/* Copyright 2016-2017 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "NDS.h" #include "ARM.h" #include "CP15.h" #include "NDSCart.h" #include "DMA.h" #include "FIFO.h" #include "GPU.h" #include "SPI.h" #include "RTC.h" #include "Wifi.h" namespace NDS { // TODO LIST // * stick all the variables in a big structure? // would make it easier to deal with savestates // * move ARM9 TCM to the ARM class (closer to the real thing, and handles "DMA can't access TCM" nicely) SchedEvent SchedBuffer[SCHED_BUF_LEN]; SchedEvent* SchedQueue; bool NeedReschedule; ARM* ARM9; ARM* ARM7; s32 ARM9Cycles, ARM7Cycles; s32 CompensatedCycles; s32 SchedCycles; u8 ARM9BIOS[0x1000]; u8 ARM7BIOS[0x4000]; u8 MainRAM[0x400000]; u8 SharedWRAM[0x8000]; u8 WRAMCnt; u8* SWRAM_ARM9; u8* SWRAM_ARM7; u32 SWRAM_ARM9Mask; u32 SWRAM_ARM7Mask; u8 ARM7WRAM[0x10000]; u8 ARM9ITCM[0x8000]; u32 ARM9ITCMSize; u8 ARM9DTCM[0x4000]; u32 ARM9DTCMBase, ARM9DTCMSize; u16 ExMemCnt[2]; u8 ROMSeed0[2*8]; u8 ROMSeed1[2*8]; // IO shit u32 IME[2]; u32 IE[2], IF[2]; u8 PostFlag9; u8 PostFlag7; u16 PowerControl9; u16 PowerControl7; Timer Timers[8]; DMA* DMAs[8]; u32 DMA9Fill[4]; u16 IPCSync9, IPCSync7; u16 IPCFIFOCnt9, IPCFIFOCnt7; FIFO* IPCFIFO9; // FIFO in which the ARM9 writes FIFO* IPCFIFO7; u16 DivCnt; u32 DivNumerator[2]; u32 DivDenominator[2]; u32 DivQuotient[2]; u32 DivRemainder[2]; u32 KeyInput; u16 _soundbias; // temp bool Running; void Init() { ARM9 = new ARM(0); ARM7 = new ARM(1); DMAs[0] = new DMA(0, 0); DMAs[1] = new DMA(0, 1); DMAs[2] = new DMA(0, 2); DMAs[3] = new DMA(0, 3); DMAs[4] = new DMA(1, 0); DMAs[5] = new DMA(1, 1); DMAs[6] = new DMA(1, 2); DMAs[7] = new DMA(1, 3); IPCFIFO9 = new FIFO(16); IPCFIFO7 = new FIFO(16); NDSCart::Init(); GPU::Init(); SPI::Init(); RTC::Init(); Reset(); } // temp void LoadROM() { FILE* f; f = fopen("rom/armwrestler.nds", "rb"); //f = fopen("rom/zorp.nds", "rb"); u32 bootparams[8]; fseek(f, 0x20, SEEK_SET); fread(bootparams, 8, 4, f); printf("ARM9: offset=%08X entry=%08X RAM=%08X size=%08X\n", bootparams[0], bootparams[1], bootparams[2], bootparams[3]); printf("ARM7: offset=%08X entry=%08X RAM=%08X size=%08X\n", bootparams[4], bootparams[5], bootparams[6], bootparams[7]); fseek(f, bootparams[0], SEEK_SET); for (u32 i = 0; i < bootparams[3]; i+=4) { u32 tmp; fread(&tmp, 4, 1, f); ARM9Write32(bootparams[2]+i, tmp); } fseek(f, bootparams[4], SEEK_SET); for (u32 i = 0; i < bootparams[7]; i+=4) { u32 tmp; fread(&tmp, 4, 1, f); ARM7Write32(bootparams[6]+i, tmp); } fclose(f); CP15::Write(0x910, 0x0300000A); CP15::Write(0x911, 0x00000020); CP15::Write(0x100, 0x00050000); ARM9->JumpTo(bootparams[1]); ARM7->JumpTo(bootparams[5]); } void Reset() { FILE* f; u32 i; f = fopen("bios9.bin", "rb"); if (!f) printf("ARM9 BIOS not found\n"); else { fseek(f, 0, SEEK_SET); fread(ARM9BIOS, 0x1000, 1, f); printf("ARM9 BIOS loaded: %08X\n", ARM9Read32(0xFFFF0000)); fclose(f); } f = fopen("bios7.bin", "rb"); if (!f) printf("ARM7 BIOS not found\n"); else { fseek(f, 0, SEEK_SET); fread(ARM7BIOS, 0x4000, 1, f); printf("ARM7 BIOS loaded: %08X\n", ARM7Read32(0x00000000)); fclose(f); } memset(MainRAM, 0, 0x400000); memset(SharedWRAM, 0, 0x8000); memset(ARM7WRAM, 0, 0x10000); memset(ARM9ITCM, 0, 0x8000); memset(ARM9DTCM, 0, 0x4000); MapSharedWRAM(0); ARM9ITCMSize = 0; ARM9DTCMBase = 0xFFFFFFFF; ARM9DTCMSize = 0; ExMemCnt[0] = 0; ExMemCnt[1] = 0; memset(ROMSeed0, 0, 2*8); memset(ROMSeed1, 0, 2*8); IME[0] = 0; IME[1] = 0; PostFlag9 = 0x00; PostFlag7 = 0x00; PowerControl9 = 0x0001; PowerControl7 = 0x0001; IPCSync9 = 0; IPCSync7 = 0; IPCFIFOCnt9 = 0; IPCFIFOCnt7 = 0; IPCFIFO9->Clear(); IPCFIFO7->Clear(); DivCnt = 0; ARM9->Reset(); ARM7->Reset(); CP15::Reset(); memset(Timers, 0, 8*sizeof(Timer)); for (i = 0; i < 8; i++) DMAs[i]->Reset(); memset(DMA9Fill, 0, 4*4); NDSCart::Reset(); GPU::Reset(); SPI::Reset(); RTC::Reset(); Wifi::Reset(); memset(SchedBuffer, 0, sizeof(SchedEvent)*SCHED_BUF_LEN); SchedQueue = NULL; ARM9Cycles = 0; ARM7Cycles = 0; SchedCycles = 0; KeyInput = 0x007F03FF; _soundbias = 0; // test //LoadROM(); //LoadFirmware(); NDSCart::LoadROM("rom/nsmb.nds"); Running = true; // hax } static int fnum = 0; void RunFrame() { s32 framecycles = 560190<<1; const s32 maxcycles = 16; if (!Running) return; // dorp fnum++; //printf("frame %d\n", fnum); GPU::StartFrame(); while (Running && framecycles>0) { s32 cyclestorun = maxcycles; if (SchedQueue) { if (SchedQueue->Delay < cyclestorun) cyclestorun = SchedQueue->Delay; } //CompensatedCycles = ARM9Cycles; s32 torun9 = cyclestorun - ARM9Cycles; s32 c9 = ARM9->Execute(torun9); ARM9Cycles = c9 - torun9; //c9 -= CompensatedCycles; s32 torun7 = (c9 - ARM7Cycles) & ~1; s32 c7 = ARM7->Execute(torun7 >> 1) << 1; ARM7Cycles = c7 - torun7; RunEvents(c9); framecycles -= cyclestorun; } //printf("frame end\n"); } SchedEvent* ScheduleEvent(s32 Delay, void (*Func)(u32), u32 Param) { // find a free entry u32 entry = -1; for (int i = 0; i < SCHED_BUF_LEN; i++) { if (SchedBuffer[i].Func == NULL) { entry = i; break; } } if (entry == -1) { printf("!! SCHEDULER BUFFER FULL\n"); return NULL; } SchedEvent* evt = &SchedBuffer[entry]; evt->Func = Func; evt->Param = Param; Delay += SchedCycles; SchedEvent* cur = SchedQueue; SchedEvent* prev = NULL; for (;;) { if (cur == NULL) break; if (cur->Delay > Delay) break; Delay -= cur->Delay; prev = cur; cur = cur->NextEvent; } // so, we found it. we insert our event before 'cur'. evt->Delay = Delay; if (cur == NULL) { if (prev == NULL) { // list empty SchedQueue = evt; evt->PrevEvent = NULL; evt->NextEvent = NULL; } else { // inserting at the end of the list evt->PrevEvent = prev; evt->NextEvent = NULL; prev->NextEvent = evt; } } else { evt->NextEvent = cur; evt->PrevEvent = cur->PrevEvent; if (evt->PrevEvent) evt->PrevEvent->NextEvent = evt; else SchedQueue = evt; cur->PrevEvent = evt; cur->Delay -= evt->Delay; } return evt; } void CancelEvent(SchedEvent* event) { event->Func = NULL; // unlink if (event->PrevEvent) event->PrevEvent->NextEvent = event->NextEvent; else SchedQueue = event->NextEvent; if (event->NextEvent) event->NextEvent->PrevEvent = event->PrevEvent; } void RunEvents(s32 cycles) { SchedCycles += cycles; while (SchedQueue && SchedQueue->Delay <= SchedCycles) { void (*func)(u32) = SchedQueue->Func; u32 param = SchedQueue->Param; SchedQueue->Func = NULL; SchedCycles -= SchedQueue->Delay; SchedQueue = SchedQueue->NextEvent; if (SchedQueue) SchedQueue->PrevEvent = NULL; func(param); } } void CompensateARM7() {return; s32 c9 = ARM9->Cycles - CompensatedCycles; CompensatedCycles = ARM9->Cycles; s32 c7 = ARM7->Execute((c9 - ARM7Cycles) >> 1) << 1; ARM7Cycles = c7 - c9; RunEvents(c9); } void PressKey(u32 key) { KeyInput &= ~(1 << key); } void ReleaseKey(u32 key) { KeyInput |= (1 << key); } void Halt() { printf("Halt()\n"); Running = false; } void MapSharedWRAM(u8 val) { WRAMCnt = val; switch (WRAMCnt & 0x3) { case 0: SWRAM_ARM9 = &SharedWRAM[0]; SWRAM_ARM9Mask = 0x7FFF; SWRAM_ARM7 = NULL; SWRAM_ARM7Mask = 0; break; case 1: SWRAM_ARM9 = &SharedWRAM[0x4000]; SWRAM_ARM9Mask = 0x3FFF; SWRAM_ARM7 = &SharedWRAM[0]; SWRAM_ARM7Mask = 0x3FFF; break; case 2: SWRAM_ARM9 = &SharedWRAM[0]; SWRAM_ARM9Mask = 0x3FFF; SWRAM_ARM7 = &SharedWRAM[0x4000]; SWRAM_ARM7Mask = 0x3FFF; break; case 3: SWRAM_ARM9 = NULL; SWRAM_ARM9Mask = 0; SWRAM_ARM7 = &SharedWRAM[0]; SWRAM_ARM7Mask = 0x7FFF; break; } } void TriggerIRQ(u32 cpu, u32 irq) { irq = 1 << irq; IF[cpu] |= irq; // this is redundant if (!(IME[cpu] & 0x1)) return; (cpu?ARM7:ARM9)->TriggerIRQ(); } bool HaltInterrupted(u32 cpu) { if (cpu == 0) { if (!(IME[0] & 0x1)) return false; } if (IF[cpu] & IE[cpu]) return true; return false; } void CheckDMAs(u32 cpu, u32 mode) { cpu <<= 2; DMAs[cpu+0]->StartIfNeeded(mode); DMAs[cpu+1]->StartIfNeeded(mode); DMAs[cpu+2]->StartIfNeeded(mode); DMAs[cpu+3]->StartIfNeeded(mode); } const s32 TimerPrescaler[4] = {2, 128, 512, 2048}; void TimerIncrement(u32 param) { Timer* timer = &Timers[param]; u32 tid = param & 0x3; u32 cpu = param >> 2; for (;;) { timer->Counter++; if (tid == (param&0x3)) timer->Event = ScheduleEvent(TimerPrescaler[timer->Control&0x3], TimerIncrement, param); if (timer->Counter == 0) { timer->Counter = timer->Reload; if (timer->Control & (1<<6)) { TriggerIRQ(cpu, IRQ_Timer0 + tid); //if (cpu==1) printf("Timer%d IRQ %04X\n", tid, timer->Control); } // cascade if (tid == 3) break; timer++; if ((timer->Control & 0x84) != 0x84) break; tid++; continue; } break; } } void TimerStart(u32 id, u16 cnt) { Timer* timer = &Timers[id]; u16 curstart = timer->Control & (1<<7); u16 newstart = cnt & (1<<7); timer->Control = cnt; if ((!curstart) && newstart) { timer->Counter = timer->Reload; // start the timer, if it's not a cascading timer if (!(cnt & (1<<2))) timer->Event = ScheduleEvent(TimerPrescaler[cnt&0x3], TimerIncrement, id); else timer->Event = NULL; } else if (curstart && (!newstart)) { if (timer->Event) CancelEvent(timer->Event); } } void StartDiv() { // TODO: division isn't instant! DivCnt &= ~0x2000; switch (DivCnt & 0x0003) { case 0x0000: { s32 num = (s32)DivNumerator[0]; s32 den = (s32)DivDenominator[0]; if (den == 0) { DivQuotient[0] = (num<0) ? 1:-1; DivQuotient[1] = (num<0) ? -1:1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x80000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x80000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; case 0x0001: case 0x0003: { s64 num = *(s64*)&DivNumerator[0]; s32 den = (s32)DivDenominator[0]; if (den == 0) { *(s64*)&DivQuotient[0] = (num<0) ? 1:-1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x8000000000000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x8000000000000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; case 0x0002: { s64 num = *(s64*)&DivNumerator[0]; s64 den = *(s64*)&DivDenominator[0]; if (den == 0) { *(s64*)&DivQuotient[0] = (num<0) ? 1:-1; *(s64*)&DivRemainder[0] = num; } else if (num == -0x8000000000000000 && den == -1) { *(s64*)&DivQuotient[0] = 0x8000000000000000; } else { *(s64*)&DivQuotient[0] = (s64)(num / den); *(s64*)&DivRemainder[0] = (s64)(num % den); } } break; } if ((DivDenominator[0] | DivDenominator[1]) == 0) DivCnt |= 0x2000; } void debug(u32 param) { printf("ARM9 PC=%08X\n", ARM9->R[15]); printf("ARM7 PC=%08X\n", ARM7->R[15]); } u8 ARM9Read8(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u8*)&ARM9BIOS[addr & 0xFFF]; } if (addr < ARM9ITCMSize) { return *(u8*)&ARM9ITCM[addr & 0x7FFF]; } if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize)) { return *(u8*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u8*)&MainRAM[addr & 0x3FFFFF]; case 0x03000000: if (SWRAM_ARM9) return *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; else return 0; case 0x04000000: return ARM9IORead8(addr); case 0x05000000: return *(u8*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: { u32 chunk = (addr >> 14) & 0x7F; u8* vram = NULL; switch (addr & 0x00E00000) { case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break; case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break; case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break; case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break; case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break; } if (vram) return *(u8*)&vram[addr & 0x3FFF]; } return 0; case 0x07000000: return *(u8*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: return 0xFF; } printf("unknown arm9 read8 %08X\n", addr); return 0; } u16 ARM9Read16(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u16*)&ARM9BIOS[addr & 0xFFF]; } if (addr < ARM9ITCMSize) { return *(u16*)&ARM9ITCM[addr & 0x7FFF]; } if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize)) { return *(u16*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF]; } switch (addr & 0xFF000000) { case 0x02000000: return *(u16*)&MainRAM[addr & 0x3FFFFF]; case 0x03000000: if (SWRAM_ARM9) return *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; else return 0; case 0x04000000: return ARM9IORead16(addr); case 0x05000000: return *(u16*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: { u32 chunk = (addr >> 14) & 0x7F; u8* vram = NULL; switch (addr & 0x00E00000) { case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break; case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break; case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break; case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break; case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break; } if (vram) return *(u16*)&vram[addr & 0x3FFF]; } return 0; case 0x07000000: return *(u16*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: return 0xFFFF; } printf("unknown arm9 read16 %08X\n", addr); return 0; } u32 ARM9Read32(u32 addr) { if ((addr & 0xFFFFF000) == 0xFFFF0000) { return *(u32*)&ARM9BIOS[addr & 0xFFF]; } if (addr < ARM9ITCMSize) { return *(u32*)&ARM9ITCM[addr & 0x7FFF]; } if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize)) { return *(u32*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF]; } if (addr >= 0xFFFF1000) { printf("!!!!!!!!!!!!!\n"); Halt(); /*FILE* f = fopen("ram.bin", "wb"); fwrite(MainRAM, 0x400000, 1, f); fclose(f); fopen("wram.bin", "wb"); fwrite(ARM7WRAM, 0x10000, 1, f); fclose(f); fopen("swram.bin", "wb"); fwrite(ARM7WRAM, 0x8000, 1, f); fclose(f);*/ } switch (addr & 0xFF000000) { case 0x02000000: return *(u32*)&MainRAM[addr & 0x3FFFFF]; case 0x03000000: if (SWRAM_ARM9) return *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask]; else return 0; case 0x04000000: return ARM9IORead32(addr); case 0x05000000: return *(u32*)&GPU::Palette[addr & 0x7FF]; case 0x06000000: { u32 chunk = (addr >> 14) & 0x7F; u8* vram = NULL; switch (addr & 0x00E00000) { case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break; case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break; case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break; case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break; case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break; } if (vram) return *(u32*)&vram[addr & 0x3FFF]; } return 0; case 0x07000000: return *(u32*)&GPU::OAM[addr & 0x7FF]; case 0x08000000: case 0x09000000: return 0xFFFFFFFF; } printf("unknown arm9 read32 %08X | %08X %08X %08X\n", addr, ARM9->R[15], ARM9->R[12], ARM9Read32(0x027FF820)); return 0; } void ARM9Write8(u32 addr, u8 val) { if (addr < ARM9ITCMSize) { *(u8*)&ARM9ITCM[addr & 0x7FFF] = val; return; } if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize)) { *(u8*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF] = val; return; } switch (addr & 0xFF000000) { case 0x02000000: *(u8*)&MainRAM[addr & 0x3FFFFF] = val; return; case 0x03000000: if (SWRAM_ARM9) *(u8*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; return; case 0x04000000: ARM9IOWrite8(addr, val); return; case 0x05000000: case 0x06000000: case 0x07000000: return; } printf("unknown arm9 write8 %08X %02X\n", addr, val); } void ARM9Write16(u32 addr, u16 val) { if (addr == ARM9->R[15]) printf("!!!!!!!!!!!!9999 %08X %04X\n", addr, val); if (addr < ARM9ITCMSize) { *(u16*)&ARM9ITCM[addr & 0x7FFF] = val; return; } if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize)) { *(u16*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF] = val; return; } switch (addr & 0xFF000000) { case 0x02000000: *(u16*)&MainRAM[addr & 0x3FFFFF] = val; return; case 0x03000000: if (SWRAM_ARM9) *(u16*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; return; case 0x04000000: ARM9IOWrite16(addr, val); return; case 0x05000000: *(u16*)&GPU::Palette[addr & 0x7FF] = val; return; case 0x06000000: { u32 chunk = (addr >> 14) & 0x7F; u8* vram = NULL; switch (addr & 0x00E00000) { case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break; case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break; case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break; case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break; case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break; } if (vram) *(u16*)&vram[addr & 0x3FFF] = val; } return; case 0x07000000: *(u16*)&GPU::OAM[addr & 0x7FF] = val; return; } printf("unknown arm9 write16 %08X %04X\n", addr, val); } void ARM9Write32(u32 addr, u32 val) { if (addr == ARM9->R[15]) printf("!!!!!!!!!!!!9999 %08X %08X\n", addr, val); if (addr < ARM9ITCMSize) { *(u32*)&ARM9ITCM[addr & 0x7FFF] = val; return; } if (addr >= ARM9DTCMBase && addr < (ARM9DTCMBase + ARM9DTCMSize)) { *(u32*)&ARM9DTCM[(addr - ARM9DTCMBase) & 0x3FFF] = val; return; } switch (addr & 0xFF000000) { case 0x02000000: *(u32*)&MainRAM[addr & 0x3FFFFF] = val; return; case 0x03000000: if (SWRAM_ARM9) *(u32*)&SWRAM_ARM9[addr & SWRAM_ARM9Mask] = val; return; case 0x04000000: ARM9IOWrite32(addr, val); return; case 0x05000000: *(u32*)&GPU::Palette[addr & 0x7FF] = val; return; case 0x06000000: { u32 chunk = (addr >> 14) & 0x7F; u8* vram = NULL; switch (addr & 0x00E00000) { case 0x00000000: vram = GPU::VRAM_ABG[chunk]; break; case 0x00200000: vram = GPU::VRAM_BBG[chunk]; break; case 0x00400000: vram = GPU::VRAM_AOBJ[chunk]; break; case 0x00600000: vram = GPU::VRAM_BOBJ[chunk]; break; case 0x00800000: vram = GPU::VRAM_LCD[chunk]; break; } if (vram) *(u32*)&vram[addr & 0x3FFF] = val; } return; case 0x07000000: *(u32*)&GPU::OAM[addr & 0x7FF] = val; return; } printf("unknown arm9 write32 %08X %08X | %08X\n", addr, val, ARM9->R[15]); } u8 ARM7Read8(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] > 0x4000) printf("BAD BIOS READ8 %08X FROM %08X\n", addr, ARM7->R[15]); return *(u8*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: return *(u8*)&MainRAM[addr & 0x3FFFFF]; case 0x03000000: if (SWRAM_ARM7) return *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; else return *(u8*)&ARM7WRAM[addr & 0xFFFF]; case 0x03800000: return *(u8*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead8(addr); case 0x06000000: case 0x06800000: { u32 chunk = (addr >> 17) & 0x1; u8* vram = GPU::VRAM_ARM7[chunk]; if (vram) return *(u8*)&vram[addr & 0x3FFF]; } return 0; } printf("unknown arm7 read8 %08X %08X %08X/%08X\n", addr, ARM7->R[15], ARM7->R[0], ARM7->R[1]); return 0; } u16 ARM7Read16(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] > 0x4000) printf("BAD BIOS READ16 %08X FROM %08X\n", addr, ARM7->R[15]); return *(u16*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: return *(u16*)&MainRAM[addr & 0x3FFFFF]; case 0x03000000: if (SWRAM_ARM7) return *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; else return *(u16*)&ARM7WRAM[addr & 0xFFFF]; case 0x03800000: return *(u16*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead16(addr); case 0x04800000: return Wifi::Read(addr); case 0x06000000: case 0x06800000: { u32 chunk = (addr >> 17) & 0x1; u8* vram = GPU::VRAM_ARM7[chunk]; if (vram) return *(u16*)&vram[addr & 0x3FFF]; } return 0; } printf("unknown arm7 read16 %08X %08X\n", addr, ARM7->R[15]); return 0; } u32 ARM7Read32(u32 addr) { if (addr < 0x00004000) { if (ARM7->R[15] > 0x4000) { printf("BAD BIOS READ32 %08X FROM %08X | %08X %08X\n", addr, ARM7->R[15], ARM7Read32(0x03807758+12), ARM7Read32(0x03807758+4)); Halt(); return 0xFFFFFFFF; } //if (addr < 0x1204 && ARM7->R[15] >= 0x1204) printf("BAD BIOS READ32 %08X FROM %08X\n", addr, ARM7->R[15]); return *(u32*)&ARM7BIOS[addr]; } switch (addr & 0xFF800000) { case 0x02000000: return *(u32*)&MainRAM[addr & 0x3FFFFF]; case 0x03000000: if (SWRAM_ARM7) return *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask]; else return *(u32*)&ARM7WRAM[addr & 0xFFFF]; case 0x03800000: return *(u32*)&ARM7WRAM[addr & 0xFFFF]; case 0x04000000: return ARM7IORead32(addr); case 0x06000000: case 0x06800000: { u32 chunk = (addr >> 17) & 0x1; u8* vram = GPU::VRAM_ARM7[chunk]; if (vram) return *(u32*)&vram[addr & 0x3FFF]; } return 0; } printf("unknown arm7 read32 %08X | %08X\n", addr, ARM7->R[15]); return 0; } void ARM7Write8(u32 addr, u8 val) { if (addr==0x3807764) printf("DERP! %02X %08X\n", val, ARM7->R[15]); if (addr==0x27FFCE4) printf("FIRMWARE STATUS8 %04X %08X\n", val, ARM7->R[15]); switch (addr & 0xFF800000) { case 0x02000000: *(u8*)&MainRAM[addr & 0x3FFFFF] = val; return; case 0x03000000: if (SWRAM_ARM7) *(u8*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; else *(u8*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x03800000: *(u8*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite8(addr, val); return; case 0x06000000: case 0x06800000: { u32 chunk = (addr >> 17) & 0x1; u8* vram = GPU::VRAM_ARM7[chunk]; if (vram) *(u8*)&vram[addr & 0x3FFF] = val; } return; } printf("unknown arm7 write8 %08X %02X | %08X | %08X %08X %08X %08X\n", addr, val, ARM7->R[15], IME[1], IE[1], ARM7->R[0], ARM7->R[1]); } void ARM7Write16(u32 addr, u16 val) { if (addr == ARM7->R[15]) printf("!!!!!!!!!!!!7777 %08X %04X\n", addr, val); if (addr==0x3807764) printf("DERP! %04X %08X\n", val, ARM7->R[15]); if (addr==0x27FF816) printf("RTC STATUS %04X %08X\n", val, ARM7->R[15]); if (addr==0x27FFCE4) printf("FIRMWARE STATUS %04X %08X\n", val, ARM7->R[15]); switch (addr & 0xFF800000) { case 0x02000000: *(u16*)&MainRAM[addr & 0x3FFFFF] = val; return; case 0x03000000: if (SWRAM_ARM7) *(u16*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; else *(u16*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x03800000: *(u16*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite16(addr, val); return; case 0x04800000: Wifi::Write(addr, val); return; case 0x06000000: case 0x06800000: { u32 chunk = (addr >> 17) & 0x1; u8* vram = GPU::VRAM_ARM7[chunk]; if (vram) *(u16*)&vram[addr & 0x3FFF] = val; } return; } printf("unknown arm7 write16 %08X %04X | %08X\n", addr, val, ARM7->R[15]); } void ARM7Write32(u32 addr, u32 val) { if (addr == ARM7->R[15]) printf("!!!!!!!!!!!!7777 %08X %08X\n", addr, val); if (addr==0x27FFCE4) printf("FIRMWARE STATUS32 %08X %08X\n", val, ARM7->R[15]); switch (addr & 0xFF800000) { case 0x02000000: *(u32*)&MainRAM[addr & 0x3FFFFF] = val; return; case 0x03000000: if (SWRAM_ARM7) *(u32*)&SWRAM_ARM7[addr & SWRAM_ARM7Mask] = val; else *(u32*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x03800000: *(u32*)&ARM7WRAM[addr & 0xFFFF] = val; return; case 0x04000000: ARM7IOWrite32(addr, val); return; case 0x06000000: case 0x06800000: { u32 chunk = (addr >> 17) & 0x1; u8* vram = GPU::VRAM_ARM7[chunk]; if (vram) *(u32*)&vram[addr & 0x3FFF] = val; } return; } printf("unknown arm7 write32 %08X %08X | %08X %08X\n", addr, val, ARM7->R[15], ARM7->CurInstr); } u8 ARM9IORead8(u32 addr) { switch (addr) { case 0x04000208: return IME[0]; case 0x04000240: return GPU::VRAMCNT[0]; case 0x04000241: return GPU::VRAMCNT[1]; case 0x04000242: return GPU::VRAMCNT[2]; case 0x04000243: return GPU::VRAMCNT[3]; case 0x04000244: return GPU::VRAMCNT[4]; case 0x04000245: return GPU::VRAMCNT[5]; case 0x04000246: return GPU::VRAMCNT[6]; case 0x04000247: return WRAMCnt; case 0x04000248: return GPU::VRAMCNT[7]; case 0x04000249: return GPU::VRAMCNT[8]; case 0x04000300: return PostFlag9; } if (addr >= 0x04000000 && addr < 0x04000060) { return GPU::GPU2D_A->Read8(addr); } if (addr >= 0x04001000 && addr < 0x04001060) { return GPU::GPU2D_B->Read8(addr); } printf("unknown ARM9 IO read8 %08X\n", addr); return 0; } u16 ARM9IORead16(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[0]; case 0x04000006: return GPU::VCount; case 0x040000E0: return ((u16*)DMA9Fill)[0]; case 0x040000E2: return ((u16*)DMA9Fill)[1]; case 0x040000E4: return ((u16*)DMA9Fill)[2]; case 0x040000E6: return ((u16*)DMA9Fill)[3]; case 0x040000E8: return ((u16*)DMA9Fill)[4]; case 0x040000EA: return ((u16*)DMA9Fill)[5]; case 0x040000EC: return ((u16*)DMA9Fill)[6]; case 0x040000EE: return ((u16*)DMA9Fill)[7]; case 0x04000100: return Timers[0].Counter; case 0x04000102: return Timers[0].Control; case 0x04000104: return Timers[1].Counter; case 0x04000106: return Timers[1].Control; case 0x04000108: return Timers[2].Counter; case 0x0400010A: return Timers[2].Control; case 0x0400010C: return Timers[3].Counter; case 0x0400010E: return Timers[3].Control; case 0x04000130: return KeyInput & 0xFFFF; case 0x04000180: return IPCSync9; case 0x04000184: { u16 val = IPCFIFOCnt9; if (IPCFIFO9->IsEmpty()) val |= 0x0001; else if (IPCFIFO9->IsFull()) val |= 0x0002; if (IPCFIFO7->IsEmpty()) val |= 0x0100; else if (IPCFIFO7->IsFull()) val |= 0x0200; return val; } case 0x040001A0: return NDSCart::SPICnt; case 0x04000204: return ExMemCnt[0]; case 0x04000208: return IME[0]; case 0x04000280: return DivCnt; case 0x04000300: return PostFlag9; case 0x04000304: return PowerControl9; } if (addr >= 0x04000000 && addr < 0x04000060) { return GPU::GPU2D_A->Read16(addr); } if (addr >= 0x04001000 && addr < 0x04001060) { return GPU::GPU2D_B->Read16(addr); } printf("unknown ARM9 IO read16 %08X %08X\n", addr, ARM9->R[15]); return 0; } u32 ARM9IORead32(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[0] | (GPU::VCount << 16); case 0x040000B0: return DMAs[0]->SrcAddr; case 0x040000B4: return DMAs[0]->DstAddr; case 0x040000B8: return DMAs[0]->Cnt; case 0x040000BC: return DMAs[1]->SrcAddr; case 0x040000C0: return DMAs[1]->DstAddr; case 0x040000C4: return DMAs[1]->Cnt; case 0x040000C8: return DMAs[2]->SrcAddr; case 0x040000CC: return DMAs[2]->DstAddr; case 0x040000D0: return DMAs[2]->Cnt; case 0x040000D4: return DMAs[3]->SrcAddr; case 0x040000D8: return DMAs[3]->DstAddr; case 0x040000DC: return DMAs[3]->Cnt; case 0x040000E0: return DMA9Fill[0]; case 0x040000E4: return DMA9Fill[1]; case 0x040000E8: return DMA9Fill[2]; case 0x040000EC: return DMA9Fill[3]; case 0x04000100: return Timers[0].Counter | (Timers[0].Control << 16); case 0x04000104: return Timers[1].Counter | (Timers[1].Control << 16); case 0x04000108: return Timers[2].Counter | (Timers[2].Control << 16); case 0x0400010C: return Timers[3].Counter | (Timers[3].Control << 16); case 0x040001A4: return NDSCart::ROMCnt; case 0x04000208: return IME[0]; case 0x04000210: return IE[0]; case 0x04000214: return IF[0]; case 0x04000290: return DivNumerator[0]; case 0x04000294: return DivNumerator[1]; case 0x04000298: return DivDenominator[0]; case 0x0400029C: return DivDenominator[1]; case 0x040002A0: return DivQuotient[0]; case 0x040002A4: return DivQuotient[1]; case 0x040002A8: return DivRemainder[0]; case 0x040002AC: return DivRemainder[1]; case 0x04100000: if (IPCFIFOCnt9 & 0x8000) { u32 ret; if (IPCFIFO7->IsEmpty()) { IPCFIFOCnt9 |= 0x4000; ret = IPCFIFO7->Peek(); } else { ret = IPCFIFO7->Read(); if (IPCFIFO7->IsEmpty() && (IPCFIFOCnt7 & 0x0004)) TriggerIRQ(1, IRQ_IPCSendDone); } return ret; } else return IPCFIFO7->Peek(); case 0x04100010: if (!(ExMemCnt[0] & (1<<11))) return NDSCart::ReadData(); return 0; } if (addr >= 0x04000000 && addr < 0x04000060) { return GPU::GPU2D_A->Read32(addr); } if (addr >= 0x04001000 && addr < 0x04001060) { return GPU::GPU2D_B->Read32(addr); } printf("unknown ARM9 IO read32 %08X\n", addr); return 0; } void ARM9IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::SPICnt &= 0xFF00; NDSCart::SPICnt |= val; } return; case 0x040001A1: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::SPICnt &= 0x00FF; NDSCart::SPICnt |= (val << 8); } return; case 0x040001A8: NDSCart::ROMCommand[0] = val; return; case 0x040001A9: NDSCart::ROMCommand[1] = val; return; case 0x040001AA: NDSCart::ROMCommand[2] = val; return; case 0x040001AB: NDSCart::ROMCommand[3] = val; return; case 0x040001AC: NDSCart::ROMCommand[4] = val; return; case 0x040001AD: NDSCart::ROMCommand[5] = val; return; case 0x040001AE: NDSCart::ROMCommand[6] = val; return; case 0x040001AF: NDSCart::ROMCommand[7] = val; return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000240: GPU::MapVRAM_AB(0, val); return; case 0x04000241: GPU::MapVRAM_AB(1, val); return; case 0x04000242: GPU::MapVRAM_CD(2, val); return; case 0x04000243: GPU::MapVRAM_CD(3, val); return; case 0x04000244: GPU::MapVRAM_E(4, val); return; case 0x04000245: GPU::MapVRAM_FG(5, val); return; case 0x04000246: GPU::MapVRAM_FG(6, val); return; case 0x04000247: MapSharedWRAM(val); return; case 0x04000248: GPU::MapVRAM_H(7, val); return; case 0x04000249: GPU::MapVRAM_I(8, val); return; case 0x04000300: if (PostFlag9 & 0x01) val |= 0x01; PostFlag9 = val & 0x03; return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write8(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write8(addr, val); return; } printf("unknown ARM9 IO write8 %08X %02X\n", addr, val); } void ARM9IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000004: GPU::SetDispStat(0, val); return; case 0x04000100: Timers[0].Reload = val; return; case 0x04000102: TimerStart(0, val); return; case 0x04000104: Timers[1].Reload = val; return; case 0x04000106: TimerStart(1, val); return; case 0x04000108: Timers[2].Reload = val; return; case 0x0400010A: TimerStart(2, val); return; case 0x0400010C: Timers[3].Reload = val; return; case 0x0400010E: TimerStart(3, val); return; case 0x04000180: IPCSync7 &= 0xFFF0; IPCSync7 |= ((val & 0x0F00) >> 8); IPCSync9 &= 0xB0FF; IPCSync9 |= (val & 0x4F00); if ((val & 0x2000) && (IPCSync7 & 0x4000)) { TriggerIRQ(1, IRQ_IPCSync); } CompensateARM7(); return; case 0x04000184: if (val & 0x0008) IPCFIFO9->Clear(); if ((val & 0x0004) && (!(IPCFIFOCnt9 & 0x0004)) && IPCFIFO9->IsEmpty()) TriggerIRQ(0, IRQ_IPCSendDone); if ((val & 0x0400) && (!(IPCFIFOCnt9 & 0x0400)) && (!IPCFIFO7->IsEmpty())) TriggerIRQ(0, IRQ_IPCRecv); if (val & 0x4000) IPCFIFOCnt9 &= ~0x4000; IPCFIFOCnt9 = val & 0x8404; return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) NDSCart::SPICnt = val; return; case 0x040001B8: ROMSeed0[4] = val & 0x7F; return; case 0x040001BA: ROMSeed1[4] = val & 0x7F; return; case 0x04000204: ExMemCnt[0] = val; ExMemCnt[1] = (ExMemCnt[1] & 0x007F) | (val & 0xFF80); return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000240: GPU::MapVRAM_AB(0, val & 0xFF); GPU::MapVRAM_AB(1, val >> 8); return; case 0x04000242: GPU::MapVRAM_CD(2, val & 0xFF); GPU::MapVRAM_CD(3, val >> 8); return; case 0x04000244: GPU::MapVRAM_E(4, val & 0xFF); GPU::MapVRAM_FG(5, val >> 8); return; case 0x04000246: GPU::MapVRAM_FG(6, val & 0xFF); MapSharedWRAM(val >> 8); return; case 0x04000248: GPU::MapVRAM_H(7, val & 0xFF); GPU::MapVRAM_I(8, val >> 8); return; case 0x04000280: DivCnt = val; StartDiv(); return; case 0x04000300: if (PostFlag9 & 0x01) val |= 0x01; PostFlag9 = val & 0x03; return; case 0x04000304: PowerControl9 = val; return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write16(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write16(addr, val); return; } printf("unknown ARM9 IO write16 %08X %04X\n", addr, val); } void ARM9IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x040000B0: DMAs[0]->SrcAddr = val; return; case 0x040000B4: DMAs[0]->DstAddr = val; return; case 0x040000B8: DMAs[0]->WriteCnt(val); return; case 0x040000BC: DMAs[1]->SrcAddr = val; return; case 0x040000C0: DMAs[1]->DstAddr = val; return; case 0x040000C4: DMAs[1]->WriteCnt(val); return; case 0x040000C8: DMAs[2]->SrcAddr = val; return; case 0x040000CC: DMAs[2]->DstAddr = val; return; case 0x040000D0: DMAs[2]->WriteCnt(val); return; case 0x040000D4: DMAs[3]->SrcAddr = val; return; case 0x040000D8: DMAs[3]->DstAddr = val; return; case 0x040000DC: DMAs[3]->WriteCnt(val); return; case 0x040000E0: DMA9Fill[0] = val; return; case 0x040000E4: DMA9Fill[1] = val; return; case 0x040000E8: DMA9Fill[2] = val; return; case 0x040000EC: DMA9Fill[3] = val; return; case 0x04000100: Timers[0].Reload = val & 0xFFFF; TimerStart(0, val>>16); return; case 0x04000104: Timers[1].Reload = val & 0xFFFF; TimerStart(1, val>>16); return; case 0x04000108: Timers[2].Reload = val & 0xFFFF; TimerStart(2, val>>16); return; case 0x0400010C: Timers[3].Reload = val & 0xFFFF; TimerStart(3, val>>16); return; case 0x04000188: if (IPCFIFOCnt9 & 0x8000) { if (IPCFIFO9->IsFull()) IPCFIFOCnt9 |= 0x4000; else { bool wasempty = IPCFIFO9->IsEmpty(); IPCFIFO9->Write(val); if ((IPCFIFOCnt7 & 0x0400) && wasempty) TriggerIRQ(1, IRQ_IPCRecv); } } return; case 0x040001A0: if (!(ExMemCnt[0] & (1<<11))) { NDSCart::SPICnt = val & 0xFFFF; // TODO: SPI shit } return; case 0x040001A4: if (!(ExMemCnt[0] & (1<<11))) NDSCart::WriteCnt(val); return; case 0x040001B0: *(u32*)&ROMSeed0[0] = val; return; case 0x040001B4: *(u32*)&ROMSeed1[0] = val; return; case 0x04000208: IME[0] = val & 0x1; return; case 0x04000210: IE[0] = val; if (val&~0x000F0F7D)printf("unusual IRQ %08X\n",val);return; case 0x04000214: IF[0] &= ~val; return; case 0x04000240: GPU::MapVRAM_AB(0, val & 0xFF); GPU::MapVRAM_AB(1, (val >> 8) & 0xFF); GPU::MapVRAM_CD(2, (val >> 16) & 0xFF); GPU::MapVRAM_CD(3, val >> 24); return; case 0x04000244: GPU::MapVRAM_E(4, val & 0xFF); GPU::MapVRAM_FG(5, (val >> 8) & 0xFF); GPU::MapVRAM_FG(6, (val >> 16) & 0xFF); MapSharedWRAM(val >> 24); return; case 0x04000248: GPU::MapVRAM_H(7, val & 0xFF); GPU::MapVRAM_I(8, (val >> 8) & 0xFF); return; case 0x04000290: DivNumerator[0] = val; StartDiv(); return; case 0x04000294: DivNumerator[1] = val; StartDiv(); return; case 0x04000298: DivDenominator[0] = val; StartDiv(); return; case 0x0400029C: DivDenominator[1] = val; StartDiv(); return; } if (addr >= 0x04000000 && addr < 0x04000060) { GPU::GPU2D_A->Write32(addr, val); return; } if (addr >= 0x04001000 && addr < 0x04001060) { GPU::GPU2D_B->Write32(addr, val); return; } printf("unknown ARM9 IO write32 %08X %08X\n", addr, val); } u8 ARM7IORead8(u32 addr) { switch (addr) { case 0x04000138: return RTC::Read() & 0xFF; case 0x040001C2: return SPI::ReadData(); case 0x04000208: return IME[1]; case 0x04000240: return GPU::VRAMSTAT; case 0x04000241: return WRAMCnt; case 0x04000300: return PostFlag7; } if (addr >= 0x04000400 && addr < 0x04000520) { // sound I/O return 0; } printf("unknown ARM7 IO read8 %08X\n", addr); return 0; } u16 ARM7IORead16(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[1]; case 0x04000006: return GPU::VCount; case 0x04000100: return Timers[4].Counter; case 0x04000102: return Timers[4].Control; case 0x04000104: return Timers[5].Counter; case 0x04000106: return Timers[5].Control; case 0x04000108: return Timers[6].Counter; case 0x0400010A: return Timers[6].Control; case 0x0400010C: return Timers[7].Counter; case 0x0400010E: return Timers[7].Control; case 0x04000130: return KeyInput & 0xFFFF; case 0x04000136: return KeyInput >> 16; case 0x04000134: return 0x8000; case 0x04000138: return RTC::Read(); case 0x04000180: return IPCSync7; case 0x04000184: { u16 val = IPCFIFOCnt7; if (IPCFIFO7->IsEmpty()) val |= 0x0001; else if (IPCFIFO7->IsFull()) val |= 0x0002; if (IPCFIFO9->IsEmpty()) val |= 0x0100; else if (IPCFIFO9->IsFull()) val |= 0x0200; return val; } case 0x040001A0: return NDSCart::SPICnt; case 0x040001C0: return SPI::ReadCnt(); case 0x040001C2: return SPI::ReadData(); case 0x04000204: return ExMemCnt[1]; case 0x04000208: return IME[1]; case 0x04000300: return PostFlag7; case 0x04000304: return PowerControl7; case 0x04000504: return _soundbias; } if (addr >= 0x04000400 && addr < 0x04000520) { // sound I/O return 0; } printf("unknown ARM7 IO read16 %08X %08X\n", addr, ARM9->R[15]); return 0; } u32 ARM7IORead32(u32 addr) { switch (addr) { case 0x04000004: return GPU::DispStat[1] | (GPU::VCount << 16); case 0x040000B0: return DMAs[4]->SrcAddr; case 0x040000B4: return DMAs[4]->DstAddr; case 0x040000B8: return DMAs[4]->Cnt; case 0x040000BC: return DMAs[5]->SrcAddr; case 0x040000C0: return DMAs[5]->DstAddr; case 0x040000C4: return DMAs[5]->Cnt; case 0x040000C8: return DMAs[6]->SrcAddr; case 0x040000CC: return DMAs[6]->DstAddr; case 0x040000D0: return DMAs[6]->Cnt; case 0x040000D4: return DMAs[7]->SrcAddr; case 0x040000D8: return DMAs[7]->DstAddr; case 0x040000DC: return DMAs[7]->Cnt; case 0x04000100: return Timers[4].Counter | (Timers[4].Control << 16); case 0x04000104: return Timers[5].Counter | (Timers[5].Control << 16); case 0x04000108: return Timers[6].Counter | (Timers[6].Control << 16); case 0x0400010C: return Timers[7].Counter | (Timers[7].Control << 16); case 0x040001A4: return NDSCart::ROMCnt; case 0x040001C0: return SPI::ReadCnt() | (SPI::ReadData() << 16); case 0x04000208: return IME[1]; case 0x04000210: return IE[1]; case 0x04000214: return IF[1]; case 0x04100000: if (IPCFIFOCnt7 & 0x8000) { u32 ret; if (IPCFIFO9->IsEmpty()) { IPCFIFOCnt7 |= 0x4000; ret = IPCFIFO9->Peek(); } else { ret = IPCFIFO9->Read(); if (IPCFIFO9->IsEmpty() && (IPCFIFOCnt9 & 0x0004)) TriggerIRQ(0, IRQ_IPCSendDone); } return ret; } else return IPCFIFO9->Peek(); case 0x04100010: if (ExMemCnt[0] & (1<<11)) return NDSCart::ReadData(); return 0; } if (addr >= 0x04000400 && addr < 0x04000520) { // sound I/O return 0; } printf("unknown ARM7 IO read32 %08X\n", addr); return 0; } void ARM7IOWrite8(u32 addr, u8 val) { switch (addr) { case 0x04000138: RTC::Write(val, true); return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) { NDSCart::SPICnt &= 0xFF00; NDSCart::SPICnt |= val; } return; case 0x040001A1: if (ExMemCnt[0] & (1<<11)) { NDSCart::SPICnt &= 0x00FF; NDSCart::SPICnt |= (val << 8); } return; case 0x040001A8: NDSCart::ROMCommand[0] = val; return; case 0x040001A9: NDSCart::ROMCommand[1] = val; return; case 0x040001AA: NDSCart::ROMCommand[2] = val; return; case 0x040001AB: NDSCart::ROMCommand[3] = val; return; case 0x040001AC: NDSCart::ROMCommand[4] = val; return; case 0x040001AD: NDSCart::ROMCommand[5] = val; return; case 0x040001AE: NDSCart::ROMCommand[6] = val; return; case 0x040001AF: NDSCart::ROMCommand[7] = val; return; case 0x040001C2: SPI::WriteData(val); return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000300: if (ARM7->R[15] >= 0x4000) return; if (!(PostFlag7 & 0x01)) PostFlag7 = val & 0x01; return; case 0x04000301: if (val == 0x80) ARM7->Halt(1); return; } if (addr >= 0x04000400 && addr < 0x04000520) { // sound I/O return; } printf("unknown ARM7 IO write8 %08X %02X\n", addr, val); } void ARM7IOWrite16(u32 addr, u16 val) { switch (addr) { case 0x04000004: GPU::SetDispStat(1, val); return; case 0x04000100: Timers[4].Reload = val; return; case 0x04000102: TimerStart(4, val); return; case 0x04000104: Timers[5].Reload = val; return; case 0x04000106: TimerStart(5, val); return; case 0x04000108: Timers[6].Reload = val; return; case 0x0400010A: TimerStart(6, val); return; case 0x0400010C: Timers[7].Reload = val; return; case 0x0400010E: TimerStart(7, val); return; case 0x04000134: return;printf("set debug port %04X %08X\n", val, ARM7Read32(ARM7->R[13]+4)); return; case 0x04000138: RTC::Write(val, false); return; case 0x04000180: IPCSync9 &= 0xFFF0; IPCSync9 |= ((val & 0x0F00) >> 8); IPCSync7 &= 0xB0FF; IPCSync7 |= (val & 0x4F00); if ((val & 0x2000) && (IPCSync9 & 0x4000)) { TriggerIRQ(0, IRQ_IPCSync); } return; case 0x04000184: if (val & 0x0008) IPCFIFO7->Clear(); if ((val & 0x0004) && (!(IPCFIFOCnt7 & 0x0004)) && IPCFIFO7->IsEmpty()) TriggerIRQ(1, IRQ_IPCSendDone); if ((val & 0x0400) && (!(IPCFIFOCnt7 & 0x0400)) && (!IPCFIFO9->IsEmpty())) TriggerIRQ(1, IRQ_IPCRecv); if (val & 0x4000) IPCFIFOCnt7 &= ~0x4000; IPCFIFOCnt7 = val & 0x8404; return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) NDSCart::SPICnt = val; return; case 0x040001B8: ROMSeed0[12] = val & 0x7F; return; case 0x040001BA: ROMSeed1[12] = val & 0x7F; return; case 0x040001C0: SPI::WriteCnt(val); return; case 0x040001C2: SPI::WriteData(val & 0xFF); return; case 0x04000204: ExMemCnt[1] = (ExMemCnt[1] & 0xFF80) | (val & 0x007F); return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000300: if (ARM7->R[15] >= 0x4000) return; if (!(PostFlag7 & 0x01)) PostFlag7 = val & 0x01; return; case 0x04000304: PowerControl7 = val; return; case 0x04000504: // removeme _soundbias = val & 0x3FF; return; } if (addr >= 0x04000400 && addr < 0x04000520) { // sound I/O return; } printf("unknown ARM7 IO write16 %08X %04X\n", addr, val); } void ARM7IOWrite32(u32 addr, u32 val) { switch (addr) { case 0x040000B0: DMAs[4]->SrcAddr = val; return; case 0x040000B4: DMAs[4]->DstAddr = val; return; case 0x040000B8: DMAs[4]->WriteCnt(val); return; case 0x040000BC: DMAs[5]->SrcAddr = val; return; case 0x040000C0: DMAs[5]->DstAddr = val; return; case 0x040000C4: DMAs[5]->WriteCnt(val); return; case 0x040000C8: DMAs[6]->SrcAddr = val; return; case 0x040000CC: DMAs[6]->DstAddr = val; return; case 0x040000D0: DMAs[6]->WriteCnt(val); return; case 0x040000D4: DMAs[7]->SrcAddr = val; return; case 0x040000D8: DMAs[7]->DstAddr = val; return; case 0x040000DC: DMAs[7]->WriteCnt(val); return; case 0x04000100: Timers[4].Reload = val & 0xFFFF; TimerStart(4, val>>16); return; case 0x04000104: Timers[5].Reload = val & 0xFFFF; TimerStart(5, val>>16); return; case 0x04000108: Timers[6].Reload = val & 0xFFFF; TimerStart(6, val>>16); return; case 0x0400010C: Timers[7].Reload = val & 0xFFFF; TimerStart(7, val>>16); return; case 0x04000188: if (IPCFIFOCnt7 & 0x8000) { if (IPCFIFO7->IsFull()) IPCFIFOCnt7 |= 0x4000; else { bool wasempty = IPCFIFO7->IsEmpty(); IPCFIFO7->Write(val); if ((IPCFIFOCnt9 & 0x0400) && wasempty) TriggerIRQ(0, IRQ_IPCRecv); } } return; case 0x040001A0: if (ExMemCnt[0] & (1<<11)) { NDSCart::SPICnt = val & 0xFFFF; // TODO: SPI shit } return; case 0x040001A4: if (ExMemCnt[0] & (1<<11)) NDSCart::WriteCnt(val); return; case 0x040001B0: *(u32*)&ROMSeed0[8] = val; return; case 0x040001B4: *(u32*)&ROMSeed1[8] = val; return; case 0x04000208: IME[1] = val & 0x1; return; case 0x04000210: IE[1] = val; return; case 0x04000214: IF[1] &= ~val; return; } if (addr >= 0x04000400 && addr < 0x04000520) { // sound I/O return; } printf("unknown ARM7 IO write32 %08X %08X\n", addr, val); } }