melonDS/src/ARMJIT_A64/ARMJIT_Compiler.cpp

965 lines
30 KiB
C++
Raw Normal View History

/*
Copyright 2016-2021 Arisotura, RSDuck
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include "ARMJIT_Compiler.h"
#include "../ARMJIT_Internal.h"
#include "../ARMInterpreter.h"
#include "../Config.h"
2020-02-04 17:29:52 +00:00
#ifdef __SWITCH__
#include <switch.h>
2020-02-04 17:29:52 +00:00
extern char __start__;
#else
#include <sys/mman.h>
#include <unistd.h>
2020-02-04 17:29:52 +00:00
#endif
#include <stdlib.h>
2020-02-04 17:29:52 +00:00
#ifdef __APPLE__
#include <pthread.h>
#endif
2020-02-04 17:29:52 +00:00
using namespace Arm64Gen;
extern "C" void ARM_Ret();
2020-02-04 17:29:52 +00:00
namespace ARMJIT
{
/*
Recompiling classic ARM to ARMv8 code is at the same time
easier and trickier than compiling to a less related architecture
like x64. At one hand you can translate a lot of instructions directly.
But at the same time, there are a ton of exceptions, like for
example ADD and SUB can't have a RORed second operand on ARMv8.
While writing a JIT when an instruction is recompiled into multiple ones
not to write back until you've read all the other operands!
*/
2020-02-04 17:29:52 +00:00
template <>
const ARM64Reg RegisterCache<Compiler, ARM64Reg>::NativeRegAllocOrder[] =
{W19, W20, W21, W22, W23, W24, W25, W26};
template <>
const int RegisterCache<Compiler, ARM64Reg>::NativeRegsAvailable = 8;
const int JitMemSize = 16 * 1024 * 1024;
#ifndef __SWITCH__
u8 JitMem[JitMemSize];
#endif
2020-02-04 17:29:52 +00:00
void Compiler::MovePC()
{
ADD(MapReg(15), MapReg(15), Thumb ? 2 : 4);
}
void Compiler::A_Comp_MRS()
{
Comp_AddCycles_C();
ARM64Reg rd = MapReg(CurInstr.A_Reg(12));
if (CurInstr.Instr & (1 << 22))
{
ANDI2R(W5, RCPSR, 0x1F);
MOVI2R(W3, 0);
MOVI2R(W1, 15 - 8);
BL(ReadBanked);
MOV(rd, W3);
}
else
MOV(rd, RCPSR);
}
void UpdateModeTrampoline(ARM* arm, u32 oldmode, u32 newmode)
{
arm->UpdateMode(oldmode, newmode);
}
void Compiler::A_Comp_MSR()
{
Comp_AddCycles_C();
ARM64Reg val;
if (CurInstr.Instr & (1 << 25))
{
val = W0;
MOVI2R(val, ::ROR((CurInstr.Instr & 0xFF), ((CurInstr.Instr >> 7) & 0x1E)));
}
else
{
val = MapReg(CurInstr.A_Reg(0));
}
u32 mask = 0;
if (CurInstr.Instr & (1<<16)) mask |= 0x000000FF;
if (CurInstr.Instr & (1<<17)) mask |= 0x0000FF00;
if (CurInstr.Instr & (1<<18)) mask |= 0x00FF0000;
if (CurInstr.Instr & (1<<19)) mask |= 0xFF000000;
if (CurInstr.Instr & (1 << 22))
{
ANDI2R(W5, RCPSR, 0x1F);
MOVI2R(W3, 0);
MOVI2R(W1, 15 - 8);
BL(ReadBanked);
MOVI2R(W1, mask);
MOVI2R(W2, mask & 0xFFFFFF00);
ANDI2R(W5, RCPSR, 0x1F);
CMP(W5, 0x10);
CSEL(W1, W2, W1, CC_EQ);
BIC(W3, W3, W1);
AND(W0, val, W1);
ORR(W3, W3, W0);
MOVI2R(W1, 15 - 8);
BL(WriteBanked);
}
else
{
mask &= 0xFFFFFFDF;
CPSRDirty = true;
if ((mask & 0xFF) == 0)
{
ANDI2R(RCPSR, RCPSR, ~mask);
ANDI2R(W0, val, mask);
ORR(RCPSR, RCPSR, W0);
}
else
{
MOVI2R(W2, mask);
MOVI2R(W3, mask & 0xFFFFFF00);
ANDI2R(W1, RCPSR, 0x1F);
// W1 = first argument
CMP(W1, 0x10);
CSEL(W2, W3, W2, CC_EQ);
BIC(RCPSR, RCPSR, W2);
AND(W0, val, W2);
ORR(RCPSR, RCPSR, W0);
MOV(W2, RCPSR);
MOV(X0, RCPU);
PushRegs(true);
QuickCallFunction(X3, (void*)&UpdateModeTrampoline);
PopRegs(true);
}
}
}
void Compiler::PushRegs(bool saveHiRegs)
{
if (saveHiRegs)
{
if (Thumb || CurInstr.Cond() == 0xE)
{
BitSet16 hiRegsLoaded(RegCache.LoadedRegs & 0x7F00);
for (int reg : hiRegsLoaded)
RegCache.UnloadRegister(reg);
}
else
{
BitSet16 hiRegsDirty(RegCache.LoadedRegs & 0x7F00);
for (int reg : hiRegsDirty)
SaveReg(reg, RegCache.Mapping[reg]);
}
}
}
void Compiler::PopRegs(bool saveHiRegs)
{
if (saveHiRegs)
{
if (!Thumb && CurInstr.Cond() != 0xE)
{
BitSet16 hiRegsLoaded(RegCache.LoadedRegs & 0x7F00);
for (int reg : hiRegsLoaded)
LoadReg(reg, RegCache.Mapping[reg]);
}
}
}
2020-02-04 17:29:52 +00:00
Compiler::Compiler()
{
#ifdef __SWITCH__
JitRWBase = aligned_alloc(0x1000, JitMemSize);
2020-02-04 17:29:52 +00:00
JitRXStart = (u8*)&__start__ - JitMemSize - 0x1000;
virtmemLock();
JitRWStart = virtmemFindAslr(JitMemSize, 0x1000);
2020-02-04 17:29:52 +00:00
MemoryInfo info = {0};
u32 pageInfo = {0};
int i = 0;
while (JitRXStart != NULL)
{
svcQueryMemory(&info, &pageInfo, (u64)JitRXStart);
if (info.type != MemType_Unmapped)
JitRXStart = (void*)((u8*)info.addr - JitMemSize - 0x1000);
else
break;
if (i++ > 8)
{
printf("couldn't find unmapped place for jit memory\n");
JitRXStart = NULL;
}
}
assert(JitRXStart != NULL);
bool succeded = R_SUCCEEDED(svcMapProcessCodeMemory(envGetOwnProcessHandle(), (u64)JitRXStart, (u64)JitRWBase, JitMemSize));
assert(succeded);
succeded = R_SUCCEEDED(svcSetProcessMemoryPermission(envGetOwnProcessHandle(), (u64)JitRXStart, JitMemSize, Perm_Rx));
assert(succeded);
succeded = R_SUCCEEDED(svcMapProcessMemory(JitRWStart, envGetOwnProcessHandle(), (u64)JitRXStart, JitMemSize));
assert(succeded);
virtmemUnlock();
2020-02-04 17:29:52 +00:00
SetCodeBase((u8*)JitRWStart, (u8*)JitRXStart);
JitMemMainSize = JitMemSize;
#else
u64 pageSize = sysconf(_SC_PAGE_SIZE);
u8* pageAligned = (u8*)(((u64)JitMem & ~(pageSize - 1)) + pageSize);
u64 alignedSize = (((u64)JitMem + sizeof(JitMem)) & ~(pageSize - 1)) - (u64)pageAligned;
#ifdef __APPLE__
pageAligned = (u8*)mmap(NULL, 1024*1024*16, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANONYMOUS | MAP_JIT,-1, 0);
pthread_jit_write_protect_np(false);
#else
mprotect(pageAligned, alignedSize, PROT_EXEC | PROT_READ | PROT_WRITE);
#endif
SetCodeBase(pageAligned, pageAligned);
2020-07-08 22:11:47 +00:00
JitMemMainSize = alignedSize;
2020-02-04 17:29:52 +00:00
#endif
SetCodePtr(0);
2020-02-04 17:29:52 +00:00
for (int i = 0; i < 3; i++)
{
JumpToFuncs9[i] = Gen_JumpTo9(i);
JumpToFuncs7[i] = Gen_JumpTo7(i);
}
/*
W5 - mode
2020-02-04 17:29:52 +00:00
W1 - reg num
W3 - in/out value of reg
*/
{
ReadBanked = GetRXPtr();
ADD(X2, RCPU, X1, ArithOption(X2, ST_LSL, 2));
CMP(W5, 0x11);
2020-02-04 17:29:52 +00:00
FixupBranch fiq = B(CC_EQ);
SUBS(W1, W1, 13 - 8);
ADD(X2, RCPU, X1, ArithOption(X2, ST_LSL, 2));
2020-02-04 17:29:52 +00:00
FixupBranch notEverything = B(CC_LT);
CMP(W5, 0x12);
2020-02-04 17:29:52 +00:00
FixupBranch irq = B(CC_EQ);
CMP(W5, 0x13);
2020-02-04 17:29:52 +00:00
FixupBranch svc = B(CC_EQ);
CMP(W5, 0x17);
2020-02-04 17:29:52 +00:00
FixupBranch abt = B(CC_EQ);
CMP(W5, 0x1B);
2020-02-04 17:29:52 +00:00
FixupBranch und = B(CC_EQ);
SetJumpTarget(notEverything);
RET();
SetJumpTarget(fiq);
LDR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_FIQ));
RET();
SetJumpTarget(irq);
LDR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_IRQ));
RET();
SetJumpTarget(svc);
LDR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_SVC));
RET();
SetJumpTarget(abt);
LDR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_ABT));
RET();
SetJumpTarget(und);
LDR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_UND));
RET();
}
{
WriteBanked = GetRXPtr();
ADD(X2, RCPU, X1, ArithOption(X2, ST_LSL, 2));
CMP(W5, 0x11);
2020-02-04 17:29:52 +00:00
FixupBranch fiq = B(CC_EQ);
SUBS(W1, W1, 13 - 8);
ADD(X2, RCPU, X1, ArithOption(X2, ST_LSL, 2));
2020-02-04 17:29:52 +00:00
FixupBranch notEverything = B(CC_LT);
CMP(W5, 0x12);
2020-02-04 17:29:52 +00:00
FixupBranch irq = B(CC_EQ);
CMP(W5, 0x13);
2020-02-04 17:29:52 +00:00
FixupBranch svc = B(CC_EQ);
CMP(W5, 0x17);
2020-02-04 17:29:52 +00:00
FixupBranch abt = B(CC_EQ);
CMP(W5, 0x1B);
2020-02-04 17:29:52 +00:00
FixupBranch und = B(CC_EQ);
SetJumpTarget(notEverything);
MOVI2R(W4, 0);
RET();
SetJumpTarget(fiq);
STR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_FIQ));
MOVI2R(W4, 1);
RET();
SetJumpTarget(irq);
STR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_IRQ));
MOVI2R(W4, 1);
RET();
SetJumpTarget(svc);
STR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_SVC));
MOVI2R(W4, 1);
RET();
SetJumpTarget(abt);
STR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_ABT));
MOVI2R(W4, 1);
RET();
SetJumpTarget(und);
STR(INDEX_UNSIGNED, W3, X2, offsetof(ARM, R_UND));
MOVI2R(W4, 1);
RET();
}
2020-07-23 19:07:33 +00:00
for (int consoleType = 0; consoleType < 2; consoleType++)
{
2020-07-23 19:07:33 +00:00
for (int num = 0; num < 2; num++)
{
2020-07-23 19:07:33 +00:00
for (int size = 0; size < 3; size++)
{
for (int reg = 0; reg < 32; reg++)
{
if (!(reg == W4 || (reg >= W19 && reg <= W26)))
continue;
2021-01-21 14:32:02 +00:00
ARM64Reg rdMapped = (ARM64Reg)reg;
2020-07-23 19:07:33 +00:00
PatchedStoreFuncs[consoleType][num][size][reg] = GetRXPtr();
if (num == 0)
2020-07-23 19:07:33 +00:00
{
MOV(X1, RCPU);
2020-07-23 19:07:33 +00:00
MOV(W2, rdMapped);
}
else
{
MOV(W1, rdMapped);
}
ABI_PushRegisters({30});
2020-07-23 19:07:33 +00:00
if (consoleType == 0)
{
2020-07-23 19:07:33 +00:00
switch ((8 << size) | num)
{
case 32: QuickCallFunction(X3, SlowWrite9<u32, 0>); break;
case 33: QuickCallFunction(X3, SlowWrite7<u32, 0>); break;
case 16: QuickCallFunction(X3, SlowWrite9<u16, 0>); break;
case 17: QuickCallFunction(X3, SlowWrite7<u16, 0>); break;
case 8: QuickCallFunction(X3, SlowWrite9<u8, 0>); break;
case 9: QuickCallFunction(X3, SlowWrite7<u8, 0>); break;
}
}
else
2020-07-23 19:07:33 +00:00
{
switch ((8 << size) | num)
{
case 32: QuickCallFunction(X3, SlowWrite9<u32, 1>); break;
case 33: QuickCallFunction(X3, SlowWrite7<u32, 1>); break;
case 16: QuickCallFunction(X3, SlowWrite9<u16, 1>); break;
case 17: QuickCallFunction(X3, SlowWrite7<u16, 1>); break;
case 8: QuickCallFunction(X3, SlowWrite9<u8, 1>); break;
case 9: QuickCallFunction(X3, SlowWrite7<u8, 1>); break;
}
}
ABI_PopRegisters({30});
RET();
2020-07-23 19:07:33 +00:00
for (int signextend = 0; signextend < 2; signextend++)
{
PatchedLoadFuncs[consoleType][num][size][signextend][reg] = GetRXPtr();
if (num == 0)
MOV(X1, RCPU);
ABI_PushRegisters({30});
if (consoleType == 0)
{
switch ((8 << size) | num)
{
case 32: QuickCallFunction(X3, SlowRead9<u32, 0>); break;
case 33: QuickCallFunction(X3, SlowRead7<u32, 0>); break;
case 16: QuickCallFunction(X3, SlowRead9<u16, 0>); break;
case 17: QuickCallFunction(X3, SlowRead7<u16, 0>); break;
case 8: QuickCallFunction(X3, SlowRead9<u8, 0>); break;
case 9: QuickCallFunction(X3, SlowRead7<u8, 0>); break;
}
}
else
{
switch ((8 << size) | num)
{
case 32: QuickCallFunction(X3, SlowRead9<u32, 1>); break;
case 33: QuickCallFunction(X3, SlowRead7<u32, 1>); break;
case 16: QuickCallFunction(X3, SlowRead9<u16, 1>); break;
case 17: QuickCallFunction(X3, SlowRead7<u16, 1>); break;
case 8: QuickCallFunction(X3, SlowRead9<u8, 1>); break;
case 9: QuickCallFunction(X3, SlowRead7<u8, 1>); break;
}
}
ABI_PopRegisters({30});
if (size == 32)
MOV(rdMapped, W0);
else if (signextend)
SBFX(rdMapped, W0, 0, 8 << size);
else
UBFX(rdMapped, W0, 0, 8 << size);
RET();
}
}
}
}
}
FlushIcache();
JitMemSecondarySize = 1024*1024*4;
JitMemMainSize -= GetCodeOffset();
JitMemMainSize -= JitMemSecondarySize;
2020-02-04 17:29:52 +00:00
SetCodeBase((u8*)GetRWPtr(), (u8*)GetRXPtr());
}
Compiler::~Compiler()
{
#ifdef __SWITCH__
if (JitRWStart != NULL)
{
bool succeded = R_SUCCEEDED(svcUnmapProcessMemory(JitRWStart, envGetOwnProcessHandle(), (u64)JitRXStart, JitMemSize));
assert(succeded);
succeded = R_SUCCEEDED(svcUnmapProcessCodeMemory(envGetOwnProcessHandle(), (u64)JitRXStart, (u64)JitRWBase, JitMemSize));
assert(succeded);
free(JitRWBase);
}
#endif
}
void Compiler::LoadCycles()
{
LDR(INDEX_UNSIGNED, RCycles, RCPU, offsetof(ARM, Cycles));
}
void Compiler::SaveCycles()
{
STR(INDEX_UNSIGNED, RCycles, RCPU, offsetof(ARM, Cycles));
}
2020-02-04 17:29:52 +00:00
void Compiler::LoadReg(int reg, ARM64Reg nativeReg)
{
if (reg == 15)
MOVI2R(nativeReg, R15);
else
2021-04-29 13:15:16 +00:00
LDR(INDEX_UNSIGNED, nativeReg, RCPU, offsetof(ARM, R) + reg*4);
2020-02-04 17:29:52 +00:00
}
void Compiler::SaveReg(int reg, ARM64Reg nativeReg)
{
2021-04-29 13:15:16 +00:00
STR(INDEX_UNSIGNED, nativeReg, RCPU, offsetof(ARM, R) + reg*4);
2020-02-04 17:29:52 +00:00
}
void Compiler::LoadCPSR()
{
assert(!CPSRDirty);
LDR(INDEX_UNSIGNED, RCPSR, RCPU, offsetof(ARM, CPSR));
}
void Compiler::SaveCPSR(bool markClean)
{
if (CPSRDirty)
{
STR(INDEX_UNSIGNED, RCPSR, RCPU, offsetof(ARM, CPSR));
CPSRDirty = CPSRDirty && !markClean;
}
}
FixupBranch Compiler::CheckCondition(u32 cond)
{
if (cond >= 0x8)
{
LSR(W1, RCPSR, 28);
MOVI2R(W2, 1);
LSLV(W2, W2, W1);
ANDI2R(W2, W2, ARM::ConditionTable[cond], W3);
return CBZ(W2);
}
else
{
u8 bit = (28 + ((~(cond >> 1) & 1) << 1 | (cond >> 2 & 1) ^ (cond >> 1 & 1)));
if (cond & 1)
return TBNZ(RCPSR, bit);
else
return TBZ(RCPSR, bit);
}
}
#define F(x) &Compiler::A_Comp_##x
const Compiler::CompileFunc A_Comp[ARMInstrInfo::ak_Count] =
{
// AND
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// EOR
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// SUB
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// RSB
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// ADD
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// ADC
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// SBC
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// RSC
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// ORR
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// MOV
F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp),
F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp),
// BIC
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp), F(ALUTriOp),
// MVN
F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp),
F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp), F(ALUMovOp),
// TST
F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp),
// TEQ
F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp),
// CMP
F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp),
// CMN
F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp), F(ALUCmpOp),
// Mul
F(Mul), F(Mul), F(Mul_Long), F(Mul_Long), F(Mul_Long), F(Mul_Long), F(Mul_Short), F(Mul_Short), F(Mul_Short), F(Mul_Short), F(Mul_Short),
2020-02-04 17:29:52 +00:00
// ARMv5 exclusives
F(Clz), NULL, NULL, NULL, NULL,
// STR
F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB),
// STRB
F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB),
// LDR
F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB),
// LDRB
F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB), F(MemWB),
// STRH
F(MemHD), F(MemHD), F(MemHD), F(MemHD),
// LDRD
NULL, NULL, NULL, NULL,
// STRD
NULL, NULL, NULL, NULL,
// LDRH
F(MemHD), F(MemHD), F(MemHD), F(MemHD),
// LDRSB
F(MemHD), F(MemHD), F(MemHD), F(MemHD),
// LDRSH
F(MemHD), F(MemHD), F(MemHD), F(MemHD),
// Swap
NULL, NULL,
// LDM, STM
F(LDM_STM), F(LDM_STM),
// Branch
F(BranchImm), F(BranchImm), F(BranchImm), F(BranchXchangeReg), F(BranchXchangeReg),
// Special
NULL, F(MSR), F(MSR), F(MRS), NULL, NULL, NULL,
&Compiler::Nop
2020-02-04 17:29:52 +00:00
};
#undef F
#define F(x) &Compiler::T_Comp_##x
const Compiler::CompileFunc T_Comp[ARMInstrInfo::tk_Count] =
{
// Shift imm
F(ShiftImm), F(ShiftImm), F(ShiftImm),
// Add/sub tri operand
F(AddSub_), F(AddSub_), F(AddSub_), F(AddSub_),
// 8 bit imm
F(ALUImm8), F(ALUImm8), F(ALUImm8), F(ALUImm8),
// ALU
F(ALU), F(ALU), F(ALU), F(ALU), F(ALU), F(ALU), F(ALU), F(ALU),
F(ALU), F(ALU), F(ALU), F(ALU), F(ALU), F(ALU), F(ALU), F(ALU),
// ALU hi reg
F(ALU_HiReg), F(ALU_HiReg), F(ALU_HiReg),
// PC/SP relative ops
F(RelAddr), F(RelAddr), F(AddSP),
// LDR PC rel
F(LoadPCRel),
// LDR/STR reg offset
F(MemReg), F(MemReg), F(MemReg), F(MemReg),
// LDR/STR sign extended, half
F(MemRegHalf), F(MemRegHalf), F(MemRegHalf), F(MemRegHalf),
// LDR/STR imm offset
F(MemImm), F(MemImm), F(MemImm), F(MemImm),
// LDR/STR half imm offset
F(MemImmHalf), F(MemImmHalf),
// LDR/STR sp rel
F(MemSPRel), F(MemSPRel),
// PUSH/POP
F(PUSH_POP), F(PUSH_POP),
// LDMIA, STMIA
F(LDMIA_STMIA), F(LDMIA_STMIA),
// Branch
F(BCOND), F(BranchXchangeReg), F(BranchXchangeReg), F(B), F(BL_LONG_1), F(BL_LONG_2),
// Unk, SVC
NULL, NULL,
F(BL_Merged)
};
bool Compiler::CanCompile(bool thumb, u16 kind)
{
return (thumb ? T_Comp[kind] : A_Comp[kind]) != NULL;
}
void Compiler::Comp_BranchSpecialBehaviour(bool taken)
2020-02-04 17:29:52 +00:00
{
if (taken && CurInstr.BranchFlags & branch_IdleBranch)
2020-02-04 17:29:52 +00:00
{
MOVI2R(W0, 1);
STRB(INDEX_UNSIGNED, W0, RCPU, offsetof(ARM, IdleLoop));
}
if ((CurInstr.BranchFlags & branch_FollowCondNotTaken && taken)
|| (CurInstr.BranchFlags & branch_FollowCondTaken && !taken))
2020-02-04 17:29:52 +00:00
{
RegCache.PrepareExit();
ADD(RCycles, RCycles, ConstantCycles);
QuickTailCall(X0, ARM_Ret);
2020-02-04 17:29:52 +00:00
}
}
JitBlockEntry Compiler::CompileBlock(ARM* cpu, bool thumb, FetchedInstr instrs[], int instrsCount)
{
if (JitMemMainSize - GetCodeOffset() < 1024 * 16)
{
printf("JIT near memory full, resetting...\n");
ResetBlockCache();
}
if ((JitMemMainSize + JitMemSecondarySize) - OtherCodeRegion < 1024 * 8)
2020-02-04 17:29:52 +00:00
{
printf("JIT far memory full, resetting...\n");
2020-02-04 17:29:52 +00:00
ResetBlockCache();
}
JitBlockEntry res = (JitBlockEntry)GetRXPtr();
Thumb = thumb;
Num = cpu->Num;
CurCPU = cpu;
ConstantCycles = 0;
RegCache = RegisterCache<Compiler, ARM64Reg>(this, instrs, instrsCount, true);
CPSRDirty = false;
2020-02-04 17:29:52 +00:00
for (int i = 0; i < instrsCount; i++)
{
CurInstr = instrs[i];
R15 = CurInstr.Addr + (Thumb ? 4 : 8);
CodeRegion = R15 >> 24;
CompileFunc comp = Thumb
? T_Comp[CurInstr.Info.Kind]
: A_Comp[CurInstr.Info.Kind];
Exit = i == (instrsCount - 1) || (CurInstr.BranchFlags & branch_FollowCondNotTaken);
//printf("%x instr %x regs: r%x w%x n%x flags: %x %x %x\n", R15, CurInstr.Instr, CurInstr.Info.SrcRegs, CurInstr.Info.DstRegs, CurInstr.Info.ReadFlags, CurInstr.Info.NotStrictlyNeeded, CurInstr.Info.WriteFlags, CurInstr.SetFlags);
bool isConditional = Thumb ? CurInstr.Info.Kind == ARMInstrInfo::tk_BCOND : CurInstr.Cond() < 0xE;
if (comp == NULL || (CurInstr.BranchFlags & branch_FollowCondTaken) || (i == instrsCount - 1 && (!CurInstr.Info.Branches() || isConditional)))
{
MOVI2R(W0, R15);
STR(INDEX_UNSIGNED, W0, RCPU, offsetof(ARM, R[15]));
if (comp == NULL)
{
MOVI2R(W0, CurInstr.Instr);
STR(INDEX_UNSIGNED, W0, RCPU, offsetof(ARM, CurInstr));
}
if (Num == 0)
{
MOVI2R(W0, (s32)CurInstr.CodeCycles);
STR(INDEX_UNSIGNED, W0, RCPU, offsetof(ARM, CodeCycles));
}
}
if (comp == NULL)
{
SaveCycles();
2020-02-04 17:29:52 +00:00
SaveCPSR();
RegCache.Flush();
}
else
RegCache.Prepare(Thumb, i);
if (Thumb)
{
if (comp == NULL)
{
MOV(X0, RCPU);
QuickCallFunction(X1, InterpretTHUMB[CurInstr.Info.Kind]);
}
else
{
2020-02-04 17:29:52 +00:00
(this->*comp)();
}
2020-02-04 17:29:52 +00:00
}
else
{
u32 cond = CurInstr.Cond();
if (CurInstr.Info.Kind == ARMInstrInfo::ak_BLX_IMM)
{
if (comp)
(this->*comp)();
else
{
MOV(X0, RCPU);
QuickCallFunction(X1, ARMInterpreter::A_BLX_IMM);
}
}
else if (cond == 0xF)
{
2020-02-04 17:29:52 +00:00
Comp_AddCycles_C();
}
2020-02-04 17:29:52 +00:00
else
{
IrregularCycles = comp == NULL;
2020-02-04 17:29:52 +00:00
FixupBranch skipExecute;
if (cond < 0xE)
skipExecute = CheckCondition(cond);
if (comp == NULL)
{
MOV(X0, RCPU);
QuickCallFunction(X1, InterpretARM[CurInstr.Info.Kind]);
}
else
{
(this->*comp)();
}
Comp_BranchSpecialBehaviour(true);
2020-02-04 17:29:52 +00:00
if (cond < 0xE)
{
if (IrregularCycles || (CurInstr.BranchFlags & branch_FollowCondTaken))
2020-02-04 17:29:52 +00:00
{
FixupBranch skipNop = B();
SetJumpTarget(skipExecute);
if (IrregularCycles)
Comp_AddCycles_C(true);
2020-02-04 17:29:52 +00:00
Comp_BranchSpecialBehaviour(false);
2020-02-04 17:29:52 +00:00
SetJumpTarget(skipNop);
}
else
{
2020-02-04 17:29:52 +00:00
SetJumpTarget(skipExecute);
}
2020-02-04 17:29:52 +00:00
}
}
}
if (comp == NULL)
{
LoadCycles();
2020-02-04 17:29:52 +00:00
LoadCPSR();
}
2020-02-04 17:29:52 +00:00
}
RegCache.Flush();
ADD(RCycles, RCycles, ConstantCycles);
QuickTailCall(X0, ARM_Ret);
2020-02-04 17:29:52 +00:00
FlushIcache();
return res;
}
void Compiler::Reset()
{
LoadStorePatches.clear();
2020-02-04 17:29:52 +00:00
SetCodePtr(0);
OtherCodeRegion = JitMemMainSize;
2020-02-04 17:29:52 +00:00
const u32 brk_0 = 0xD4200000;
for (int i = 0; i < (JitMemMainSize + JitMemSecondarySize) / 4; i++)
2020-02-04 17:29:52 +00:00
*(((u32*)GetRWPtr()) + i) = brk_0;
}
void Compiler::Comp_AddCycles_C(bool forceNonConstant)
2020-02-04 17:29:52 +00:00
{
s32 cycles = Num ?
NDS::ARM7MemTimings[CurInstr.CodeCycles][Thumb ? 1 : 3]
: ((R15 & 0x2) ? 0 : CurInstr.CodeCycles);
if (forceNonConstant)
2020-02-04 17:29:52 +00:00
ConstantCycles += cycles;
else
ADD(RCycles, RCycles, cycles);
2020-02-04 17:29:52 +00:00
}
void Compiler::Comp_AddCycles_CI(u32 numI)
{
IrregularCycles = true;
2020-02-04 17:29:52 +00:00
s32 cycles = (Num ?
NDS::ARM7MemTimings[CurInstr.CodeCycles][Thumb ? 0 : 2]
: ((R15 & 0x2) ? 0 : CurInstr.CodeCycles)) + numI;
if (Thumb || CurInstr.Cond() == 0xE)
2020-02-04 17:29:52 +00:00
ConstantCycles += cycles;
else
ADD(RCycles, RCycles, cycles);
2020-02-04 17:29:52 +00:00
}
void Compiler::Comp_AddCycles_CI(u32 c, ARM64Reg numI, ArithOption shift)
{
IrregularCycles = true;
2020-02-04 17:29:52 +00:00
s32 cycles = (Num ?
NDS::ARM7MemTimings[CurInstr.CodeCycles][Thumb ? 0 : 2]
: ((R15 & 0x2) ? 0 : CurInstr.CodeCycles)) + c;
ADD(RCycles, RCycles, cycles);
2020-02-04 17:29:52 +00:00
if (Thumb || CurInstr.Cond() >= 0xE)
ConstantCycles += cycles;
2020-02-04 17:29:52 +00:00
else
ADD(RCycles, RCycles, cycles);
2020-02-04 17:29:52 +00:00
}
void Compiler::Comp_AddCycles_CDI()
{
if (Num == 0)
Comp_AddCycles_CD();
else
{
IrregularCycles = true;
s32 cycles;
s32 numC = NDS::ARM7MemTimings[CurInstr.CodeCycles][Thumb ? 0 : 2];
s32 numD = CurInstr.DataCycles;
2020-05-08 22:45:05 +00:00
if ((CurInstr.DataRegion >> 24) == 0x02) // mainRAM
2020-02-04 17:29:52 +00:00
{
if (CodeRegion == 0x02)
cycles = numC + numD;
else
{
numC++;
cycles = std::max(numC + numD - 3, std::max(numC, numD));
}
}
else if (CodeRegion == 0x02)
{
numD++;
cycles = std::max(numC + numD - 3, std::max(numC, numD));
}
else
{
cycles = numC + numD + 1;
}
if (!Thumb && CurInstr.Cond() < 0xE)
ADD(RCycles, RCycles, cycles);
2020-02-04 17:29:52 +00:00
else
ConstantCycles += cycles;
}
}
void Compiler::Comp_AddCycles_CD()
{
u32 cycles = 0;
if (Num == 0)
{
s32 numC = (R15 & 0x2) ? 0 : CurInstr.CodeCycles;
s32 numD = CurInstr.DataCycles;
//if (DataRegion != CodeRegion)
cycles = std::max(numC + numD - 6, std::max(numC, numD));
IrregularCycles = cycles != numC;
}
else
{
s32 numC = NDS::ARM7MemTimings[CurInstr.CodeCycles][Thumb ? 0 : 2];
s32 numD = CurInstr.DataCycles;
2020-05-08 22:45:05 +00:00
if ((CurInstr.DataRegion >> 24) == 0x02)
2020-02-04 17:29:52 +00:00
{
if (CodeRegion == 0x02)
cycles += numC + numD;
else
cycles += std::max(numC + numD - 3, std::max(numC, numD));
}
else if (CodeRegion == 0x02)
{
cycles += std::max(numC + numD - 3, std::max(numC, numD));
}
else
{
cycles += numC + numD;
}
IrregularCycles = true;
}
if ((!Thumb && CurInstr.Cond() < 0xE) && IrregularCycles)
ADD(RCycles, RCycles, cycles);
2020-02-04 17:29:52 +00:00
else
ConstantCycles += cycles;
}
}