000B0: DMAs[0]->SrcAddr = val; return; case 0x040000B4: DMAs[0]->DstAddr = val; return; case 0x040000B8: DMAs[0]->WriteCnt(val); return; case 0x040000BC: DMAs[1]->SrcAddr = val; return; case 0x040000C0: DMAs[1]->DstAddr = val; return; case 0x040000C4: DMAs[1]->WriteCnt(val); return; case 0x040000C8: DMAs[2]->SrcAddr = val; return; case 0x040000CC: DMAs[2]->DstAddr = val; return; case 0x040000D0: DMAs[2]->WriteCnt(val); return; case 0x040000D4: DMAs[3]->SrcAddr = val; return; case 0x040000D8: DMAs[3]->DstAddr = val; return; case 0x040000DC: DMAs[3]->WriteCnt(val); return; case 0x040000E0: DMA9Fill[0] = val; return; case 0x040000E4: DMA9Fill[1] = val; return; case 0x040000E8: DMA9Fill[2] = val; return; case 0x040000EC: DMA9Fill[3] = val; return; case 0x04000100: Timers[0].Reload = val & 0xFFFF; TimerStart(0, val>>16); return; case 0x04000104: Timers[1].Reload = val & 0xFFFF; TimerStart(1, val>>16); return; case 0x04000108: Timers[2].Reload = val & 0xFFFF; TimerStart(2, val>>16); return; case 0x0400010C: Timers[3].Reload = val & 0xFFFF; TimerStart(3, val>>16); return; case 0x04000130: KeyCnt = val >> 16; return; case 0x04000180: ARM9IOWrite16(addr, val); return; case 0x04000188: if (IPCFIFOCnt9 & 0x8000) { if (IPCFIFO9->IsFull()) IPCFIFOCnt9 |= 0x4000; else { bool wasempty = IPCFIFO9->IsEmpty(); IPCFIFO9->Write(val); if ((IPCFIFOCnt7 & 0x0400) && wasempty) SetIRQ(1, IRQ_IPCRecv); } } return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::WriteSPICnt(val & 0xFFFF); NDSCart::WriteSPIData((val >> 16) & 0xFF); } return; case 0x040001A4: if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteROMCnt(val); return; case 0x040001A8: NDSCart::ROMCommand[0] = val & 0xFF; NDSCart::ROMCommand[1] = (val >> 8) & 0xFF; NDSCart::ROMCommand[2] = (val >> 16) & 0xFF; NDSCart::ROMCommand[3] = val >> 24; return; case 0x040001AC: NDSCart::ROMCommand[4] = val & 0xFF; NDSCart::ROMCommand[5] = (val >> 8) & 0xFF; NDSCart::ROMCommand[6] = (val >> 16) & 0xFF; NDSCart::ROMCommand[7] = val >> 24; return; case 0x040001B0: *(u32*)&ROMSeed0[0] = val; return; case 0x040001B4: *(u32*)&ROMSeed1[0] = val; return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000210: IE[0] = val; return; case 0x04000214: IF[0] &= ~val; GPU3D::CheckFIFOIRQ(); return; case 0x04000240: GPU::MapVRAM_AB(0, val & 0xFF); GPU::MapVRAM_AB(1, (val >> 8) & 0xFF); GPU::MapVRAM_CD(2, (val >> 16) & 0xFF); GPU::MapVRAM_CD(3, val >> 24); return; case 0x04000244: GPU::MapVRAM_E(4, val & 0xFF); GPU::MapVRAM_FG(5, (val >> 8) & 0xFF); GPU::MapVRAM_FG(6, (val >> 16) & 0xFF); MapSharedWRAM(val >> 24); return; case 0x04000248: GPU::MapVRAM_H(7, val & 0xFF); GPU::MapVRAM_I(8, (val >> 8) & 0xFF); return; case 0x04000280: DivCnt = val; StartDiv(); return; case 0x040002B0: SqrtCnt = val; StartSqrt(); return; case 0x04000290: DivNumerator[0] = val; StartDiv(); return; case 0x04000294: DivNumerator[1] = val; StartDiv(); return; case 0x04000298: DivDenominator[0] = val; StartDiv(); return; case 0x0400029C: DivDenominator[1] = val; StartDiv(); return; case 0x040002B8: SqrtVal[0] = val; StartSqrt(); return; case 0x040002BC: SqrtVal[1] = val; StartSqrt(); return; case 0x04000304: PowerControl9 = val & 0xFFFF; GPU::DisplaySwap(PowerControl9>>15); return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write32(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write32(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU3D::Write32(addr, val); return; } printf("unknown ARM9 IO write32 %08X %08X %08X\n", addr, val, ARM9->R[15]); } u8 ARM7IORead8(u32 addr) { switch (addr) { case 0x04000130: return KeyInput & 0xFF; case 0x04000131: return (KeyInput >> 8) & 0xFF; case 0x04000132: return KeyCnt & 0xFF; case 0x04000133: return KeyCnt >> 8; case 0x04000134: return RCnt & 0xFF; case 0x04000135: return RCnt >> 8; case 0x04000136: return (KeyInput >> 16) & 0xFF; case 0x04000137: return KeyInput >> 24; case 0x04000138: return RTC::Read() & 0xFF; case 0x040001A2: return NDSCart::ReadSPIData(); case 0x040001A8: return NDSCart::ROMCommand[0]; case 0x040001A9: return NDSCart::ROMCommand[1]; case 0x040001AA: return NDSCart::ROMCommand[2]; case 0x040001AB: return NDSCart::ROMCommand[3]; case 0x040001AC: return NDSCart::ROMCommand[4]; case 0x040001AD: return NDSCart::ROMCommand[5]; case 0x040001AE: return NDSCart::ROMCommand[6]; case 0x040001AF: return NDSCart::ROMCommand[7]; case 0x040001C2: return SPI::ReadData(); case 0x04000208: return IME[1]; case 0x04000240: return GPU::VRAMSTAT; case 0x04000241: return WRAMCnt; case 0x04000300: return PostFlag7; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU::Read8(addr); } printf("unknown ARM7 IO read8 %08X %08X\n", addr, ARM7->R[15]); return 0; } u16 ARM7IORead16(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[1]; case 0x04000006: return GPU::VCount; case 0x040000B8: return DMAs[4]->Cnt & 0xFFFF; case 0x040000BA: return DMAs[4]->Cnt >> 16; case 0x040000C4: return DMAs[5]->Cnt & 0xFFFF; case 0x040000C6: return DMAs[5]->Cnt >> 16; case 0x040000D0: return DMAs[6]->Cnt & 0xFFFF; case 0x040000D2: return DMAs[6]->Cnt >> 16; case 0x040000DC: return DMAs[7]->Cnt & 0xFFFF; case 0x040000DE: return DMAs[7]->Cnt >> 16; case 0x04000100: return TimerGetCounter(4); case 0x04000102: return Timers[4].Cnt; case 0x04000104: return TimerGetCounter(5); case 0x04000106: return Timers[5].Cnt; case 0x04000108: return TimerGetCounter(6); case 0x0400010A: return Timers[6].Cnt; case 0x0400010C: return TimerGetCounter(7); case 0x0400010E: return Timers[7].Cnt; case 0x04000130: return KeyInput & 0xFFFF; case 0x04000132: return KeyCnt; case 0x04000134: return RCnt; case 0x04000136: return KeyInput >> 16; case 0x04000138: return RTC::Read(); case 0x04000180: return IPCSync7; case 0x04000184: { u16 val = IPCFIFOCnt7; if (IPCFIFO7->IsEmpty()) val |= 0x0001; else if (IPCFIFO7->IsFull()) val |= 0x0002; if (IPCFIFO9->IsEmpty()) val |= 0x0100; else if (IPCFIFO9->IsFull()) val |= 0x0200; return val; } case 0x040001A0: return NDSCart::SPICnt; case 0x040001A2: return NDSCart::ReadSPIData(); case 0x040001A8: return NDSCart::ROMCommand[0] | (NDSCart::ROMCommand[1] << 8); case 0x040001AA: return NDSCart::ROMCommand[2] | (NDSCart::ROMCommand[3] << 8); case 0x040001AC: return NDSCart::ROMCommand[4] | (NDSCart::ROMCommand[5] << 8); case 0x040001AE: return NDSCart::ROMCommand[6] | (NDSCart::ROMCommand[7] << 8); case 0x040001C0: return SPI::Cnt; case 0x040001C2: return SPI::ReadData(); case 0x04000204: return ExMemCnt[1]; case 0x04000206: return WifiWaitCnt; case 0x04000208: return IME[1]; case 0x04000210: return IE[1] & 0xFFFF; case 0x04000212: return IE[1] >> 16; case 0x04000300: return PostFlag7; case 0x04000304: return PowerControl7; case 0x04000308: return ARM7BIOSProt; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU::Read16(addr); } printf("unknown ARM7 IO read16 %08X %08X\n", addr, ARM7->R[15]); return 0; } u32 ARM7IORead32(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[1] | (GPU::VCount << 16); case 0x040000B0: return DMAs[4]->SrcAddr; case 0x040000B4: return DMAs[4]->DstAddr; case 0x040000B8: return DMAs[4]->Cnt; case 0x040000BC: return DMAs[5]->SrcAddr; case 0x040000C0: return DMAs[5]->DstAddr; case 0x040000C4: return DMAs[5]->Cnt; case 0x040000C8: return DMAs[6]->SrcAddr; case 0x040000CC: return DMAs[6]->DstAddr; case 0x040000D0: return DMAs[6]->Cnt; case 0x040000D4: return DMAs[7]->SrcAddr; case 0x040000D8: return DMAs[7]->DstAddr; case 0x040000DC: return DMAs[7]->Cnt; case 0x04000100: return TimerGetCounter(4) | (Timers[4].Cnt << 16); case 0x04000104: return TimerGetCounter(5) | (Timers[5].Cnt << 16); case 0x04000108: return TimerGetCounter(6) | (Timers[6].Cnt << 16); case 0x0400010C: return TimerGetCounter(7) | (Timers[7].Cnt << 16); case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt << 16); case 0x04000134: return RCnt | (KeyCnt & 0xFFFF0000); case 0x04000138: return RTC::Read(); case 0x04000180: return IPCSync7; case 0x040001A0: return NDSCart::SPICnt | (NDSCart::ReadSPIData() << 16); case 0x040001A4: return NDSCart::ROMCnt; case 0x040001A8: return NDSCart::ROMCommand[0] | (NDSCart::ROMCommand[1] << 8) | (NDSCart::ROMCommand[2] << 16) | (NDSCart::ROMCommand[3] << 24); case 0x040001AC: return NDSCart::ROMCommand[4] | (NDSCart::ROMCommand[5] << 8) | (NDSCart::ROMCommand[6] << 16) | (NDSCart::ROMCommand[7] << 24); case 0x040001C0: return SPI::Cnt | (SPI::ReadData() << 16); case 0x04000208: return IME[1]; case 0x04000210: return IE[1]; case 0x04000214: return IF[1]; case 0x04000308: return ARM7BIOSProt; case 0x04100000: if (IPCFIFOCnt7 & 0x8000) { u32 ret; if (IPCFIFO9->IsEmpty()) { IPCFIFOCnt7 |= 0x4000; ret = IPCFIFO9->Peek(); } else { ret = IPCFIFO9->Read(); if (IPCFIFO9->IsEmpty() && (IPCFIFOCnt9 & 0x0004)) SetIRQ(0, IRQ_IPCSendDone); } return ret; } else return IPCFIFO9->Peek(); case 0x04100010: if (ExMemCnt[0] & (1<<11)) return NDSCart::ReadROMData(); return 0; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU::Read32(addr); } printf("unknown ARM7 IO read32 %08X %08X\n", addr, ARM7->R[15]); return 0; } void ARM7IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x04000132: KeyCnt = (KeyCnt & 0xFF00) | val; return; case 0x04000133: KeyCnt = (KeyCnt & 0x00FF) | (val << 8); return; case 0x04000134: RCnt = (RCnt & 0xFF00) | val; return; case 0x04000135: RCnt = (RCnt & 0x00FF) | (val << 8); return; case 0x04000138: RTC::Write(val, true); return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) { NDSCart::WriteSPICnt((NDSCart::SPICnt & 0xFF00) | val); } return; case 0x040001A1: if (ExMemCnt[0] & (1<<11)) { NDSCart::WriteSPICnt((NDSCart::SPICnt & 0x00FF) | (val << 8)); } return; case 0x040001A2: NDSCart::WriteSPIData(val); return; case 0x040001A8: NDSCart::ROMCommand[0] = val; return; case 0x040001A9: NDSCart::ROMCommand[1] = val; return; case 0x040001AA: NDSCart::ROMCommand[2] = val; return; case 0x040001AB: NDSCart::ROMCommand[3] = val; return; case 0x040001AC: NDSCart::ROMCommand[4] = val; return; case 0x040001AD: NDSCart::ROMCommand[5] = val; return; case 0x040001AE: NDSCart::ROMCommand[6] = val; return; case 0x040001AF: NDSCart::ROMCommand[7] = val; return; case 0x040001C2: SPI::WriteData(val); return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000300: if (ARM7->R[15] >= 0x4000) return; if (!(PostFlag7 & 0x01)) PostFlag7 = val & 0x01; return; case 0x04000301: if (val == 0x80) ARM7->Halt(1); return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU::Write8(addr, val); return; } printf("unknown ARM7 IO write8 %08X %02X %08X\n", addr, val, ARM7->R[15]); } void ARM7IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000004: GPU::SetDispStat(1, val); return; case 0x04000006: GPU::SetVCount(val); return; case 0x040000B8: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0xFFFF0000) | val); return; case 0x040000BA: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000C4: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0xFFFF0000) | val); return; case 0x040000C6: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000D0: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0xFFFF0000) | val); return; case 0x040000D2: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000DC: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0xFFFF0000) | val); return; case 0x040000DE: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x04000100: Timers[4].Reload = val; return; case 0x04000102: TimerStart(4, val); return; case 0x04000104: Timers[5].Reload = val; return; case 0x04000106: TimerStart(5, val); return; case 0x04000108: Timers[6].Reload = val; return; case 0x0400010A: TimerStart(6, val); return; case 0x0400010C: Timers[7].Reload = val; return; case 0x0400010E: TimerStart(7, val); return; case 0x04000132: KeyCnt = val; return; case 0x04000134: RCnt = val; return; case 0x04000138: RTC::Write(val, false); return; case 0x04000180: IPCSync9 &= 0xFFF0; IPCSync9 |= ((val & 0x0F00) >> 8); IPCSync7 &= 0xB0FF; IPCSync7 |= (val & 0x4F00); if ((val & 0x2000) && (IPCSync9 & 0x4000)) { SetIRQ(0, IRQ_IPCSync); } return; case 0x04000184: if (val & 0x0008) IPCFIFO7->Clear(); if ((val & 0x0004) && (!(IPCFIFOCnt7 & 0x0004)) && IPCFIFO7->IsEmpty()) SetIRQ(1, IRQ_IPCSendDone); if ((val & 0x0400) && (!(IPCFIFOCnt7 & 0x0400)) && (!IPCFIFO9->IsEmpty())) SetIRQ(1, IRQ_IPCRecv); if (val & 0x4000) IPCFIFOCnt7 &= ~0x4000; IPCFIFOCnt7 = val & 0x8404; return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) NDSCart::WriteSPICnt(val); return; case 0x040001A2: NDSCart::WriteSPIData(val & 0xFF); return; case 0x040001A8: NDSCart::ROMCommand[0] = val & 0xFF; NDSCart::ROMCommand[1] = val >> 8; return; case 0x040001AA: NDSCart::ROMCommand[2] = val & 0xFF; NDSCart::ROMCommand[3] = val >> 8; return; case 0x040001AC: NDSCart::ROMCommand[4] = val & 0xFF; NDSCart::ROMCommand[5] = val >> 8; return; case 0x040001AE: NDSCart::ROMCommand[6] = val & 0xFF; NDSCart::ROMCommand[7] = val >> 8; return; case 0x040001B8: ROMSeed0[12] = val & 0x7F; return; case 0x040001BA: ROMSeed1[12] = val & 0x7F; return; case 0x040001C0: SPI::WriteCnt(val); return; case 0x040001C2: SPI::WriteData(val & 0xFF); return; case 0x04000204: ExMemCnt[1] = (ExMemCnt[1] & 0xFF80) | (val & 0x007F); SetGBASlotTimings(); return; case 0x04000206: SetWifiWaitCnt(val); return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000210: IE[1] = (IE[1] & 0xFFFF0000) | val; return; case 0x04000212: IE[1] = (IE[1] & 0x0000FFFF) | (val << 16); return; // TODO: what happens when writing to IF this way?? case 0x04000300: if (ARM7->R[15] >= 0x4000) return; if (!(PostFlag7 & 0x01)) PostFlag7 = val & 0x01; return; case 0x04000304: PowerControl7 = val; return; case 0x04000308: if (ARM7BIOSProt == 0) ARM7BIOSProt = val & 0xFFFE; return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU::Write16(addr, val); return; } printf("unknown ARM7 IO write16 %08X %04X %08X\n", addr, val, ARM7->R[15]); } void ARM7IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x040000B0: DMAs[4]->SrcAddr = val; return; case 0x040000B4: DMAs[4]->DstAddr = val; return; case 0x040000B8: DMAs[4]->WriteCnt(val); return; case 0x040000BC: DMAs[5]->SrcAddr = val; return; case 0x040000C0: DMAs[5]->DstAddr = val; return; case 0x040000C4: DMAs[5]->WriteCnt(val); return; case 0x040000C8: DMAs[6]->SrcAddr = val; return; case 0x040000CC: DMAs[6]->DstAddr = val; return; case 0x040000D0: DMAs[6]->WriteCnt(val); return; case 0x040000D4: DMAs[7]->SrcAddr = val; return; case 0x040000D8: DMAs[7]->DstAddr = val; return; case 0x040000DC: DMAs[7]->WriteCnt(val); return; case 0x04000100: Timers[4].Reload = val & 0xFFFF; TimerStart(4, val>>16); return; case 0x04000104: Timers[5].Reload = val & 0xFFFF; TimerStart(5, val>>16); return; case 0x04000108: Timers[6].Reload = val & 0xFFFF; TimerStart(6, val>>16); return; case 0x0400010C: Timers[7].Reload = val & 0xFFFF; TimerStart(7, val>>16); return; case 0x04000130: KeyCnt = val >> 16; return; case 0x04000134: RCnt = val & 0xFFFF; return; case 0x04000138: RTC::Write(val & 0xFFFF, false); return; case 0x04000180: ARM7IOWrite16(addr, val); return; case 0x04000188: if (IPCFIFOCnt7 & 0x8000) { if (IPCFIFO7->IsFull()) IPCFIFOCnt7 |= 0x4000; else { bool wasempty = IPCFIFO7->IsEmpty(); IPCFIFO7->Write(val); if ((IPCFIFOCnt9 & 0x0400) && wasempty) SetIRQ(0, IRQ_IPCRecv); } } return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) { NDSCart::WriteSPICnt(val & 0xFFFF); NDSCart::WriteSPIData((val >> 16) & 0xFF); } return; case 0x040001A4: if (ExMemCnt[0] & (1<<11)) NDSCart::WriteROMCnt(val); return; case 0x040001A8: NDSCart::ROMCommand[0] = val & 0xFF; NDSCart::ROMCommand[1] = (val >> 8) & 0xFF; NDSCart::ROMCommand[2] = (val >> 16) & 0xFF; NDSCart::ROMCommand[3] = val >> 24; return; case 0x040001AC: NDSCart::ROMCommand[4] = val & 0xFF; NDSCart::ROMCommand[5] = (val >> 8) & 0xFF; NDSCart::ROMCommand[6] = (val >> 16) & 0xFF; NDSCart::ROMCommand[7] = val >> 24; return; case 0x040001B0: *(u32*)&ROMSeed0[8] = val; return; case 0x040001B4: *(u32*)&ROMSeed1[8] = val; return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000210: IE[1] = val; return; case 0x04000214: IF[1] &= ~val; return; case 0x04000308: if (ARM7BIOSProt == 0) ARM7BIOSProt = val & 0xFFFE; return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU::Write32(addr, val); return; } printf("unknown ARM7 IO write32 %08X %08X %08X\n", addr, val, ARM7->R[15]); } }