make some progress

This commit is contained in:
Arisotura 2021-06-29 20:49:43 +02:00
parent a9545fbf32
commit d2bff7c187
3 changed files with 365 additions and 11 deletions

View File

@ -21,6 +21,7 @@
#include "DSi.h"
#include "DMA.h"
#include "GPU.h"
#include "DMA_Timings.h"
@ -94,8 +95,8 @@ void DMA::DoSavestate(Savestate* file)
file->Var32(&CurDstAddr);
file->Var32(&RemCount);
file->Var32(&IterCount);
file->Var32(&SrcAddrInc);
file->Var32(&DstAddrInc);
file->Var32((u32*)&SrcAddrInc);
file->Var32((u32*)&DstAddrInc);
file->Var32(&Running);
file->Bool32(&InProgress);
@ -182,10 +183,349 @@ void DMA::Start()
else*/
Running = 2;
// safety measure
MRAMBurstTable = DMATiming::MRAMDummy;
InProgress = true;
NDS::StopCPU(CPU, 1<<Num);
}
void DMA::CalculateTimings(u32& burststart, u32& unit)
{
// DMA timing rules:
// * for an incrementing address: first access (in burst) is nonseq, following ones are seq, maximum burst length is 118 units
// * for a fixed/decrementing address: all accesses are nonseq
// * reads from mainRAM take one less cycle when at the end of a 32-byte block
u32 src_n, src_s, dst_n, dst_s;
bool src_mainram, sameregion;
if (CPU == 0)
{
u32 src_id = CurSrcAddr >> 14;
u32 dst_id = CurDstAddr >> 14;
if (Cnt & (1<<26)) // 32-bit
{
src_n = NDS::ARM9MemTimings[src_id][6];
src_s = NDS::ARM9MemTimings[src_id][7];
dst_n = NDS::ARM9MemTimings[dst_id][6];
dst_s = NDS::ARM9MemTimings[dst_id][7];
}
else // 16-bit
{
src_n = NDS::ARM9MemTimings[src_id][4];
src_s = NDS::ARM9MemTimings[src_id][5];
dst_n = NDS::ARM9MemTimings[dst_id][4];
dst_s = NDS::ARM9MemTimings[dst_id][5];
}
u32 src_rgn = NDS::ARM9Regions[src_id];
u32 dst_rgn = NDS::ARM9Regions[dst_id];
src_mainram = (src_rgn == NDS::Mem9_MainRAM);
sameregion = ((src_rgn & dst_rgn) != 0);
}
else
{
u32 src_id = CurSrcAddr >> 15;
u32 dst_id = CurDstAddr >> 15;
if (Cnt & (1<<26)) // 32-bit
{
src_n = NDS::ARM7MemTimings[src_id][2];
src_s = NDS::ARM7MemTimings[src_id][3];
dst_n = NDS::ARM7MemTimings[dst_id][2];
dst_s = NDS::ARM7MemTimings[dst_id][3];
}
else // 16-bit
{
src_n = NDS::ARM7MemTimings[src_id][0];
src_s = NDS::ARM7MemTimings[src_id][1];
dst_n = NDS::ARM7MemTimings[dst_id][0];
dst_s = NDS::ARM7MemTimings[dst_id][1];
}
u32 src_rgn = NDS::ARM7Regions[src_id];
u32 dst_rgn = NDS::ARM7Regions[dst_id];
src_mainram = (src_rgn == NDS::Mem7_MainRAM);
sameregion = ((src_rgn & dst_rgn) != 0);
}
//
}
u32 DMA::UnitTimings9_16(bool burststart)
{
u32 src_id = CurSrcAddr >> 14;
u32 dst_id = CurDstAddr >> 14;
u32 src_rgn = NDS::ARM9Regions[src_id];
u32 dst_rgn = NDS::ARM9Regions[dst_id];
u32 src_n, src_s, dst_n, dst_s;
src_n = NDS::ARM9MemTimings[src_id][4];
src_s = NDS::ARM9MemTimings[src_id][5];
dst_n = NDS::ARM9MemTimings[dst_id][4];
dst_s = NDS::ARM9MemTimings[dst_id][5];
u32 ret = 0;
if (src_rgn == NDS::Mem9_MainRAM)
{
if (dst_rgn == NDS::Mem9_MainRAM)
return 16;
if (SrcAddrInc > 0)
{
if (burststart || MRAMBurstTable[MRAMBurstCount] == 0)
{
MRAMBurstCount = 0;
if (dst_rgn == NDS::Mem9_GBAROM)
{
if (dst_s == 4)
MRAMBurstTable = DMATiming::MRAMRead16Bursts[1];
else
MRAMBurstTable = DMATiming::MRAMRead16Bursts[2];
}
else
MRAMBurstTable = DMATiming::MRAMRead16Bursts[0];
}
ret = MRAMBurstTable[MRAMBurstCount++];
return ret;
}
else
{
ret += ((CurSrcAddr & 0x1F) == 0x1E) ? 7 : 8;
ret += burststart ? dst_n : dst_s;
return ret;
}
}
else if (dst_rgn == NDS::Mem9_MainRAM)
{
if (DstAddrInc > 0)
{
if (burststart || MRAMBurstTable[MRAMBurstCount] == 0)
{
MRAMBurstCount = 0;
if (src_rgn == NDS::Mem9_GBAROM)
{
if (src_s == 4)
MRAMBurstTable = DMATiming::MRAMWrite16Bursts[1];
else
MRAMBurstTable = DMATiming::MRAMWrite16Bursts[2];
}
else
MRAMBurstTable = DMATiming::MRAMWrite16Bursts[0];
}
ret = MRAMBurstTable[MRAMBurstCount++];
return ret;
}
else
{
ret += burststart ? src_n : src_s;
ret += 7;
return ret;
}
}
else if (src_rgn & dst_rgn)
{
return src_n + dst_n + 1;
}
else
{
if (burststart)
return src_n + dst_n;
else
return src_s + dst_s;
}
#if 0
if (src_rgn == NDS::Mem9_MainRAM)
{
// for main RAM: sequential timings only work with incrementing addresses
// read bursts have a maximum length of 119 halfwords, then 119 halfwords, then 2 halfwords, and so on
// (this is probably a hardware glitch)
if (SrcAddrInc > 0)
{
if (burststart || BurstCount >= 240)
BurstCount = 0;
// note: one of the cycles of the first unit seems to transfer over to the next unit
// we approximate this by attributing all the cycles to the first unit
if (BurstCount == 0 || BurstCount == 119 || BurstCount == 238)
ret += src_n-1;
//else if (BurstCount == 1 || BurstCount == 120 || BurstCount == 239)
// ret += src_s + 1;
else
ret += src_s;
BurstCount++;
}
else
{
ret += src_n;
if ((CurSrcAddr & 0x1F) == 0x1E) ret--;
}
// main RAM reads can parallelize with writes to another region
//ret--;
}
else if (src_rgn == NDS::Mem9_GBAROM)
{
// for GBA ROM: sequential timings always work, except for the last halfword
// of every 0x20000 byte block
ret += (burststart || ((CurSrcAddr & 0x1FFFF) == 0x1FFFE)) ? src_n : src_s;
}
else
{
// for other regions: nonseq/sequential timings are the same
ret += src_s;
}
if (dst_rgn == NDS::Mem9_MainRAM)
{
// for main RAM: sequential timings only work with incrementing addresses
// write bursts have a maximum length of 120 halfwords
if (DstAddrInc > 0)
{
if (burststart || BurstCount >= 120)
BurstCount = 0;
ret += (BurstCount == 0) ? dst_n-1 : dst_s;
BurstCount++;
}
else
{
ret += dst_n-1;
}
}
else if (dst_rgn == NDS::Mem9_GBAROM)
{
// for GBA ROM: sequential timings always work, except for the last halfword
// of every 0x20000 byte block
ret += (burststart || ((CurDstAddr & 0x1FFFF) == 0x1FFFE)) ? dst_n : dst_s;
}
else
{
// for other regions: nonseq/sequential timings are the same
ret += dst_s;
}
#endif
return ret;
}
u32 DMA::UnitTimings9_32(bool burststart)
{
u32 src_id = CurSrcAddr >> 14;
u32 dst_id = CurDstAddr >> 14;
u32 src_rgn = NDS::ARM9Regions[src_id];
u32 dst_rgn = NDS::ARM9Regions[dst_id];
u32 src_n, src_s, dst_n, dst_s;
src_n = NDS::ARM9MemTimings[src_id][6];
src_s = NDS::ARM9MemTimings[src_id][7];
dst_n = NDS::ARM9MemTimings[dst_id][6];
dst_s = NDS::ARM9MemTimings[dst_id][7];
if (src_rgn & dst_rgn)
{
return src_n + dst_n;
}
u32 ret = 0;
ret=1;
#if 0
if (src_rgn == NDS::Mem9_MainRAM)
{
// for main RAM: sequential timings only work with incrementing addresses
// read bursts have a maximum length of 118 words
if (SrcAddrInc > 0)
{
if (burststart || BurstCount >= 118)
BurstCount = 0;
ret += (BurstCount == 0) ? src_n : src_s;
BurstCount++;
}
else
{
ret += src_n;
if ((CurSrcAddr & 0x1F) == 0x1C) ret--;
}
// main RAM reads can parallelize with writes to another region
ret--;
}
else if (src_rgn == NDS::Mem9_GBAROM)
{
// for GBA ROM: sequential timings always work, except for the last halfword
// of every 0x20000 byte block
ret += (burststart || ((CurSrcAddr & 0x1FFFF) == 0x1FFFC)) ? src_n : src_s;
}
else
{
// for other regions: nonseq/sequential timings are the same
ret += src_s;
}
if (dst_rgn == NDS::Mem9_MainRAM)
{
// for main RAM: sequential timings only work with incrementing addresses
// write bursts have a maximum length of 80 words
if (DstAddrInc > 0)
{
if (burststart || BurstCount >= 80)
BurstCount = 0;
ret += (BurstCount == 0) ? dst_n : dst_s;
BurstCount++;
}
else
{
ret += dst_n;
}
}
else if (dst_rgn == NDS::Mem9_GBAROM)
{
// for GBA ROM: sequential timings always work, except for the last halfword
// of every 0x20000 byte block
ret += (burststart || ((CurDstAddr & 0x1FFFF) == 0x1FFFC)) ? dst_n : dst_s;
}
else
{
// for other regions: nonseq/sequential timings are the same
ret += dst_s;
}
#endif
return ret;
}
template <int ConsoleType>
void DMA::Run9()
{
@ -224,7 +564,9 @@ void DMA::Run9()
while (IterCount > 0 && !Stall)
{
NDS::ARM9Timestamp += (unitcycles << NDS::ARM9ClockShift);
//NDS::ARM9Timestamp += (unitcycles << NDS::ARM9ClockShift);
NDS::ARM9Timestamp += (UnitTimings9_16(burststart) << NDS::ARM9ClockShift);
burststart = false;
if (ConsoleType == 1)
DSi::ARM9Write16(CurDstAddr, DSi::ARM9Read16(CurSrcAddr));
@ -284,7 +626,9 @@ void DMA::Run9()
while (IterCount > 0 && !Stall)
{
NDS::ARM9Timestamp += (unitcycles << NDS::ARM9ClockShift);
//NDS::ARM9Timestamp += (unitcycles << NDS::ARM9ClockShift);
NDS::ARM9Timestamp += (UnitTimings9_32(burststart) << NDS::ARM9ClockShift);
burststart = false;
if (ConsoleType == 1)
DSi::ARM9Write32(CurDstAddr, DSi::ARM9Read32(CurSrcAddr));

View File

@ -34,6 +34,11 @@ public:
void WriteCnt(u32 val);
void Start();
void CalculateTimings(u32& burststart, u32& unit);
u32 UnitTimings9_16(bool burststart);
u32 UnitTimings9_32(bool burststart);
template <int ConsoleType>
void Run();
@ -78,8 +83,8 @@ private:
u32 CurDstAddr;
u32 RemCount;
u32 IterCount;
u32 SrcAddrInc;
u32 DstAddrInc;
s32 SrcAddrInc;
s32 DstAddrInc;
u32 CountMask;
u32 Running;
@ -89,6 +94,9 @@ private:
bool Stall;
bool IsGXFIFODMA;
u32 MRAMBurstCount;
u8* MRAMBurstTable;
};
#endif

View File

@ -43,7 +43,9 @@ namespace DMATiming
// setting. Timings are such that the nonseq setting only matters for the first
// access, and minor edge cases (like the last of a 0x20000-byte block).
u8 MRAMRead16Bursts[][] =
u8 MRAMDummy[1] = {0};
u8 MRAMRead16Bursts[][256] =
{
// main RAM to regular 16bit or 32bit bus (similar)
{7, 3, 2, 2, 2, 2, 2, 2, 2, 2,
@ -117,7 +119,7 @@ u8 MRAMRead16Bursts[][] =
0},
};
u8 MRAMRead32Bursts[][] =
u8 MRAMRead32Bursts[][256] =
{
// main RAM to regular 16bit bus
{9, 4, 3, 3, 3, 3, 3, 3, 3, 3,
@ -176,7 +178,7 @@ u8 MRAMRead32Bursts[][] =
0},
};
u8 MRAMWrite16Bursts[][] =
u8 MRAMWrite16Bursts[][256] =
{
// regular 16bit or 32bit bus to main RAM (similar)
{8, 2, 2, 2, 2, 2, 2, 2, 2, 2,
@ -207,7 +209,7 @@ u8 MRAMWrite16Bursts[][] =
0},
};
u8 MRAMWrite32Bursts[][] =
u8 MRAMWrite32Bursts[][256] =
{
// regular 16bit bus to main RAM
{9, 4, 4, 4, 4, 4, 4, 4, 4, 4,
@ -236,7 +238,7 @@ u8 MRAMWrite32Bursts[][] =
{16, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14,
0},
}
};
}