/* Copyright 2016-2017 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "Config.h" #include "NDS.h" #include "ARM.h" #include "CP15.h" #include "NDSCart.h" #include "DMA.h" #include "FIFO.h" #include "GPU.h" #include "SPU.h" #include "SPI.h" #include "RTC.h" #include "Wifi.h" #include "Platform.h" namespace NDS { // TODO LIST // * stick all the variables in a big structure? // would make it easier to deal with savestates ARM* ARM9; ARM* ARM7; /*s32 ARM9Cycles, ARM7Cycles; s32 CompensatedCycles; s32 SchedCycles;*/ s32 CurIterationCycles; s32 ARM7Offset; SchedEvent SchedList[Event_MAX]; u32 SchedListMask; u32 CPUStop; u8 ARM9BIOS[0x1000]; u8 ARM7BIOS[0x4000]; u8 MainRAM[MAIN_RAM_SIZE]; u8 SharedWRAM[0x8000]; u8 WRAMCnt; u8* SWRAM_ARM9; u8* SWRAM_ARM7; u32 SWRAM_ARM9Mask; u32 SWRAM_ARM7Mask; u8 ARM7WRAM[0x10000]; u16 ExMemCnt[2]; u8 ROMSeed0[2*8]; u8 ROMSeed1[2*8]; // IO shit u32 IME[2]; u32 IE[2], IF[2]; u8 PostFlag9; u8 PostFlag7; u16 PowerControl9; u16 PowerControl7; u16 ARM7BIOSProt; Timer Timers[8]; u8 TimerCheckMask[2]; DMA* DMAs[8]; u32 DMA9Fill[4]; u16 IPCSync9, IPCSync7; u16 IPCFIFOCnt9, IPCFIFOCnt7; FIFO* IPCFIFO9; // FIFO in which the ARM9 writes FIFO* IPCFIFO7; u16 DivCnt; u32 DivNumerator[2]; u32 DivDenominator[2]; u32 DivQuotient[2]; u32 DivRemainder[2]; u16 SqrtCnt; u32 SqrtVal[2]; u32 SqrtRes; u32 KeyInput; u16 KeyCnt; u16 RCnt; bool Running; bool Init() { ARM9 = new ARM(0); ARM7 = new ARM(1); DMAs[0] = new DMA(0, 0); DMAs[1] = new DMA(0, 1); DMAs[2] = new DMA(0, 2); DMAs[3] = new DMA(0, 3); DMAs[4] = new DMA(1, 0); DMAs[5] = new DMA(1, 1); DMAs[6] = new DMA(1, 2); DMAs[7] = new DMA(1, 3); IPCFIFO9 = new FIFO(16); IPCFIFO7 = new FIFO(16); if (!NDSCart::Init()) return false; if (!GPU::Init()) return false; if (!SPU::Init()) return false; if (!SPI::Init()) return false; if (!RTC::Init()) return false; if (!Wifi::Init()) return false; return true; } void DeInit() { delete ARM9; delete ARM7; for (int i = 0; i < 8; i++) delete DMAs[i]; delete IPCFIFO9; delete IPCFIFO7; NDSCart::DeInit(); GPU::DeInit(); SPU::DeInit(); SPI::DeInit(); RTC::DeInit(); Wifi::DeInit(); } void SetupDirectBoot() { u32 bootparams[8]; memcpy(bootparams, &NDSCart::CartROM[0x20], 8*4); printf("ARM9: offset=%08X entry=%08X RAM=%08X size=%08X\n", bootparams[0], bootparams[1], bootparams[2], bootparams[3]); printf("ARM7: offset=%08X entry=%08X RAM=%08X size=%08X\n", bootparams[4], bootparams[5], bootparams[6], bootparams[7]); MapSharedWRAM(3); for (u32 i = 0; i < bootparams[3]; i+=4) { u32 tmp = *(u32*)&NDSCart::CartROM[bootparams[0]+i]; ARM9Write32(bootparams[2]+i, tmp); } for (u32 i = 0; i < bootparams[7]; i+=4) { u32 tmp = *(u32*)&NDSCart::CartROM[bootparams[4]+i]; ARM7Write32(bootparams[6]+i, tmp); } for (u32 i = 0; i < 0x170; i+=4) { u32 tmp = *(u32*)&NDSCart::CartROM[i]; ARM9Write32(0x027FFE00+i, tmp); } ARM9Write32(0x027FF800, NDSCart::CartID); ARM9Write32(0x027FF804, NDSCart::CartID); ARM9Write16(0x027FF808, *(u16*)&NDSCart::CartROM[0x15E]); ARM9Write16(0x027FF80A, *(u16*)&NDSCart::CartROM[0x6C]); ARM9Write16(0x027FF850, 0x5835); ARM9Write32(0x027FFC00, NDSCart::CartID); ARM9Write32(0x027FFC04, NDSCart::CartID); ARM9Write16(0x027FFC08, *(u16*)&NDSCart::CartROM[0x15E]); ARM9Write16(0x027FFC0A, *(u16*)&NDSCart::CartROM[0x6C]); ARM9Write16(0x027FFC10, 0x5835); ARM9Write16(0x027FFC30, 0xFFFF); ARM9Write16(0x027FFC40, 0x0001); CP15::Write(0x910, 0x0300000A); CP15::Write(0x911, 0x00000020); CP15::Write(0x100, 0x00050000); ARM9->R[12] = bootparams[1]; ARM9->R[13] = 0x03002F7C; ARM9->R[14] = bootparams[1]; ARM9->R_IRQ[0] = 0x03003F80; ARM9->R_SVC[0] = 0x03003FC0; ARM7->R[12] = bootparams[5]; ARM7->R[13] = 0x0380FD80; ARM7->R[14] = bootparams[5]; ARM7->R_IRQ[0] = 0x0380FF80; ARM7->R_SVC[0] = 0x0380FFC0; ARM9->JumpTo(bootparams[1]); ARM7->JumpTo(bootparams[5]); PostFlag9 = 0x01; PostFlag7 = 0x01; PowerControl9 = 0x820F; GPU::DisplaySwap(PowerControl9); // checkme RCnt = 0x8000; NDSCart::SPICnt = 0x8000; SPU::SetBias(0x200); ARM7BIOSProt = 0x1204; SPI_Firmware::SetupDirectBoot(); } void Reset() { FILE* f; u32 i; f = Config::GetConfigFile("bios9.bin", "rb"); if (!f) { printf("ARM9 BIOS not found\n"); for (i = 0; i < 16; i++) ((u32*)ARM9BIOS)[i] = 0xE7FFDEFF; } else { fseek(f, 0, SEEK_SET); fread(ARM9BIOS, 0x1000, 1, f); printf("ARM9 BIOS loaded\n"); fclose(f); } f = Config::GetConfigFile("bios7.bin", "rb"); if (!f) { printf("ARM7 BIOS not found\n"); for (i = 0; i < 16; i++) ((u32*)ARM7BIOS)[i] = 0xE7FFDEFF; } else { fseek(f, 0, SEEK_SET); fread(ARM7BIOS, 0x4000, 1, f); printf("ARM7 BIOS loaded\n"); fclose(f); } memset(MainRAM, 0, MAIN_RAM_SIZE); memset(SharedWRAM, 0, 0x8000); memset(ARM7WRAM, 0, 0x10000); MapSharedWRAM(0); ExMemCnt[0] = 0; ExMemCnt[1] = 0; memset(ROMSeed0, 0, 2*8); memset(ROMSeed1, 0, 2*8); IME[0] = 0; IE[0] = 0; IF[0] = 0; IME[1] = 0; IE[1] = 0; IF[1] = 0; PostFlag9 = 0x00; PostFlag7 = 0x00; PowerControl9 = 0x0001; PowerControl7 = 0x0001; ARM7BIOSProt = 0; IPCSync9 = 0; IPCSync7 = 0; IPCFIFOCnt9 = 0; IPCFIFOCnt7 = 0; IPCFIFO9->Clear(); IPCFIFO7->Clear(); DivCnt = 0; SqrtCnt = 0; ARM9->Reset(); ARM7->Reset(); CP15::Reset(); CPUStop = 0; memset(Timers, 0, 8*sizeof(Timer)); TimerCheckMask[0] = 0; TimerCheckMask[1] = 0; for (i = 0; i < 8; i++) DMAs[i]->Reset(); memset(DMA9Fill, 0, 4*4); memset(SchedList, 0, sizeof(SchedList)); SchedListMask = 0; CurIterationCycles = 0; ARM7Offset = 0; KeyInput = 0x007F03FF; KeyCnt = 0; RCnt = 0; NDSCart::Reset(); GPU::Reset(); SPU::Reset(); SPI::Reset(); RTC::Reset(); Wifi::Reset(); } void Stop() { printf("Stopping: shutdown\n"); Running = false; Platform::StopEmu(); GPU::Stop(); SPU::Stop(); } bool LoadROM(const char* path, bool direct) { if (NDSCart::LoadROM(path, direct)) { Running = true; return true; } else { printf("Failed to load ROM %s\n", path); return false; } } void LoadBIOS() { Reset(); Running = true; } void CalcIterationCycles() { CurIterationCycles = 16; for (int i = 0; i < Event_MAX; i++) { if (!(SchedListMask & (1<Run(cycles); if (cycles > 0) cycles = DMAs[1]->Run(cycles); if (cycles > 0) cycles = DMAs[2]->Run(cycles); if (cycles > 0) cycles = DMAs[3]->Run(cycles); ndscyclestorun = CurIterationCycles - cycles; } else { ARM9->CyclesToRun = CurIterationCycles << 1; ARM9->Execute(); ndscyclestorun = ARM9->Cycles >> 1; } if (CPUStop & 0xFFFF0000) { s32 cycles = ndscyclestorun - ARM7Offset; cycles = DMAs[4]->Run(cycles); if (cycles > 0) cycles = DMAs[5]->Run(cycles); if (cycles > 0) cycles = DMAs[6]->Run(cycles); if (cycles > 0) cycles = DMAs[7]->Run(cycles); ARM7Offset = -cycles; } else { ARM7->CyclesToRun = ndscyclestorun - ARM7Offset; ARM7->Execute(); ARM7Offset = ARM7->Cycles - ARM7->CyclesToRun; } RunSystem(ndscyclestorun); //GPU3D::Run(ndscyclestorun); } return GPU::TotalScanlines; } void Reschedule() { CalcIterationCycles(); ARM9->CyclesToRun = CurIterationCycles << 1; //ARM7->CyclesToRun = CurIterationCycles - ARM7Offset; //ARM7->CyclesToRun = (ARM9->Cycles >> 1) - ARM7->Cycles - ARM7Offset; } void ScheduleEvent(u32 id, bool periodic, s32 delay, void (*func)(u32), u32 param) { if (SchedListMask & (1<WaitCycles += delay; else evt->WaitCycles = delay + (ARM9->Cycles >> 1); evt->Func = func; evt->Param = param; SchedListMask |= (1<> 10) & 0x3; KeyInput &= 0xFFFCFC00; KeyInput |= key_lo | (key_hi << 16); } void Halt() { printf("Halt()\n"); Running = false; } void MapSharedWRAM(u8 val) { WRAMCnt = val; switch (WRAMCnt & 0x3) { case 0: SWRAM_ARM9 = &SharedWRAM[0]; SWRAM_ARM9Mask = 0x7FFF; SWRAM_ARM7 = NULL; SWRAM_ARM7Mask = 0; break; case 1: SWRAM_ARM9 = &SharedWRAM[0x4000]; SWRAM_ARM9Mask = 0x3FFF; SWRAM_ARM7 = &SharedWRAM[0]; SWRAM_ARM7Mask = 0x3FFF; break; case 2: SWRAM_ARM9 = &SharedWRAM[0]; SWRAM_ARM9Mask = 0x3FFF; SWRAM_ARM7 = &SharedWRAM[0x4000]; SWRAM_ARM7Mask = 0x3FFF; break; case 3: SWRAM_ARM9 = NULL; SWRAM_ARM9Mask = 0; SWRAM_ARM7 = &SharedWRAM[0]; SWRAM_ARM7Mask = 0x7FFF; break; } } void SetIRQ(u32 cpu, u32 irq) { IF[cpu] |= (1 << irq); } void ClearIRQ(u32 cpu, u32 irq) { IF[cpu] &= ~(1 << irq); } bool HaltInterrupted(u32 cpu) { if (cpu == 0) { if (!(IME[0] & 0x1)) return false; } if (IF[cpu] & IE[cpu]) return true; return false; } void StopCPU(u32 cpu, u32 mask) { if (cpu) { CPUStop |= (mask << 16); ARM7->Halt(2); } else { CPUStop |= mask; ARM9->Halt(2); } } void ResumeCPU(u32 cpu, u32 mask) { if (cpu) mask <<= 16; CPUStop &= ~mask; } u32 GetPC(u32 cpu) { return cpu ? ARM7->R[15] : ARM9->R[15]; } void HandleTimerOverflow(u32 tid) { Timer* timer = &Timers[tid]; timer->Counter += timer->Reload << 16; if (timer->Cnt & (1<<6)) SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3)); if ((tid & 0x3) == 3) return; for (;;) { tid++; timer = &Timers[tid]; if ((timer->Cnt & 0x84) != 0x84) break; timer->Counter += 0x10000; if (timer->Counter >> 16) break; timer->Counter = timer->Reload << 16; if (timer->Cnt & (1<<6)) SetIRQ(tid >> 2, IRQ_Timer0 + (tid & 0x3)); if ((tid & 0x3) == 3) break; } } void RunTimer(u32 tid, s32 cycles) { Timer* timer = &Timers[tid]; //if ((timer->Cnt & 0x84) != 0x80) // return; u32 oldcount = timer->Counter; timer->Counter += (cycles << timer->CycleShift); if (timer->Counter < oldcount) HandleTimerOverflow(tid); } void RunTimingCriticalDevices(u32 cpu, s32 cycles) { register u32 timermask = TimerCheckMask[cpu]; if (timermask & 0x1) RunTimer((cpu<<2)+0, cycles); if (timermask & 0x2) RunTimer((cpu<<2)+1, cycles); if (timermask & 0x4) RunTimer((cpu<<2)+2, cycles); if (timermask & 0x8) RunTimer((cpu<<2)+3, cycles); if (cpu == 0) { GPU3D::Run(cycles); } } bool DMAsInMode(u32 cpu, u32 mode) { cpu <<= 2; if (DMAs[cpu+0]->IsInMode(mode)) return true; if (DMAs[cpu+1]->IsInMode(mode)) return true; if (DMAs[cpu+2]->IsInMode(mode)) return true; if (DMAs[cpu+3]->IsInMode(mode)) return true; return false; } void CheckDMAs(u32 cpu, u32 mode) { cpu <<= 2; DMAs[cpu+0]->StartIfNeeded(mode); DMAs[cpu+1]->StartIfNeeded(mode); DMAs[cpu+2]->StartIfNeeded(mode); DMAs[cpu+3]->StartIfNeeded(mode); } void StopDMAs(u32 cpu, u32 mode) { cpu <<= 2; DMAs[cpu+0]->StopIfNeeded(mode); DMAs[cpu+1]->StopIfNeeded(mode); DMAs[cpu+2]->StopIfNeeded(mode); DMAs[cpu+3]->StopIfNeeded(mode); } const s32 TimerPrescaler[4] = {0, 6, 8, 10}; u16 TimerGetCounter(u32 timer) { u32 ret = Timers[timer].Counter; return ret >> 16; } void TimerStart(u32 id, u16 cnt) { Timer* timer = &Timers[id]; u16 curstart = timer->Cnt & (1<<7); u16 newstart = cnt & (1<<7); timer->Cnt = cnt; timer->CycleShift = 16 - TimerPrescaler[cnt & 0x03]; if ((!curstart) && newstart) { timer->Counter = timer->Reload << 16; } if ((cnt & 0x84) == 0x80) TimerCheckMask[id>>2] |= (1<<(id&0x3)); else TimerCheckMask[id>>2] &= ~(1<<(id&0x3)); } void DivDone(u32 param) { DivCnt &= ~0xC000; switch (DivCnt & 0x0003) { case 0x0000: { s32 num = (s32)DivNumerator[0]; s32 den = (s32)DivDenominator[0]; if (den == 0) { DivQuotient[0] = (num<0) ? 1:-1; DivQuotient[1] = (num<0) ? -1:1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x80000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x80000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; case 0x0001: case 0x0003: { s64 num = *(s64*)&DivNumerator[0]; s32 den = (s32)DivDenominator[0]; if (den == 0) { *(s64*)&DivQuotient[0] = (num<0) ? 1:-1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x8000000000000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x8000000000000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; case 0x0002: { s64 num = *(s64*)&DivNumerator[0]; s64 den = *(s64*)&DivDenominator[0]; if (den == 0) { *(s64*)&DivQuotient[0] = (num<0) ? 1:-1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x8000000000000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x8000000000000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; } if ((DivDenominator[0] | DivDenominator[1]) == 0) DivCnt |= 0x4000; } void StartDiv() { NDS::CancelEvent(NDS::Event_Div); DivCnt |= 0x8000; NDS::ScheduleEvent(NDS::Event_Div, false, ((DivCnt&0x3)==0) ? 18:34, DivDone, 0); } // http://stackoverflow.com/questions/1100090/looking-for-an-efficient-integer-square-root-algorithm-for-arm-thumb2 void SqrtDone(u32 param) { u64 val; u32 res = 0; u64 rem = 0; u32 prod = 0; u32 nbits, topshift; SqrtCnt &= ~0x8000; if (SqrtCnt & 0x0001) { val = *(u64*)&SqrtVal[0]; nbits = 32; topshift = 62; } else { val = (u64)SqrtVal[0]; // 32bit nbits = 16; topshift = 30; } for (u32 i = 0; i < nbits; i++) { rem = (rem << 2) + ((val >> topshift) & 0x3); val <<= 2; res <<= 1; prod = (res << 1) + 1; if (rem >= prod) { rem -= prod; res++; } } SqrtRes = res; } void StartSqrt() { NDS::CancelEvent(NDS::Event_Sqrt); SqrtCnt |= 0x8000; NDS::ScheduleEvent(NDS::Event_Sqrt, false, 13, SqrtDone, 0); } void debug(u32 param) { printf("ARM9 PC=%08X LR=%08X %08X\n", ARM9->R[15], ARM9->R[14], ARM9->R_IRQ[1]); printf("ARM7 PC=%08X LR=%08X %08X\n", ARM7->R[15], ARM7->R[14], ARM7->R_IRQ[1]); printf("ARM9 IME=%08X IE=%08X IF=%08X\n", IME[0], IE[0], IF[0]); printf("ARM7 IME=%08X IE=%08X IF=%08X\n", IME[1], IE[1], IF[1]); //for (int i = 0; i < 9; i++) // printf("VRAM %c: %02X\n", 'A'+i, GPU::VRAMCNT[i]); /*FILE* shit = fopen("debug/dldio.bin", "wb"); for (u32 i = 0x02000000; i < 0x02400000; i+=4) { u32 val = ARM7Read32(i); fwrite(&val, 4, 1, shit); } for (u32 i = 0x037F0000; i < 0x03810000; i+=4) { u32 val = ARM7Read32(i); fwrite(&val, 4, 1, shit); } fclose(shit);*/ } u8 ARM9Read8(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u8*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM9) return *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; else return 0; case 0x04000000: return ARM9IORead8(addr); case 0x05000000: return *(u8*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: { switch (addr & 0x00E00000) { case 0x00000000: return GPU::ReadVRAM_ABG(addr); case 0x00200000: return GPU::ReadVRAM_BBG(addr); case 0x00400000: return GPU::ReadVRAM_AOBJ(addr); case 0x00600000: return GPU::ReadVRAM_BOBJ(addr); default: return GPU::ReadVRAM_LCDC(addr); } } return 0; case 0x07000000: return *(u8*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: //return *(u8*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read8 %08X\n", addr); return 0xFF; } printf("unknown arm9 read8 %08X\n", addr); return 0; } u16 ARM9Read16(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u16*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM9) return *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; else return 0; case 0x04000000: return ARM9IORead16(addr); case 0x05000000: return *(u16*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: { switch (addr & 0x00E00000) { case 0x00000000: return GPU::ReadVRAM_ABG(addr); case 0x00200000: return GPU::ReadVRAM_BBG(addr); case 0x00400000: return GPU::ReadVRAM_AOBJ(addr); case 0x00600000: return GPU::ReadVRAM_BOBJ(addr); default: return GPU::ReadVRAM_LCDC(addr); } } return 0; case 0x07000000: return *(u16*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: //return *(u16*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read16 %08X\n", addr); return 0xFFFF; } //printf("unknown arm9 read16 %08X %08X\n", addr, ARM9->R[15]); return 0; } u32 ARM9Read32(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u32*)&ARM9BIOS[addr & 0xFFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM9) return *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; else return 0; case 0x04000000: return ARM9IORead32(addr); case 0x05000000: return *(u32*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: { switch (addr & 0x00E00000) { case 0x00000000: return GPU::ReadVRAM_ABG(addr); case 0x00200000: return GPU::ReadVRAM_BBG(addr); case 0x00400000: return GPU::ReadVRAM_AOBJ(addr); case 0x00600000: return GPU::ReadVRAM_BOBJ(addr); default: return GPU::ReadVRAM_LCDC(addr); } } return 0; case 0x07000000: return *(u32*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: //return *(u32*)&NDSCart::CartROM[addr & (NDSCart::CartROMSize-1)]; //printf("GBA read32 %08X\n", addr); return 0xFFFFFFFF; } printf("unknown arm9 read32 %08X | %08X %08X %08X\n", addr, ARM9->R[15], ARM9->R[12], ARM9Read32(0x027FF820)); return 0; } void ARM9Write8(u32 addr, u8 val) { switch (addr & 0xFF000000) { case 0x02000000: *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM9) *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; return; case 0x04000000: ARM9IOWrite8(addr, val); return; case 0x05000000: case 0x06000000: case 0x07000000: return; } printf("unknown arm9 write8 %08X %02X\n", addr, val); } void ARM9Write16(u32 addr, u16 val) { switch (addr & 0xFF000000) { case 0x02000000: *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM9) *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; return; case 0x04000000: ARM9IOWrite16(addr, val); return; case 0x05000000: *(u16*)&GPU::Palette[addr & 0x7FF] = val; return; case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: GPU::WriteVRAM_ABG(addr, val); break; case 0x00200000: GPU::WriteVRAM_BBG(addr, val); break; case 0x00400000: GPU::WriteVRAM_AOBJ(addr, val); break; case 0x00600000: GPU::WriteVRAM_BOBJ(addr, val); break; default: GPU::WriteVRAM_LCDC(addr, val); break; } return; case 0x07000000: *(u16*)&GPU::OAM[addr & 0x7FF] = val; return; } //printf("unknown arm9 write16 %08X %04X\n", addr, val); } void ARM9Write32(u32 addr, u32 val) { switch (addr & 0xFF000000) { case 0x02000000: *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM9) *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; return; case 0x04000000: ARM9IOWrite32(addr, val); return; case 0x05000000: *(u32*)&GPU::Palette[addr & 0x7FF] = val; return; case 0x06000000: switch (addr & 0x00E00000) { case 0x00000000: GPU::WriteVRAM_ABG(addr, val); break; case 0x00200000: GPU::WriteVRAM_BBG(addr, val); break; case 0x00400000: GPU::WriteVRAM_AOBJ(addr, val); break; case 0x00600000: GPU::WriteVRAM_BOBJ(addr, val); break; default: GPU::WriteVRAM_LCDC(addr, val); break; } return; case 0x07000000: *(u32*)&GPU::OAM[addr & 0x7FF] = val; return; } printf("unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9->R[15]); } u8 ARM7Read8(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] >= 0x4000) return 0xFF; if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt) return 0xFF; return *(u8*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM7) return *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; else return *(u8*)&ARM7WRAM[addr & 0xFFFF]; case 0x03800000: return *(u8*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead8(addr); case 0x06000000: case 0x06800000: return GPU::ReadVRAM_ARM7(addr); } printf("unknown arm7 read8 %08X %08X %08X/%08X\n", addr, ARM7->R[15], ARM7->R[0], ARM7->R[1]); return 0; } u16 ARM7Read16(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] >= 0x4000) return 0xFFFF; if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt) return 0xFFFF; return *(u16*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM7) return *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; else return *(u16*)&ARM7WRAM[addr & 0xFFFF]; case 0x03800000: return *(u16*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead16(addr); case 0x04800000: return Wifi::Read(addr); case 0x06000000: case 0x06800000: return GPU::ReadVRAM_ARM7(addr); } printf("unknown arm7 read16 %08X %08X\n", addr, ARM7->R[15]); return 0; } u32 ARM7Read32(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] >= 0x4000) return 0xFFFFFFFF; if (addr < ARM7BIOSProt && ARM7->R[15] >= ARM7BIOSProt) return 0xFFFFFFFF; return *(u32*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: return *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)]; case 0x03000000: if (SWRAM_ARM7) return *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; else return *(u32*)&ARM7WRAM[addr & 0xFFFF]; case 0x03800000: return *(u32*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead32(addr); case 0x04800000: return Wifi::Read(addr) | (Wifi::Read(addr+2) << 16); case 0x06000000: case 0x06800000: return GPU::ReadVRAM_ARM7(addr); } printf("unknown arm7 read32 %08X | %08X\n", addr, ARM7->R[15]); return 0; } void ARM7Write8(u32 addr, u8 val) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: *(u8*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM7) *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; else *(u8*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x03800000: *(u8*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite8(addr, val); return; case 0x06000000: case 0x06800000: GPU::WriteVRAM_ARM7(addr, val); return; } printf("unknown arm7 write8 %08X %02X @ %08X\n", addr, val, ARM7->R[15]); } void ARM7Write16(u32 addr, u16 val) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: *(u16*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM7) *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; else *(u16*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x03800000: *(u16*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite16(addr, val); return; case 0x04800000: Wifi::Write(addr, val); return; case 0x06000000: case 0x06800000: GPU::WriteVRAM_ARM7(addr, val); return; } //printf("unknown arm7 write16 %08X %04X @ %08X\n", addr, val, ARM7->R[15]); } void ARM7Write32(u32 addr, u32 val) { switch (addr & 0xFF800000) { case 0x02000000: case 0x02800000: *(u32*)&MainRAM[addr & (MAIN_RAM_SIZE - 1)] = val; return; case 0x03000000: if (SWRAM_ARM7) *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; else *(u32*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x03800000: *(u32*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite32(addr, val); return; case 0x04800000: Wifi::Write(addr, val & 0xFFFF); Wifi::Write(addr+2, val >> 16); return; case 0x06000000: case 0x06800000: GPU::WriteVRAM_ARM7(addr, val); return; } //printf("unknown arm7 write32 %08X %08X @ %08X\n", addr, val, ARM7->R[15]); } #define CASE_READ8_16BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return (val) >> 8; #define CASE_READ8_32BIT(addr, val) \ case (addr): return (val) & 0xFF; \ case (addr+1): return ((val) >> 8) & 0xFF; \ case (addr+2): return ((val) >> 16) & 0xFF; \ case (addr+3): return (val) >> 24; u8 ARM9IORead8(u32 addr) { switch (addr) { case 0x04000130: return KeyInput & 0xFF; case 0x04000131: return (KeyInput >> 8) & 0xFF; case 0x04000132: return KeyCnt & 0xFF; case 0x04000133: return KeyCnt >> 8; case 0x040001A2: return NDSCart::ReadSPIData(); case 0x040001A8: return NDSCart::ROMCommand[0]; case 0x040001A9: return NDSCart::ROMCommand[1]; case 0x040001AA: return NDSCart::ROMCommand[2]; case 0x040001AB: return NDSCart::ROMCommand[3]; case 0x040001AC: return NDSCart::ROMCommand[4]; case 0x040001AD: return NDSCart::ROMCommand[5]; case 0x040001AE: return NDSCart::ROMCommand[6]; case 0x040001AF: return NDSCart::ROMCommand[7]; case 0x04000208: return IME[0]; case 0x04000240: return GPU::VRAMCNT[0]; case 0x04000241: return GPU::VRAMCNT[1]; case 0x04000242: return GPU::VRAMCNT[2]; case 0x04000243: return GPU::VRAMCNT[3]; case 0x04000244: return GPU::VRAMCNT[4]; case 0x04000245: return GPU::VRAMCNT[5]; case 0x04000246: return GPU::VRAMCNT[6]; case 0x04000247: return WRAMCnt; case 0x04000248: return GPU::VRAMCNT[7]; case 0x04000249: return GPU::VRAMCNT[8]; CASE_READ8_16BIT(0x04000280, DivCnt) CASE_READ8_32BIT(0x04000290, DivNumerator[0]) CASE_READ8_32BIT(0x04000294, DivNumerator[1]) CASE_READ8_32BIT(0x04000298, DivDenominator[0]) CASE_READ8_32BIT(0x0400029C, DivDenominator[1]) CASE_READ8_32BIT(0x040002A0, DivQuotient[0]) CASE_READ8_32BIT(0x040002A4, DivQuotient[1]) CASE_READ8_32BIT(0x040002A8, DivRemainder[0]) CASE_READ8_32BIT(0x040002AC, DivRemainder[1]) CASE_READ8_16BIT(0x040002B0, SqrtCnt) CASE_READ8_32BIT(0x040002B4, SqrtRes) CASE_READ8_32BIT(0x040002B8, SqrtVal[0]) CASE_READ8_32BIT(0x040002BC, SqrtVal[1]) case 0x04000300: return PostFlag9; } if (addr >= 0x04000000 && addr < 0x04000060) { return GPU::GPU2D_A->Read8(addr); } if (addr >= 0x04001000 && addr < 0x04001060) { return GPU::GPU2D_B->Read8(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU3D::Read8(addr); } printf("unknown ARM9 IO read8 %08X\n", addr); return 0; } u16 ARM9IORead16(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[0]; case 0x04000006: return GPU::VCount; case 0x04000060: return GPU3D::Read16(addr); case 0x04000064: case 0x04000066: return GPU::GPU2D_A->Read16(addr); case 0x040000B8: return DMAs[0]->Cnt & 0xFFFF; case 0x040000BA: return DMAs[0]->Cnt >> 16; case 0x040000C4: return DMAs[1]->Cnt & 0xFFFF; case 0x040000C6: return DMAs[1]->Cnt >> 16; case 0x040000D0: return DMAs[2]->Cnt & 0xFFFF; case 0x040000D2: return DMAs[2]->Cnt >> 16; case 0x040000DC: return DMAs[3]->Cnt & 0xFFFF; case 0x040000DE: return DMAs[3]->Cnt >> 16; case 0x040000E0: return ((u16*)DMA9Fill)[0]; case 0x040000E2: return ((u16*)DMA9Fill)[1]; case 0x040000E4: return ((u16*)DMA9Fill)[2]; case 0x040000E6: return ((u16*)DMA9Fill)[3]; case 0x040000E8: return ((u16*)DMA9Fill)[4]; case 0x040000EA: return ((u16*)DMA9Fill)[5]; case 0x040000EC: return ((u16*)DMA9Fill)[6]; case 0x040000EE: return ((u16*)DMA9Fill)[7]; case 0x04000100: return TimerGetCounter(0); case 0x04000102: return Timers[0].Cnt; case 0x04000104: return TimerGetCounter(1); case 0x04000106: return Timers[1].Cnt; case 0x04000108: return TimerGetCounter(2); case 0x0400010A: return Timers[2].Cnt; case 0x0400010C: return TimerGetCounter(3); case 0x0400010E: return Timers[3].Cnt; case 0x04000130: return KeyInput & 0xFFFF; case 0x04000132: return KeyCnt; case 0x04000180: return IPCSync9; case 0x04000184: { u16 val = IPCFIFOCnt9; if (IPCFIFO9->IsEmpty()) val |= 0x0001; else if (IPCFIFO9->IsFull()) val |= 0x0002; if (IPCFIFO7->IsEmpty()) val |= 0x0100; else if (IPCFIFO7->IsFull()) val |= 0x0200; return val; } case 0x040001A0: return NDSCart::SPICnt; case 0x040001A2: return NDSCart::ReadSPIData(); case 0x040001A8: return NDSCart::ROMCommand[0] | (NDSCart::ROMCommand[1] << 8); case 0x040001AA: return NDSCart::ROMCommand[2] | (NDSCart::ROMCommand[3] << 8); case 0x040001AC: return NDSCart::ROMCommand[4] | (NDSCart::ROMCommand[5] << 8); case 0x040001AE: return NDSCart::ROMCommand[6] | (NDSCart::ROMCommand[7] << 8); case 0x04000204: return ExMemCnt[0]; case 0x04000208: return IME[0]; case 0x04000210: return IE[0] & 0xFFFF; case 0x04000212: return IE[0] >> 16; case 0x04000240: return GPU::VRAMCNT[0] | (GPU::VRAMCNT[1] << 8); case 0x04000242: return GPU::VRAMCNT[2] | (GPU::VRAMCNT[3] << 8); case 0x04000244: return GPU::VRAMCNT[4] | (GPU::VRAMCNT[5] << 8); case 0x04000246: return GPU::VRAMCNT[6] | (WRAMCnt << 8); case 0x04000248: return GPU::VRAMCNT[7] | (GPU::VRAMCNT[8] << 8); case 0x04000280: return DivCnt; case 0x04000290: return DivNumerator[0] & 0xFFFF; case 0x04000292: return DivNumerator[0] >> 16; case 0x04000294: return DivNumerator[1] & 0xFFFF; case 0x04000296: return DivNumerator[1] >> 16; case 0x04000298: return DivDenominator[0] & 0xFFFF; case 0x0400029A: return DivDenominator[0] >> 16; case 0x0400029C: return DivDenominator[1] & 0xFFFF; case 0x0400029E: return DivDenominator[1] >> 16; case 0x040002A0: return DivQuotient[0] & 0xFFFF; case 0x040002A2: return DivQuotient[0] >> 16; case 0x040002A4: return DivQuotient[1] & 0xFFFF; case 0x040002A6: return DivQuotient[1] >> 16; case 0x040002A8: return DivRemainder[0] & 0xFFFF; case 0x040002AA: return DivRemainder[0] >> 16; case 0x040002AC: return DivRemainder[1] & 0xFFFF; case 0x040002AE: return DivRemainder[1] >> 16; case 0x040002B0: return SqrtCnt; case 0x040002B4: return SqrtRes & 0xFFFF; case 0x040002B6: return SqrtRes >> 16; case 0x040002B8: return SqrtVal[0] & 0xFFFF; case 0x040002BA: return SqrtVal[0] >> 16; case 0x040002BC: return SqrtVal[1] & 0xFFFF; case 0x040002BE: return SqrtVal[1] >> 16; case 0x04000300: return PostFlag9; case 0x04000304: return PowerControl9; } if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C)) { return GPU::GPU2D_A->Read16(addr); } if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C)) { return GPU::GPU2D_B->Read16(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU3D::Read16(addr); } printf("unknown ARM9 IO read16 %08X %08X\n", addr, ARM9->R[15]); return 0; } u32 ARM9IORead32(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[0] | (GPU::VCount << 16); case 0x04000060: return GPU3D::Read32(addr); case 0x04000064: return GPU::GPU2D_A->Read32(addr); case 0x040000B0: return DMAs[0]->SrcAddr; case 0x040000B4: return DMAs[0]->DstAddr; case 0x040000B8: return DMAs[0]->Cnt; case 0x040000BC: return DMAs[1]->SrcAddr; case 0x040000C0: return DMAs[1]->DstAddr; case 0x040000C4: return DMAs[1]->Cnt; case 0x040000C8: return DMAs[2]->SrcAddr; case 0x040000CC: return DMAs[2]->DstAddr; case 0x040000D0: return DMAs[2]->Cnt; case 0x040000D4: return DMAs[3]->SrcAddr; case 0x040000D8: return DMAs[3]->DstAddr; case 0x040000DC: return DMAs[3]->Cnt; case 0x040000E0: return DMA9Fill[0]; case 0x040000E4: return DMA9Fill[1]; case 0x040000E8: return DMA9Fill[2]; case 0x040000EC: return DMA9Fill[3]; case 0x040000F4: return 0; // ???? Golden Sun Dark Dawn keeps reading this case 0x04000100: return TimerGetCounter(0) | (Timers[0].Cnt << 16); case 0x04000104: return TimerGetCounter(1) | (Timers[1].Cnt << 16); case 0x04000108: return TimerGetCounter(2) | (Timers[2].Cnt << 16); case 0x0400010C: return TimerGetCounter(3) | (Timers[3].Cnt << 16); case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt << 16); case 0x04000180: return IPCSync9; case 0x040001A0: return NDSCart::SPICnt | (NDSCart::ReadSPIData() << 16); case 0x040001A4: return NDSCart::ROMCnt; case 0x040001A8: return NDSCart::ROMCommand[0] | (NDSCart::ROMCommand[1] << 8) | (NDSCart::ROMCommand[2] << 16) | (NDSCart::ROMCommand[3] << 24); case 0x040001AC: return NDSCart::ROMCommand[4] | (NDSCart::ROMCommand[5] << 8) | (NDSCart::ROMCommand[6] << 16) | (NDSCart::ROMCommand[7] << 24); case 0x04000208: return IME[0]; case 0x04000210: return IE[0]; case 0x04000214: return IF[0]; case 0x04000240: return GPU::VRAMCNT[0] | (GPU::VRAMCNT[1] << 8) | (GPU::VRAMCNT[2] << 16) | (GPU::VRAMCNT[3] << 24); case 0x04000244: return GPU::VRAMCNT[4] | (GPU::VRAMCNT[5] << 8) | (GPU::VRAMCNT[6] << 16) | (WRAMCnt << 24); case 0x04000248: return GPU::VRAMCNT[7] | (GPU::VRAMCNT[8] << 8); case 0x04000280: return DivCnt; case 0x04000290: return DivNumerator[0]; case 0x04000294: return DivNumerator[1]; case 0x04000298: return DivDenominator[0]; case 0x0400029C: return DivDenominator[1]; case 0x040002A0: return DivQuotient[0]; case 0x040002A4: return DivQuotient[1]; case 0x040002A8: return DivRemainder[0]; case 0x040002AC: return DivRemainder[1]; case 0x040002B0: return SqrtCnt; case 0x040002B4: return SqrtRes; case 0x040002B8: return SqrtVal[0]; case 0x040002BC: return SqrtVal[1]; case 0x04100000: if (IPCFIFOCnt9 & 0x8000) { u32 ret; if (IPCFIFO7->IsEmpty()) { IPCFIFOCnt9 |= 0x4000; ret = IPCFIFO7->Peek(); } else { ret = IPCFIFO7->Read(); if (IPCFIFO7->IsEmpty() && (IPCFIFOCnt7 & 0x0004)) SetIRQ(1, IRQ_IPCSendDone); } return ret; } else return IPCFIFO7->Peek(); case 0x04100010: if (!(ExMemCnt[0] & (1<<11))) return NDSCart::ReadROMData(); return 0; } if ((addr >= 0x04000000 && addr < 0x04000060) || (addr == 0x0400006C)) { return GPU::GPU2D_A->Read32(addr); } if ((addr >= 0x04001000 && addr < 0x04001060) || (addr == 0x0400106C)) { return GPU::GPU2D_B->Read32(addr); } if (addr >= 0x04000320 && addr < 0x040006A4) { return GPU3D::Read32(addr); } printf("unknown ARM9 IO read32 %08X\n", addr); return 0; } void ARM9IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x0400006C: case 0x0400006D: GPU::GPU2D_A->Write8(addr, val); return; case 0x0400106C: case 0x0400106D: GPU::GPU2D_B->Write8(addr, val); return; case 0x04000132: KeyCnt = (KeyCnt & 0xFF00) | val; return; case 0x04000133: KeyCnt = (KeyCnt & 0x00FF) | (val << 8); return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::WriteSPICnt((NDSCart::SPICnt & 0xFF00) | val); } return; case 0x040001A1: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::WriteSPICnt((NDSCart::SPICnt & 0x00FF) | (val << 8)); } return; case 0x040001A2: NDSCart::WriteSPIData(val); return; case 0x040001A8: NDSCart::ROMCommand[0] = val; return; case 0x040001A9: NDSCart::ROMCommand[1] = val; return; case 0x040001AA: NDSCart::ROMCommand[2] = val; return; case 0x040001AB: NDSCart::ROMCommand[3] = val; return; case 0x040001AC: NDSCart::ROMCommand[4] = val; return; case 0x040001AD: NDSCart::ROMCommand[5] = val; return; case 0x040001AE: NDSCart::ROMCommand[6] = val; return; case 0x040001AF: NDSCart::ROMCommand[7] = val; return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000240: GPU::MapVRAM_AB(0, val); return; case 0x04000241: GPU::MapVRAM_AB(1, val); return; case 0x04000242: GPU::MapVRAM_CD(2, val); return; case 0x04000243: GPU::MapVRAM_CD(3, val); return; case 0x04000244: GPU::MapVRAM_E(4, val); return; case 0x04000245: GPU::MapVRAM_FG(5, val); return; case 0x04000246: GPU::MapVRAM_FG(6, val); return; case 0x04000247: MapSharedWRAM(val); return; case 0x04000248: GPU::MapVRAM_H(7, val); return; case 0x04000249: GPU::MapVRAM_I(8, val); return; case 0x04000300: if (PostFlag9 & 0x01) val |= 0x01; PostFlag9 = val & 0x03; return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write8(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write8(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU3D::Write8(addr, val); return; } printf("unknown ARM9 IO write8 %08X %02X\n", addr, val); } void ARM9IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000004: GPU::SetDispStat(0, val); return; case 0x04000006: GPU::SetVCount(val); return; case 0x04000060: GPU3D::Write16(addr, val); return; case 0x04000068: case 0x0400006A: GPU::GPU2D_A->Write16(addr, val); return; case 0x0400006C: GPU::GPU2D_A->Write16(addr, val); return; case 0x0400106C: GPU::GPU2D_B->Write16(addr, val); return; case 0x040000B8: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0xFFFF0000) | val); return; case 0x040000BA: DMAs[0]->WriteCnt((DMAs[0]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000C4: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0xFFFF0000) | val); return; case 0x040000C6: DMAs[1]->WriteCnt((DMAs[1]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000D0: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0xFFFF0000) | val); return; case 0x040000D2: DMAs[2]->WriteCnt((DMAs[2]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000DC: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0xFFFF0000) | val); return; case 0x040000DE: DMAs[3]->WriteCnt((DMAs[3]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000E0: DMA9Fill[0] = (DMA9Fill[0] & 0xFFFF0000) | val; return; case 0x040000E2: DMA9Fill[0] = (DMA9Fill[0] & 0x0000FFFF) | (val << 16); return; case 0x040000E4: DMA9Fill[1] = (DMA9Fill[1] & 0xFFFF0000) | val; return; case 0x040000E6: DMA9Fill[1] = (DMA9Fill[1] & 0x0000FFFF) | (val << 16); return; case 0x040000E8: DMA9Fill[2] = (DMA9Fill[2] & 0xFFFF0000) | val; return; case 0x040000EA: DMA9Fill[2] = (DMA9Fill[2] & 0x0000FFFF) | (val << 16); return; case 0x040000EC: DMA9Fill[3] = (DMA9Fill[3] & 0xFFFF0000) | val; return; case 0x040000EE: DMA9Fill[3] = (DMA9Fill[3] & 0x0000FFFF) | (val << 16); return; case 0x04000100: Timers[0].Reload = val; return; case 0x04000102: TimerStart(0, val); return; case 0x04000104: Timers[1].Reload = val; return; case 0x04000106: TimerStart(1, val); return; case 0x04000108: Timers[2].Reload = val; return; case 0x0400010A: TimerStart(2, val); return; case 0x0400010C: Timers[3].Reload = val; return; case 0x0400010E: TimerStart(3, val); return; case 0x04000132: KeyCnt = val; return; case 0x04000180: IPCSync7 &= 0xFFF0; IPCSync7 |= ((val & 0x0F00) >> 8); IPCSync9 &= 0xB0FF; IPCSync9 |= (val & 0x4F00); if ((val & 0x2000) && (IPCSync7 & 0x4000)) { SetIRQ(1, IRQ_IPCSync); } return; case 0x04000184: if (val & 0x0008) IPCFIFO9->Clear(); if ((val & 0x0004) && (!(IPCFIFOCnt9 & 0x0004)) && IPCFIFO9->IsEmpty()) SetIRQ(0, IRQ_IPCSendDone); if ((val & 0x0400) && (!(IPCFIFOCnt9 & 0x0400)) && (!IPCFIFO7->IsEmpty())) SetIRQ(0, IRQ_IPCRecv); if (val & 0x4000) IPCFIFOCnt9 &= ~0x4000; IPCFIFOCnt9 = val & 0x8404; return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteSPICnt(val); return; case 0x040001A2: NDSCart::WriteSPIData(val & 0xFF); return; case 0x040001A8: NDSCart::ROMCommand[0] = val & 0xFF; NDSCart::ROMCommand[1] = val >> 8; return; case 0x040001AA: NDSCart::ROMCommand[2] = val & 0xFF; NDSCart::ROMCommand[3] = val >> 8; return; case 0x040001AC: NDSCart::ROMCommand[4] = val & 0xFF; NDSCart::ROMCommand[5] = val >> 8; return; case 0x040001AE: NDSCart::ROMCommand[6] = val & 0xFF; NDSCart::ROMCommand[7] = val >> 8; return; case 0x040001B8: ROMSeed0[4] = val & 0x7F; return; case 0x040001BA: ROMSeed1[4] = val & 0x7F; return; case 0x04000204: ExMemCnt[0] = val; ExMemCnt[1] = (ExMemCnt[1] & 0x007F) | (val & 0xFF80); return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000210: IE[0] = (IE[0] & 0xFFFF0000) | val; return; case 0x04000212: IE[0] = (IE[0] & 0x0000FFFF) | (val << 16); return; // TODO: what happens when writing to IF this way?? case 0x04000240: GPU::MapVRAM_AB(0, val & 0xFF); GPU::MapVRAM_AB(1, val >> 8); return; case 0x04000242: GPU::MapVRAM_CD(2, val & 0xFF); GPU::MapVRAM_CD(3, val >> 8); return; case 0x04000244: GPU::MapVRAM_E(4, val & 0xFF); GPU::MapVRAM_FG(5, val >> 8); return; case 0x04000246: GPU::MapVRAM_FG(6, val & 0xFF); MapSharedWRAM(val >> 8); return; case 0x04000248: GPU::MapVRAM_H(7, val & 0xFF); GPU::MapVRAM_I(8, val >> 8); return; case 0x04000280: DivCnt = val; StartDiv(); return; case 0x040002B0: SqrtCnt = val; StartSqrt(); return; case 0x04000300: if (PostFlag9 & 0x01) val |= 0x01; PostFlag9 = val & 0x03; return; case 0x04000304: PowerControl9 = val; GPU::DisplaySwap(PowerControl9>>15); return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write16(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write16(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU3D::Write16(addr, val); return; } printf("unknown ARM9 IO write16 %08X %04X %08X\n", addr, val, ARM9->R[14]); } void ARM9IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x04000060: GPU3D::Write32(addr, val); return; case 0x04000064: case 0x04000068: GPU::GPU2D_A->Write32(addr, val); return; case 0x0400006C: GPU::GPU2D_A->Write16(addr, val&0xFFFF); return; case 0x0400106C: GPU::GPU2D_B->Write16(addr, val&0xFFFF); return; case 0x040000B0: DMAs[0]->SrcAddr = val; return; case 0x040000B4: DMAs[0]->DstAddr = val; return; case 0x040000B8: DMAs[0]->WriteCnt(val); return; case 0x040000BC: DMAs[1]->SrcAddr = val; return; case 0x040000C0: DMAs[1]->DstAddr = val; return; case 0x040000C4: DMAs[1]->WriteCnt(val); return; case 0x040000C8: DMAs[2]->SrcAddr = val; return; case 0x040000CC: DMAs[2]->DstAddr = val; return; case 0x040000D0: DMAs[2]->WriteCnt(val); return; case 0x040000D4: DMAs[3]->SrcAddr = val; return; case 0x040000D8: DMAs[3]->DstAddr = val; return; case 0x040000DC: DMAs[3]->WriteCnt(val); return; case 0x040000E0: DMA9Fill[0] = val; return; case 0x040000E4: DMA9Fill[1] = val; return; case 0x040000E8: DMA9Fill[2] = val; return; case 0x040000EC: DMA9Fill[3] = val; return; case 0x04000100: Timers[0].Reload = val & 0xFFFF; TimerStart(0, val>>16); return; case 0x04000104: Timers[1].Reload = val & 0xFFFF; TimerStart(1, val>>16); return; case 0x04000108: Timers[2].Reload = val & 0xFFFF; TimerStart(2, val>>16); return; case 0x0400010C: Timers[3].Reload = val & 0xFFFF; TimerStart(3, val>>16); return; case 0x04000130: KeyCnt = val >> 16; return; case 0x04000180: ARM9IOWrite16(addr, val); return; case 0x04000188: if (IPCFIFOCnt9 & 0x8000) { if (IPCFIFO9->IsFull()) IPCFIFOCnt9 |= 0x4000; else { bool wasempty = IPCFIFO9->IsEmpty(); IPCFIFO9->Write(val); if ((IPCFIFOCnt7 & 0x0400) && wasempty) SetIRQ(1, IRQ_IPCRecv); } } return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::WriteSPICnt(val & 0xFFFF); NDSCart::WriteSPIData((val >> 16) & 0xFF); } return; case 0x040001A4: if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteROMCnt(val); return; case 0x040001A8: NDSCart::ROMCommand[0] = val & 0xFF; NDSCart::ROMCommand[1] = (val >> 8) & 0xFF; NDSCart::ROMCommand[2] = (val >> 16) & 0xFF; NDSCart::ROMCommand[3] = val >> 24; return; case 0x040001AC: NDSCart::ROMCommand[4] = val & 0xFF; NDSCart::ROMCommand[5] = (val >> 8) & 0xFF; NDSCart::ROMCommand[6] = (val >> 16) & 0xFF; NDSCart::ROMCommand[7] = val >> 24; return; case 0x040001B0: *(u32*)&ROMSeed0[0] = val; return; case 0x040001B4: *(u32*)&ROMSeed1[0] = val; return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000210: IE[0] = val; return; case 0x04000214: IF[0] &= ~val; GPU3D::CheckFIFOIRQ(); return; case 0x04000240: GPU::MapVRAM_AB(0, val & 0xFF); GPU::MapVRAM_AB(1, (val >> 8) & 0xFF); GPU::MapVRAM_CD(2, (val >> 16) & 0xFF); GPU::MapVRAM_CD(3, val >> 24); return; case 0x04000244: GPU::MapVRAM_E(4, val & 0xFF); GPU::MapVRAM_FG(5, (val >> 8) & 0xFF); GPU::MapVRAM_FG(6, (val >> 16) & 0xFF); MapSharedWRAM(val >> 24); return; case 0x04000248: GPU::MapVRAM_H(7, val & 0xFF); GPU::MapVRAM_I(8, (val >> 8) & 0xFF); return; case 0x04000280: DivCnt = val; StartDiv(); return; case 0x040002B0: SqrtCnt = val; StartSqrt(); return; case 0x04000290: DivNumerator[0] = val; StartDiv(); return; case 0x04000294: DivNumerator[1] = val; StartDiv(); return; case 0x04000298: DivDenominator[0] = val; StartDiv(); return; case 0x0400029C: DivDenominator[1] = val; StartDiv(); return; case 0x040002B8: SqrtVal[0] = val; StartSqrt(); return; case 0x040002BC: SqrtVal[1] = val; StartSqrt(); return; case 0x04000304: PowerControl9 = val & 0xFFFF; GPU::DisplaySwap(PowerControl9>>15); return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write32(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write32(addr, val); return; } if (addr >= 0x04000320 && addr < 0x040006A4) { GPU3D::Write32(addr, val); return; } printf("unknown ARM9 IO write32 %08X %08X\n", addr, val); } u8 ARM7IORead8(u32 addr) { switch (addr) { case 0x04000130: return KeyInput & 0xFF; case 0x04000131: return (KeyInput >> 8) & 0xFF; case 0x04000132: return KeyCnt & 0xFF; case 0x04000133: return KeyCnt >> 8; case 0x04000134: return RCnt & 0xFF; case 0x04000135: return RCnt >> 8; case 0x04000136: return (KeyInput >> 16) & 0xFF; case 0x04000137: return KeyInput >> 24; case 0x04000138: return RTC::Read() & 0xFF; case 0x040001A2: return NDSCart::ReadSPIData(); case 0x040001A8: return NDSCart::ROMCommand[0]; case 0x040001A9: return NDSCart::ROMCommand[1]; case 0x040001AA: return NDSCart::ROMCommand[2]; case 0x040001AB: return NDSCart::ROMCommand[3]; case 0x040001AC: return NDSCart::ROMCommand[4]; case 0x040001AD: return NDSCart::ROMCommand[5]; case 0x040001AE: return NDSCart::ROMCommand[6]; case 0x040001AF: return NDSCart::ROMCommand[7]; case 0x040001C2: return SPI::ReadData(); case 0x04000208: return IME[1]; case 0x04000240: return GPU::VRAMSTAT; case 0x04000241: return WRAMCnt; case 0x04000300: return PostFlag7; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU::Read8(addr); } printf("unknown ARM7 IO read8 %08X\n", addr); return 0; } u16 ARM7IORead16(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[1]; case 0x04000006: return GPU::VCount; case 0x040000B8: return DMAs[4]->Cnt & 0xFFFF; case 0x040000BA: return DMAs[4]->Cnt >> 16; case 0x040000C4: return DMAs[5]->Cnt & 0xFFFF; case 0x040000C6: return DMAs[5]->Cnt >> 16; case 0x040000D0: return DMAs[6]->Cnt & 0xFFFF; case 0x040000D2: return DMAs[6]->Cnt >> 16; case 0x040000DC: return DMAs[7]->Cnt & 0xFFFF; case 0x040000DE: return DMAs[7]->Cnt >> 16; case 0x04000100: return TimerGetCounter(4); case 0x04000102: return Timers[4].Cnt; case 0x04000104: return TimerGetCounter(5); case 0x04000106: return Timers[5].Cnt; case 0x04000108: return TimerGetCounter(6); case 0x0400010A: return Timers[6].Cnt; case 0x0400010C: return TimerGetCounter(7); case 0x0400010E: return Timers[7].Cnt; case 0x04000130: return KeyInput & 0xFFFF; case 0x04000132: return KeyCnt; case 0x04000134: return RCnt; case 0x04000136: return KeyInput >> 16; case 0x04000138: return RTC::Read(); case 0x04000180: return IPCSync7; case 0x04000184: { u16 val = IPCFIFOCnt7; if (IPCFIFO7->IsEmpty()) val |= 0x0001; else if (IPCFIFO7->IsFull()) val |= 0x0002; if (IPCFIFO9->IsEmpty()) val |= 0x0100; else if (IPCFIFO9->IsFull()) val |= 0x0200; return val; } case 0x040001A0: return NDSCart::SPICnt; case 0x040001A2: return NDSCart::ReadSPIData(); case 0x040001A8: return NDSCart::ROMCommand[0] | (NDSCart::ROMCommand[1] << 8); case 0x040001AA: return NDSCart::ROMCommand[2] | (NDSCart::ROMCommand[3] << 8); case 0x040001AC: return NDSCart::ROMCommand[4] | (NDSCart::ROMCommand[5] << 8); case 0x040001AE: return NDSCart::ROMCommand[6] | (NDSCart::ROMCommand[7] << 8); case 0x040001C0: return SPI::Cnt; case 0x040001C2: return SPI::ReadData(); case 0x04000204: return ExMemCnt[1]; case 0x04000208: return IME[1]; case 0x04000210: return IE[1] & 0xFFFF; case 0x04000212: return IE[1] >> 16; case 0x04000300: return PostFlag7; case 0x04000304: return PowerControl7; case 0x04000308: return ARM7BIOSProt; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU::Read16(addr); } printf("unknown ARM7 IO read16 %08X %08X\n", addr, ARM9->R[15]); return 0; } u32 ARM7IORead32(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[1] | (GPU::VCount << 16); case 0x040000B0: return DMAs[4]->SrcAddr; case 0x040000B4: return DMAs[4]->DstAddr; case 0x040000B8: return DMAs[4]->Cnt; case 0x040000BC: return DMAs[5]->SrcAddr; case 0x040000C0: return DMAs[5]->DstAddr; case 0x040000C4: return DMAs[5]->Cnt; case 0x040000C8: return DMAs[6]->SrcAddr; case 0x040000CC: return DMAs[6]->DstAddr; case 0x040000D0: return DMAs[6]->Cnt; case 0x040000D4: return DMAs[7]->SrcAddr; case 0x040000D8: return DMAs[7]->DstAddr; case 0x040000DC: return DMAs[7]->Cnt; case 0x04000100: return TimerGetCounter(4) | (Timers[4].Cnt << 16); case 0x04000104: return TimerGetCounter(5) | (Timers[5].Cnt << 16); case 0x04000108: return TimerGetCounter(6) | (Timers[6].Cnt << 16); case 0x0400010C: return TimerGetCounter(7) | (Timers[7].Cnt << 16); case 0x04000130: return (KeyInput & 0xFFFF) | (KeyCnt << 16); case 0x04000134: return RCnt | (KeyCnt & 0xFFFF0000); case 0x04000138: return RTC::Read(); case 0x04000180: return IPCSync7; case 0x040001A0: return NDSCart::SPICnt | (NDSCart::ReadSPIData() << 16); case 0x040001A4: return NDSCart::ROMCnt; case 0x040001A8: return NDSCart::ROMCommand[0] | (NDSCart::ROMCommand[1] << 8) | (NDSCart::ROMCommand[2] << 16) | (NDSCart::ROMCommand[3] << 24); case 0x040001AC: return NDSCart::ROMCommand[4] | (NDSCart::ROMCommand[5] << 8) | (NDSCart::ROMCommand[6] << 16) | (NDSCart::ROMCommand[7] << 24); case 0x040001C0: return SPI::Cnt | (SPI::ReadData() << 16); case 0x04000208: return IME[1]; case 0x04000210: return IE[1]; case 0x04000214: return IF[1]; case 0x04000308: return ARM7BIOSProt; case 0x04100000: if (IPCFIFOCnt7 & 0x8000) { u32 ret; if (IPCFIFO9->IsEmpty()) { IPCFIFOCnt7 |= 0x4000; ret = IPCFIFO9->Peek(); } else { ret = IPCFIFO9->Read(); if (IPCFIFO9->IsEmpty() && (IPCFIFOCnt9 & 0x0004)) SetIRQ(0, IRQ_IPCSendDone); } return ret; } else return IPCFIFO9->Peek(); case 0x04100010: if (ExMemCnt[0] & (1<<11)) return NDSCart::ReadROMData(); return 0; } if (addr >= 0x04000400 && addr < 0x04000520) { return SPU::Read32(addr); } printf("unknown ARM7 IO read32 %08X\n", addr); return 0; } void ARM7IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x04000132: KeyCnt = (KeyCnt & 0xFF00) | val; return; case 0x04000133: KeyCnt = (KeyCnt & 0x00FF) | (val << 8); return; case 0x04000134: RCnt = (RCnt & 0xFF00) | val; return; case 0x04000135: RCnt = (RCnt & 0x00FF) | (val << 8); return; case 0x04000138: RTC::Write(val, true); return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) { NDSCart::WriteSPICnt((NDSCart::SPICnt & 0xFF00) | val); } return; case 0x040001A1: if (ExMemCnt[0] & (1<<11)) { NDSCart::WriteSPICnt((NDSCart::SPICnt & 0x00FF) | (val << 8)); } return; case 0x040001A2: NDSCart::WriteSPIData(val); return; case 0x040001A8: NDSCart::ROMCommand[0] = val; return; case 0x040001A9: NDSCart::ROMCommand[1] = val; return; case 0x040001AA: NDSCart::ROMCommand[2] = val; return; case 0x040001AB: NDSCart::ROMCommand[3] = val; return; case 0x040001AC: NDSCart::ROMCommand[4] = val; return; case 0x040001AD: NDSCart::ROMCommand[5] = val; return; case 0x040001AE: NDSCart::ROMCommand[6] = val; return; case 0x040001AF: NDSCart::ROMCommand[7] = val; return; case 0x040001C2: SPI::WriteData(val); return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000300: if (ARM7->R[15] >= 0x4000) return; if (!(PostFlag7 & 0x01)) PostFlag7 = val & 0x01; return; case 0x04000301: if (val == 0x80) ARM7->Halt(1); return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU::Write8(addr, val); return; } printf("unknown ARM7 IO write8 %08X %02X\n", addr, val); } void ARM7IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000004: GPU::SetDispStat(1, val); return; case 0x04000006: GPU::SetVCount(val); return; case 0x040000B8: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0xFFFF0000) | val); return; case 0x040000BA: DMAs[4]->WriteCnt((DMAs[4]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000C4: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0xFFFF0000) | val); return; case 0x040000C6: DMAs[5]->WriteCnt((DMAs[5]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000D0: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0xFFFF0000) | val); return; case 0x040000D2: DMAs[6]->WriteCnt((DMAs[6]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x040000DC: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0xFFFF0000) | val); return; case 0x040000DE: DMAs[7]->WriteCnt((DMAs[7]->Cnt & 0x0000FFFF) | (val << 16)); return; case 0x04000100: Timers[4].Reload = val; return; case 0x04000102: TimerStart(4, val); return; case 0x04000104: Timers[5].Reload = val; return; case 0x04000106: TimerStart(5, val); return; case 0x04000108: Timers[6].Reload = val; return; case 0x0400010A: TimerStart(6, val); return; case 0x0400010C: Timers[7].Reload = val; return; case 0x0400010E: TimerStart(7, val); return; case 0x04000132: KeyCnt = val; return; case 0x04000134: RCnt = val; return; case 0x04000138: RTC::Write(val, false); return; case 0x04000180: IPCSync9 &= 0xFFF0; IPCSync9 |= ((val & 0x0F00) >> 8); IPCSync7 &= 0xB0FF; IPCSync7 |= (val & 0x4F00); if ((val & 0x2000) && (IPCSync9 & 0x4000)) { SetIRQ(0, IRQ_IPCSync); } return; case 0x04000184: if (val & 0x0008) IPCFIFO7->Clear(); if ((val & 0x0004) && (!(IPCFIFOCnt7 & 0x0004)) && IPCFIFO7->IsEmpty()) SetIRQ(1, IRQ_IPCSendDone); if ((val & 0x0400) && (!(IPCFIFOCnt7 & 0x0400)) && (!IPCFIFO9->IsEmpty())) SetIRQ(1, IRQ_IPCRecv); if (val & 0x4000) IPCFIFOCnt7 &= ~0x4000; IPCFIFOCnt7 = val & 0x8404; return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) NDSCart::WriteSPICnt(val); return; case 0x040001A2: NDSCart::WriteSPIData(val & 0xFF); return; case 0x040001A8: NDSCart::ROMCommand[0] = val & 0xFF; NDSCart::ROMCommand[1] = val >> 8; return; case 0x040001AA: NDSCart::ROMCommand[2] = val & 0xFF; NDSCart::ROMCommand[3] = val >> 8; return; case 0x040001AC: NDSCart::ROMCommand[4] = val & 0xFF; NDSCart::ROMCommand[5] = val >> 8; return; case 0x040001AE: NDSCart::ROMCommand[6] = val & 0xFF; NDSCart::ROMCommand[7] = val >> 8; return; case 0x040001B8: ROMSeed0[12] = val & 0x7F; return; case 0x040001BA: ROMSeed1[12] = val & 0x7F; return; case 0x040001C0: SPI::WriteCnt(val); return; case 0x040001C2: SPI::WriteData(val & 0xFF); return; case 0x04000204: ExMemCnt[1] = (ExMemCnt[1] & 0xFF80) | (val & 0x007F); return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000210: IE[1] = (IE[1] & 0xFFFF0000) | val; return; case 0x04000212: IE[1] = (IE[1] & 0x0000FFFF) | (val << 16); return; // TODO: what happens when writing to IF this way?? case 0x04000300: if (ARM7->R[15] >= 0x4000) return; if (!(PostFlag7 & 0x01)) PostFlag7 = val & 0x01; return; case 0x04000304: PowerControl7 = val; return; case 0x04000308: if (ARM7BIOSProt == 0) ARM7BIOSProt = val & 0xFFFE; return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU::Write16(addr, val); return; } printf("unknown ARM7 IO write16 %08X %04X\n", addr, val); } void ARM7IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x040000B0: DMAs[4]->SrcAddr = val; return; case 0x040000B4: DMAs[4]->DstAddr = val; return; case 0x040000B8: DMAs[4]->WriteCnt(val); return; case 0x040000BC: DMAs[5]->SrcAddr = val; return; case 0x040000C0: DMAs[5]->DstAddr = val; return; case 0x040000C4: DMAs[5]->WriteCnt(val); return; case 0x040000C8: DMAs[6]->SrcAddr = val; return; case 0x040000CC: DMAs[6]->DstAddr = val; return; case 0x040000D0: DMAs[6]->WriteCnt(val); return; case 0x040000D4: DMAs[7]->SrcAddr = val; return; case 0x040000D8: DMAs[7]->DstAddr = val; return; case 0x040000DC: DMAs[7]->WriteCnt(val); return; case 0x04000100: Timers[4].Reload = val & 0xFFFF; TimerStart(4, val>>16); return; case 0x04000104: Timers[5].Reload = val & 0xFFFF; TimerStart(5, val>>16); return; case 0x04000108: Timers[6].Reload = val & 0xFFFF; TimerStart(6, val>>16); return; case 0x0400010C: Timers[7].Reload = val & 0xFFFF; TimerStart(7, val>>16); return; case 0x04000130: KeyCnt = val >> 16; return; case 0x04000134: RCnt = val & 0xFFFF; return; case 0x04000138: RTC::Write(val & 0xFFFF, false); return; case 0x04000180: ARM7IOWrite16(addr, val); return; case 0x04000188: if (IPCFIFOCnt7 & 0x8000) { if (IPCFIFO7->IsFull()) IPCFIFOCnt7 |= 0x4000; else { bool wasempty = IPCFIFO7->IsEmpty(); IPCFIFO7->Write(val); if ((IPCFIFOCnt9 & 0x0400) && wasempty) SetIRQ(0, IRQ_IPCRecv); } } return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) { NDSCart::WriteSPICnt(val & 0xFFFF); NDSCart::WriteSPIData((val >> 16) & 0xFF); } return; case 0x040001A4: if (ExMemCnt[0] & (1<<11)) NDSCart::WriteROMCnt(val); return; case 0x040001A8: NDSCart::ROMCommand[0] = val & 0xFF; NDSCart::ROMCommand[1] = (val >> 8) & 0xFF; NDSCart::ROMCommand[2] = (val >> 16) & 0xFF; NDSCart::ROMCommand[3] = val >> 24; return; case 0x040001AC: NDSCart::ROMCommand[4] = val & 0xFF; NDSCart::ROMCommand[5] = (val >> 8) & 0xFF; NDSCart::ROMCommand[6] = (val >> 16) & 0xFF; NDSCart::ROMCommand[7] = val >> 24; return; case 0x040001B0: *(u32*)&ROMSeed0[8] = val; return; case 0x040001B4: *(u32*)&ROMSeed1[8] = val; return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000210: IE[1] = val; return; case 0x04000214: IF[1] &= ~val; return; case 0x04000308: if (ARM7BIOSProt == 0) ARM7BIOSProt = val & 0xFFFE; return; } if (addr >= 0x04000400 && addr < 0x04000520) { SPU::Write32(addr, val); return; } printf("unknown ARM7 IO write32 %08X %08X\n", addr, val); } }