/* Copyright 2016-2017 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "NDS.h" #include "GPU.h" namespace GPU { #define LINE_CYCLES (355*6) #define HBLANK_CYCLES (256*6) #define FRAME_CYCLES (LINE_CYCLES * 263) u16 VCount; u16 DispStat[2], VMatch[2]; u8 Palette[2*1024]; u8 OAM[2*1024]; u8 VRAM_A[128*1024]; u8 VRAM_B[128*1024]; u8 VRAM_C[128*1024]; u8 VRAM_D[128*1024]; u8 VRAM_E[ 64*1024]; u8 VRAM_F[ 16*1024]; u8 VRAM_G[ 16*1024]; u8 VRAM_H[ 32*1024]; u8 VRAM_I[ 16*1024]; u8* VRAM[9] = {VRAM_A, VRAM_B, VRAM_C, VRAM_D, VRAM_E, VRAM_F, VRAM_G, VRAM_H, VRAM_I}; u8 VRAMCNT[9]; u8 VRAMSTAT; u8* VRAM_ABG[128]; u8* VRAM_AOBJ[128]; u8* VRAM_BBG[128]; u8* VRAM_BOBJ[128]; u8* VRAM_LCD[128]; u8* VRAM_ARM7[2]; u8* VRAM_ABGExtPal[4]; u8* VRAM_AOBJExtPal; u8* VRAM_BBGExtPal[4]; u8* VRAM_BOBJExtPal; u32 Framebuffer[256*192*2]; GPU2D* GPU2D_A; GPU2D* GPU2D_B; bool Init() { GPU2D_A = new GPU2D(0); GPU2D_B = new GPU2D(1); if (!GPU3D::Init()) return false; return true; } void DeInit() { delete GPU2D_A; delete GPU2D_B; GPU3D::DeInit(); } void Reset() { VCount = 0; DispStat[0] = 0; DispStat[1] = 0; VMatch[0] = 0; VMatch[1] = 0; memset(Palette, 0, 2*1024); memset(OAM, 0, 2*1024); memset(VRAM_A, 0, 128*1024); memset(VRAM_B, 0, 128*1024); memset(VRAM_C, 0, 128*1024); memset(VRAM_D, 0, 128*1024); memset(VRAM_E, 0, 64*1024); memset(VRAM_F, 0, 16*1024); memset(VRAM_G, 0, 16*1024); memset(VRAM_H, 0, 32*1024); memset(VRAM_I, 0, 16*1024); memset(VRAMCNT, 0, 9); VRAMSTAT = 0; memset(VRAM_ABG, 0, sizeof(u8*)*128); memset(VRAM_AOBJ, 0, sizeof(u8*)*128); memset(VRAM_BBG, 0, sizeof(u8*)*128); memset(VRAM_BOBJ, 0, sizeof(u8*)*128); memset(VRAM_LCD, 0, sizeof(u8*)*128); memset(VRAM_ARM7, 0, sizeof(u8*)*2); memset(VRAM_ABGExtPal, 0, sizeof(u8*)*4); VRAM_AOBJExtPal = NULL; memset(VRAM_BBGExtPal, 0, sizeof(u8*)*4); VRAM_BOBJExtPal = NULL; for (int i = 0; i < 256*192*2; i++) { Framebuffer[i] = 0xFFFFFFFF; } GPU2D_A->Reset(); GPU2D_B->Reset(); GPU3D::Reset(); GPU2D_A->SetFramebuffer(&Framebuffer[256*192]); GPU2D_B->SetFramebuffer(&Framebuffer[256*0]); } // VRAM mapping notes // // mirroring: // unmapped range reads zero // LCD is mirrored every 0x100000 bytes, the gap between each mirror reads zero // ABG: // bank A,B,C,D,E mirror every 0x80000 bytes // bank F,G mirror at base+0x8000, mirror every 0x80000 bytes // AOBJ: // bank A,B,E mirror every 0x40000 bytes // bank F,G mirror at base+0x8000, mirror every 0x40000 bytes // BBG: // bank C mirrors every 0x20000 bytes // bank H mirrors every 0x10000 bytes // bank I mirrors at base+0x4000, mirrors every 0x10000 bytes // BOBJ: // bank D mirrors every 0x20000 bytes // bank I mirrors every 0x4000 bytes // // untested: // ARM7 (TODO) // extended palette (mirroring doesn't apply) // texture/texpal (does mirroring apply?) // -> trying to use extpal/texture/texpal with no VRAM mapped. // would likely read all black, but has to be tested. // // overlap: // when reading: values are read from each bank and ORed together // when writing: value is written to each bank void MapVRAM_AB(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x3; u8 ofs = (cnt >> 3) & 0x3; u8* vram = VRAM[bank]; if (oldcnt & (1<<7)) { u8** vrammap = NULL; switch (oldcnt & 0x3) { case 0: vrammap = &VRAM_LCD[bank<<3]; break; case 1: vrammap = &VRAM_ABG[oldofs<<3]; break; case 2: oldofs &= 0x1; vrammap = &VRAM_AOBJ[oldofs<<3]; break; case 3: // not mapped to memory break; } if (vrammap && *vrammap == vram) { *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap = NULL; } } if (cnt & (1<<7)) { u8** vrammap = NULL; switch (cnt & 0x3) { case 0: vrammap = &VRAM_LCD[bank<<3]; break; case 1: vrammap = &VRAM_ABG[ofs<<3]; break; case 2: ofs &= 0x1; vrammap = &VRAM_AOBJ[ofs<<3]; break; case 3: // not mapped to memory break; } if (vrammap) { *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap = vram; } } } void MapVRAM_CD(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; VRAMSTAT &= ~(1 << (bank-2)); if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x7; u8 ofs = (cnt >> 3) & 0x7; u8* vram = VRAM[bank]; if (oldcnt & (1<<7)) { u8** vrammap = NULL; switch (oldcnt & 0x7) { case 0: vrammap = &VRAM_LCD[bank<<3]; break; case 1: vrammap = &VRAM_ABG[oldofs<<3]; break; case 2: oldofs &= 0x1; VRAM_ARM7[oldofs] = NULL; break; case 3: // not mapped to memory break; case 4: if (bank == 2) vrammap = &VRAM_BBG[0]; else vrammap = &VRAM_BOBJ[0]; break; } if (vrammap && *vrammap == vram) { *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap = NULL; } } if (cnt & (1<<7)) { u8** vrammap = NULL; switch (cnt & 0x7) { case 0: vrammap = &VRAM_LCD[bank<<3]; break; case 1: vrammap = &VRAM_ABG[ofs<<3]; break; case 2: ofs &= 0x1; VRAM_ARM7[ofs] = vram; VRAMSTAT |= (1 << (bank-2)); break; case 3: // not mapped to memory break; case 4: if (bank == 2) vrammap = &VRAM_BBG[0]; else vrammap = &VRAM_BOBJ[0]; break; } if (vrammap) { *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap++ = vram; vram += 0x4000; *vrammap = vram; } } } void MapVRAM_E(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x7; u8 ofs = (cnt >> 3) & 0x7; u8* vram = VRAM[bank]; if (oldcnt & (1<<7)) { u8** vrammap = NULL; switch (oldcnt & 0x7) { case 0: VRAM_LCD[0x20] = NULL; VRAM_LCD[0x21] = NULL; VRAM_LCD[0x22] = NULL; VRAM_LCD[0x23] = NULL; break; case 1: vrammap = &VRAM_ABG[0]; break; case 2: vrammap = &VRAM_AOBJ[0]; break; case 3: // not mapped to memory break; case 4: VRAM_ABGExtPal[0] = NULL; VRAM_ABGExtPal[1] = NULL; VRAM_ABGExtPal[2] = NULL; VRAM_ABGExtPal[3] = NULL; break; } if (vrammap && *vrammap == vram) { *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; } else if (vrammap) vrammap += 4; if (vrammap && *vrammap == vram) { *vrammap++ = NULL; *vrammap++ = NULL; *vrammap++ = NULL; *vrammap = NULL; } } if (cnt & (1<<7)) { u8** vrammap = NULL; switch (cnt & 0x7) { case 0: VRAM_LCD[0x20] = &vram[0x0000]; VRAM_LCD[0x21] = &vram[0x4000]; VRAM_LCD[0x22] = &vram[0x8000]; VRAM_LCD[0x23] = &vram[0xC000]; break; case 1: vrammap = &VRAM_ABG[0]; break; case 2: vrammap = &VRAM_AOBJ[0]; break; case 3: // not mapped to memory break; case 4: VRAM_ABGExtPal[0] = &vram[0x0000]; VRAM_ABGExtPal[1] = &vram[0x2000]; VRAM_ABGExtPal[2] = &vram[0x4000]; VRAM_ABGExtPal[3] = &vram[0x6000]; break; } if (vrammap) { *vrammap++ = &vram[0x0000]; *vrammap++ = &vram[0x4000]; *vrammap++ = &vram[0x8000]; *vrammap++ = &vram[0xC000]; *vrammap++ = &vram[0x0000]; *vrammap++ = &vram[0x4000]; *vrammap++ = &vram[0x8000]; *vrammap = &vram[0xC000]; } } } void MapVRAM_FG(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x7; u8 ofs = (cnt >> 3) & 0x7; u8* vram = VRAM[bank]; bank -= 5; if (oldcnt & (1<<7)) { u8** vrammap = NULL; switch (oldcnt & 0x7) { case 0: VRAM_LCD[0x24 + bank] = NULL; break; case 1: vrammap = &VRAM_ABG[(oldofs & 0x1) | ((oldofs & 0x2) << 1)]; break; case 2: vrammap = &VRAM_AOBJ[(oldofs & 0x1) | ((oldofs & 0x2) << 1)]; break; case 3: // not mapped to memory break; case 4: VRAM_ABGExtPal[(oldofs<<1)+0] = NULL; VRAM_ABGExtPal[(oldofs<<1)+1] = NULL; break; case 5: VRAM_AOBJExtPal = NULL; break; } if (vrammap) { if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap = NULL; } } if (cnt & (1<<7)) { u8** vrammap = NULL; switch (cnt & 0x7) { case 0: VRAM_LCD[0x24 + bank] = vram; break; case 1: vrammap = &VRAM_ABG[(ofs & 0x1) | ((ofs & 0x2) << 1)]; break; case 2: vrammap = &VRAM_AOBJ[(ofs & 0x1) | ((ofs & 0x2) << 1)]; break; case 3: // not mapped to memory break; case 4: VRAM_ABGExtPal[(ofs<<1)+0] = &vram[0x0000]; VRAM_ABGExtPal[(ofs<<1)+1] = &vram[0x2000]; break; case 5: VRAM_AOBJExtPal = vram; break; } if (vrammap) { *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap = vram; } } } void MapVRAM_H(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x7; u8 ofs = (cnt >> 3) & 0x7; u8* vram = VRAM[bank]; if (oldcnt & (1<<7)) { u8** vrammap = NULL; switch (oldcnt & 0x3) { case 0: VRAM_LCD[0x26] = NULL; VRAM_LCD[0x27] = NULL; break; case 1: vrammap = &VRAM_BBG[0x00]; break; case 2: VRAM_BBGExtPal[0] = NULL; VRAM_BBGExtPal[1] = NULL; VRAM_BBGExtPal[2] = NULL; VRAM_BBGExtPal[3] = NULL; break; } if (vrammap && *vrammap == vram) { *vrammap++ = NULL; *vrammap++ = NULL; } else if (vrammap) vrammap += 2; if (vrammap && *vrammap == vram) { *vrammap++ = NULL; *vrammap++ = NULL; } else if (vrammap) vrammap += 2; if (vrammap && *vrammap == vram) { *vrammap++ = NULL; *vrammap++ = NULL; } else if (vrammap) vrammap += 2; if (vrammap && *vrammap == vram) { *vrammap++ = NULL; *vrammap = NULL; } } if (cnt & (1<<7)) { u8** vrammap = NULL; switch (cnt & 0x3) { case 0: VRAM_LCD[0x26] = &vram[0x0000]; VRAM_LCD[0x27] = &vram[0x4000]; break; case 1: vrammap = &VRAM_BBG[0x00]; break; case 2: VRAM_BBGExtPal[0] = &vram[0x0000]; VRAM_BBGExtPal[1] = &vram[0x2000]; VRAM_BBGExtPal[2] = &vram[0x4000]; VRAM_BBGExtPal[3] = &vram[0x6000]; break; } if (vrammap) { *vrammap++ = &vram[0x0000]; *vrammap++ = &vram[0x4000]; *vrammap++ = &vram[0x0000]; *vrammap++ = &vram[0x4000]; *vrammap++ = &vram[0x0000]; *vrammap++ = &vram[0x4000]; *vrammap++ = &vram[0x0000]; *vrammap = &vram[0x4000]; } } } void MapVRAM_I(u32 bank, u8 cnt) { u8 oldcnt = VRAMCNT[bank]; VRAMCNT[bank] = cnt; if (oldcnt == cnt) return; u8 oldofs = (oldcnt >> 3) & 0x7; u8 ofs = (cnt >> 3) & 0x7; u8* vram = VRAM[bank]; bank -= 5; if (oldcnt & (1<<7)) { u8** vrammap = NULL; switch (oldcnt & 0x3) { case 0: VRAM_LCD[0x28] = NULL; break; case 1: vrammap = &VRAM_BBG[0x02]; break; case 2: vrammap = &VRAM_BOBJ[0x00]; break; case 3: VRAM_BOBJExtPal = NULL; break; } if (vrammap) { if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap++ = NULL; else vrammap++; if (*vrammap == vram) *vrammap = NULL; } } if (cnt & (1<<7)) { u8** vrammap = NULL; switch (cnt & 0x3) { case 0: VRAM_LCD[0x28] = vram; break; case 1: vrammap = &VRAM_BBG[0x02]; break; case 2: vrammap = &VRAM_BOBJ[0x00]; break; case 3: VRAM_BOBJExtPal = vram; break; } if (vrammap) { *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap++ = vram; *vrammap = vram; } } } void DisplaySwap(u32 val) { if (val) { GPU2D_A->SetFramebuffer(&Framebuffer[256*0]); GPU2D_B->SetFramebuffer(&Framebuffer[256*192]); } else { GPU2D_A->SetFramebuffer(&Framebuffer[256*192]); GPU2D_B->SetFramebuffer(&Framebuffer[256*0]); } } void StartFrame() { StartScanline(0); } void StartHBlank(u32 line) { DispStat[0] |= (1<<1); DispStat[1] |= (1<<1); if (line < 192) NDS::CheckDMAs(0, 0x02); if (DispStat[0] & (1<<4)) NDS::TriggerIRQ(0, NDS::IRQ_HBlank); if (DispStat[1] & (1<<4)) NDS::TriggerIRQ(1, NDS::IRQ_HBlank); if (line < 262) NDS::ScheduleEvent(NDS::Event_LCD, true, (LINE_CYCLES - HBLANK_CYCLES), StartScanline, line+1); } void StartScanline(u32 line) { VCount = line; DispStat[0] &= ~(1<<1); DispStat[1] &= ~(1<<1); if (line == VMatch[0]) { DispStat[0] |= (1<<2); if (DispStat[0] & (1<<5)) NDS::TriggerIRQ(0, NDS::IRQ_VCount); } else DispStat[0] &= ~(1<<2); if (line == VMatch[1]) { DispStat[1] |= (1<<2); if (DispStat[1] & (1<<5)) NDS::TriggerIRQ(1, NDS::IRQ_VCount); } else DispStat[1] &= ~(1<<2); if (line < 192) { // draw GPU2D_A->DrawScanline(line); GPU2D_B->DrawScanline(line); //NDS::ScheduleEvent(LINE_CYCLES, StartScanline, line+1); } else if (line == 262) { // frame end DispStat[0] &= ~(1<<0); DispStat[1] &= ~(1<<0); } else { if (line == 192) { // VBlank DispStat[0] |= (1<<0); DispStat[1] |= (1<<0); NDS::CheckDMAs(0, 0x01); NDS::CheckDMAs(1, 0x11); if (DispStat[0] & (1<<3)) NDS::TriggerIRQ(0, NDS::IRQ_VBlank); if (DispStat[1] & (1<<3)) NDS::TriggerIRQ(1, NDS::IRQ_VBlank); GPU2D_A->VBlank(); GPU2D_B->VBlank(); GPU3D::VBlank(); } //NDS::ScheduleEvent(LINE_CYCLES, StartScanline, line+1); //NDS::ScheduleEvent(NDS::Event_LCD, true, LINE_CYCLES, StartScanline, line+1); } NDS::ScheduleEvent(NDS::Event_LCD, true, HBLANK_CYCLES, StartHBlank, line); } void SetDispStat(u32 cpu, u16 val) { val &= 0xFFB8; DispStat[cpu] &= 0x0047; DispStat[cpu] |= val; VMatch[cpu] = (val >> 8) | ((val & 0x80) << 1); } }