Allow for a more modular renderer backends (#990)

* Draft GPU3D renderer modularization

* Update sources C++ standard to C++17

The top-level `CMakeLists.txt` is already using the C++17 standard.

* Move GLCompositor into class type

Some other misc fixes to push towards better modularity

* Make renderer-implementation types move-only

These types are going to be holding onto handles
of GPU-side resources and shouldn't ever be copied around.

* Fix OSX: Remove 'register' storage class specifier

`register` has been removed in C++17...
But this keyword hasn't done anything in years anyways.

OSX builds consider this "warning" an error and it
stops the whole build.

* Add RestartFrame to Renderer3D interface

* Move Accelerated property to Renderer3D interface

There are points in the code base where we do:
`renderer != 0` to know if we are feeding
an openGL renderer. Rather than that we can instead just have this be
a property of the renderer itself.
With this pattern a renderer can just say how it wants its data to come
in rather than have everyone know that they're talking to an OpenGL
renderer.

* Remove Accelerated flag from GPU

* Move 2D_Soft interface in separate header

Also make the current 2D engine an "owned" unique_ptr.

* Update alignment attribute to standard alignas

Uses standardized `alignas` rather than compiler-specific
attributes.

https://en.cppreference.com/w/cpp/language/alignas

* Fix Clang: alignas specifier

Alignment must be specified before the array to align the entire array.

https://en.cppreference.com/w/cpp/language/alignas

* Converted Renderer3D Accelerated to variable

This flag is checked a lot during scanline rasterization. So rather
than having an expensive vtable-lookup call during mainline rendering
code, it is now a public constant bool type that is written to only once
during Renderer3D initialization.
This commit is contained in:
Wunk 2021-02-09 14:38:51 -08:00 committed by GitHub
parent 891427c75c
commit a7029aebae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 1039 additions and 836 deletions

View File

@ -1,6 +1,6 @@
project(core)
set (CMAKE_CXX_STANDARD 14)
set (CMAKE_CXX_STANDARD 17)
add_library(core STATIC
ARCodeFile.cpp

View File

@ -21,6 +21,7 @@
#include "NDS.h"
#include "GPU.h"
#include "GPU2D_Soft.h"
namespace GPU
{
@ -79,11 +80,10 @@ u8* VRAMPtr_BOBJ[0x8];
int FrontBuffer;
u32* Framebuffer[2][2];
int Renderer;
bool Accelerated;
int Renderer = 0;
GPU2D* GPU2D_A;
GPU2D* GPU2D_B;
std::unique_ptr<GPU2D> GPU2D_A = {};
std::unique_ptr<GPU2D> GPU2D_B = {};
/*
VRAM invalidation tracking
@ -145,25 +145,28 @@ u8 VRAMFlat_TexPal[128*1024];
u32 OAMDirty;
u32 PaletteDirty;
#ifdef OGLRENDERER_ENABLED
std::unique_ptr<GLCompositor> CurGLCompositor = {};
#endif
bool Init()
{
GPU2D_A = new GPU2D_Soft(0);
GPU2D_B = new GPU2D_Soft(1);
GPU2D_A = std::make_unique<GPU2D_Soft>(0);
GPU2D_B = std::make_unique<GPU2D_Soft>(1);
if (!GPU3D::Init()) return false;
FrontBuffer = 0;
Framebuffer[0][0] = NULL; Framebuffer[0][1] = NULL;
Framebuffer[1][0] = NULL; Framebuffer[1][1] = NULL;
Renderer = 0;
Accelerated = false;
return true;
}
void DeInit()
{
delete GPU2D_A;
delete GPU2D_B;
GPU2D_A.reset();
GPU2D_B.reset();
GPU3D::DeInit();
if (Framebuffer[0][0]) delete[] Framebuffer[0][0];
@ -250,9 +253,12 @@ void Reset()
memset(VRAMPtr_BBG, 0, sizeof(VRAMPtr_BBG));
memset(VRAMPtr_BOBJ, 0, sizeof(VRAMPtr_BOBJ));
int fbsize;
if (Accelerated) fbsize = (256*3 + 1) * 192;
else fbsize = 256 * 192;
size_t fbsize;
if (GPU3D::CurrentRenderer->Accelerated)
fbsize = (256*3 + 1) * 192;
else
fbsize = 256 * 192;
for (int i = 0; i < fbsize; i++)
{
Framebuffer[0][0][i] = 0xFFFFFFFF;
@ -283,17 +289,22 @@ void Reset()
void Stop()
{
int fbsize;
if (Accelerated) fbsize = (256*3 + 1) * 192;
else fbsize = 256 * 192;
if (GPU3D::CurrentRenderer->Accelerated)
fbsize = (256*3 + 1) * 192;
else
fbsize = 256 * 192;
memset(Framebuffer[0][0], 0, fbsize*4);
memset(Framebuffer[0][1], 0, fbsize*4);
memset(Framebuffer[1][0], 0, fbsize*4);
memset(Framebuffer[1][1], 0, fbsize*4);
#ifdef OGLRENDERER_ENABLED
if (Accelerated)
GLCompositor::Stop();
#endif
// This needs a better way to know that we're
// using the OpenGL renderer specifically
if (GPU3D::CurrentRenderer->Accelerated)
CurGLCompositor->Stop();
#endif
}
void DoSavestate(Savestate* file)
@ -382,37 +393,42 @@ void InitRenderer(int renderer)
#ifdef OGLRENDERER_ENABLED
if (renderer == 1)
{
if (!GLCompositor::Init())
CurGLCompositor = std::make_unique<GLCompositor>();
// Create opengl rendrerer
if (!CurGLCompositor->Init())
{
// Fallback on software renderer
renderer = 0;
GPU3D::CurrentRenderer = std::make_unique<GPU3D::SoftRenderer>();
GPU3D::CurrentRenderer->Init();
}
else if (!GPU3D::GLRenderer::Init())
GPU3D::CurrentRenderer = std::make_unique<GPU3D::GLRenderer>();
if (!GPU3D::CurrentRenderer->Init())
{
GLCompositor::DeInit();
// Fallback on software renderer
CurGLCompositor->DeInit();
CurGLCompositor.reset();
renderer = 0;
GPU3D::CurrentRenderer = std::make_unique<GPU3D::SoftRenderer>();
}
}
else
#endif
{
GPU3D::SoftRenderer::Init();
GPU3D::CurrentRenderer = std::make_unique<GPU3D::SoftRenderer>();
GPU3D::CurrentRenderer->Init();
}
Renderer = renderer;
Accelerated = renderer != 0;
}
void DeInitRenderer()
{
if (Renderer == 0)
{
GPU3D::SoftRenderer::DeInit();
}
GPU3D::CurrentRenderer->DeInit();
#ifdef OGLRENDERER_ENABLED
else
if (Renderer == 1)
{
GPU3D::GLRenderer::DeInit();
GLCompositor::DeInit();
CurGLCompositor->DeInit();
}
#endif
}
@ -421,13 +437,13 @@ void ResetRenderer()
{
if (Renderer == 0)
{
GPU3D::SoftRenderer::Reset();
GPU3D::CurrentRenderer->Reset();
}
#ifdef OGLRENDERER_ENABLED
else
{
GLCompositor::Reset();
GPU3D::GLRenderer::Reset();
CurGLCompositor->Reset();
GPU3D::CurrentRenderer->Reset();
}
#endif
}
@ -440,10 +456,12 @@ void SetRenderSettings(int renderer, RenderSettings& settings)
InitRenderer(renderer);
}
bool accel = Accelerated;
int fbsize;
if (accel) fbsize = (256*3 + 1) * 192;
else fbsize = 256 * 192;
if (GPU3D::CurrentRenderer->Accelerated)
fbsize = (256*3 + 1) * 192;
else
fbsize = 256 * 192;
if (Framebuffer[0][0]) { delete[] Framebuffer[0][0]; Framebuffer[0][0] = nullptr; }
if (Framebuffer[1][0]) { delete[] Framebuffer[1][0]; Framebuffer[1][0] = nullptr; }
if (Framebuffer[0][1]) { delete[] Framebuffer[0][1]; Framebuffer[0][1] = nullptr; }
@ -461,18 +479,15 @@ void SetRenderSettings(int renderer, RenderSettings& settings)
AssignFramebuffers();
GPU2D_A->SetRenderSettings(accel);
GPU2D_B->SetRenderSettings(accel);
if (Renderer == 0)
{
GPU3D::SoftRenderer::SetRenderSettings(settings);
GPU3D::CurrentRenderer->SetRenderSettings(settings);
}
#ifdef OGLRENDERER_ENABLED
else
{
GLCompositor::SetRenderSettings(settings);
GPU3D::GLRenderer::SetRenderSettings(settings);
CurGLCompositor->SetRenderSettings(settings);
GPU3D::CurrentRenderer->SetRenderSettings(settings);
}
#endif
}
@ -1149,7 +1164,9 @@ void StartScanline(u32 line)
GPU3D::VBlank();
#ifdef OGLRENDERER_ENABLED
if (Accelerated) GLCompositor::RenderFrame();
// Need a better way to identify the openGL renderer in particular
if (GPU3D::CurrentRenderer->Accelerated)
CurGLCompositor->RenderFrame();
#endif
}
}

View File

@ -19,9 +19,15 @@
#ifndef GPU_H
#define GPU_H
#include <memory>
#include "GPU2D.h"
#include "NonStupidBitfield.h"
#ifdef OGLRENDERER_ENABLED
#include "GPU_OpenGL.h"
#endif
namespace GPU
{
@ -69,8 +75,8 @@ extern u8* VRAMPtr_BOBJ[0x8];
extern int FrontBuffer;
extern u32* Framebuffer[2][2];
extern GPU2D* GPU2D_A;
extern GPU2D* GPU2D_B;
extern std::unique_ptr<GPU2D> GPU2D_A;
extern std::unique_ptr<GPU2D> GPU2D_B;
extern int Renderer;
@ -149,6 +155,10 @@ void SyncDirtyFlags();
extern u32 OAMDirty;
extern u32 PaletteDirty;
#ifdef OGLRENDERER_ENABLED
extern std::unique_ptr<GLCompositor> CurGLCompositor;
#endif
struct RenderSettings
{
bool Soft_Threaded;
@ -550,24 +560,6 @@ void DisplayFIFO(u32 x);
void SetDispStat(u32 cpu, u16 val);
void SetVCount(u16 val);
#ifdef OGLRENDERER_ENABLED
namespace GLCompositor
{
bool Init();
void DeInit();
void Reset();
void SetRenderSettings(RenderSettings& settings);
void Stop();
void RenderFrame();
void BindOutputTexture(int buf);
}
#endif
}
#include "GPU3D.h"

View File

@ -28,13 +28,15 @@ public:
GPU2D(u32 num);
virtual ~GPU2D() {}
GPU2D(const GPU2D&) = delete;
GPU2D& operator=(const GPU2D&) = delete;
void Reset();
void DoSavestate(Savestate* file);
void SetEnabled(bool enable) { Enabled = enable; }
void SetFramebuffer(u32* buf);
virtual void SetRenderSettings(bool accel) = 0;
u8 Read8(u32 addr);
u16 Read16(u32 addr);
@ -115,8 +117,8 @@ protected:
u16 MasterBrightness;
u8 WindowMask[256] __attribute__((aligned (8)));
u8 OBJWindow[256] __attribute__((aligned (8)));
alignas(8) u8 WindowMask[256];
alignas(8) u8 OBJWindow[256];
void UpdateMosaicCounters(u32 line);
void CalculateWindowMask(u32 line);
@ -124,65 +126,4 @@ protected:
virtual void MosaicXSizeChanged() = 0;
};
class GPU2D_Soft : public GPU2D
{
public:
GPU2D_Soft(u32 num);
~GPU2D_Soft() override {}
void SetRenderSettings(bool accel) override;
void DrawScanline(u32 line) override;
void DrawSprites(u32 line) override;
void VBlankEnd() override;
protected:
void MosaicXSizeChanged() override;
private:
bool Accelerated;
u32 BGOBJLine[256*3] __attribute__((aligned (8)));
u32* _3DLine;
u32 OBJLine[256] __attribute__((aligned (8)));
u8 OBJIndex[256] __attribute__((aligned (8)));
u32 NumSprites;
u8 MosaicTable[16][256];
u8* CurBGXMosaicTable;
u8* CurOBJXMosaicTable;
u32 ColorBlend4(u32 val1, u32 val2, u32 eva, u32 evb);
u32 ColorBlend5(u32 val1, u32 val2);
u32 ColorBrightnessUp(u32 val, u32 factor);
u32 ColorBrightnessDown(u32 val, u32 factor);
u32 ColorComposite(int i, u32 val1, u32 val2);
template<u32 bgmode> void DrawScanlineBGMode(u32 line);
void DrawScanlineBGMode6(u32 line);
void DrawScanlineBGMode7(u32 line);
void DrawScanline_BGOBJ(u32 line);
static void DrawPixel_Normal(u32* dst, u16 color, u32 flag);
static void DrawPixel_Accel(u32* dst, u16 color, u32 flag);
typedef void (*DrawPixel)(u32* dst, u16 color, u32 flag);
void DrawBG_3D();
template<bool mosaic, DrawPixel drawPixel> void DrawBG_Text(u32 line, u32 bgnum);
template<bool mosaic, DrawPixel drawPixel> void DrawBG_Affine(u32 line, u32 bgnum);
template<bool mosaic, DrawPixel drawPixel> void DrawBG_Extended(u32 line, u32 bgnum);
template<bool mosaic, DrawPixel drawPixel> void DrawBG_Large(u32 line);
void ApplySpriteMosaicX();
template<DrawPixel drawPixel>
void InterleaveSprites(u32 prio);
template<bool window> void DrawSprite_Rotscale(u32 num, u32 boundwidth, u32 boundheight, u32 width, u32 height, s32 xpos, s32 ypos);
template<bool window> void DrawSprite_Normal(u32 num, u32 width, u32 height, s32 xpos, s32 ypos);
void DoCapture(u32 line, u32 width);
};
#endif

View File

@ -1,4 +1,4 @@
#include "GPU2D.h"
#include "GPU2D_Soft.h"
#include "GPU.h"
GPU2D_Soft::GPU2D_Soft(u32 num)
@ -15,11 +15,6 @@ GPU2D_Soft::GPU2D_Soft(u32 num)
}
}
void GPU2D_Soft::SetRenderSettings(bool accel)
{
Accelerated = accel;
}
u32 GPU2D_Soft::ColorBlend4(u32 val1, u32 val2, u32 eva, u32 evb)
{
u32 r = (((val1 & 0x00003F) * eva) + ((val2 & 0x00003F) * evb)) >> 4;
@ -152,7 +147,7 @@ u32 GPU2D_Soft::ColorComposite(int i, u32 val1, u32 val2)
void GPU2D_Soft::DrawScanline(u32 line)
{
int stride = Accelerated ? (256*3 + 1) : 256;
int stride = GPU3D::CurrentRenderer->Accelerated ? (256*3 + 1) : 256;
u32* dst = &Framebuffer[stride * line];
int n3dline = line;
@ -192,7 +187,7 @@ void GPU2D_Soft::DrawScanline(u32 line)
if (Num == 0)
{
if (!Accelerated)
if (!GPU3D::CurrentRenderer->Accelerated)
_3DLine = GPU3D::GetLine(n3dline);
else if (CaptureLatch && (((CaptureCnt >> 29) & 0x3) != 1))
{
@ -206,7 +201,7 @@ void GPU2D_Soft::DrawScanline(u32 line)
for (int i = 0; i < 256; i++)
dst[i] = 0xFFFFFFFF;
if (Accelerated)
if (GPU3D::CurrentRenderer->Accelerated)
{
dst[256*3] = 0;
}
@ -296,7 +291,7 @@ void GPU2D_Soft::DrawScanline(u32 line)
DoCapture(line, capwidth);
}
if (Accelerated)
if (GPU3D::CurrentRenderer->Accelerated)
{
dst[256*3] = MasterBrightness | (DispCnt & 0x30000);
return;
@ -350,11 +345,11 @@ void GPU2D_Soft::VBlankEnd()
GPU2D::VBlankEnd();
#ifdef OGLRENDERER_ENABLED
if (Accelerated)
if (GPU3D::CurrentRenderer->Accelerated)
{
if ((Num == 0) && (CaptureCnt & (1<<31)) && (((CaptureCnt >> 29) & 0x3) != 1))
{
GPU3D::GLRenderer::PrepareCaptureFrame();
reinterpret_cast<GPU3D::GLRenderer*>(GPU3D::CurrentRenderer.get())->PrepareCaptureFrame();
}
}
#endif
@ -372,7 +367,7 @@ void GPU2D_Soft::DoCapture(u32 line, u32 width)
u16* dst = (u16*)GPU::VRAM[dstvram];
u32 dstaddr = (((CaptureCnt >> 18) & 0x3) << 14) + (line * width);
// TODO: handle 3D in accelerated mode!!
// TODO: handle 3D in GPU3D::CurrentRenderer->Accelerated mode!!
u32* srcA;
if (CaptureCnt & (1<<24))
@ -382,9 +377,9 @@ void GPU2D_Soft::DoCapture(u32 line, u32 width)
else
{
srcA = BGOBJLine;
if (Accelerated)
if (GPU3D::CurrentRenderer->Accelerated)
{
// in accelerated mode, compositing is normally done on the GPU
// in GPU3D::CurrentRenderer->Accelerated mode, compositing is normally done on the GPU
// but when doing display capture, we do need the composited output
// so we do it here
@ -586,12 +581,12 @@ void GPU2D_Soft::DoCapture(u32 line, u32 width)
{ \
if ((BGCnt[num] & 0x0040) && (BGMosaicSize[0] > 0)) \
{ \
if (Accelerated) DrawBG_##type<true, DrawPixel_Accel>(line, num); \
if (GPU3D::CurrentRenderer->Accelerated) DrawBG_##type<true, DrawPixel_Accel>(line, num); \
else DrawBG_##type<true, DrawPixel_Normal>(line, num); \
} \
else \
{ \
if (Accelerated) DrawBG_##type<false, DrawPixel_Accel>(line, num); \
if (GPU3D::CurrentRenderer->Accelerated) DrawBG_##type<false, DrawPixel_Accel>(line, num); \
else DrawBG_##type<false, DrawPixel_Normal>(line, num); \
} \
} while (false)
@ -601,18 +596,18 @@ void GPU2D_Soft::DoCapture(u32 line, u32 width)
{ \
if ((BGCnt[2] & 0x0040) && (BGMosaicSize[0] > 0)) \
{ \
if (Accelerated) DrawBG_Large<true, DrawPixel_Accel>(line); \
if (GPU3D::CurrentRenderer->Accelerated) DrawBG_Large<true, DrawPixel_Accel>(line); \
else DrawBG_Large<true, DrawPixel_Normal>(line); \
} \
else \
{ \
if (Accelerated) DrawBG_Large<false, DrawPixel_Accel>(line); \
if (GPU3D::CurrentRenderer->Accelerated) DrawBG_Large<false, DrawPixel_Accel>(line); \
else DrawBG_Large<false, DrawPixel_Normal>(line); \
} \
} while (false)
#define DoInterleaveSprites(prio) \
if (Accelerated) InterleaveSprites<DrawPixel_Accel>(prio); else InterleaveSprites<DrawPixel_Normal>(prio);
if (GPU3D::CurrentRenderer->Accelerated) InterleaveSprites<DrawPixel_Accel>(prio); else InterleaveSprites<DrawPixel_Normal>(prio);
template<u32 bgmode>
void GPU2D_Soft::DrawScanlineBGMode(u32 line)
@ -773,7 +768,7 @@ void GPU2D_Soft::DrawScanline_BGOBJ(u32 line)
// color special effects
// can likely be optimized
if (!Accelerated)
if (!GPU3D::CurrentRenderer->Accelerated)
{
for (int i = 0; i < 256; i++)
{
@ -919,7 +914,7 @@ void GPU2D_Soft::DrawBG_3D()
{
int i = 0;
if (Accelerated)
if (GPU3D::CurrentRenderer->Accelerated)
{
for (i = 0; i < 256; i++)
{

79
src/GPU2D_Soft.h Normal file
View File

@ -0,0 +1,79 @@
/*
Copyright 2016-2020 Arisotura
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#pragma once
#include "GPU2D.h"
class GPU2D_Soft : public GPU2D
{
public:
GPU2D_Soft(u32 num);
~GPU2D_Soft() override {}
void DrawScanline(u32 line) override;
void DrawSprites(u32 line) override;
void VBlankEnd() override;
protected:
void MosaicXSizeChanged() override;
private:
alignas(8) u32 BGOBJLine[256*3];
u32* _3DLine;
alignas(8) u32 OBJLine[256];
alignas(8) u8 OBJIndex[256];
u32 NumSprites;
u8 MosaicTable[16][256];
u8* CurBGXMosaicTable;
u8* CurOBJXMosaicTable;
u32 ColorBlend4(u32 val1, u32 val2, u32 eva, u32 evb);
u32 ColorBlend5(u32 val1, u32 val2);
u32 ColorBrightnessUp(u32 val, u32 factor);
u32 ColorBrightnessDown(u32 val, u32 factor);
u32 ColorComposite(int i, u32 val1, u32 val2);
template<u32 bgmode> void DrawScanlineBGMode(u32 line);
void DrawScanlineBGMode6(u32 line);
void DrawScanlineBGMode7(u32 line);
void DrawScanline_BGOBJ(u32 line);
static void DrawPixel_Normal(u32* dst, u16 color, u32 flag);
static void DrawPixel_Accel(u32* dst, u16 color, u32 flag);
typedef void (*DrawPixel)(u32* dst, u16 color, u32 flag);
void DrawBG_3D();
template<bool mosaic, DrawPixel drawPixel> void DrawBG_Text(u32 line, u32 bgnum);
template<bool mosaic, DrawPixel drawPixel> void DrawBG_Affine(u32 line, u32 bgnum);
template<bool mosaic, DrawPixel drawPixel> void DrawBG_Extended(u32 line, u32 bgnum);
template<bool mosaic, DrawPixel drawPixel> void DrawBG_Large(u32 line);
void ApplySpriteMosaicX();
template<DrawPixel drawPixel>
void InterleaveSprites(u32 prio);
template<bool window> void DrawSprite_Rotscale(u32 num, u32 boundwidth, u32 boundheight, u32 width, u32 height, s32 xpos, s32 ypos);
template<bool window> void DrawSprite_Normal(u32 num, u32 width, u32 height, s32 xpos, s32 ypos);
void DoCapture(u32 line, u32 width);
};

View File

@ -273,7 +273,7 @@ u32 RenderNumPolygons;
u32 FlushRequest;
u32 FlushAttributes;
std::unique_ptr<GPU3D::Renderer3D> CurrentRenderer = {};
bool Init()
{
@ -2497,12 +2497,12 @@ void CheckFIFODMA()
void VCount144()
{
if (GPU::Renderer == 0) SoftRenderer::VCount144();
CurrentRenderer->VCount144();
}
void RestartFrame()
{
if (GPU::Renderer == 0) SoftRenderer::SetupRenderThread();
CurrentRenderer->RestartFrame();
}
@ -2597,10 +2597,7 @@ void VBlank()
void VCount215()
{
if (GPU::Renderer == 0) SoftRenderer::RenderFrame();
#ifdef OGLRENDERER_ENABLED
else GLRenderer::RenderFrame();
#endif
CurrentRenderer->RenderFrame();
}
void SetRenderXPos(u16 xpos)
@ -2614,12 +2611,7 @@ u32 ScrolledLine[256];
u32* GetLine(int line)
{
u32* rawline = NULL;
if (GPU::Renderer == 0) rawline = SoftRenderer::GetLine(line);
#ifdef OGLRENDERER_ENABLED
else rawline = GLRenderer::GetLine(line);
#endif
u32* rawline = CurrentRenderer->GetLine(line);
if (RenderXPos == 0) return rawline;
@ -3055,5 +3047,9 @@ void Write32(u32 addr, u32 val)
printf("unknown GPU3D write32 %08X %08X\n", addr, val);
}
Renderer3D::Renderer3D(bool Accelerated)
: Accelerated(Accelerated)
{ }
}

View File

@ -20,6 +20,9 @@
#define GPU3D_H
#include <array>
#include <memory>
#include "GPU.h"
#include "Savestate.h"
namespace GPU3D
@ -96,8 +99,6 @@ extern u32 RenderNumPolygons;
extern u64 Timestamp;
extern int Renderer;
bool Init();
void DeInit();
void Reset();
@ -131,40 +132,42 @@ void Write8(u32 addr, u8 val);
void Write16(u32 addr, u16 val);
void Write32(u32 addr, u32 val);
namespace SoftRenderer
class Renderer3D
{
public:
Renderer3D(bool Accelerated);
virtual ~Renderer3D() {};
bool Init();
void DeInit();
void Reset();
Renderer3D(const Renderer3D&) = delete;
Renderer3D& operator=(const Renderer3D&) = delete;
void SetRenderSettings(GPU::RenderSettings& settings);
void SetupRenderThread();
virtual bool Init() = 0;
virtual void DeInit() = 0;
virtual void Reset() = 0;
void VCount144();
void RenderFrame();
u32* GetLine(int line);
// This "Accelerated" flag currently communicates if the framebuffer should
// be allocated differently and other little misc handlers. Ideally there
// are more detailed "traits" that we can ask of the Renderer3D type
const bool Accelerated;
virtual void SetRenderSettings(GPU::RenderSettings& settings) = 0;
virtual void VCount144() {};
virtual void RenderFrame() = 0;
virtual void RestartFrame() {};
virtual u32* GetLine(int line) = 0;
};
extern int Renderer;
extern std::unique_ptr<Renderer3D> CurrentRenderer;
}
#include "GPU3D_Soft.h"
#ifdef OGLRENDERER_ENABLED
namespace GLRenderer
{
bool Init();
void DeInit();
void Reset();
void SetRenderSettings(GPU::RenderSettings& settings);
void RenderFrame();
void PrepareCaptureFrame();
u32* GetLine(int line);
void SetupAccelFrame();
}
#include "GPU3D_OpenGL.h"
#endif
}
#endif

View File

@ -16,118 +16,19 @@
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include "GPU3D_OpenGL.h"
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "GPU.h"
#include "Config.h"
#include "OpenGLSupport.h"
#include "GPU3D_OpenGL_shaders.h"
namespace GPU3D
{
namespace GLRenderer
{
using namespace OpenGL;
// GL version requirements
// * texelFetch: 3.0 (GLSL 1.30) (3.2/1.50 for MS)
// * UBO: 3.1
enum
{
RenderFlag_WBuffer = 0x01,
RenderFlag_Trans = 0x02,
RenderFlag_ShadowMask = 0x04,
RenderFlag_Edge = 0x08,
};
GLuint ClearShaderPlain[3];
GLuint RenderShader[16][3];
GLuint CurShaderID = -1;
GLuint FinalPassEdgeShader[3];
GLuint FinalPassFogShader[3];
// std140 compliant structure
struct
{
float uScreenSize[2]; // vec2 0 / 2
u32 uDispCnt; // int 2 / 1
u32 __pad0;
float uToonColors[32][4]; // vec4[32] 4 / 128
float uEdgeColors[8][4]; // vec4[8] 132 / 32
float uFogColor[4]; // vec4 164 / 4
float uFogDensity[34][4]; // float[34] 168 / 136
u32 uFogOffset; // int 304 / 1
u32 uFogShift; // int 305 / 1
u32 _pad1[2]; // int 306 / 2
} ShaderConfig;
GLuint ShaderConfigUBO;
struct RendererPolygon
{
Polygon* PolyData;
u32 NumIndices;
u32 IndicesOffset;
GLuint PrimType;
u32 NumEdgeIndices;
u32 EdgeIndicesOffset;
u32 RenderKey;
};
RendererPolygon PolygonList[2048];
int NumFinalPolys, NumOpaqueFinalPolys;
GLuint ClearVertexBufferID, ClearVertexArrayID;
GLint ClearUniformLoc[4];
// vertex buffer
// * XYZW: 4x16bit
// * RGBA: 4x8bit
// * ST: 2x16bit
// * polygon data: 3x32bit (polygon/texture attributes)
//
// polygon attributes:
// * bit4-7, 11, 14-15, 24-29: POLYGON_ATTR
// * bit16-20: Z shift
// * bit8: front-facing (?)
// * bit9: W-buffering (?)
GLuint VertexBufferID;
u32 VertexBuffer[10240 * 7];
u32 NumVertices;
GLuint VertexArrayID;
GLuint IndexBufferID;
u16 IndexBuffer[2048 * 40];
u32 NumIndices, NumEdgeIndices;
const u32 EdgeIndicesOffset = 2048 * 30;
GLuint TexMemID;
GLuint TexPalMemID;
int ScaleFactor;
bool BetterPolygons;
int ScreenW, ScreenH;
GLuint FramebufferTex[8];
int FrontBuffer;
GLuint FramebufferID[4], PixelbufferID;
u32 Framebuffer[256*192];
bool BuildRenderShader(u32 flags, const char* vs, const char* fs)
bool GLRenderer::BuildRenderShader(u32 flags, const char* vs, const char* fs)
{
char shadername[32];
sprintf(shadername, "RenderShader%02X", flags);
@ -180,7 +81,7 @@ bool BuildRenderShader(u32 flags, const char* vs, const char* fs)
return true;
}
void UseRenderShader(u32 flags)
void GLRenderer::UseRenderShader(u32 flags)
{
if (CurShaderID == flags) return;
glUseProgram(RenderShader[flags][2]);
@ -196,7 +97,12 @@ void SetupDefaultTexParams(GLuint tex)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
}
bool Init()
GLRenderer::GLRenderer()
: Renderer3D(true)
{
}
bool GLRenderer::Init()
{
GLint uni_id;
@ -382,7 +288,7 @@ bool Init()
return true;
}
void DeInit()
void GLRenderer::DeInit()
{
glDeleteTextures(1, &TexMemID);
glDeleteTextures(1, &TexPalMemID);
@ -404,11 +310,11 @@ void DeInit()
}
}
void Reset()
void GLRenderer::Reset()
{
}
void SetRenderSettings(GPU::RenderSettings& settings)
void GLRenderer::SetRenderSettings(GPU::RenderSettings& settings)
{
int scale = settings.GL_ScaleFactor;
@ -462,7 +368,7 @@ void SetRenderSettings(GPU::RenderSettings& settings)
}
void SetupPolygon(RendererPolygon* rp, Polygon* polygon)
void GLRenderer::SetupPolygon(GLRenderer::RendererPolygon* rp, Polygon* polygon)
{
rp->PolyData = polygon;
@ -508,7 +414,7 @@ void SetupPolygon(RendererPolygon* rp, Polygon* polygon)
}
}
u32* SetupVertex(Polygon* poly, int vid, Vertex* vtx, u32 vtxattr, u32* vptr)
u32* GLRenderer::SetupVertex(Polygon* poly, int vid, Vertex* vtx, u32 vtxattr, u32* vptr)
{
u32 z = poly->FinalZ[vid];
u32 w = poly->FinalW[vid];
@ -569,7 +475,7 @@ u32* SetupVertex(Polygon* poly, int vid, Vertex* vtx, u32 vtxattr, u32* vptr)
return vptr;
}
void BuildPolygons(RendererPolygon* polygons, int npolys)
void GLRenderer::BuildPolygons(GLRenderer::RendererPolygon* polygons, int npolys)
{
u32* vptr = &VertexBuffer[0];
u32 vidx = 0;
@ -791,7 +697,7 @@ void BuildPolygons(RendererPolygon* polygons, int npolys)
NumEdgeIndices = eidx - EdgeIndicesOffset;
}
int RenderSinglePolygon(int i)
int GLRenderer::RenderSinglePolygon(int i)
{
RendererPolygon* rp = &PolygonList[i];
@ -800,7 +706,7 @@ int RenderSinglePolygon(int i)
return 1;
}
int RenderPolygonBatch(int i)
int GLRenderer::RenderPolygonBatch(int i)
{
RendererPolygon* rp = &PolygonList[i];
GLuint primtype = rp->PrimType;
@ -822,7 +728,7 @@ int RenderPolygonBatch(int i)
return numpolys;
}
int RenderPolygonEdgeBatch(int i)
int GLRenderer::RenderPolygonEdgeBatch(int i)
{
RendererPolygon* rp = &PolygonList[i];
u32 key = rp->RenderKey;
@ -842,7 +748,7 @@ int RenderPolygonEdgeBatch(int i)
return numpolys;
}
void RenderSceneChunk(int y, int h)
void GLRenderer::RenderSceneChunk(int y, int h)
{
u32 flags = 0;
if (RenderPolygonRAM[0]->WBuffer) flags |= RenderFlag_WBuffer;
@ -1206,7 +1112,7 @@ void RenderSceneChunk(int y, int h)
}
void RenderFrame()
void GLRenderer::RenderFrame()
{
CurShaderID = -1;
@ -1381,7 +1287,7 @@ void RenderFrame()
FrontBuffer = FrontBuffer ? 0 : 1;
}
void PrepareCaptureFrame()
void GLRenderer::PrepareCaptureFrame()
{
// TODO: make sure this picks the right buffer when doing antialiasing
int original_fb = FrontBuffer^1;
@ -1396,7 +1302,7 @@ void PrepareCaptureFrame()
glReadPixels(0, 0, 256, 192, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
}
u32* GetLine(int line)
u32* GLRenderer::GetLine(int line)
{
int stride = 256;
@ -1419,10 +1325,9 @@ u32* GetLine(int line)
return &Framebuffer[stride * line];
}
void SetupAccelFrame()
void GLRenderer::SetupAccelFrame()
{
glBindTexture(GL_TEXTURE_2D, FramebufferTex[FrontBuffer]);
}
}
}

152
src/GPU3D_OpenGL.h Normal file
View File

@ -0,0 +1,152 @@
/*
Copyright 2016-2020 Arisotura
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#pragma once
#include "GPU3D.h"
#include "OpenGLSupport.h"
namespace GPU3D
{
class GLRenderer : public Renderer3D
{
public:
GLRenderer();
virtual ~GLRenderer() override {};
virtual bool Init() override;
virtual void DeInit() override;
virtual void Reset() override;
virtual void SetRenderSettings(GPU::RenderSettings& settings) override;
virtual void VCount144() override {};
virtual void RenderFrame() override;
virtual u32* GetLine(int line) override;
void SetupAccelFrame();
void PrepareCaptureFrame();
private:
// GL version requirements
// * texelFetch: 3.0 (GLSL 1.30) (3.2/1.50 for MS)
// * UBO: 3.1
struct RendererPolygon
{
Polygon* PolyData;
u32 NumIndices;
u32 IndicesOffset;
GLuint PrimType;
u32 NumEdgeIndices;
u32 EdgeIndicesOffset;
u32 RenderKey;
};
RendererPolygon PolygonList[2048];
bool BuildRenderShader(u32 flags, const char* vs, const char* fs);
void UseRenderShader(u32 flags);
void SetupPolygon(RendererPolygon* rp, Polygon* polygon);
u32* SetupVertex(Polygon* poly, int vid, Vertex* vtx, u32 vtxattr, u32* vptr);
void BuildPolygons(RendererPolygon* polygons, int npolys);
int RenderSinglePolygon(int i);
int RenderPolygonBatch(int i);
int RenderPolygonEdgeBatch(int i);
void RenderSceneChunk(int y, int h);
enum
{
RenderFlag_WBuffer = 0x01,
RenderFlag_Trans = 0x02,
RenderFlag_ShadowMask = 0x04,
RenderFlag_Edge = 0x08,
};
GLuint ClearShaderPlain[3];
GLuint RenderShader[16][3];
GLuint CurShaderID = -1;
GLuint FinalPassEdgeShader[3];
GLuint FinalPassFogShader[3];
// std140 compliant structure
struct
{
float uScreenSize[2]; // vec2 0 / 2
u32 uDispCnt; // int 2 / 1
u32 __pad0;
float uToonColors[32][4]; // vec4[32] 4 / 128
float uEdgeColors[8][4]; // vec4[8] 132 / 32
float uFogColor[4]; // vec4 164 / 4
float uFogDensity[34][4]; // float[34] 168 / 136
u32 uFogOffset; // int 304 / 1
u32 uFogShift; // int 305 / 1
u32 _pad1[2]; // int 306 / 2
} ShaderConfig;
GLuint ShaderConfigUBO;
int NumFinalPolys, NumOpaqueFinalPolys;
GLuint ClearVertexBufferID, ClearVertexArrayID;
GLint ClearUniformLoc[4];
// vertex buffer
// * XYZW: 4x16bit
// * RGBA: 4x8bit
// * ST: 2x16bit
// * polygon data: 3x32bit (polygon/texture attributes)
//
// polygon attributes:
// * bit4-7, 11, 14-15, 24-29: POLYGON_ATTR
// * bit16-20: Z shift
// * bit8: front-facing (?)
// * bit9: W-buffering (?)
GLuint VertexBufferID;
u32 VertexBuffer[10240 * 7];
u32 NumVertices;
GLuint VertexArrayID;
GLuint IndexBufferID;
u16 IndexBuffer[2048 * 40];
u32 NumIndices, NumEdgeIndices;
const u32 EdgeIndicesOffset = 2048 * 30;
GLuint TexMemID;
GLuint TexPalMemID;
int ScaleFactor;
bool BetterPolygons;
int ScreenW, ScreenH;
GLuint FramebufferTex[8];
int FrontBuffer;
GLuint FramebufferID[4], PixelbufferID;
u32 Framebuffer[256*192];
};
}

View File

@ -16,82 +16,43 @@
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include "GPU3D_Soft.h"
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "GPU.h"
#include "Config.h"
#include "Platform.h"
namespace GPU3D
{
namespace SoftRenderer
{
// buffer dimensions are 258x194 to add a offscreen 1px border
// which simplifies edge marking tests
// buffer is duplicated to keep track of the two topmost pixels
// TODO: check if the hardware can accidentally plot pixels
// offscreen in that border
const int ScanlineWidth = 258;
const int NumScanlines = 194;
const int BufferSize = ScanlineWidth * NumScanlines;
const int FirstPixelOffset = ScanlineWidth + 1;
u32 ColorBuffer[BufferSize * 2];
u32 DepthBuffer[BufferSize * 2];
u32 AttrBuffer[BufferSize * 2];
// attribute buffer:
// bit0-3: edge flags (left/right/top/bottom)
// bit4: backfacing flag
// bit8-12: antialiasing alpha
// bit15: fog enable
// bit16-21: polygon ID for translucent pixels
// bit22: translucent flag
// bit24-29: polygon ID for opaque pixels
u8 StencilBuffer[256*2];
bool PrevIsShadowMask;
bool Enabled;
bool FrameIdentical;
// threading
bool Threaded;
Platform::Thread* RenderThread;
bool RenderThreadRunning;
bool RenderThreadRendering;
Platform::Semaphore* Sema_RenderStart;
Platform::Semaphore* Sema_RenderDone;
Platform::Semaphore* Sema_ScanlineCount;
void RenderThreadFunc();
void StopRenderThread()
void SoftRenderer::StopRenderThread()
{
if (RenderThreadRunning)
{
RenderThreadRunning = false;
Platform::Semaphore_Post(Sema_RenderStart);
Platform::Thread_Wait(RenderThread);
Platform::Thread_Free(RenderThread);
// Platform::Thread_Wait(RenderThread);
// Platform::Thread_Free(RenderThread);
RenderThread.join();
}
}
void SetupRenderThread()
void SoftRenderer::SetupRenderThread()
{
if (Threaded)
{
if (!RenderThreadRunning)
{
RenderThreadRunning = true;
RenderThread = Platform::Thread_Create(RenderThreadFunc);
//RenderThread = Platform::Thread_Create(RenderThreadFunc);
RenderThread = std::thread(&SoftRenderer::RenderThreadFunc, this);
}
// otherwise more than one frame can be queued up at once
@ -113,7 +74,13 @@ void SetupRenderThread()
}
bool Init()
SoftRenderer::SoftRenderer()
: Renderer3D(false)
{
}
bool SoftRenderer::Init()
{
Sema_RenderStart = Platform::Semaphore_Create();
Sema_RenderDone = Platform::Semaphore_Create();
@ -126,7 +93,7 @@ bool Init()
return true;
}
void DeInit()
void SoftRenderer::DeInit()
{
StopRenderThread();
@ -135,7 +102,7 @@ void DeInit()
Platform::Semaphore_Free(Sema_ScanlineCount);
}
void Reset()
void SoftRenderer::Reset()
{
memset(ColorBuffer, 0, BufferSize * 2 * 4);
memset(DepthBuffer, 0, BufferSize * 2 * 4);
@ -146,428 +113,13 @@ void Reset()
SetupRenderThread();
}
void SetRenderSettings(GPU::RenderSettings& settings)
void SoftRenderer::SetRenderSettings(GPU::RenderSettings& settings)
{
Threaded = settings.Soft_Threaded;
SetupRenderThread();
}
// Notes on the interpolator:
//
// This is a theory on how the DS hardware interpolates values. It matches hardware output
// in the tests I did, but the hardware may be doing it differently. You never know.
//
// Assuming you want to perspective-correctly interpolate a variable named A across two points
// in a typical rasterizer, you would calculate A/W and 1/W at each point, interpolate linearly,
// then divide A/W by 1/W to recover the correct A value.
//
// The DS GPU approximates interpolation by calculating a perspective-correct interpolation
// between 0 and 1, then using the result as a factor to linearly interpolate the actual
// vertex attributes. The factor has 9 bits of precision when interpolating along Y and
// 8 bits along X.
//
// There's a special path for when the two W values are equal: it directly does linear
// interpolation, avoiding precision loss from the aforementioned approximation.
// Which is desirable when using the GPU to draw 2D graphics.
template<int dir>
class Interpolator
{
public:
Interpolator() {}
Interpolator(s32 x0, s32 x1, s32 w0, s32 w1)
{
Setup(x0, x1, w0, w1);
}
void Setup(s32 x0, s32 x1, s32 w0, s32 w1)
{
this->x0 = x0;
this->x1 = x1;
this->xdiff = x1 - x0;
// calculate reciprocals for linear mode and Z interpolation
// TODO eventually: use a faster reciprocal function?
if (this->xdiff != 0)
this->xrecip = (1<<30) / this->xdiff;
else
this->xrecip = 0;
this->xrecip_z = this->xrecip >> 8;
// linear mode is used if both W values are equal and have
// low-order bits cleared (0-6 along X, 1-6 along Y)
u32 mask = dir ? 0x7E : 0x7F;
if ((w0 == w1) && !(w0 & mask) && !(w1 & mask))
this->linear = true;
else
this->linear = false;
if (dir)
{
// along Y
if ((w0 & 0x1) && !(w1 & 0x1))
{
this->w0n = w0 - 1;
this->w0d = w0 + 1;
this->w1d = w1;
}
else
{
this->w0n = w0 & 0xFFFE;
this->w0d = w0 & 0xFFFE;
this->w1d = w1 & 0xFFFE;
}
this->shift = 9;
}
else
{
// along X
this->w0n = w0;
this->w0d = w0;
this->w1d = w1;
this->shift = 8;
}
}
void SetX(s32 x)
{
x -= x0;
this->x = x;
if (xdiff != 0 && !linear)
{
s64 num = ((s64)x * w0n) << shift;
s32 den = (x * w0d) + ((xdiff-x) * w1d);
// this seems to be a proper division on hardware :/
// I haven't been able to find cases that produce imperfect output
if (den == 0) yfactor = 0;
else yfactor = (s32)(num / den);
}
}
s32 Interpolate(s32 y0, s32 y1)
{
if (xdiff == 0 || y0 == y1) return y0;
if (!linear)
{
// perspective-correct approx. interpolation
if (y0 < y1)
return y0 + (((y1-y0) * yfactor) >> shift);
else
return y1 + (((y0-y1) * ((1<<shift)-yfactor)) >> shift);
}
else
{
// linear interpolation
// checkme: the rounding bias there (3<<24) is a guess
if (y0 < y1)
return y0 + ((((s64)(y1-y0) * x * xrecip) + (3<<24)) >> 30);
else
return y1 + ((((s64)(y0-y1) * (xdiff-x) * xrecip) + (3<<24)) >> 30);
}
}
s32 InterpolateZ(s32 z0, s32 z1, bool wbuffer)
{
if (xdiff == 0 || z0 == z1) return z0;
if (wbuffer)
{
// W-buffering: perspective-correct approx. interpolation
if (z0 < z1)
return z0 + (((s64)(z1-z0) * yfactor) >> shift);
else
return z1 + (((s64)(z0-z1) * ((1<<shift)-yfactor)) >> shift);
}
else
{
// Z-buffering: linear interpolation
// still doesn't quite match hardware...
s32 base, disp, factor;
if (z0 < z1)
{
base = z0;
disp = z1 - z0;
factor = x;
}
else
{
base = z1;
disp = z0 - z1,
factor = xdiff - x;
}
if (dir)
{
int shift = 0;
while (disp > 0x3FF)
{
disp >>= 1;
shift++;
}
return base + ((((s64)disp * factor * xrecip_z) >> 22) << shift);
}
else
{
disp >>= 9;
return base + (((s64)disp * factor * xrecip_z) >> 13);
}
}
}
private:
s32 x0, x1, xdiff, x;
int shift;
bool linear;
s32 xrecip, xrecip_z;
s32 w0n, w0d, w1d;
u32 yfactor;
};
template<int side>
class Slope
{
public:
Slope() {}
s32 SetupDummy(s32 x0)
{
if (side)
{
dx = -0x40000;
x0--;
}
else
{
dx = 0;
}
this->x0 = x0;
this->xmin = x0;
this->xmax = x0;
Increment = 0;
XMajor = false;
Interp.Setup(0, 0, 0, 0);
Interp.SetX(0);
xcov_incr = 0;
return x0;
}
s32 Setup(s32 x0, s32 x1, s32 y0, s32 y1, s32 w0, s32 w1, s32 y)
{
this->x0 = x0;
this->y = y;
if (x1 > x0)
{
this->xmin = x0;
this->xmax = x1-1;
this->Negative = false;
}
else if (x1 < x0)
{
this->xmin = x1;
this->xmax = x0-1;
this->Negative = true;
}
else
{
this->xmin = x0;
if (side) this->xmin--;
this->xmax = this->xmin;
this->Negative = false;
}
xlen = xmax+1 - xmin;
ylen = y1 - y0;
// slope increment has a 18-bit fractional part
// note: for some reason, x/y isn't calculated directly,
// instead, 1/y is calculated and then multiplied by x
// TODO: this is still not perfect (see for example x=169 y=33)
if (ylen == 0)
Increment = 0;
else if (ylen == xlen)
Increment = 0x40000;
else
{
s32 yrecip = (1<<18) / ylen;
Increment = (x1-x0) * yrecip;
if (Increment < 0) Increment = -Increment;
}
XMajor = (Increment > 0x40000);
if (side)
{
// right
if (XMajor) dx = Negative ? (0x20000 + 0x40000) : (Increment - 0x20000);
else if (Increment != 0) dx = Negative ? 0x40000 : 0;
else dx = -0x40000;
}
else
{
// left
if (XMajor) dx = Negative ? ((Increment - 0x20000) + 0x40000) : 0x20000;
else if (Increment != 0) dx = Negative ? 0x40000 : 0;
else dx = 0;
}
dx += (y - y0) * Increment;
s32 x = XVal();
if (XMajor)
{
if (side) Interp.Setup(x0-1, x1-1, w0, w1); // checkme
else Interp.Setup(x0, x1, w0, w1);
Interp.SetX(x);
// used for calculating AA coverage
xcov_incr = (ylen << 10) / xlen;
}
else
{
Interp.Setup(y0, y1, w0, w1);
Interp.SetX(y);
}
return x;
}
s32 Step()
{
dx += Increment;
y++;
s32 x = XVal();
if (XMajor)
{
Interp.SetX(x);
}
else
{
Interp.SetX(y);
}
return x;
}
s32 XVal()
{
s32 ret;
if (Negative) ret = x0 - (dx >> 18);
else ret = x0 + (dx >> 18);
if (ret < xmin) ret = xmin;
else if (ret > xmax) ret = xmax;
return ret;
}
void EdgeParams_XMajor(s32* length, s32* coverage)
{
if (side ^ Negative)
*length = (dx >> 18) - ((dx-Increment) >> 18);
else
*length = ((dx+Increment) >> 18) - (dx >> 18);
// for X-major edges, we return the coverage
// for the first pixel, and the increment for
// further pixels on the same scanline
s32 startx = dx >> 18;
if (Negative) startx = xlen - startx;
if (side) startx = startx - *length + 1;
s32 startcov = (((startx << 10) + 0x1FF) * ylen) / xlen;
*coverage = (1<<31) | ((startcov & 0x3FF) << 12) | (xcov_incr & 0x3FF);
}
void EdgeParams_YMajor(s32* length, s32* coverage)
{
*length = 1;
if (Increment == 0)
{
*coverage = 31;
}
else
{
s32 cov = ((dx >> 9) + (Increment >> 10)) >> 4;
if ((cov >> 5) != (dx >> 18)) cov = 31;
cov &= 0x1F;
if (!(side ^ Negative)) cov = 0x1F - cov;
*coverage = cov;
}
}
void EdgeParams(s32* length, s32* coverage)
{
if (XMajor)
return EdgeParams_XMajor(length, coverage);
else
return EdgeParams_YMajor(length, coverage);
}
s32 Increment;
bool Negative;
bool XMajor;
Interpolator<1> Interp;
private:
s32 x0, xmin, xmax;
s32 xlen, ylen;
s32 dx;
s32 y;
s32 xcov_incr;
s32 ycoverage, ycov_incr;
};
struct RendererPolygon
{
Polygon* PolyData;
Slope<0> SlopeL;
Slope<1> SlopeR;
s32 XL, XR;
u32 CurVL, CurVR;
u32 NextVL, NextVR;
};
RendererPolygon PolygonList[2048];
template <typename T>
inline T ReadVRAM_Texture(u32 addr)
{
return *(T*)&GPU::VRAMFlat_Texture[addr & 0x7FFFF];
}
template <typename T>
inline T ReadVRAM_TexPal(u32 addr)
{
return *(T*)&GPU::VRAMFlat_TexPal[addr & 0x1FFFF];
}
void TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha)
void SoftRenderer::TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha)
{
u32 vramaddr = (texparam & 0xFFFF) << 3;
@ -873,7 +425,7 @@ u32 AlphaBlend(u32 srccolor, u32 dstcolor, u32 alpha)
return srcR | (srcG << 8) | (srcB << 16) | (dstalpha << 24);
}
u32 RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t)
u32 SoftRenderer::RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t)
{
u8 r, g, b, a;
@ -981,7 +533,7 @@ u32 RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t)
return r | (g << 8) | (b << 16) | (a << 24);
}
void PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 shadow)
void SoftRenderer::PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 shadow)
{
u32 dstattr = AttrBuffer[pixeladdr];
u32 attr = (polyattr & 0xE0F0) | ((polyattr >> 8) & 0xFF0000) | (1<<22) | (dstattr & 0xFF001F0F);
@ -1020,7 +572,7 @@ void PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 sha
AttrBuffer[pixeladdr] = attr;
}
void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y)
void SoftRenderer::SetupPolygonLeftEdge(SoftRenderer::RendererPolygon* rp, s32 y)
{
Polygon* polygon = rp->PolyData;
@ -1047,7 +599,7 @@ void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y)
polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL], y);
}
void SetupPolygonRightEdge(RendererPolygon* rp, s32 y)
void SoftRenderer::SetupPolygonRightEdge(SoftRenderer::RendererPolygon* rp, s32 y)
{
Polygon* polygon = rp->PolyData;
@ -1074,7 +626,7 @@ void SetupPolygonRightEdge(RendererPolygon* rp, s32 y)
polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR], y);
}
void SetupPolygon(RendererPolygon* rp, Polygon* polygon)
void SoftRenderer::SetupPolygon(SoftRenderer::RendererPolygon* rp, Polygon* polygon)
{
u32 nverts = polygon->NumVertices;
@ -1127,7 +679,7 @@ void SetupPolygon(RendererPolygon* rp, Polygon* polygon)
}
}
void RenderShadowMaskScanline(RendererPolygon* rp, s32 y)
void SoftRenderer::RenderShadowMaskScanline(RendererPolygon* rp, s32 y)
{
Polygon* polygon = rp->PolyData;
@ -1340,7 +892,7 @@ void RenderShadowMaskScanline(RendererPolygon* rp, s32 y)
rp->XR = rp->SlopeR.Step();
}
void RenderPolygonScanline(RendererPolygon* rp, s32 y)
void SoftRenderer::RenderPolygonScanline(RendererPolygon* rp, s32 y)
{
Polygon* polygon = rp->PolyData;
@ -1755,7 +1307,7 @@ void RenderPolygonScanline(RendererPolygon* rp, s32 y)
rp->XR = rp->SlopeR.Step();
}
void RenderScanline(s32 y, int npolys)
void SoftRenderer::RenderScanline(s32 y, int npolys)
{
for (int i = 0; i < npolys; i++)
{
@ -1772,8 +1324,7 @@ void RenderScanline(s32 y, int npolys)
}
}
u32 CalculateFogDensity(u32 pixeladdr)
u32 SoftRenderer::CalculateFogDensity(u32 pixeladdr)
{
u32 z = DepthBuffer[pixeladdr];
u32 densityid, densityfrac;
@ -1812,7 +1363,7 @@ u32 CalculateFogDensity(u32 pixeladdr)
return density;
}
void ScanlineFinalPass(s32 y)
void SoftRenderer::ScanlineFinalPass(s32 y)
{
// to consider:
// clearing all polygon fog flags if the master flag isn't set?
@ -1981,7 +1532,7 @@ void ScanlineFinalPass(s32 y)
}
}
void ClearBuffers()
void SoftRenderer::ClearBuffers()
{
u32 clearz = ((RenderClearAttr2 & 0x7FFF) * 0x200) + 0x1FF;
u32 polyid = RenderClearAttr1 & 0x3F000000; // this sets the opaque polygonID
@ -2055,7 +1606,7 @@ void ClearBuffers()
u32 a = (RenderClearAttr1 >> 16) & 0x1F;
u32 color = r | (g << 8) | (b << 16) | (a << 24);
polyid |= (RenderClearAttr1 & 0x8000);
polyid |= (RenderClearAttr1 & 0x8000);
for (int y = 0; y < ScanlineWidth*192; y+=ScanlineWidth)
{
@ -2070,7 +1621,7 @@ void ClearBuffers()
}
}
void RenderPolygons(bool threaded, Polygon** polygons, int npolys)
void SoftRenderer::RenderPolygons(bool threaded, Polygon** polygons, int npolys)
{
int j = 0;
for (int i = 0; i < npolys; i++)
@ -2096,13 +1647,13 @@ void RenderPolygons(bool threaded, Polygon** polygons, int npolys)
Platform::Semaphore_Post(Sema_ScanlineCount);
}
void VCount144()
void SoftRenderer::VCount144()
{
if (RenderThreadRunning)
Platform::Semaphore_Wait(Sema_RenderDone);
}
void RenderFrame()
void SoftRenderer::RenderFrame()
{
auto textureDirty = GPU::VRAMDirty_Texture.DeriveState(GPU::VRAMMap_Texture);
auto texPalDirty = GPU::VRAMDirty_TexPal.DeriveState(GPU::VRAMMap_TexPal);
@ -2123,7 +1674,12 @@ void RenderFrame()
}
}
void RenderThreadFunc()
void SoftRenderer::RestartFrame()
{
SetupRenderThread();
}
void SoftRenderer::RenderThreadFunc()
{
for (;;)
{
@ -2146,7 +1702,7 @@ void RenderThreadFunc()
}
}
u32* GetLine(int line)
u32* SoftRenderer::GetLine(int line)
{
if (RenderThreadRunning)
{
@ -2158,4 +1714,3 @@ u32* GetLine(int line)
}
}
}

516
src/GPU3D_Soft.h Normal file
View File

@ -0,0 +1,516 @@
/*
Copyright 2016-2020 Arisotura
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#pragma once
#include "GPU3D.h"
#include "Platform.h"
#include <thread>
namespace GPU3D
{
class SoftRenderer : public Renderer3D
{
public:
SoftRenderer();
virtual ~SoftRenderer() override {};
virtual bool Init() override;
virtual void DeInit() override;
virtual void Reset() override;
virtual void SetRenderSettings(GPU::RenderSettings& settings) override;
virtual void VCount144() override;
virtual void RenderFrame() override;
virtual void RestartFrame() override;
virtual u32* GetLine(int line) override;
void SetupRenderThread();
void StopRenderThread();
private:
// Notes on the interpolator:
//
// This is a theory on how the DS hardware interpolates values. It matches hardware output
// in the tests I did, but the hardware may be doing it differently. You never know.
//
// Assuming you want to perspective-correctly interpolate a variable named A across two points
// in a typical rasterizer, you would calculate A/W and 1/W at each point, interpolate linearly,
// then divide A/W by 1/W to recover the correct A value.
//
// The DS GPU approximates interpolation by calculating a perspective-correct interpolation
// between 0 and 1, then using the result as a factor to linearly interpolate the actual
// vertex attributes. The factor has 9 bits of precision when interpolating along Y and
// 8 bits along X.
//
// There's a special path for when the two W values are equal: it directly does linear
// interpolation, avoiding precision loss from the aforementioned approximation.
// Which is desirable when using the GPU to draw 2D graphics.
template<int dir>
class Interpolator
{
public:
Interpolator() {}
Interpolator(s32 x0, s32 x1, s32 w0, s32 w1)
{
Setup(x0, x1, w0, w1);
}
void Setup(s32 x0, s32 x1, s32 w0, s32 w1)
{
this->x0 = x0;
this->x1 = x1;
this->xdiff = x1 - x0;
// calculate reciprocals for linear mode and Z interpolation
// TODO eventually: use a faster reciprocal function?
if (this->xdiff != 0)
this->xrecip = (1<<30) / this->xdiff;
else
this->xrecip = 0;
this->xrecip_z = this->xrecip >> 8;
// linear mode is used if both W values are equal and have
// low-order bits cleared (0-6 along X, 1-6 along Y)
u32 mask = dir ? 0x7E : 0x7F;
if ((w0 == w1) && !(w0 & mask) && !(w1 & mask))
this->linear = true;
else
this->linear = false;
if (dir)
{
// along Y
if ((w0 & 0x1) && !(w1 & 0x1))
{
this->w0n = w0 - 1;
this->w0d = w0 + 1;
this->w1d = w1;
}
else
{
this->w0n = w0 & 0xFFFE;
this->w0d = w0 & 0xFFFE;
this->w1d = w1 & 0xFFFE;
}
this->shift = 9;
}
else
{
// along X
this->w0n = w0;
this->w0d = w0;
this->w1d = w1;
this->shift = 8;
}
}
void SetX(s32 x)
{
x -= x0;
this->x = x;
if (xdiff != 0 && !linear)
{
s64 num = ((s64)x * w0n) << shift;
s32 den = (x * w0d) + ((xdiff-x) * w1d);
// this seems to be a proper division on hardware :/
// I haven't been able to find cases that produce imperfect output
if (den == 0) yfactor = 0;
else yfactor = (s32)(num / den);
}
}
s32 Interpolate(s32 y0, s32 y1)
{
if (xdiff == 0 || y0 == y1) return y0;
if (!linear)
{
// perspective-correct approx. interpolation
if (y0 < y1)
return y0 + (((y1-y0) * yfactor) >> shift);
else
return y1 + (((y0-y1) * ((1<<shift)-yfactor)) >> shift);
}
else
{
// linear interpolation
// checkme: the rounding bias there (3<<24) is a guess
if (y0 < y1)
return y0 + ((((s64)(y1-y0) * x * xrecip) + (3<<24)) >> 30);
else
return y1 + ((((s64)(y0-y1) * (xdiff-x) * xrecip) + (3<<24)) >> 30);
}
}
s32 InterpolateZ(s32 z0, s32 z1, bool wbuffer)
{
if (xdiff == 0 || z0 == z1) return z0;
if (wbuffer)
{
// W-buffering: perspective-correct approx. interpolation
if (z0 < z1)
return z0 + (((s64)(z1-z0) * yfactor) >> shift);
else
return z1 + (((s64)(z0-z1) * ((1<<shift)-yfactor)) >> shift);
}
else
{
// Z-buffering: linear interpolation
// still doesn't quite match hardware...
s32 base, disp, factor;
if (z0 < z1)
{
base = z0;
disp = z1 - z0;
factor = x;
}
else
{
base = z1;
disp = z0 - z1,
factor = xdiff - x;
}
if (dir)
{
int shift = 0;
while (disp > 0x3FF)
{
disp >>= 1;
shift++;
}
return base + ((((s64)disp * factor * xrecip_z) >> 22) << shift);
}
else
{
disp >>= 9;
return base + (((s64)disp * factor * xrecip_z) >> 13);
}
}
}
private:
s32 x0, x1, xdiff, x;
int shift;
bool linear;
s32 xrecip, xrecip_z;
s32 w0n, w0d, w1d;
u32 yfactor;
};
template<int side>
class Slope
{
public:
Slope() {}
s32 SetupDummy(s32 x0)
{
if (side)
{
dx = -0x40000;
x0--;
}
else
{
dx = 0;
}
this->x0 = x0;
this->xmin = x0;
this->xmax = x0;
Increment = 0;
XMajor = false;
Interp.Setup(0, 0, 0, 0);
Interp.SetX(0);
xcov_incr = 0;
return x0;
}
s32 Setup(s32 x0, s32 x1, s32 y0, s32 y1, s32 w0, s32 w1, s32 y)
{
this->x0 = x0;
this->y = y;
if (x1 > x0)
{
this->xmin = x0;
this->xmax = x1-1;
this->Negative = false;
}
else if (x1 < x0)
{
this->xmin = x1;
this->xmax = x0-1;
this->Negative = true;
}
else
{
this->xmin = x0;
if (side) this->xmin--;
this->xmax = this->xmin;
this->Negative = false;
}
xlen = xmax+1 - xmin;
ylen = y1 - y0;
// slope increment has a 18-bit fractional part
// note: for some reason, x/y isn't calculated directly,
// instead, 1/y is calculated and then multiplied by x
// TODO: this is still not perfect (see for example x=169 y=33)
if (ylen == 0)
Increment = 0;
else if (ylen == xlen)
Increment = 0x40000;
else
{
s32 yrecip = (1<<18) / ylen;
Increment = (x1-x0) * yrecip;
if (Increment < 0) Increment = -Increment;
}
XMajor = (Increment > 0x40000);
if (side)
{
// right
if (XMajor) dx = Negative ? (0x20000 + 0x40000) : (Increment - 0x20000);
else if (Increment != 0) dx = Negative ? 0x40000 : 0;
else dx = -0x40000;
}
else
{
// left
if (XMajor) dx = Negative ? ((Increment - 0x20000) + 0x40000) : 0x20000;
else if (Increment != 0) dx = Negative ? 0x40000 : 0;
else dx = 0;
}
dx += (y - y0) * Increment;
s32 x = XVal();
if (XMajor)
{
if (side) Interp.Setup(x0-1, x1-1, w0, w1); // checkme
else Interp.Setup(x0, x1, w0, w1);
Interp.SetX(x);
// used for calculating AA coverage
xcov_incr = (ylen << 10) / xlen;
}
else
{
Interp.Setup(y0, y1, w0, w1);
Interp.SetX(y);
}
return x;
}
s32 Step()
{
dx += Increment;
y++;
s32 x = XVal();
if (XMajor)
{
Interp.SetX(x);
}
else
{
Interp.SetX(y);
}
return x;
}
s32 XVal()
{
s32 ret;
if (Negative) ret = x0 - (dx >> 18);
else ret = x0 + (dx >> 18);
if (ret < xmin) ret = xmin;
else if (ret > xmax) ret = xmax;
return ret;
}
void EdgeParams_XMajor(s32* length, s32* coverage)
{
if (side ^ Negative)
*length = (dx >> 18) - ((dx-Increment) >> 18);
else
*length = ((dx+Increment) >> 18) - (dx >> 18);
// for X-major edges, we return the coverage
// for the first pixel, and the increment for
// further pixels on the same scanline
s32 startx = dx >> 18;
if (Negative) startx = xlen - startx;
if (side) startx = startx - *length + 1;
s32 startcov = (((startx << 10) + 0x1FF) * ylen) / xlen;
*coverage = (1<<31) | ((startcov & 0x3FF) << 12) | (xcov_incr & 0x3FF);
}
void EdgeParams_YMajor(s32* length, s32* coverage)
{
*length = 1;
if (Increment == 0)
{
*coverage = 31;
}
else
{
s32 cov = ((dx >> 9) + (Increment >> 10)) >> 4;
if ((cov >> 5) != (dx >> 18)) cov = 31;
cov &= 0x1F;
if (!(side ^ Negative)) cov = 0x1F - cov;
*coverage = cov;
}
}
void EdgeParams(s32* length, s32* coverage)
{
if (XMajor)
return EdgeParams_XMajor(length, coverage);
else
return EdgeParams_YMajor(length, coverage);
}
s32 Increment;
bool Negative;
bool XMajor;
Interpolator<1> Interp;
private:
s32 x0, xmin, xmax;
s32 xlen, ylen;
s32 dx;
s32 y;
s32 xcov_incr;
s32 ycoverage, ycov_incr;
};
template <typename T>
inline T ReadVRAM_Texture(u32 addr)
{
return *(T*)&GPU::VRAMFlat_Texture[addr & 0x7FFFF];
}
template <typename T>
inline T ReadVRAM_TexPal(u32 addr)
{
return *(T*)&GPU::VRAMFlat_TexPal[addr & 0x1FFFF];
}
struct RendererPolygon
{
Polygon* PolyData;
Slope<0> SlopeL;
Slope<1> SlopeR;
s32 XL, XR;
u32 CurVL, CurVR;
u32 NextVL, NextVR;
};
RendererPolygon PolygonList[2048];
void TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha);
u32 RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t);
void PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 shadow);
void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y);
void SetupPolygonRightEdge(RendererPolygon* rp, s32 y);
void SetupPolygon(RendererPolygon* rp, Polygon* polygon);
void RenderShadowMaskScanline(RendererPolygon* rp, s32 y);
void RenderPolygonScanline(RendererPolygon* rp, s32 y);
void RenderScanline(s32 y, int npolys);
u32 CalculateFogDensity(u32 pixeladdr);
void ScanlineFinalPass(s32 y);
void ClearBuffers();
void RenderPolygons(bool threaded, Polygon** polygons, int npolys);
void RenderThreadFunc();
// buffer dimensions are 258x194 to add a offscreen 1px border
// which simplifies edge marking tests
// buffer is duplicated to keep track of the two topmost pixels
// TODO: check if the hardware can accidentally plot pixels
// offscreen in that border
static constexpr int ScanlineWidth = 258;
static constexpr int NumScanlines = 194;
static constexpr int BufferSize = ScanlineWidth * NumScanlines;
static constexpr int FirstPixelOffset = ScanlineWidth + 1;
u32 ColorBuffer[BufferSize * 2];
u32 DepthBuffer[BufferSize * 2];
u32 AttrBuffer[BufferSize * 2];
// attribute buffer:
// bit0-3: edge flags (left/right/top/bottom)
// bit4: backfacing flag
// bit8-12: antialiasing alpha
// bit15: fog enable
// bit16-21: polygon ID for translucent pixels
// bit22: translucent flag
// bit24-29: polygon ID for opaque pixels
u8 StencilBuffer[256*2];
bool PrevIsShadowMask;
bool Enabled;
bool FrameIdentical;
// threading
bool Threaded;
// Platform::Thread* RenderThread;
std::thread RenderThread;
bool RenderThreadRunning;
bool RenderThreadRendering;
Platform::Semaphore* Sema_RenderStart;
Platform::Semaphore* Sema_RenderDone;
Platform::Semaphore* Sema_ScanlineCount;
};
}

View File

@ -16,8 +16,11 @@
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "GPU_OpenGL.h"
#include <cstdio>
#include <cstring>
#include "NDS.h"
#include "GPU.h"
#include "Config.h"
@ -26,34 +29,10 @@
namespace GPU
{
namespace GLCompositor
{
using namespace OpenGL;
int Scale;
int ScreenH, ScreenW;
GLuint CompShader[1][3];
GLuint CompScaleLoc[1];
GLuint Comp3DXPosLoc[1];
GLuint CompVertexBufferID;
GLuint CompVertexArrayID;
struct CompVertex
{
float Position[2];
float Texcoord[2];
};
CompVertex CompVertices[2 * 3*2];
GLuint CompScreenInputTex;
GLuint CompScreenOutputTex[2];
GLuint CompScreenOutputFB[2];
bool Init()
bool GLCompositor::Init()
{
if (!OpenGL::BuildShaderProgram(kCompositorVS, kCompositorFS_Nearest, CompShader[0], "CompositorShader"))
//if (!OpenGL::BuildShaderProgram(kCompositorVS, kCompositorFS_Linear, CompShader[0], "CompositorShader"))
@ -144,7 +123,7 @@ bool Init()
return true;
}
void DeInit()
void GLCompositor::DeInit()
{
glDeleteFramebuffers(2, CompScreenOutputFB);
glDeleteTextures(1, &CompScreenInputTex);
@ -157,12 +136,12 @@ void DeInit()
OpenGL::DeleteShaderProgram(CompShader[i]);
}
void Reset()
void GLCompositor::Reset()
{
}
void SetRenderSettings(RenderSettings& settings)
void GLCompositor::SetRenderSettings(RenderSettings& settings)
{
int scale = settings.GL_ScaleFactor;
@ -188,7 +167,7 @@ void SetRenderSettings(RenderSettings& settings)
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
void Stop()
void GLCompositor::Stop()
{
for (int i = 0; i < 2; i++)
{
@ -202,7 +181,7 @@ void Stop()
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
void RenderFrame()
void GLCompositor::RenderFrame()
{
int frontbuf = GPU::FrontBuffer;
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
@ -236,17 +215,16 @@ void RenderFrame()
}
glActiveTexture(GL_TEXTURE1);
GPU3D::GLRenderer::SetupAccelFrame();
reinterpret_cast<GPU3D::GLRenderer*>(GPU3D::CurrentRenderer.get())->SetupAccelFrame();
glBindBuffer(GL_ARRAY_BUFFER, CompVertexBufferID);
glBindVertexArray(CompVertexArrayID);
glDrawArrays(GL_TRIANGLES, 0, 4*3);
}
void BindOutputTexture(int buf)
void GLCompositor::BindOutputTexture(int buf)
{
glBindTexture(GL_TEXTURE_2D, CompScreenOutputTex[buf]);
}
}
}

68
src/GPU_OpenGL.h Normal file
View File

@ -0,0 +1,68 @@
/*
Copyright 2016-2020 Arisotura
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#pragma once
#include "OpenGLSupport.h"
namespace GPU
{
struct RenderSettings;
class GLCompositor
{
public:
GLCompositor() = default;
GLCompositor(const GLCompositor&) = delete;
GLCompositor& operator=(const GLCompositor&) = delete;
bool Init();
void DeInit();
void Reset();
void SetRenderSettings(RenderSettings& settings);
void Stop();
void RenderFrame();
void BindOutputTexture(int buf);
private:
int Scale;
int ScreenH, ScreenW;
GLuint CompShader[1][3];
GLuint CompScaleLoc[1];
GLuint Comp3DXPosLoc[1];
GLuint CompVertexBufferID;
GLuint CompVertexArrayID;
struct CompVertex
{
float Position[2];
float Texcoord[2];
};
CompVertex CompVertices[2 * 3*2];
GLuint CompScreenInputTex;
GLuint CompScreenOutputTex[2];
GLuint CompScreenOutputFB[2];
};
}

View File

@ -1564,7 +1564,7 @@ void RunTimer(u32 tid, s32 cycles)
void RunTimers(u32 cpu)
{
register u32 timermask = TimerCheckMask[cpu];
u32 timermask = TimerCheckMask[cpu];
s32 cycles;
if (cpu == 0)

View File

@ -1013,7 +1013,7 @@ void ScreenPanelGL::paintGL()
if (GPU::Renderer != 0)
{
// hardware-accelerated render
GPU::GLCompositor::BindOutputTexture(frontbuf);
GPU::CurGLCompositor->BindOutputTexture(frontbuf);
}
else
#endif
@ -2536,9 +2536,15 @@ int main(int argc, char** argv)
Config::Load();
#define SANITIZE(var, min, max) { if (var < min) var = min; else if (var > max) var = max; }
#define SANITIZE(var, min, max) { var = std::clamp(var, min, max); }
SANITIZE(Config::ConsoleType, 0, 1);
SANITIZE(Config::_3DRenderer, 0, 1);
SANITIZE(Config::_3DRenderer,
0,
0 // Minimum, Software renderer
#ifdef OGLRENDERER_ENABLED
+ 1 // OpenGL Renderer
#endif
);
SANITIZE(Config::ScreenVSyncInterval, 1, 20);
SANITIZE(Config::GL_ScaleFactor, 1, 16);
SANITIZE(Config::AudioVolume, 0, 256);