melonDS/src/ARMJIT.cpp

788 lines
20 KiB
C++
Raw Normal View History

#include "ARMJIT.h"
2019-06-25 15:09:27 +00:00
#include <string.h>
#include <assert.h>
2019-06-25 15:09:27 +00:00
2019-07-14 02:33:36 +00:00
#include "Config.h"
#include "ARMJIT_Internal.h"
#include "ARMJIT_x64/ARMJIT_Compiler.h"
#include "ARMInterpreter_ALU.h"
#include "ARMInterpreter_LoadStore.h"
#include "ARMInterpreter_Branch.h"
#include "ARMInterpreter.h"
#include "GPU3D.h"
#include "SPU.h"
#include "Wifi.h"
namespace ARMJIT
{
#define JIT_DEBUGPRINT(msg, ...)
Compiler* compiler;
const u32 ExeMemRegionSizes[] = {
0x8000, // Unmapped Region (dummy)
0x8000, // ITCM
4*1024*1024, // Main RAM
0x8000, // SWRAM
0xA4000, // LCDC
0x8000, // ARM9 BIOS
0x4000, // ARM7 BIOS
0x10000, // ARM7 WRAM
0x40000 // ARM7 WVRAM
};
const u32 ExeMemRegionOffsets[] = {
0,
0x8000,
0x10000,
0x410000,
0x418000,
0x4BC000,
0x4C4000,
0x4C8000,
0x4D8000,
0x518000,
};
#define DUP2(x) x, x
const static ExeMemKind JIT_MEM[2][32] = {
//arm9
{
/* 0X*/ DUP2(exeMem_ITCM),
/* 1X*/ DUP2(exeMem_ITCM), // mirror
/* 2X*/ DUP2(exeMem_MainRAM),
/* 3X*/ DUP2(exeMem_SWRAM),
/* 4X*/ DUP2(exeMem_Unmapped),
/* 5X*/ DUP2(exeMem_Unmapped),
/* 6X*/ exeMem_Unmapped,
exeMem_LCDC, // Plain ARM9-CPU Access (LCDC mode) (max 656KB)
/* 7X*/ DUP2(exeMem_Unmapped),
/* 8X*/ DUP2(exeMem_Unmapped),
/* 9X*/ DUP2(exeMem_Unmapped),
/* AX*/ DUP2(exeMem_Unmapped),
/* BX*/ DUP2(exeMem_Unmapped),
/* CX*/ DUP2(exeMem_Unmapped),
/* DX*/ DUP2(exeMem_Unmapped),
/* EX*/ DUP2(exeMem_Unmapped),
/* FX*/ DUP2(exeMem_ARM9_BIOS)
},
//arm7
{
/* 0X*/ DUP2(exeMem_ARM7_BIOS),
/* 1X*/ DUP2(exeMem_Unmapped),
/* 2X*/ DUP2(exeMem_MainRAM),
/* 3X*/ exeMem_SWRAM,
exeMem_ARM7_WRAM,
/* 4X*/ DUP2(exeMem_Unmapped),
/* 5X*/ DUP2(exeMem_Unmapped),
/* 6X*/ DUP2(exeMem_ARM7_WVRAM), /* contrary to Gbatek, melonDS and itself,
DeSmuME doesn't mirror the 64 MB region at 0x6800000 */
/* 7X*/ DUP2(exeMem_Unmapped),
/* 8X*/ DUP2(exeMem_Unmapped),
/* 9X*/ DUP2(exeMem_Unmapped),
/* AX*/ DUP2(exeMem_Unmapped),
/* BX*/ DUP2(exeMem_Unmapped),
/* CX*/ DUP2(exeMem_Unmapped),
/* DX*/ DUP2(exeMem_Unmapped),
/* EX*/ DUP2(exeMem_Unmapped),
/* FX*/ DUP2(exeMem_Unmapped)
}
};
#undef DUP2
/*
translates address to pseudo physical address
- more compact, eliminates mirroring, everything comes in a row
- we only need one translation table
*/
u32 AddrTranslate9[0x2000];
u32 AddrTranslate7[0x4000];
JitBlockEntry FastBlockAccess[ExeMemSpaceSize / 2];
AddressRange CodeRanges[ExeMemSpaceSize / 512];
TinyVector<JitBlock*> JitBlocks;
JitBlock* RestoreCandidates[0x1000] = {NULL};
u32 HashRestoreCandidate(u32 pseudoPhysicalAddr)
{
return (u32)(((u64)pseudoPhysicalAddr * 11400714819323198485llu) >> 53);
}
void Init()
{
for (int i = 0; i < 0x2000; i++)
{
ExeMemKind kind = JIT_MEM[0][i >> 8];
u32 size = ExeMemRegionSizes[kind];
AddrTranslate9[i] = ExeMemRegionOffsets[kind] + ((i << 15) & (size - 1));
}
for (int i = 0; i < 0x4000; i++)
{
ExeMemKind kind = JIT_MEM[1][i >> 9];
u32 size = ExeMemRegionSizes[kind];
AddrTranslate7[i] = ExeMemRegionOffsets[kind] + ((i << 14) & (size - 1));
}
compiler = new Compiler();
}
void DeInit()
{
delete compiler;
}
void FloodFillSetFlags(FetchedInstr instrs[], int start, u8 flags)
{
for (int j = start; j >= 0; j--)
{
u8 match = instrs[j].Info.WriteFlags & flags;
u8 matchMaybe = (instrs[j].Info.WriteFlags >> 4) & flags;
if (matchMaybe) // writes flags maybe
instrs[j].SetFlags |= matchMaybe;
if (match)
{
instrs[j].SetFlags |= match;
flags &= ~match;
if (!flags)
return;
}
}
}
bool DecodeBranch(bool thumb, const FetchedInstr& instr, u32& cond, u32& targetAddr)
{
if (thumb)
{
u32 r15 = instr.Addr + 4;
cond = 0xE;
if (instr.Info.Kind == ARMInstrInfo::tk_BL_LONG && !(instr.Instr & (1 << 12)))
{
targetAddr = r15 + ((s32)((instr.Instr & 0x7FF) << 21) >> 9);
targetAddr += ((instr.Instr >> 16) & 0x7FF) << 1;
return true;
}
else if (instr.Info.Kind == ARMInstrInfo::tk_B)
{
s32 offset = (s32)((instr.Instr & 0x7FF) << 21) >> 20;
targetAddr = r15 + offset;
return true;
}
else if (instr.Info.Kind == ARMInstrInfo::tk_BCOND)
{
cond = (instr.Instr >> 8) & 0xF;
s32 offset = (s32)(instr.Instr << 24) >> 23;
targetAddr = r15 + offset;
return true;
}
}
else
{
cond = instr.Cond();
if (instr.Info.Kind == ARMInstrInfo::ak_BL
|| instr.Info.Kind == ARMInstrInfo::ak_B)
{
s32 offset = (s32)(instr.Instr << 8) >> 6;
u32 r15 = instr.Addr + 8;
targetAddr = r15 + offset;
return true;
}
}
return false;
}
bool IsIdleLoop(FetchedInstr* instrs, int instrsCount)
{
// see https://github.com/dolphin-emu/dolphin/blob/master/Source/Core/Core/PowerPC/PPCAnalyst.cpp#L678
// it basically checks if one iteration of a loop depends on another
// the rules are quite simple
u16 regsWrittenTo = 0;
u16 regsDisallowedToWrite = 0;
for (int i = 0; i < instrsCount; i++)
{
//printf("instr %d %x regs(%x %x) %x %x\n", i, instrs[i].Instr, instrs[i].Info.DstRegs, instrs[i].Info.SrcRegs, regsWrittenTo, regsDisallowedToWrite);
if (instrs[i].Info.SpecialKind == ARMInstrInfo::special_WriteMem)
return false;
if (i < instrsCount - 1 && instrs[i].Info.Branches())
return false;
u16 srcRegs = instrs[i].Info.SrcRegs & ~(1 << 15);
u16 dstRegs = instrs[i].Info.DstRegs & ~(1 << 15);
regsDisallowedToWrite |= srcRegs & ~regsWrittenTo;
if (dstRegs & regsDisallowedToWrite)
return false;
regsWrittenTo |= dstRegs;
}
return true;
}
typedef void (*InterpreterFunc)(ARM* cpu);
#define F(x) &ARMInterpreter::A_##x
#define F_ALU(name, s) \
F(name##_REG_LSL_IMM##s), F(name##_REG_LSR_IMM##s), F(name##_REG_ASR_IMM##s), F(name##_REG_ROR_IMM##s), \
F(name##_REG_LSL_REG##s), F(name##_REG_LSR_REG##s), F(name##_REG_ASR_REG##s), F(name##_REG_ROR_REG##s), F(name##_IMM##s)
#define F_MEM_WB(name) \
F(name##_REG_LSL), F(name##_REG_LSR), F(name##_REG_ASR), F(name##_REG_ROR), F(name##_IMM), \
F(name##_POST_REG_LSL), F(name##_POST_REG_LSR), F(name##_POST_REG_ASR), F(name##_POST_REG_ROR), F(name##_POST_IMM)
#define F_MEM_HD(name) \
F(name##_REG), F(name##_IMM), F(name##_POST_REG), F(name##_POST_IMM)
InterpreterFunc InterpretARM[ARMInstrInfo::ak_Count] =
{
F_ALU(AND,), F_ALU(AND,_S),
F_ALU(EOR,), F_ALU(EOR,_S),
F_ALU(SUB,), F_ALU(SUB,_S),
F_ALU(RSB,), F_ALU(RSB,_S),
F_ALU(ADD,), F_ALU(ADD,_S),
F_ALU(ADC,), F_ALU(ADC,_S),
F_ALU(SBC,), F_ALU(SBC,_S),
F_ALU(RSC,), F_ALU(RSC,_S),
F_ALU(ORR,), F_ALU(ORR,_S),
F_ALU(MOV,), F_ALU(MOV,_S),
F_ALU(BIC,), F_ALU(BIC,_S),
F_ALU(MVN,), F_ALU(MVN,_S),
F_ALU(TST,),
F_ALU(TEQ,),
F_ALU(CMP,),
F_ALU(CMN,),
F(MUL), F(MLA), F(UMULL), F(UMLAL), F(SMULL), F(SMLAL), F(SMLAxy), F(SMLAWy), F(SMULWy), F(SMLALxy), F(SMULxy),
F(CLZ), F(QADD), F(QDADD), F(QSUB), F(QDSUB),
F_MEM_WB(STR),
F_MEM_WB(STRB),
F_MEM_WB(LDR),
F_MEM_WB(LDRB),
F_MEM_HD(STRH),
F_MEM_HD(LDRD),
F_MEM_HD(STRD),
F_MEM_HD(LDRH),
F_MEM_HD(LDRSB),
F_MEM_HD(LDRSH),
F(SWP), F(SWPB),
F(LDM), F(STM),
F(B), F(BL), F(BLX_IMM), F(BX), F(BLX_REG),
F(UNK), F(MSR_IMM), F(MSR_REG), F(MRS), F(MCR), F(MRC), F(SVC)
};
#undef F_ALU
#undef F_MEM_WB
#undef F_MEM_HD
#undef F
void T_BL_LONG(ARM* cpu)
{
ARMInterpreter::T_BL_LONG_1(cpu);
cpu->R[15] += 2;
ARMInterpreter::T_BL_LONG_2(cpu);
}
#define F(x) ARMInterpreter::T_##x
InterpreterFunc InterpretTHUMB[ARMInstrInfo::tk_Count] =
{
F(LSL_IMM), F(LSR_IMM), F(ASR_IMM),
F(ADD_REG_), F(SUB_REG_), F(ADD_IMM_), F(SUB_IMM_),
F(MOV_IMM), F(CMP_IMM), F(ADD_IMM), F(SUB_IMM),
F(AND_REG), F(EOR_REG), F(LSL_REG), F(LSR_REG), F(ASR_REG),
F(ADC_REG), F(SBC_REG), F(ROR_REG), F(TST_REG), F(NEG_REG),
F(CMP_REG), F(CMN_REG), F(ORR_REG), F(MUL_REG), F(BIC_REG), F(MVN_REG),
F(ADD_HIREG), F(CMP_HIREG), F(MOV_HIREG),
F(ADD_PCREL), F(ADD_SPREL), F(ADD_SP),
F(LDR_PCREL), F(STR_REG), F(STRB_REG), F(LDR_REG), F(LDRB_REG), F(STRH_REG),
F(LDRSB_REG), F(LDRH_REG), F(LDRSH_REG), F(STR_IMM), F(LDR_IMM), F(STRB_IMM),
F(LDRB_IMM), F(STRH_IMM), F(LDRH_IMM), F(STR_SPREL), F(LDR_SPREL),
F(PUSH), F(POP), F(LDMIA), F(STMIA),
F(BCOND), F(BX), F(BLX_REG), F(B), F(BL_LONG_1), F(BL_LONG_2),
F(UNK), F(SVC),
T_BL_LONG // BL_LONG psudo opcode
};
#undef F
void CompileBlock(ARM* cpu)
{
bool thumb = cpu->CPSR & 0x20;
2019-07-14 02:33:36 +00:00
if (Config::JIT_MaxBlockSize < 1)
Config::JIT_MaxBlockSize = 1;
if (Config::JIT_MaxBlockSize > 32)
Config::JIT_MaxBlockSize = 32;
u32 blockAddr = cpu->R[15] - (thumb ? 2 : 4);
if (!(cpu->Num == 0
? IsMapped<0>(blockAddr)
: IsMapped<1>(blockAddr)))
{
printf("Trying to compile a block in unmapped memory: %x\n", blockAddr);
}
u32 pseudoPhysicalAddr = cpu->Num == 0
? TranslateAddr<0>(blockAddr)
: TranslateAddr<1>(blockAddr);
2019-07-14 02:33:36 +00:00
FetchedInstr instrs[Config::JIT_MaxBlockSize];
int i = 0;
u32 r15 = cpu->R[15];
u32 addresseRanges[32] = {};
u32 numAddressRanges = 0;
cpu->FillPipeline();
u32 nextInstr[2] = {cpu->NextInstr[0], cpu->NextInstr[1]};
u32 nextInstrAddr[2] = {blockAddr, r15};
JIT_DEBUGPRINT("start block %x (%x) %p %p (region invalidates %dx)\n",
blockAddr, pseudoPhysicalAddr, FastBlockAccess[pseudoPhysicalAddr / 2],
cpu->Num == 0 ? LookUpBlock<0>(blockAddr) : LookUpBlock<1>(blockAddr),
CodeRanges[pseudoPhysicalAddr / 512].TimesInvalidated);
u32 lastSegmentStart = blockAddr;
do
{
r15 += thumb ? 2 : 4;
instrs[i].BranchFlags = 0;
2019-08-25 11:06:27 +00:00
instrs[i].SetFlags = 0;
instrs[i].Instr = nextInstr[0];
nextInstr[0] = nextInstr[1];
instrs[i].Addr = nextInstrAddr[0];
nextInstrAddr[0] = nextInstrAddr[1];
nextInstrAddr[1] = r15;
JIT_DEBUGPRINT("instr %08x %x\n", instrs[i].Instr & (thumb ? 0xFFFF : ~0), instrs[i].Addr);
u32 translatedAddr = (cpu->Num == 0
? TranslateAddr<0>(instrs[i].Addr)
: TranslateAddr<1>(instrs[i].Addr)) & ~0x1FF;
if (i == 0 || translatedAddr != addresseRanges[numAddressRanges - 1])
{
bool returning = false;
for (int j = 0; j < numAddressRanges; j++)
{
if (addresseRanges[j] == translatedAddr)
{
returning = true;
break;
}
}
if (!returning)
addresseRanges[numAddressRanges++] = translatedAddr;
}
if (cpu->Num == 0)
{
ARMv5* cpuv5 = (ARMv5*)cpu;
if (thumb && r15 & 0x2)
{
nextInstr[1] >>= 16;
instrs[i].CodeCycles = 0;
}
else
{
nextInstr[1] = cpuv5->CodeRead32(r15, false);
instrs[i].CodeCycles = cpu->CodeCycles;
}
}
else
{
ARMv4* cpuv4 = (ARMv4*)cpu;
if (thumb)
nextInstr[1] = cpuv4->CodeRead16(r15);
else
nextInstr[1] = cpuv4->CodeRead32(r15);
instrs[i].CodeCycles = cpu->CodeCycles;
}
instrs[i].Info = ARMInstrInfo::Decode(thumb, cpu->Num, instrs[i].Instr);
cpu->R[15] = r15;
cpu->CurInstr = instrs[i].Instr;
cpu->CodeCycles = instrs[i].CodeCycles;
if (thumb)
{
InterpretTHUMB[instrs[i].Info.Kind](cpu);
}
else
{
if (cpu->Num == 0 && instrs[i].Info.Kind == ARMInstrInfo::ak_BLX_IMM)
{
ARMInterpreter::A_BLX_IMM(cpu);
}
else
{
u32 icode = ((instrs[i].Instr >> 4) & 0xF) | ((instrs[i].Instr >> 16) & 0xFF0);
assert(InterpretARM[instrs[i].Info.Kind] == ARMInterpreter::ARMInstrTable[icode] || instrs[i].Info.Kind == ARMInstrInfo::ak_MOV_REG_LSL_IMM);
if (cpu->CheckCondition(instrs[i].Cond()))
InterpretARM[instrs[i].Info.Kind](cpu);
else
cpu->AddCycles_C();
}
}
instrs[i].DataCycles = cpu->DataCycles;
instrs[i].DataRegion = cpu->DataRegion;
if (thumb && instrs[i].Info.Kind == ARMInstrInfo::tk_BL_LONG_2 && i > 0
&& instrs[i - 1].Info.Kind == ARMInstrInfo::tk_BL_LONG_1)
{
instrs[i - 1].Info.Kind = ARMInstrInfo::tk_BL_LONG;
instrs[i - 1].Instr = (instrs[i - 1].Instr & 0xFFFF) | (instrs[i].Instr << 16);
instrs[i - 1].Info.DstRegs = 0xC000;
instrs[i - 1].Info.SrcRegs = 0;
instrs[i - 1].Info.EndBlock = true;
i--;
}
if (instrs[i].Info.Branches() && Config::JIT_BrancheOptimisations)
{
bool hasBranched = cpu->R[15] != r15;
u32 cond, target;
bool staticBranch = DecodeBranch(thumb, instrs[i], cond, target);
JIT_DEBUGPRINT("branch cond %x target %x (%d)\n", cond, target, hasBranched);
if (staticBranch)
{
bool isBackJump = false;
if (hasBranched)
{
for (int j = 0; j < i; j++)
{
if (instrs[i].Addr == target)
{
isBackJump = true;
break;
}
}
}
if (cond < 0xE && target < instrs[i].Addr && target >= lastSegmentStart)
{
// we might have an idle loop
u32 offset = (target - blockAddr) / (thumb ? 2 : 4);
if (IsIdleLoop(instrs + offset, i - offset + 1))
{
instrs[i].BranchFlags |= branch_IdleBranch;
JIT_DEBUGPRINT("found %s idle loop %d in block %x\n", thumb ? "thumb" : "arm", cpu->Num, blockAddr);
}
}
else if (hasBranched && (!thumb || cond == 0xE) && !isBackJump && i + 1 < Config::JIT_MaxBlockSize)
{
u32 targetPseudoPhysical = cpu->Num == 0
? TranslateAddr<0>(target)
: TranslateAddr<1>(target);
r15 = target + (thumb ? 2 : 4);
assert(r15 == cpu->R[15]);
JIT_DEBUGPRINT("block lengthened by static branch (target %x)\n", target);
nextInstr[0] = cpu->NextInstr[0];
nextInstr[1] = cpu->NextInstr[1];
nextInstrAddr[0] = target;
nextInstrAddr[1] = r15;
lastSegmentStart = target;
instrs[i].Info.EndBlock = false;
if (cond < 0xE)
instrs[i].BranchFlags |= branch_FollowCondTaken;
}
}
if (!hasBranched && cond < 0xE && i + 1 < Config::JIT_MaxBlockSize)
{
instrs[i].Info.EndBlock = false;
instrs[i].BranchFlags |= branch_FollowCondNotTaken;
}
}
i++;
bool canCompile = compiler->CanCompile(thumb, instrs[i - 1].Info.Kind);
bool secondaryFlagReadCond = !canCompile || (instrs[i - 1].BranchFlags & (branch_FollowCondTaken | branch_FollowCondNotTaken));
if (instrs[i - 1].Info.ReadFlags != 0 || secondaryFlagReadCond)
FloodFillSetFlags(instrs, i - 2, !secondaryFlagReadCond ? instrs[i - 1].Info.ReadFlags : 0xF);
} while(!instrs[i - 1].Info.EndBlock && i < Config::JIT_MaxBlockSize && !cpu->Halted);
u32 restoreSlot = HashRestoreCandidate(pseudoPhysicalAddr);
JitBlock* prevBlock = RestoreCandidates[restoreSlot];
bool mayRestore = true;
if (prevBlock && prevBlock->PseudoPhysicalAddr == pseudoPhysicalAddr)
{
RestoreCandidates[restoreSlot] = NULL;
if (prevBlock->NumInstrs == i)
{
for (int j = 0; j < i; j++)
{
if (prevBlock->Instrs()[j] != instrs[j].Instr)
{
mayRestore = false;
break;
}
}
}
else
mayRestore = false;
if (prevBlock->NumAddresses == numAddressRanges)
{
for (int j = 0; j < numAddressRanges; j++)
{
if (prevBlock->AddressRanges()[j] != addresseRanges[j])
{
mayRestore = false;
break;
}
}
}
else
mayRestore = false;
}
else
{
mayRestore = false;
prevBlock = NULL;
}
JitBlock* block;
if (!mayRestore)
{
if (prevBlock)
delete prevBlock;
block = new JitBlock(i, numAddressRanges);
for (int j = 0; j < i; j++)
block->Instrs()[j] = instrs[j].Instr;
for (int j = 0; j < numAddressRanges; j++)
block->AddressRanges()[j] = addresseRanges[j];
block->StartAddr = blockAddr;
block->PseudoPhysicalAddr = pseudoPhysicalAddr;
FloodFillSetFlags(instrs, i - 1, 0xF);
block->EntryPoint = compiler->CompileBlock(cpu, thumb, instrs, i);
}
else
{
JIT_DEBUGPRINT("restored! %p\n", prevBlock);
block = prevBlock;
}
for (int j = 0; j < numAddressRanges; j++)
{
assert(addresseRanges[j] == block->AddressRanges()[j]);
CodeRanges[addresseRanges[j] / 512].Blocks.Add(block);
}
FastBlockAccess[block->PseudoPhysicalAddr / 2] = block->EntryPoint;
2019-07-11 14:22:47 +00:00
JitBlocks.Add(block);
}
void InvalidateByAddr(u32 pseudoPhysical)
2019-06-25 15:09:27 +00:00
{
JIT_DEBUGPRINT("invalidating by addr %x\n", pseudoPhysical);
AddressRange* range = &CodeRanges[pseudoPhysical / 512];
int startLength = range->Blocks.Length;
for (int i = 0; i < range->Blocks.Length; i++)
{
assert(range->Blocks.Length == startLength);
JitBlock* block = range->Blocks[i];
for (int j = 0; j < block->NumAddresses; j++)
{
u32 addr = block->AddressRanges()[j];
if ((addr / 512) != (pseudoPhysical / 512))
{
AddressRange* otherRange = &CodeRanges[addr / 512];
assert(otherRange != range);
bool removed = otherRange->Blocks.RemoveByValue(block);
assert(removed);
}
}
bool removed = JitBlocks.RemoveByValue(block);
assert(removed);
FastBlockAccess[block->PseudoPhysicalAddr / 2] = NULL;
u32 slot = HashRestoreCandidate(block->PseudoPhysicalAddr);
if (RestoreCandidates[slot] && RestoreCandidates[slot] != block)
delete RestoreCandidates[slot];
RestoreCandidates[slot] = block;
}
if ((range->TimesInvalidated + 1) > range->TimesInvalidated)
range->TimesInvalidated++;
range->Blocks.Clear();
}
void InvalidateByAddr7(u32 addr)
{
u32 pseudoPhysical = TranslateAddr<1>(addr);
if (__builtin_expect(CodeRanges[pseudoPhysical / 512].Blocks.Length > 0, false))
InvalidateByAddr(pseudoPhysical);
}
void InvalidateITCM(u32 addr)
{
u32 pseudoPhysical = addr + ExeMemRegionOffsets[exeMem_ITCM];
if (CodeRanges[pseudoPhysical / 512].Blocks.Length > 0)
InvalidateByAddr(pseudoPhysical);
}
void InvalidateAll()
{
JIT_DEBUGPRINT("invalidating all %x\n", JitBlocks.Length);
for (int i = 0; i < JitBlocks.Length; i++)
{
JitBlock* block = JitBlocks[i];
FastBlockAccess[block->PseudoPhysicalAddr / 2] = NULL;
for (int j = 0; j < block->NumAddresses; j++)
{
u32 addr = block->AddressRanges()[j];
AddressRange* range = &CodeRanges[addr / 512];
range->Blocks.Clear();
if (range->TimesInvalidated + 1 > range->TimesInvalidated)
range->TimesInvalidated++;
}
u32 slot = HashRestoreCandidate(block->PseudoPhysicalAddr);
if (RestoreCandidates[slot] && RestoreCandidates[slot] != block)
delete RestoreCandidates[slot];
RestoreCandidates[slot] = block;
}
JitBlocks.Clear();
}
void ResetBlockCache()
{
printf("Resetting JIT block cache...\n");
memset(FastBlockAccess, 0, sizeof(FastBlockAccess));
for (int i = 0; i < sizeof(RestoreCandidates)/sizeof(RestoreCandidates[0]); i++)
{
if (RestoreCandidates[i])
{
delete RestoreCandidates[i];
RestoreCandidates[i] = NULL;
}
}
for (int i = 0; i < JitBlocks.Length; i++)
{
JitBlock* block = JitBlocks[i];
for (int j = 0; j < block->NumAddresses; j++)
{
u32 addr = block->AddressRanges()[j];
CodeRanges[addr / 512].Blocks.Clear();
CodeRanges[addr / 512].TimesInvalidated = 0;
}
delete block;
}
JitBlocks.Clear();
2019-07-14 02:33:36 +00:00
compiler->Reset();
2019-06-25 15:09:27 +00:00
}
void* GetFuncForAddr(ARM* cpu, u32 addr, bool store, int size)
{
if (cpu->Num == 0)
{
if ((addr & 0xFF000000) == 0x04000000)
{
/*
unfortunately we can't map GPU2D this way
since it's hidden inside an object
though GPU3D registers are accessed much more intensive
*/
if (addr >= 0x04000320 && addr < 0x040006A4)
{
switch (size | store)
{
case 8: return (void*)GPU3D::Read8;
case 9: return (void*)GPU3D::Write8;
case 16: return (void*)GPU3D::Read16;
case 17: return (void*)GPU3D::Write16;
case 32: return (void*)GPU3D::Read32;
case 33: return (void*)GPU3D::Write32;
}
}
switch (size | store)
{
case 8: return (void*)NDS::ARM9IORead8;
case 9: return (void*)NDS::ARM9IOWrite8;
case 16: return (void*)NDS::ARM9IORead16;
case 17: return (void*)NDS::ARM9IOWrite16;
case 32: return (void*)NDS::ARM9IORead32;
case 33: return (void*)NDS::ARM9IOWrite32;
}
}
}
else
{
switch (addr & 0xFF800000)
{
case 0x04000000:
if (addr >= 0x04000400 && addr < 0x04000520)
{
switch (size | store)
{
case 8: return (void*)SPU::Read8;
case 9: return (void*)SPU::Write8;
case 16: return (void*)SPU::Read16;
case 17: return (void*)SPU::Write16;
case 32: return (void*)SPU::Read32;
case 33: return (void*)SPU::Write32;
}
}
switch (size | store)
{
case 8: return (void*)NDS::ARM7IORead8;
case 9: return (void*)NDS::ARM7IOWrite8;
case 16: return (void*)NDS::ARM7IORead16;
case 17: return (void*)NDS::ARM7IOWrite16;
case 32: return (void*)NDS::ARM7IORead32;
case 33: return (void*)NDS::ARM7IOWrite32;
}
break;
case 0x04800000:
if (addr < 0x04810000 && size == 16)
{
if (store)
return (void*)Wifi::Write;
else
return (void*)Wifi::Read;
}
break;
}
}
return NULL;
}
}