mame/3rdparty/bgfx/src/renderer_mtl.mm

5139 lines
159 KiB
Plaintext

/*
* Copyright 2011-2016 Attila Kocsis. All rights reserved.
* License: https://github.com/bkaradzic/bgfx/blob/master/LICENSE
*/
#include "bgfx_p.h"
#if BGFX_CONFIG_RENDERER_METAL
#include "renderer_mtl.h"
#include "renderer.h"
#if BX_PLATFORM_OSX
# include <Cocoa/Cocoa.h>
#endif
#import <Foundation/Foundation.h>
#define UNIFORM_BUFFER_SIZE (8*1024*1024)
namespace bgfx { namespace mtl
{
static char s_viewName[BGFX_CONFIG_MAX_VIEWS][BGFX_CONFIG_MAX_VIEW_NAME];
inline void setViewType(ViewId _view, const bx::StringView _str)
{
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION || BGFX_CONFIG_PROFILER) )
{
bx::memCopy(&s_viewName[_view][3], _str.getPtr(), _str.getLength() );
}
}
struct PrimInfo
{
MTLPrimitiveType m_type;
uint32_t m_min;
uint32_t m_div;
uint32_t m_sub;
};
static const PrimInfo s_primInfo[] =
{
{ MTLPrimitiveTypeTriangle, 3, 3, 0 },
{ MTLPrimitiveTypeTriangleStrip, 3, 1, 2 },
{ MTLPrimitiveTypeLine, 2, 2, 0 },
{ MTLPrimitiveTypeLineStrip, 2, 1, 1 },
{ MTLPrimitiveTypePoint, 1, 1, 0 },
};
BX_STATIC_ASSERT(Topology::Count == BX_COUNTOF(s_primInfo) );
static const char* s_attribName[] =
{
"a_position",
"a_normal",
"a_tangent",
"a_bitangent",
"a_color0",
"a_color1",
"a_color2",
"a_color3",
"a_indices",
"a_weight",
"a_texcoord0",
"a_texcoord1",
"a_texcoord2",
"a_texcoord3",
"a_texcoord4",
"a_texcoord5",
"a_texcoord6",
"a_texcoord7",
};
BX_STATIC_ASSERT(Attrib::Count == BX_COUNTOF(s_attribName) );
static const char* s_instanceDataName[] =
{
"i_data0",
"i_data1",
"i_data2",
"i_data3",
"i_data4",
};
BX_STATIC_ASSERT(BGFX_CONFIG_MAX_INSTANCE_DATA_COUNT == BX_COUNTOF(s_instanceDataName) );
static const MTLVertexFormat s_attribType[][4][2] = //type, count, normalized
{
// Uint8
{
{ MTLVertexFormatUChar2, MTLVertexFormatUChar2Normalized },
{ MTLVertexFormatUChar2, MTLVertexFormatUChar2Normalized },
{ MTLVertexFormatUChar3, MTLVertexFormatUChar3Normalized },
{ MTLVertexFormatUChar4, MTLVertexFormatUChar4Normalized },
},
//Uint10
//Note: unnormalized is handled as normalized now
{
{ MTLVertexFormatUInt1010102Normalized, MTLVertexFormatUInt1010102Normalized },
{ MTLVertexFormatUInt1010102Normalized, MTLVertexFormatUInt1010102Normalized },
{ MTLVertexFormatUInt1010102Normalized, MTLVertexFormatUInt1010102Normalized },
{ MTLVertexFormatUInt1010102Normalized, MTLVertexFormatUInt1010102Normalized },
},
//Int16
{
{ MTLVertexFormatShort2, MTLVertexFormatShort2Normalized },
{ MTLVertexFormatShort2, MTLVertexFormatShort2Normalized },
{ MTLVertexFormatShort3, MTLVertexFormatShort3Normalized },
{ MTLVertexFormatShort4, MTLVertexFormatShort4Normalized },
},
//Half
{
{ MTLVertexFormatHalf2, MTLVertexFormatHalf2 },
{ MTLVertexFormatHalf2, MTLVertexFormatHalf2 },
{ MTLVertexFormatHalf3, MTLVertexFormatHalf3 },
{ MTLVertexFormatHalf4, MTLVertexFormatHalf4 },
},
//Float
{
{ MTLVertexFormatFloat, MTLVertexFormatFloat },
{ MTLVertexFormatFloat2, MTLVertexFormatFloat2 },
{ MTLVertexFormatFloat3, MTLVertexFormatFloat3 },
{ MTLVertexFormatFloat4, MTLVertexFormatFloat4 },
},
};
BX_STATIC_ASSERT(AttribType::Count == BX_COUNTOF(s_attribType) );
static const MTLCullMode s_cullMode[] =
{
MTLCullModeNone,
MTLCullModeFront,
MTLCullModeBack,
MTLCullModeNone
};
static const MTLBlendFactor s_blendFactor[][2] =
{
{ (MTLBlendFactor)0, (MTLBlendFactor)0 }, // ignored
{ MTLBlendFactorZero, MTLBlendFactorZero }, // ZERO
{ MTLBlendFactorOne, MTLBlendFactorOne }, // ONE
{ MTLBlendFactorSourceColor, MTLBlendFactorSourceAlpha }, // SRC_COLOR
{ MTLBlendFactorOneMinusSourceColor, MTLBlendFactorOneMinusSourceAlpha }, // INV_SRC_COLOR
{ MTLBlendFactorSourceAlpha, MTLBlendFactorSourceAlpha }, // SRC_ALPHA
{ MTLBlendFactorOneMinusSourceAlpha, MTLBlendFactorOneMinusSourceAlpha }, // INV_SRC_ALPHA
{ MTLBlendFactorDestinationAlpha, MTLBlendFactorDestinationAlpha }, // DST_ALPHA
{ MTLBlendFactorOneMinusDestinationAlpha, MTLBlendFactorOneMinusDestinationAlpha }, // INV_DST_ALPHA
{ MTLBlendFactorDestinationColor, MTLBlendFactorDestinationAlpha }, // DST_COLOR
{ MTLBlendFactorOneMinusDestinationColor, MTLBlendFactorOneMinusDestinationAlpha }, // INV_DST_COLOR
{ MTLBlendFactorSourceAlphaSaturated, MTLBlendFactorOne }, // SRC_ALPHA_SAT
{ MTLBlendFactorBlendColor, MTLBlendFactorBlendColor }, // FACTOR
{ MTLBlendFactorOneMinusBlendColor, MTLBlendFactorOneMinusBlendColor }, // INV_FACTOR
};
static const MTLBlendOperation s_blendEquation[] =
{
MTLBlendOperationAdd,
MTLBlendOperationSubtract,
MTLBlendOperationReverseSubtract,
MTLBlendOperationMin,
MTLBlendOperationMax,
};
static const MTLCompareFunction s_cmpFunc[] =
{
MTLCompareFunctionAlways,
MTLCompareFunctionLess,
MTLCompareFunctionLessEqual,
MTLCompareFunctionEqual,
MTLCompareFunctionGreaterEqual,
MTLCompareFunctionGreater,
MTLCompareFunctionNotEqual,
MTLCompareFunctionNever,
MTLCompareFunctionAlways,
};
static const MTLStencilOperation s_stencilOp[] =
{
MTLStencilOperationZero,
MTLStencilOperationKeep,
MTLStencilOperationReplace,
MTLStencilOperationIncrementWrap,
MTLStencilOperationIncrementClamp,
MTLStencilOperationDecrementWrap,
MTLStencilOperationDecrementClamp,
MTLStencilOperationInvert,
};
static const MTLSamplerAddressMode s_textureAddress[] =
{
MTLSamplerAddressModeRepeat,
MTLSamplerAddressModeMirrorRepeat,
MTLSamplerAddressModeClampToEdge,
MTLSamplerAddressModeClampToZero,
};
static const MTLSamplerMinMagFilter s_textureFilterMinMag[] =
{
MTLSamplerMinMagFilterLinear,
MTLSamplerMinMagFilterNearest,
MTLSamplerMinMagFilterLinear,
};
static const MTLSamplerMipFilter s_textureFilterMip[] =
{
MTLSamplerMipFilterLinear,
MTLSamplerMipFilterNearest,
};
struct TextureFormatInfo
{
MTLPixelFormat m_fmt;
MTLPixelFormat m_fmtSrgb;
MTLReadWriteTextureTier m_rwTier;
MTLTextureSwizzleChannels m_mapping;
bool m_autoGetMipmap;
};
static TextureFormatInfo s_textureFormat[] =
{
#define $0 MTLTextureSwizzleZero
#define $1 MTLTextureSwizzleOne
#define $R MTLTextureSwizzleRed
#define $G MTLTextureSwizzleGreen
#define $B MTLTextureSwizzleBlue
#define $A MTLTextureSwizzleAlpha
{ MTLPixelFormat(130/*BC1_RGBA*/), MTLPixelFormat(131/*BC1_RGBA_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // BC1
{ MTLPixelFormat(132/*BC2_RGBA*/), MTLPixelFormat(133/*BC2_RGBA_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // BC2
{ MTLPixelFormat(134/*BC3_RGBA*/), MTLPixelFormat(135/*BC3_RGBA_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // BC3
{ MTLPixelFormat(140/*BC4_RUnorm*/), MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // BC4
{ MTLPixelFormat(142/*BC5_RGUnorm*/), MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // BC5
{ MTLPixelFormat(150/*BC6H_RGBFloat*/), MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // BC6H
{ MTLPixelFormat(152/*BC7_RGBAUnorm*/), MTLPixelFormat(153/*BC7_RGBAUnorm_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // BC7
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ETC1
{ MTLPixelFormat(180/*ETC2_RGB8*/), MTLPixelFormat(181/*ETC2_RGB8_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ETC2
{ MTLPixelFormat(178/*EAC_RGBA8*/), MTLPixelFormat(179/*EAC_RGBA8_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ETC2A
{ MTLPixelFormat(182/*ETC2_RGB8A1*/), MTLPixelFormat(183/*ETC2_RGB8A1_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ETC2A1
{ MTLPixelFormat(160/*PVRTC_RGB_2BPP*/), MTLPixelFormat(161/*PVRTC_RGB_2BPP_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // PTC12
{ MTLPixelFormat(162/*PVRTC_RGB_4BPP*/), MTLPixelFormat(163/*PVRTC_RGB_4BPP_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // PTC14
{ MTLPixelFormat(164/*PVRTC_RGBA_2BPP*/), MTLPixelFormat(165/*PVRTC_RGBA_2BPP_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // PTC12A
{ MTLPixelFormat(166/*PVRTC_RGBA_4BPP*/), MTLPixelFormat(167/*PVRTC_RGBA_4BPP_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // PTC14A
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // PTC22
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // PTC24
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ATC
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ATCE
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ATCI
#if BX_PLATFORM_IOS && !TARGET_OS_MACCATALYST
{ MTLPixelFormatASTC_4x4_LDR, MTLPixelFormatASTC_4x4_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC4x4
{ MTLPixelFormatASTC_5x4_LDR, MTLPixelFormatASTC_5x4_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC5x4
{ MTLPixelFormatASTC_5x5_LDR, MTLPixelFormatASTC_5x5_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC5x5
{ MTLPixelFormatASTC_6x5_LDR, MTLPixelFormatASTC_6x5_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC6x5
{ MTLPixelFormatASTC_6x6_LDR, MTLPixelFormatASTC_6x6_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC6x6
{ MTLPixelFormatASTC_8x5_LDR, MTLPixelFormatASTC_8x5_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC8x5
{ MTLPixelFormatASTC_8x6_LDR, MTLPixelFormatASTC_8x6_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC8x6
{ MTLPixelFormatASTC_8x8_LDR, MTLPixelFormatASTC_8x8_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC8x8
{ MTLPixelFormatASTC_10x5_LDR, MTLPixelFormatASTC_10x5_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC10x5
{ MTLPixelFormatASTC_10x6_LDR, MTLPixelFormatASTC_10x6_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC10x6
{ MTLPixelFormatASTC_10x8_LDR, MTLPixelFormatASTC_10x8_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC10x8
{ MTLPixelFormatASTC_10x10_LDR, MTLPixelFormatASTC_10x10_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC10x10
{ MTLPixelFormatASTC_12x10_LDR, MTLPixelFormatASTC_12x10_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC12x10
{ MTLPixelFormatASTC_12x12_LDR, MTLPixelFormatASTC_12x12_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC12x12
#else
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC4x4
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC5x4
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC5x5
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC6x5
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC6x6
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC8x5
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC8x6
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC8x8
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC10x5
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC10x6
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC10x8
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC10x10
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC12x10
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // ASTC12x12
#endif // BX_PLATFORM_IOS && !TARGET_OS_MACCATALYST
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // Unknown
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // R1
{ MTLPixelFormatA8Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // A8
{ MTLPixelFormatR8Unorm, MTLPixelFormat(11/*R8Unorm_sRGB*/), MTLReadWriteTextureTier2, { $R, $G, $B, $A }, true }, // R8
{ MTLPixelFormatR8Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, false }, // R8I
{ MTLPixelFormatR8Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // R8U
{ MTLPixelFormatR8Snorm, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, true }, // R8S
{ MTLPixelFormatR16Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // R16
{ MTLPixelFormatR16Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, false }, // R16I
{ MTLPixelFormatR16Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, false }, // R16U
{ MTLPixelFormatR16Float, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, true }, // R16F
{ MTLPixelFormatR16Snorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // R16S
{ MTLPixelFormatR32Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTier1, { $R, $G, $B, $A }, false }, // R32I
{ MTLPixelFormatR32Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTier1, { $R, $G, $B, $A }, false }, // R32U
{ MTLPixelFormatR32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTier1, { $R, $G, $B, $A }, false }, // R32F
{ MTLPixelFormatRG8Unorm, MTLPixelFormat(31/*RG8Unorm_sRGB*/), MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RG8
{ MTLPixelFormatRG8Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RG8I
{ MTLPixelFormatRG8Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RG8U
{ MTLPixelFormatRG8Snorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RG8S
{ MTLPixelFormatRG16Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RG16
{ MTLPixelFormatRG16Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RG16I
{ MTLPixelFormatRG16Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RG16U
{ MTLPixelFormatRG16Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RG16F
{ MTLPixelFormatRG16Snorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RG16S
{ MTLPixelFormatRG32Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RG32I
{ MTLPixelFormatRG32Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RG32U
{ MTLPixelFormatRG32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RG32F
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RGB8
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RGB8I
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RGB8U
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RGB8S
{ MTLPixelFormatRGB9E5Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // RGB9E5F
{ MTLPixelFormatBGRA8Unorm, MTLPixelFormatBGRA8Unorm_sRGB, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // BGRA8
{ MTLPixelFormatRGBA8Unorm, MTLPixelFormatRGBA8Unorm_sRGB, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, true }, // RGBA8
{ MTLPixelFormatRGBA8Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, false }, // RGBA8I
{ MTLPixelFormatRGBA8Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, false }, // RGBA8U
{ MTLPixelFormatRGBA8Snorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RGBA8S
{ MTLPixelFormatRGBA16Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RGBA16
{ MTLPixelFormatRGBA16Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, false }, // RGBA16I
{ MTLPixelFormatRGBA16Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, false }, // RGBA16U
{ MTLPixelFormatRGBA16Float, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, true }, // RGBA16F
{ MTLPixelFormatRGBA16Snorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RGBA16S
{ MTLPixelFormatRGBA32Sint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, true }, // RGBA32I
{ MTLPixelFormatRGBA32Uint, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, true }, // RGBA32U
{ MTLPixelFormatRGBA32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTier2, { $R, $G, $B, $A }, true }, // RGBA32F
{ MTLPixelFormatB5G6R5Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // B5G6R5
{ MTLPixelFormatB5G6R5Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $B, $G, $R, $A }, true }, // R5G6B5
{ MTLPixelFormatABGR4Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $G, $B, $A, $R }, true }, // BGRA4
{ MTLPixelFormatABGR4Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $A, $B, $G, $R }, true }, // RGBA4
{ MTLPixelFormatBGR5A1Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // BGR5A1
{ MTLPixelFormatBGR5A1Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $B, $G, $R, $A }, true }, // RGB5A1
{ MTLPixelFormatRGB10A2Unorm, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RGB10A2
{ MTLPixelFormatRG11B10Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, true }, // RG11B10F
{ MTLPixelFormatInvalid, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // UnknownDepth
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // D16
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // D24
{ MTLPixelFormat(255/*Depth24Unorm_Stencil8*/), MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // D24S8
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // D32
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // D16F
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // D24F
{ MTLPixelFormatDepth32Float, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // D32F
{ MTLPixelFormatStencil8, MTLPixelFormatInvalid, MTLReadWriteTextureTierNone, { $R, $G, $B, $A }, false }, // D0S8
#undef $0
#undef $1
#undef $R
#undef $G
#undef $B
#undef $A
};
BX_STATIC_ASSERT(TextureFormat::Count == BX_COUNTOF(s_textureFormat) );
int32_t s_msaa[] =
{
1,
2,
4,
8,
16,
};
static UniformType::Enum convertMtlType(MTLDataType _type)
{
switch (_type)
{
case MTLDataTypeUInt:
case MTLDataTypeInt:
return UniformType::Sampler;
case MTLDataTypeFloat:
case MTLDataTypeFloat2:
case MTLDataTypeFloat3:
case MTLDataTypeFloat4:
return UniformType::Vec4;
case MTLDataTypeFloat3x3:
return UniformType::Mat3;
case MTLDataTypeFloat4x4:
return UniformType::Mat4;
default:
break;
};
BX_ASSERT(false, "Unrecognized Mtl Data type 0x%04x.", _type);
return UniformType::End;
}
static uint64_t getRegistryId(id<MTLDevice> _device)
{
return [_device respondsToSelector: @selector(registryID)] ? _device.registryID : 0;
}
#if BX_PLATFORM_OSX
static uint32_t getEntryProperty(io_registry_entry_t _entry, CFStringRef _propertyName)
{
uint32_t result = 0;
CFTypeRef typeRef = IORegistryEntrySearchCFProperty(
_entry
, kIOServicePlane
, _propertyName
, kCFAllocatorDefault
, kIORegistryIterateRecursively | kIORegistryIterateParents
);
if (NULL != typeRef)
{
const uint32_t* value = (const uint32_t*)(CFDataGetBytePtr( (CFDataRef)typeRef) );
if (NULL != value)
{
result = *value;
}
CFRelease(typeRef);
}
return result;
}
#endif // BX_PLATFORM_OSX
static const char* s_accessNames[] = {
"Access::Read",
"Access::Write",
"Access::ReadWrite",
};
BX_STATIC_ASSERT(BX_COUNTOF(s_accessNames) == Access::Count, "Invalid s_accessNames count");
#define SHADER_FUNCTION_NAME ("xlatMtlMain")
#define SHADER_UNIFORM_NAME ("_mtl_u")
struct RendererContextMtl;
static RendererContextMtl* s_renderMtl;
struct RendererContextMtl : public RendererContextI
{
RendererContextMtl()
: m_bufferIndex(0)
, m_numWindows(0)
, m_rtMsaa(false)
, m_capture(NULL)
, m_captureSize(0)
{
bx::memSet(&m_windows, 0xff, sizeof(m_windows) );
}
~RendererContextMtl()
{
}
bool init(const Init& _init)
{
BX_UNUSED(_init);
BX_TRACE("Init.");
m_fbh.idx = kInvalidHandle;
bx::memSet(m_uniforms, 0, sizeof(m_uniforms) );
bx::memSet(&m_resolution, 0, sizeof(m_resolution) );
m_device = (id<MTLDevice>)g_platformData.context;
if (NULL == m_device)
{
m_device = MTLCreateSystemDefaultDevice();
}
if (NULL == m_device)
{
BX_WARN(NULL != m_device, "Unable to create Metal device.");
return false;
}
retain(m_device);
m_mainFrameBuffer.create(
0
, g_platformData.nwh
, _init.resolution.width
, _init.resolution.height
, TextureFormat::Unknown
, TextureFormat::UnknownDepth
);
m_numWindows = 1;
if (NULL == m_mainFrameBuffer.m_swapChain->m_metalLayer)
{
release(m_device);
return false;
}
m_cmd.init(m_device);
BGFX_FATAL(NULL != m_cmd.m_commandQueue, Fatal::UnableToInitialize, "Unable to create Metal device.");
m_renderPipelineDescriptor = newRenderPipelineDescriptor();
m_depthStencilDescriptor = newDepthStencilDescriptor();
m_frontFaceStencilDescriptor = newStencilDescriptor();
m_backFaceStencilDescriptor = newStencilDescriptor();
m_vertexDescriptor = newVertexDescriptor();
m_textureDescriptor = newTextureDescriptor();
m_samplerDescriptor = newSamplerDescriptor();
for (uint8_t ii = 0; ii < BGFX_CONFIG_MAX_FRAME_LATENCY; ++ii)
{
m_uniformBuffers[ii] = m_device.newBufferWithLength(UNIFORM_BUFFER_SIZE, 0);
}
m_uniformBufferVertexOffset = 0;
m_uniformBufferFragmentOffset = 0;
const char* vshSource =
"using namespace metal;\n"
"struct xlatMtlShaderOutput { float4 gl_Position [[position]]; float2 v_texcoord0; }; \n"
"vertex xlatMtlShaderOutput xlatMtlMain (uint v_id [[ vertex_id ]]) \n"
"{\n"
" xlatMtlShaderOutput _mtl_o;\n"
" if (v_id==0) { _mtl_o.gl_Position = float4(-1.0,-1.0,0.0,1.0); _mtl_o.v_texcoord0 = float2(0.0,1.0); } \n"
" else if (v_id==1) { _mtl_o.gl_Position = float4(3.0,-1.0,0.0,1.0); _mtl_o.v_texcoord0 = float2(2.0,1.0); } \n"
" else { _mtl_o.gl_Position = float4(-1.0,3.0,0.0,1.0); _mtl_o.v_texcoord0 = float2(0.0,-1.0); }\n"
" return _mtl_o;\n"
"}\n"
;
const char* fshSource =
"using namespace metal;\n"
"struct xlatMtlShaderInput { float2 v_texcoord0; };\n"
"fragment half4 xlatMtlMain (xlatMtlShaderInput _mtl_i[[stage_in]], texture2d<float> s_texColor [[texture(0)]], sampler _mtlsmp_s_texColor [[sampler(0)]] )\n"
"{\n"
" return half4(s_texColor.sample(_mtlsmp_s_texColor, _mtl_i.v_texcoord0) );\n"
"}\n"
;
Library lib = m_device.newLibraryWithSource(vshSource);
if (NULL != lib)
{
m_screenshotBlitProgramVsh.m_function = lib.newFunctionWithName(SHADER_FUNCTION_NAME);
release(lib);
}
lib = m_device.newLibraryWithSource(fshSource);
if (NULL != lib)
{
m_screenshotBlitProgramFsh.m_function = lib.newFunctionWithName(SHADER_FUNCTION_NAME);
release(lib);
}
m_screenshotBlitProgram.create(&m_screenshotBlitProgramVsh, &m_screenshotBlitProgramFsh);
reset(m_renderPipelineDescriptor);
m_renderPipelineDescriptor.colorAttachments[0].pixelFormat = m_mainFrameBuffer.m_swapChain->m_metalLayer.pixelFormat;
m_renderPipelineDescriptor.vertexFunction = m_screenshotBlitProgram.m_vsh->m_function;
m_renderPipelineDescriptor.fragmentFunction = m_screenshotBlitProgram.m_fsh->m_function;
m_screenshotBlitRenderPipelineState = m_device.newRenderPipelineStateWithDescriptor(m_renderPipelineDescriptor);
{
if ([m_device respondsToSelector: @selector(supportsFamily:)])
{
if ([m_device supportsFamily: MTLGPUFamily(1004) /*MTLGPUFamilyApple4*/])
{
g_caps.vendorId = BGFX_PCI_ID_APPLE;
if ([m_device supportsFamily: MTLGPUFamily(1007) /*MTLGPUFamilyApple7*/])
{
g_caps.deviceId = 1007;
}
else if ([m_device supportsFamily: MTLGPUFamily(1006) /*MTLGPUFamilyApple6*/])
{
g_caps.deviceId = 1006;
}
else if ([m_device supportsFamily: MTLGPUFamily(1005) /*MTLGPUFamilyApple5*/])
{
g_caps.deviceId = 1005;
}
else
{
g_caps.deviceId = 1004;
}
}
}
#if BX_PLATFORM_OSX
if (0 == g_caps.vendorId)
{
io_registry_entry_t entry;
uint64_t registryId = getRegistryId(m_device);
if (0 != registryId)
{
entry = IOServiceGetMatchingService(mach_port_t(NULL), IORegistryEntryIDMatching(registryId) );
if (0 != entry)
{
io_registry_entry_t parent;
if (kIOReturnSuccess == IORegistryEntryGetParentEntry(entry, kIOServicePlane, &parent) )
{
g_caps.vendorId = getEntryProperty(parent, CFSTR("vendor-id") );
g_caps.deviceId = getEntryProperty(parent, CFSTR("device-id") );
IOObjectRelease(parent);
}
IOObjectRelease(entry);
}
}
}
#endif // BX_PLATFORM_OSX
}
g_caps.numGPUs = 1;
g_caps.gpu[0].vendorId = g_caps.vendorId;
g_caps.gpu[0].deviceId = g_caps.deviceId;
g_caps.supported |= (0
| BGFX_CAPS_ALPHA_TO_COVERAGE
| BGFX_CAPS_BLEND_INDEPENDENT
| BGFX_CAPS_COMPUTE
| BGFX_CAPS_FRAGMENT_DEPTH
| BGFX_CAPS_INDEX32
| BGFX_CAPS_INSTANCING
| BGFX_CAPS_OCCLUSION_QUERY
| BGFX_CAPS_SWAP_CHAIN
| BGFX_CAPS_TEXTURE_2D_ARRAY
| BGFX_CAPS_TEXTURE_3D
| BGFX_CAPS_TEXTURE_BLIT
| BGFX_CAPS_TEXTURE_COMPARE_ALL
| BGFX_CAPS_TEXTURE_COMPARE_LEQUAL
| BGFX_CAPS_TEXTURE_READ_BACK
| BGFX_CAPS_VERTEX_ATTRIB_HALF
| BGFX_CAPS_VERTEX_ATTRIB_UINT10
| BGFX_CAPS_VERTEX_ID
);
if (BX_ENABLED(BX_PLATFORM_IOS) )
{
if (iOSVersionEqualOrGreater("9.0.0") )
{
g_caps.limits.maxTextureSize = m_device.supportsFeatureSet( (MTLFeatureSet)4 /* iOS_GPUFamily3_v1 */) ? 16384 : 8192;
}
else
{
g_caps.limits.maxTextureSize = 4096;
}
g_caps.limits.maxFBAttachments = uint8_t(bx::uint32_min(m_device.supportsFeatureSet( (MTLFeatureSet)1 /* MTLFeatureSet_iOS_GPUFamily2_v1 */) ? 8 : 4, BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS) );
g_caps.supported |= m_device.supportsFeatureSet( (MTLFeatureSet)4 /* MTLFeatureSet_iOS_GPUFamily3_v1 */)
? BGFX_CAPS_DRAW_INDIRECT
: 0
;
g_caps.supported |= m_device.supportsFeatureSet( (MTLFeatureSet)11 /* MTLFeatureSet_iOS_GPUFamily4_v1 */)
? BGFX_CAPS_TEXTURE_CUBE_ARRAY
: 0
;
}
else if (BX_ENABLED(BX_PLATFORM_OSX) )
{
g_caps.limits.maxTextureSize = 16384;
g_caps.limits.maxFBAttachments = 8;
g_caps.supported |= BGFX_CAPS_TEXTURE_CUBE_ARRAY;
g_caps.supported |= m_device.supportsFeatureSet( (MTLFeatureSet)10001 /* MTLFeatureSet_macOS_GPUFamily1_v2 */)
? BGFX_CAPS_DRAW_INDIRECT
: 0
;
}
g_caps.limits.maxTextureLayers = 2048;
g_caps.limits.maxVertexStreams = BGFX_CONFIG_MAX_VERTEX_STREAMS;
// Maximum number of entries in the buffer argument table, per graphics or compute function are 31.
// It is decremented by 1 because 1 entry is used for uniforms.
g_caps.limits.maxComputeBindings = bx::uint32_min(30, BGFX_MAX_COMPUTE_BINDINGS);
m_hasPixelFormatDepth32Float_Stencil8 = false
|| BX_ENABLED(BX_PLATFORM_OSX)
|| (BX_ENABLED(BX_PLATFORM_IOS) && iOSVersionEqualOrGreater("9.0.0") )
;
m_hasStoreActionStoreAndMultisampleResolve = false
|| (BX_ENABLED(BX_PLATFORM_OSX) && macOSVersionEqualOrGreater(10, 12, 0) )
|| (BX_ENABLED(BX_PLATFORM_IOS) && iOSVersionEqualOrGreater("10.0.0") )
;
m_macOS11Runtime = true
&& BX_ENABLED(BX_PLATFORM_OSX)
&& macOSVersionEqualOrGreater(10, 11, 0)
;
m_iOS9Runtime = true
&& BX_ENABLED(BX_PLATFORM_IOS)
&& iOSVersionEqualOrGreater("9.0.0")
;
if (BX_ENABLED(BX_PLATFORM_OSX) )
{
s_textureFormat[TextureFormat::R8].m_fmtSrgb = MTLPixelFormatInvalid;
s_textureFormat[TextureFormat::RG8].m_fmtSrgb = MTLPixelFormatInvalid;
}
const MTLReadWriteTextureTier rwTier = [m_device readWriteTextureSupport];
g_caps.supported |= rwTier != MTLReadWriteTextureTierNone
? BGFX_CAPS_IMAGE_RW
: 0
;
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
uint16_t support = 0;
support |= MTLPixelFormatInvalid != s_textureFormat[ii].m_fmt
? BGFX_CAPS_FORMAT_TEXTURE_2D
| BGFX_CAPS_FORMAT_TEXTURE_3D
| BGFX_CAPS_FORMAT_TEXTURE_CUBE
| BGFX_CAPS_FORMAT_TEXTURE_VERTEX
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= MTLPixelFormatInvalid != s_textureFormat[ii].m_fmtSrgb
? BGFX_CAPS_FORMAT_TEXTURE_2D_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_3D_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_CUBE_SRGB
| BGFX_CAPS_FORMAT_TEXTURE_VERTEX
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
if (!bimg::isCompressed(bimg::TextureFormat::Enum(ii) ) )
{
support |= 0
| BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER
| BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA
;
}
support |= true
&& s_textureFormat[ii].m_rwTier != MTLReadWriteTextureTierNone
&& s_textureFormat[ii].m_rwTier <= rwTier
? BGFX_CAPS_FORMAT_TEXTURE_IMAGE_READ
| BGFX_CAPS_FORMAT_TEXTURE_IMAGE_WRITE
: BGFX_CAPS_FORMAT_TEXTURE_NONE
;
support |= s_textureFormat[ii].m_autoGetMipmap
? BGFX_CAPS_FORMAT_TEXTURE_MIP_AUTOGEN
: 0
;
g_caps.formats[ii] = support;
}
g_caps.formats[TextureFormat::A8 ] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER | BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RG32I ] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RG32U ] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RGBA32I] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RGBA32U] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
if (BX_ENABLED(BX_PLATFORM_IOS) )
{
s_textureFormat[TextureFormat::D24S8].m_fmt = MTLPixelFormatDepth32Float_Stencil8;
g_caps.formats[TextureFormat::BC1 ] =
g_caps.formats[TextureFormat::BC2 ] =
g_caps.formats[TextureFormat::BC3 ] =
g_caps.formats[TextureFormat::BC4 ] =
g_caps.formats[TextureFormat::BC5 ] =
g_caps.formats[TextureFormat::BC6H] =
g_caps.formats[TextureFormat::BC7 ] = BGFX_CAPS_FORMAT_TEXTURE_NONE;
g_caps.formats[TextureFormat::RG32F ] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
g_caps.formats[TextureFormat::RGBA32F] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
}
if (BX_ENABLED(BX_PLATFORM_OSX) )
{
s_textureFormat[TextureFormat::D24S8].m_fmt = (MTLPixelFormat)(m_device.depth24Stencil8PixelFormatSupported()
? 255 /* Depth24Unorm_Stencil8 */
: MTLPixelFormatDepth32Float_Stencil8)
;
g_caps.formats[TextureFormat::ETC2 ] =
g_caps.formats[TextureFormat::ETC2A ] =
g_caps.formats[TextureFormat::ETC2A1] =
g_caps.formats[TextureFormat::PTC12 ] =
g_caps.formats[TextureFormat::PTC14 ] =
g_caps.formats[TextureFormat::PTC12A] =
g_caps.formats[TextureFormat::PTC14A] = BGFX_CAPS_FORMAT_TEXTURE_NONE;
g_caps.formats[TextureFormat::RGB9E5F] &= ~(BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER | BGFX_CAPS_FORMAT_TEXTURE_FRAMEBUFFER_MSAA);
}
for (uint32_t ii = 0; ii < TextureFormat::Count; ++ii)
{
if (BGFX_CAPS_FORMAT_TEXTURE_NONE == g_caps.formats[ii])
{
s_textureFormat[ii].m_fmt = MTLPixelFormatInvalid;
s_textureFormat[ii].m_fmtSrgb = MTLPixelFormatInvalid;
}
}
for (uint32_t ii = 1, last = 0; ii < BX_COUNTOF(s_msaa); ++ii)
{
const int32_t sampleCount = 1<<ii;
if (m_device.supportsTextureSampleCount(sampleCount) )
{
s_msaa[ii] = sampleCount;
last = ii;
}
else
{
s_msaa[ii] = s_msaa[last];
}
}
// Init reserved part of view name.
for (uint32_t ii = 0; ii < BGFX_CONFIG_MAX_VIEWS; ++ii)
{
bx::snprintf(s_viewName[ii], BGFX_CONFIG_MAX_VIEW_NAME_RESERVED+1, "%3d ", ii);
}
m_occlusionQuery.preReset();
m_gpuTimer.init();
g_internalData.context = m_device;
return true;
}
void shutdown()
{
m_occlusionQuery.postReset();
m_gpuTimer.shutdown();
m_pipelineStateCache.invalidate();
m_pipelineProgram.clear();
m_depthStencilStateCache.invalidate();
m_samplerStateCache.invalidate();
for (uint32_t ii = 0; ii < BX_COUNTOF(m_shaders); ++ii)
{
m_shaders[ii].destroy();
}
for (uint32_t ii = 0; ii < BX_COUNTOF(m_textures); ++ii)
{
m_textures[ii].destroy();
}
m_screenshotBlitProgramVsh.destroy();
m_screenshotBlitProgramFsh.destroy();
m_screenshotBlitProgram.destroy();
MTL_RELEASE(m_screenshotBlitRenderPipelineState);
captureFinish();
MTL_RELEASE(m_depthStencilDescriptor);
MTL_RELEASE(m_frontFaceStencilDescriptor);
MTL_RELEASE(m_backFaceStencilDescriptor);
MTL_RELEASE(m_renderPipelineDescriptor);
MTL_RELEASE(m_vertexDescriptor);
MTL_RELEASE(m_textureDescriptor);
MTL_RELEASE(m_samplerDescriptor);
m_mainFrameBuffer.destroy();
for (uint8_t i=0; i < BGFX_CONFIG_MAX_FRAME_LATENCY; ++i)
{
MTL_RELEASE(m_uniformBuffers[i]);
}
m_cmd.shutdown();
MTL_RELEASE(m_device);
}
RendererType::Enum getRendererType() const override
{
return RendererType::Metal;
}
const char* getRendererName() const override
{
return BGFX_RENDERER_METAL_NAME;
}
void createIndexBuffer(IndexBufferHandle _handle, const Memory* _mem, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_mem->size, _mem->data, _flags);
}
void destroyIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createVertexLayout(VertexLayoutHandle _handle, const VertexLayout& _layout) override
{
VertexLayout& layout = m_vertexLayouts[_handle.idx];
bx::memCopy(&layout, &_layout, sizeof(VertexLayout) );
dump(layout);
}
void destroyVertexLayout(VertexLayoutHandle /*_handle*/) override
{
}
void createVertexBuffer(VertexBufferHandle _handle, const Memory* _mem, VertexLayoutHandle _layoutHandle, uint16_t _flags) override
{
m_vertexBuffers[_handle.idx].create(_mem->size, _mem->data, _layoutHandle, _flags);
}
void destroyVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
m_indexBuffers[_handle.idx].create(_size, NULL, _flags);
}
void updateDynamicIndexBuffer(IndexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_indexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicIndexBuffer(IndexBufferHandle _handle) override
{
m_indexBuffers[_handle.idx].destroy();
}
void createDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _size, uint16_t _flags) override
{
VertexLayoutHandle layoutHandle = BGFX_INVALID_HANDLE;
m_vertexBuffers[_handle.idx].create(_size, NULL, layoutHandle, _flags);
}
void updateDynamicVertexBuffer(VertexBufferHandle _handle, uint32_t _offset, uint32_t _size, const Memory* _mem) override
{
m_vertexBuffers[_handle.idx].update(_offset, bx::uint32_min(_size, _mem->size), _mem->data);
}
void destroyDynamicVertexBuffer(VertexBufferHandle _handle) override
{
m_vertexBuffers[_handle.idx].destroy();
}
void createShader(ShaderHandle _handle, const Memory* _mem) override
{
m_shaders[_handle.idx].create(_mem);
}
void destroyShader(ShaderHandle _handle) override
{
m_shaders[_handle.idx].destroy();
}
void createProgram(ProgramHandle _handle, ShaderHandle _vsh, ShaderHandle _fsh) override
{
m_program[_handle.idx].create(&m_shaders[_vsh.idx], isValid(_fsh) ? &m_shaders[_fsh.idx] : NULL);
}
void destroyProgram(ProgramHandle _handle) override
{
for (PipelineProgramArray::iterator it = m_pipelineProgram.begin(); it != m_pipelineProgram.end();)
{
if (it->program.idx == _handle.idx)
{
m_pipelineStateCache.invalidate(it->key);
it = m_pipelineProgram.erase(it);
}
else
{
++it;
}
}
m_program[_handle.idx].destroy();
}
void* createTexture(TextureHandle _handle, const Memory* _mem, uint64_t _flags, uint8_t _skip) override
{
m_textures[_handle.idx].create(_mem, _flags, _skip);
return NULL;
}
void updateTextureBegin(TextureHandle /*_handle*/, uint8_t /*_side*/, uint8_t /*_mip*/) override
{
}
void updateTexture(TextureHandle _handle, uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem) override
{
m_textures[_handle.idx].update(_side, _mip, _rect, _z, _depth, _pitch, _mem);
}
void updateTextureEnd() override
{
}
void readTexture(TextureHandle _handle, void* _data, uint8_t _mip) override
{
const TextureMtl& texture = m_textures[_handle.idx];
#if BX_PLATFORM_OSX
BlitCommandEncoder bce = s_renderMtl->getBlitCommandEncoder();
bce.synchronizeTexture(texture.m_ptr, 0, _mip);
endEncoding();
#endif // BX_PLATFORM_OSX
m_cmd.kick(false, true);
m_commandBuffer = m_cmd.alloc();
BX_ASSERT(_mip<texture.m_numMips,"Invalid mip: %d num mips:",_mip,texture.m_numMips);
uint32_t srcWidth = bx::uint32_max(1, texture.m_ptr.width() >> _mip);
uint32_t srcHeight = bx::uint32_max(1, texture.m_ptr.height() >> _mip);
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(texture.m_textureFormat) );
MTLRegion region =
{
{ 0, 0, 0 },
{ srcWidth, srcHeight, 1 },
};
texture.m_ptr.getBytes(_data, srcWidth*bpp/8, 0, region, _mip, 0);
}
void resizeTexture(TextureHandle _handle, uint16_t _width, uint16_t _height, uint8_t _numMips, uint16_t _numLayers) override
{
TextureMtl& texture = m_textures[_handle.idx];
uint32_t size = sizeof(uint32_t) + sizeof(TextureCreate);
const Memory* mem = alloc(size);
bx::StaticMemoryBlockWriter writer(mem->data, mem->size);
uint32_t magic = BGFX_CHUNK_MAGIC_TEX;
bx::write(&writer, magic, bx::ErrorAssert{});
TextureCreate tc;
tc.m_width = _width;
tc.m_height = _height;
tc.m_depth = 0;
tc.m_numLayers = _numLayers;
tc.m_numMips = _numMips;
tc.m_format = TextureFormat::Enum(texture.m_requestedFormat);
tc.m_cubeMap = false;
tc.m_mem = NULL;
bx::write(&writer, tc, bx::ErrorAssert{});
texture.destroy();
texture.create(mem, texture.m_flags, 0);
release(mem);
}
void overrideInternal(TextureHandle _handle, uintptr_t _ptr) override
{
m_textures[_handle.idx].overrideInternal(_ptr);
}
uintptr_t getInternal(TextureHandle _handle) override
{
return uintptr_t(id<MTLTexture>(m_textures[_handle.idx].m_ptr) );
}
void destroyTexture(TextureHandle _handle) override
{
m_textures[_handle.idx].destroy();
}
void createFrameBuffer(FrameBufferHandle _handle, uint8_t _num, const Attachment* _attachment) override
{
m_frameBuffers[_handle.idx].create(_num, _attachment);
}
void createFrameBuffer(FrameBufferHandle _handle, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat) override
{
for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii)
{
FrameBufferHandle handle = m_windows[ii];
if (isValid(handle)
&& m_frameBuffers[handle.idx].m_nwh == _nwh)
{
destroyFrameBuffer(handle);
}
}
uint16_t denseIdx = m_numWindows++;
m_windows[denseIdx] = _handle;
FrameBufferMtl& fb = m_frameBuffers[_handle.idx];
fb.create(denseIdx, _nwh, _width, _height, _format, _depthFormat);
fb.m_swapChain->resize(m_frameBuffers[_handle.idx], _width, _height, m_resolution.reset, m_resolution.maxFrameLatency);
}
void destroyFrameBuffer(FrameBufferHandle _handle) override
{
uint16_t denseIdx = m_frameBuffers[_handle.idx].destroy();
if (UINT16_MAX != denseIdx)
{
--m_numWindows;
if (m_numWindows > 1)
{
FrameBufferHandle handle = m_windows[m_numWindows];
m_windows[m_numWindows] = {kInvalidHandle};
if (m_numWindows != denseIdx)
{
m_windows[denseIdx] = handle;
m_frameBuffers[handle.idx].m_denseIdx = denseIdx;
}
}
}
}
void createUniform(UniformHandle _handle, UniformType::Enum _type, uint16_t _num, const char* _name) override
{
if (NULL != m_uniforms[_handle.idx])
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
}
const uint32_t size = bx::alignUp(g_uniformTypeSize[_type]*_num, 16);
void* data = BX_ALLOC(g_allocator, size);
bx::memSet(data, 0, size);
m_uniforms[_handle.idx] = data;
m_uniformReg.add(_handle, _name);
}
void destroyUniform(UniformHandle _handle) override
{
BX_FREE(g_allocator, m_uniforms[_handle.idx]);
m_uniforms[_handle.idx] = NULL;
m_uniformReg.remove(_handle);
}
void requestScreenShot(FrameBufferHandle _handle, const char* _filePath) override
{
BX_UNUSED(_handle);
if (NULL == m_screenshotTarget)
{
return;
}
#if BX_PLATFORM_OSX
m_blitCommandEncoder = getBlitCommandEncoder();
m_blitCommandEncoder.synchronizeResource(m_screenshotTarget);
m_blitCommandEncoder.endEncoding();
m_blitCommandEncoder = 0;
#endif // BX_PLATFORM_OSX
m_cmd.kick(false, true);
m_commandBuffer = 0;
uint32_t width = m_screenshotTarget.width();
uint32_t height = m_screenshotTarget.height();
uint32_t length = width*height*4;
uint8_t* data = (uint8_t*)BX_ALLOC(g_allocator, length);
MTLRegion region = { { 0, 0, 0 }, { width, height, 1 } };
m_screenshotTarget.getBytes(data, 4*width, 0, region, 0, 0);
g_callback->screenShot(
_filePath
, m_screenshotTarget.width()
, m_screenshotTarget.height()
, width*4
, data
, length
, false
);
BX_FREE(g_allocator, data);
m_commandBuffer = m_cmd.alloc();
}
void updateViewName(ViewId _id, const char* _name) override
{
bx::strCopy(
&s_viewName[_id][BGFX_CONFIG_MAX_VIEW_NAME_RESERVED]
, BX_COUNTOF(s_viewName[0])-BGFX_CONFIG_MAX_VIEW_NAME_RESERVED
, _name
);
}
void updateUniform(uint16_t _loc, const void* _data, uint32_t _size) override
{
bx::memCopy(m_uniforms[_loc], _data, _size);
}
void invalidateOcclusionQuery(OcclusionQueryHandle _handle) override
{
m_occlusionQuery.invalidate(_handle);
}
void setMarker(const char* _marker, uint16_t _len) override
{
BX_UNUSED(_len);
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
m_renderCommandEncoder.insertDebugSignpost(_marker);
}
}
virtual void setName(Handle _handle, const char* _name, uint16_t _len) override
{
BX_UNUSED(_len);
switch (_handle.type)
{
case Handle::IndexBuffer:
m_indexBuffers[_handle.idx].m_ptr.setLabel(_name);
break;
case Handle::Shader:
m_shaders[_handle.idx].m_function.setLabel(_name);
break;
case Handle::Texture:
m_textures[_handle.idx].m_ptr.setLabel(_name);
break;
case Handle::VertexBuffer:
m_vertexBuffers[_handle.idx].m_ptr.setLabel(_name);
break;
default:
BX_ASSERT(false, "Invalid handle type?! %d", _handle.type);
break;
}
}
void submitBlit(BlitState& _bs, uint16_t _view);
void submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter) override;
void blitSetup(TextVideoMemBlitter& _blitter) override
{
BX_UNUSED(_blitter);
}
void blitRender(TextVideoMemBlitter& _blitter, uint32_t _numIndices) override
{
const uint32_t numVertices = _numIndices*4/6;
if (0 < numVertices)
{
m_indexBuffers [_blitter.m_ib->handle.idx].update(
0
, bx::strideAlign(_numIndices*2, 4)
, _blitter.m_ib->data
, true
);
m_vertexBuffers[_blitter.m_vb->handle.idx].update(
0
, numVertices*_blitter.m_layout.m_stride
, _blitter.m_vb->data
, true
);
endEncoding();
uint32_t width = m_resolution.width;
uint32_t height = m_resolution.height;
FrameBufferHandle fbh = BGFX_INVALID_HANDLE;
RenderPassDescriptor renderPassDescriptor = newRenderPassDescriptor();
setFrameBuffer(renderPassDescriptor, fbh);
renderPassDescriptor.colorAttachments[0].loadAction = MTLLoadActionLoad;
renderPassDescriptor.colorAttachments[0].storeAction =
NULL != renderPassDescriptor.colorAttachments[0].resolveTexture
? MTLStoreActionMultisampleResolve
: MTLStoreActionStore
;
RenderCommandEncoder rce = m_commandBuffer.renderCommandEncoderWithDescriptor(renderPassDescriptor);
m_renderCommandEncoder = rce;
m_renderCommandEncoderFrameBufferHandle = fbh;
MTL_RELEASE(renderPassDescriptor);
MTLViewport viewport = { 0.0f, 0.0f, (float)width, (float)height, 0.0f, 1.0f};
rce.setViewport(viewport);
MTLScissorRect rc = { 0,0,width,height };
rce.setScissorRect(rc);
rce.setCullMode(MTLCullModeNone);
uint64_t state = 0
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_DEPTH_TEST_ALWAYS
;
setDepthStencilState(state);
PipelineStateMtl* pso = getPipelineState(
state
, 0
, fbh
, _blitter.m_vb->layoutHandle
, _blitter.m_program
, 0
);
rce.setRenderPipelineState(pso->m_rps);
const uint32_t vertexUniformBufferSize = pso->m_vshConstantBufferSize;
const uint32_t fragmentUniformBufferSize = pso->m_fshConstantBufferSize;
if (vertexUniformBufferSize)
{
m_uniformBufferVertexOffset = bx::alignUp(
m_uniformBufferVertexOffset
, pso->m_vshConstantBufferAlignment
);
rce.setVertexBuffer(m_uniformBuffer, m_uniformBufferVertexOffset, 0);
}
m_uniformBufferFragmentOffset = m_uniformBufferVertexOffset + vertexUniformBufferSize;
if (0 != fragmentUniformBufferSize)
{
m_uniformBufferFragmentOffset = bx::alignUp(
m_uniformBufferFragmentOffset
, pso->m_fshConstantBufferAlignment
);
rce.setFragmentBuffer(m_uniformBuffer, m_uniformBufferFragmentOffset, 0);
}
float proj[16];
bx::mtxOrtho(proj, 0.0f, (float)width, (float)height, 0.0f, 0.0f, 1000.0f, 0.0f, false);
PredefinedUniform& predefined = pso->m_predefined[0];
uint8_t flags = predefined.m_type;
setShaderUniform(flags, predefined.m_loc, proj, 4);
m_textures[_blitter.m_texture.idx].commit(0, false, true);
VertexBufferMtl& vb = m_vertexBuffers[_blitter.m_vb->handle.idx];
m_renderCommandEncoder.setVertexBuffer(vb.m_ptr, 0, 1);
m_renderCommandEncoder.drawIndexedPrimitives(
MTLPrimitiveTypeTriangle
, _numIndices
, MTLIndexTypeUInt16
, m_indexBuffers[_blitter.m_ib->handle.idx].m_ptr
, 0
, 1
);
}
}
bool isDeviceRemoved() override
{
return false;
}
void flip() override
{
if (NULL == m_commandBuffer)
{
return;
}
for (uint32_t ii = 0, num = m_numWindows; ii < num; ++ii)
{
FrameBufferMtl& frameBuffer = ii == 0 ? m_mainFrameBuffer : m_frameBuffers[m_windows[ii].idx];
if (NULL != frameBuffer.m_swapChain
&& frameBuffer.m_swapChain->m_drawableTexture)
{
MTL_RELEASE(frameBuffer.m_swapChain->m_drawableTexture);
if (NULL != frameBuffer.m_swapChain->m_drawable)
{
m_commandBuffer.presentDrawable(frameBuffer.m_swapChain->m_drawable);
MTL_RELEASE(frameBuffer.m_swapChain->m_drawable);
}
}
}
m_cmd.kick(true);
m_commandBuffer = 0;
}
void updateResolution(const Resolution& _resolution)
{
m_mainFrameBuffer.m_swapChain->m_maxAnisotropy = !!(_resolution.reset & BGFX_RESET_MAXANISOTROPY)
? 16
: 1
;
const uint32_t maskFlags = ~(0
| BGFX_RESET_MAXANISOTROPY
| BGFX_RESET_DEPTH_CLAMP
| BGFX_RESET_SUSPEND
);
if (m_resolution.width != _resolution.width
|| m_resolution.height != _resolution.height
|| (m_resolution.reset&maskFlags) != (_resolution.reset&maskFlags) )
{
MTLPixelFormat prevMetalLayerPixelFormat = m_mainFrameBuffer.m_swapChain->m_metalLayer.pixelFormat;
m_resolution = _resolution;
if (m_resolution.reset & BGFX_RESET_INTERNAL_FORCE
&& m_mainFrameBuffer.m_swapChain->m_nwh != g_platformData.nwh)
{
m_mainFrameBuffer.m_swapChain->init(g_platformData.nwh);
}
m_resolution.reset &= ~BGFX_RESET_INTERNAL_FORCE;
m_mainFrameBuffer.m_swapChain->resize(m_mainFrameBuffer, _resolution.width, _resolution.height, _resolution.reset, m_resolution.maxFrameLatency);
for (uint32_t ii = 0; ii < BX_COUNTOF(m_frameBuffers); ++ii)
{
m_frameBuffers[ii].postReset();
}
updateCapture();
m_textVideoMem.resize(false, _resolution.width, _resolution.height);
m_textVideoMem.clear();
if (prevMetalLayerPixelFormat != m_mainFrameBuffer.m_swapChain->m_metalLayer.pixelFormat)
{
MTL_RELEASE(m_screenshotBlitRenderPipelineState)
reset(m_renderPipelineDescriptor);
m_renderPipelineDescriptor.colorAttachments[0].pixelFormat = m_mainFrameBuffer.m_swapChain->m_metalLayer.pixelFormat;
m_renderPipelineDescriptor.vertexFunction = m_screenshotBlitProgram.m_vsh->m_function;
m_renderPipelineDescriptor.fragmentFunction = m_screenshotBlitProgram.m_fsh->m_function;
m_screenshotBlitRenderPipelineState = m_device.newRenderPipelineStateWithDescriptor(m_renderPipelineDescriptor);
}
}
}
void invalidateCompute()
{
if (m_computeCommandEncoder)
{
m_computeCommandEncoder.endEncoding();
m_computeCommandEncoder = NULL;
}
}
void updateCapture()
{
if (m_resolution.reset&BGFX_RESET_CAPTURE)
{
m_captureSize = m_resolution.width*m_resolution.height*4;
m_capture = BX_REALLOC(g_allocator, m_capture, m_captureSize);
g_callback->captureBegin(m_resolution.width, m_resolution.height, m_resolution.width*4, TextureFormat::BGRA8, false);
}
else
{
captureFinish();
}
}
void capture()
{
if (NULL != m_capture)
{
if (NULL == m_screenshotTarget)
{
return;
}
m_renderCommandEncoder.endEncoding();
m_cmd.kick(false, true);
m_commandBuffer = 0;
MTLRegion region = { { 0, 0, 0 }, { m_resolution.width, m_resolution.height, 1 } };
m_screenshotTarget.getBytes(m_capture, 4*m_resolution.width, 0, region, 0, 0);
m_commandBuffer = m_cmd.alloc();
if (m_screenshotTarget.pixelFormat() == MTLPixelFormatRGBA8Uint)
{
bimg::imageSwizzleBgra8(
m_capture
, m_resolution.width*4
, m_resolution.width
, m_resolution.height
, m_capture
, m_resolution.width*4
);
}
g_callback->captureFrame(m_capture, m_captureSize);
RenderPassDescriptor renderPassDescriptor = newRenderPassDescriptor();
setFrameBuffer(renderPassDescriptor, m_renderCommandEncoderFrameBufferHandle);
for (uint32_t ii = 0; ii < g_caps.limits.maxFBAttachments; ++ii)
{
MTLRenderPassColorAttachmentDescriptor* desc = renderPassDescriptor.colorAttachments[ii];
if (NULL != desc.texture)
{
desc.loadAction = MTLLoadActionLoad;
desc.storeAction = desc.resolveTexture == nil
? MTLStoreActionStore
: MTLStoreActionMultisampleResolve
;
}
}
RenderPassDepthAttachmentDescriptor depthAttachment = renderPassDescriptor.depthAttachment;
if (NULL != depthAttachment.texture)
{
depthAttachment.loadAction = MTLLoadActionLoad;
depthAttachment.storeAction = depthAttachment.resolveTexture == nil
? MTLStoreActionStore
: MTLStoreActionMultisampleResolve
;
}
RenderPassStencilAttachmentDescriptor stencilAttachment = renderPassDescriptor.stencilAttachment;
if (NULL != stencilAttachment.texture)
{
stencilAttachment.loadAction = MTLLoadActionLoad;
stencilAttachment.storeAction = stencilAttachment.resolveTexture == nil
? MTLStoreActionStore
: MTLStoreActionMultisampleResolve
;
}
m_renderCommandEncoder = m_commandBuffer.renderCommandEncoderWithDescriptor(renderPassDescriptor);
MTL_RELEASE(renderPassDescriptor);
}
}
void captureFinish()
{
if (NULL != m_capture)
{
g_callback->captureEnd();
BX_FREE(g_allocator, m_capture);
m_capture = NULL;
m_captureSize = 0;
}
}
void setShaderUniform(uint8_t _flags, uint32_t _loc, const void* _val, uint32_t _numRegs)
{
uint32_t offset = 0 != (_flags&kUniformFragmentBit)
? m_uniformBufferFragmentOffset
: m_uniformBufferVertexOffset
;
uint8_t* dst = (uint8_t*)m_uniformBuffer.contents();
bx::memCopy(&dst[offset + _loc], _val, _numRegs*16);
}
void setShaderUniform4f(uint8_t _flags, uint32_t _loc, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _loc, _val, _numRegs);
}
void setShaderUniform4x4f(uint8_t _flags, uint32_t _loc, const void* _val, uint32_t _numRegs)
{
setShaderUniform(_flags, _loc, _val, _numRegs);
}
void commit(UniformBuffer& _uniformBuffer)
{
_uniformBuffer.reset();
for (;;)
{
uint32_t opcode = _uniformBuffer.read();
if (UniformType::End == opcode)
{
break;
}
UniformType::Enum type;
uint16_t loc;
uint16_t num;
uint16_t copy;
UniformBuffer::decodeOpcode(opcode, type, loc, num, copy);
const char* data;
if (copy)
{
data = _uniformBuffer.read(g_uniformTypeSize[type]*num);
}
else
{
UniformHandle handle;
bx::memCopy(&handle, _uniformBuffer.read(sizeof(UniformHandle) ), sizeof(UniformHandle) );
data = (const char*)m_uniforms[handle.idx];
}
switch ( (uint32_t)type)
{
case UniformType::Mat3:
case UniformType::Mat3|kUniformFragmentBit:
{
float* value = (float*)data;
for (uint32_t ii = 0, count = num/3; ii < count; ++ii, loc += 3*16, value += 9)
{
Matrix4 mtx;
mtx.un.val[ 0] = value[0];
mtx.un.val[ 1] = value[1];
mtx.un.val[ 2] = value[2];
mtx.un.val[ 3] = 0.0f;
mtx.un.val[ 4] = value[3];
mtx.un.val[ 5] = value[4];
mtx.un.val[ 6] = value[5];
mtx.un.val[ 7] = 0.0f;
mtx.un.val[ 8] = value[6];
mtx.un.val[ 9] = value[7];
mtx.un.val[10] = value[8];
mtx.un.val[11] = 0.0f;
setShaderUniform(uint8_t(type), loc, &mtx.un.val[0], 3);
}
}
break;
case UniformType::Sampler:
case UniformType::Sampler | kUniformFragmentBit:
case UniformType::Vec4:
case UniformType::Vec4 | kUniformFragmentBit:
case UniformType::Mat4:
case UniformType::Mat4 | kUniformFragmentBit:
{
setShaderUniform(uint8_t(type), loc, data, num);
}
break;
case UniformType::End:
break;
default:
BX_TRACE("%4d: INVALID 0x%08x, t %d, l %d, n %d, c %d", _uniformBuffer.getPos(), opcode, type, loc, num, copy);
break;
}
}
}
void clearQuad(ClearQuad& _clearQuad, const Rect& /*_rect*/, const Clear& _clear, const float _palette[][4])
{
uint64_t state = 0;
state |= _clear.m_flags & BGFX_CLEAR_COLOR ? BGFX_STATE_WRITE_RGB|BGFX_STATE_WRITE_A : 0;
state |= _clear.m_flags & BGFX_CLEAR_DEPTH ? BGFX_STATE_DEPTH_TEST_ALWAYS|BGFX_STATE_WRITE_Z : 0;
uint64_t stencil = 0;
stencil |= _clear.m_flags & BGFX_CLEAR_STENCIL ? 0
| BGFX_STENCIL_TEST_ALWAYS
| BGFX_STENCIL_FUNC_REF(_clear.m_stencil)
| BGFX_STENCIL_FUNC_RMASK(0xff)
| BGFX_STENCIL_OP_FAIL_S_REPLACE
| BGFX_STENCIL_OP_FAIL_Z_REPLACE
| BGFX_STENCIL_OP_PASS_Z_REPLACE
: 0
;
setDepthStencilState(state, stencil);
uint32_t numMrt = 1;
FrameBufferHandle fbh = m_fbh;
if (isValid(fbh) && m_frameBuffers[fbh.idx].m_swapChain == NULL)
{
const FrameBufferMtl& fb = m_frameBuffers[fbh.idx];
numMrt = bx::uint32_max(1, fb.m_num);
}
const VertexLayout* layout = &_clearQuad.m_layout;
const PipelineStateMtl* pso = getPipelineState(
state
, 0
, fbh
, 1
, &layout
, _clearQuad.m_program[numMrt-1]
, 0
);
m_renderCommandEncoder.setRenderPipelineState(pso->m_rps);
const uint32_t vertexUniformBufferSize = pso->m_vshConstantBufferSize;
const uint32_t fragmentUniformBufferSize = pso->m_fshConstantBufferSize;
if (0 != vertexUniformBufferSize)
{
m_uniformBufferVertexOffset = bx::alignUp(
m_uniformBufferVertexOffset
, pso->m_vshConstantBufferAlignment
);
m_renderCommandEncoder.setVertexBuffer(m_uniformBuffer, m_uniformBufferVertexOffset, 0);
}
m_uniformBufferFragmentOffset = m_uniformBufferVertexOffset + vertexUniformBufferSize;
if (fragmentUniformBufferSize)
{
m_uniformBufferFragmentOffset = bx::alignUp(
m_uniformBufferFragmentOffset
, pso->m_fshConstantBufferAlignment
);
m_renderCommandEncoder.setFragmentBuffer(m_uniformBuffer, m_uniformBufferFragmentOffset, 0);
}
float mrtClearColor[BGFX_CONFIG_MAX_FRAME_BUFFER_ATTACHMENTS][4];
float mrtClearDepth[4] = { _clear.m_depth };
if (BGFX_CLEAR_COLOR_USE_PALETTE & _clear.m_flags)
{
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, _clear.m_index[ii]);
bx::memCopy(mrtClearColor[ii], _palette[index], 16);
}
}
else
{
float rgba[4] =
{
_clear.m_index[0]*1.0f/255.0f,
_clear.m_index[1]*1.0f/255.0f,
_clear.m_index[2]*1.0f/255.0f,
_clear.m_index[3]*1.0f/255.0f,
};
for (uint32_t ii = 0; ii < numMrt; ++ii)
{
bx::memCopy(mrtClearColor[ii], rgba, 16);
}
}
bx::memCopy(
(uint8_t*)m_uniformBuffer.contents() + m_uniformBufferVertexOffset
, mrtClearDepth
, bx::uint32_min(vertexUniformBufferSize, sizeof(mrtClearDepth) )
);
bx::memCopy(
(uint8_t*)m_uniformBuffer.contents() + m_uniformBufferFragmentOffset
, mrtClearColor
, bx::uint32_min(fragmentUniformBufferSize, sizeof(mrtClearColor) )
);
m_uniformBufferFragmentOffset += fragmentUniformBufferSize;
m_uniformBufferVertexOffset = m_uniformBufferFragmentOffset;
const VertexBufferMtl& vb = m_vertexBuffers[_clearQuad.m_vb.idx];
m_renderCommandEncoder.setCullMode(MTLCullModeNone);
m_renderCommandEncoder.setVertexBuffer(vb.m_ptr, 0, 1);
m_renderCommandEncoder.drawPrimitives(MTLPrimitiveTypeTriangleStrip, 0, 4, 1);
}
void setAttachment(MTLRenderPassAttachmentDescriptor* _attachmentDescriptor, const Attachment& _at, uint8_t _textureType, bool _resolve)
{
_attachmentDescriptor.level = _at.mip;
if (TextureMtl::Texture3D == _textureType)
{
_attachmentDescriptor.depthPlane = _at.layer;
}
else
{
_attachmentDescriptor.slice = _at.layer;
}
if (_resolve)
{
_attachmentDescriptor.resolveLevel = _at.mip;
if (TextureMtl::Texture3D == _textureType)
{
_attachmentDescriptor.resolveDepthPlane = _at.layer;
}
else
{
_attachmentDescriptor.resolveSlice = _at.layer;
}
}
}
void setFrameBuffer(RenderPassDescriptor _renderPassDescriptor, FrameBufferHandle _fbh, bool _msaa = true)
{
// resolve framebuffer
if (isValid(m_fbh) && m_fbh.idx != _fbh.idx)
{
FrameBufferMtl& frameBuffer = m_frameBuffers[m_fbh.idx];
frameBuffer.resolve();
}
if (!isValid(_fbh)
|| m_frameBuffers[_fbh.idx].m_swapChain)
{
SwapChainMtl* swapChain = !isValid(_fbh)
? m_mainFrameBuffer.m_swapChain
: m_frameBuffers[_fbh.idx].m_swapChain
;
if (NULL != swapChain->m_backBufferColorMsaa)
{
_renderPassDescriptor.colorAttachments[0].texture = swapChain->m_backBufferColorMsaa;
_renderPassDescriptor.colorAttachments[0].resolveTexture = NULL != m_screenshotTarget
? m_screenshotTarget.m_obj
: swapChain->currentDrawableTexture()
;
}
else
{
_renderPassDescriptor.colorAttachments[0].texture = NULL != m_screenshotTarget
? m_screenshotTarget.m_obj
: swapChain->currentDrawableTexture()
;
}
_renderPassDescriptor.depthAttachment.texture = swapChain->m_backBufferDepth;
_renderPassDescriptor.stencilAttachment.texture = swapChain->m_backBufferStencil;
}
else
{
FrameBufferMtl& frameBuffer = m_frameBuffers[_fbh.idx];
for (uint32_t ii = 0; ii < frameBuffer.m_num; ++ii)
{
const TextureMtl& texture = m_textures[frameBuffer.m_colorHandle[ii].idx];
_renderPassDescriptor.colorAttachments[ii].texture = texture.m_ptrMsaa
? texture.m_ptrMsaa
: texture.m_ptr
;
_renderPassDescriptor.colorAttachments[ii].resolveTexture = texture.m_ptrMsaa
? texture.m_ptr.m_obj
: NULL
;
setAttachment(_renderPassDescriptor.colorAttachments[ii], frameBuffer.m_colorAttachment[ii], texture.m_type, texture.m_ptrMsaa != NULL);
}
if (isValid(frameBuffer.m_depthHandle) )
{
const TextureMtl& texture = m_textures[frameBuffer.m_depthHandle.idx];
_renderPassDescriptor.depthAttachment.texture = texture.m_ptrMsaa
? texture.m_ptrMsaa
: texture.m_ptr
;
_renderPassDescriptor.stencilAttachment.texture = texture.m_ptrStencil;
setAttachment(_renderPassDescriptor.depthAttachment, frameBuffer.m_depthAttachment, texture.m_type, NULL != texture.m_ptrMsaa);
setAttachment(_renderPassDescriptor.stencilAttachment, frameBuffer.m_depthAttachment, texture.m_type, NULL != texture.m_ptrMsaa);
if (texture.m_textureFormat == TextureFormat::D24S8)
{
if (texture.m_ptr.pixelFormat() == 255 /* Depth24Unorm_Stencil8 */
|| texture.m_ptr.pixelFormat() == 260 /* Depth32Float_Stencil8 */)
{
_renderPassDescriptor.stencilAttachment.texture = _renderPassDescriptor.depthAttachment.texture;
}
else
{
_renderPassDescriptor.stencilAttachment.texture = texture.m_ptrMsaa
? texture.m_ptrMsaa
: texture.m_ptrStencil
;
}
}
}
}
m_fbh = _fbh;
m_rtMsaa = _msaa;
}
void setDepthStencilState(uint64_t _state, uint64_t _stencil = 0)
{
_state &= BGFX_STATE_WRITE_Z|BGFX_STATE_DEPTH_TEST_MASK;
uint32_t fstencil = unpackStencil(0, _stencil);
uint32_t ref = (fstencil&BGFX_STENCIL_FUNC_REF_MASK)>>BGFX_STENCIL_FUNC_REF_SHIFT;
_stencil &= packStencil(~BGFX_STENCIL_FUNC_REF_MASK, ~BGFX_STENCIL_FUNC_REF_MASK);
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(_stencil);
uint32_t hash = murmur.end();
DepthStencilState dss = m_depthStencilStateCache.find(hash);
if (NULL == dss)
{
DepthStencilDescriptor desc = m_depthStencilDescriptor;
uint32_t func = (_state&BGFX_STATE_DEPTH_TEST_MASK)>>BGFX_STATE_DEPTH_TEST_SHIFT;
desc.depthWriteEnabled = !!(BGFX_STATE_WRITE_Z & _state);
desc.depthCompareFunction = s_cmpFunc[func];
uint32_t bstencil = unpackStencil(1, _stencil);
uint32_t frontAndBack = bstencil != BGFX_STENCIL_NONE && bstencil != fstencil;
bstencil = frontAndBack ? bstencil : fstencil;
if (0 != _stencil)
{
StencilDescriptor frontFaceDesc = m_frontFaceStencilDescriptor;
StencilDescriptor backfaceDesc = m_backFaceStencilDescriptor;
uint32_t readMask = (fstencil&BGFX_STENCIL_FUNC_RMASK_MASK)>>BGFX_STENCIL_FUNC_RMASK_SHIFT;
uint32_t writeMask = 0xff;
frontFaceDesc.stencilFailureOperation = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
frontFaceDesc.depthFailureOperation = s_stencilOp[(fstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
frontFaceDesc.depthStencilPassOperation = s_stencilOp[(fstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
frontFaceDesc.stencilCompareFunction = s_cmpFunc[(fstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
frontFaceDesc.readMask = readMask;
frontFaceDesc.writeMask = writeMask;
backfaceDesc.stencilFailureOperation = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_S_MASK)>>BGFX_STENCIL_OP_FAIL_S_SHIFT];
backfaceDesc.depthFailureOperation = s_stencilOp[(bstencil&BGFX_STENCIL_OP_FAIL_Z_MASK)>>BGFX_STENCIL_OP_FAIL_Z_SHIFT];
backfaceDesc.depthStencilPassOperation = s_stencilOp[(bstencil&BGFX_STENCIL_OP_PASS_Z_MASK)>>BGFX_STENCIL_OP_PASS_Z_SHIFT];
backfaceDesc.stencilCompareFunction = s_cmpFunc[(bstencil&BGFX_STENCIL_TEST_MASK)>>BGFX_STENCIL_TEST_SHIFT];
backfaceDesc.readMask = readMask;
backfaceDesc.writeMask = writeMask;
desc.frontFaceStencil = frontFaceDesc;
desc.backFaceStencil = backfaceDesc;
}
else
{
desc.backFaceStencil = NULL;
desc.frontFaceStencil = NULL;
}
dss = m_device.newDepthStencilStateWithDescriptor(desc);
m_depthStencilStateCache.add(hash, dss);
}
m_renderCommandEncoder.setDepthStencilState(dss);
m_renderCommandEncoder.setStencilReferenceValue(ref);
}
void processArguments(
PipelineStateMtl* ps
, NSArray <MTLArgument *>* _vertexArgs
, NSArray <MTLArgument *>* _fragmentArgs
)
{
ps->m_numPredefined = 0;
for (uint32_t shaderType = 0; shaderType < 2; ++shaderType)
{
UniformBuffer*& constantBuffer = shaderType == 0
? ps->m_vshConstantBuffer
: ps->m_fshConstantBuffer
;
const int8_t fragmentBit = (1 == shaderType ? kUniformFragmentBit : 0);
for (MTLArgument* arg in (shaderType == 0 ? _vertexArgs : _fragmentArgs) )
{
BX_TRACE("arg: %s type:%d", utf8String(arg.name), arg.type);
if (arg.active)
{
if (arg.type == MTLArgumentTypeBuffer
&& 0 == bx::strCmp(utf8String(arg.name), SHADER_UNIFORM_NAME) )
{
BX_ASSERT(arg.index == 0, "Uniform buffer must be in the buffer slot 0.");
BX_ASSERT(MTLDataTypeStruct == arg.bufferDataType, "%s's type must be a struct",SHADER_UNIFORM_NAME );
if (MTLDataTypeStruct == arg.bufferDataType)
{
if (shaderType == 0)
{
ps->m_vshConstantBufferSize = uint32_t(arg.bufferDataSize);
ps->m_vshConstantBufferAlignment = uint32_t(arg.bufferAlignment);
}
else
{
ps->m_fshConstantBufferSize = uint32_t(arg.bufferDataSize);
ps->m_fshConstantBufferAlignment = uint32_t(arg.bufferAlignment);
}
for (MTLStructMember* uniform in arg.bufferStructType.members )
{
const char* name = utf8String(uniform.name);
BX_TRACE("uniform: %s type:%d", name, uniform.dataType);
MTLDataType dataType = uniform.dataType;
uint32_t num = 1;
if (dataType == MTLDataTypeArray)
{
dataType = uniform.arrayType.elementType;
num = (uint32_t)uniform.arrayType.arrayLength;
}
switch (dataType)
{
case MTLDataTypeFloat4: num *= 1; break;
case MTLDataTypeFloat4x4: num *= 4; break;
case MTLDataTypeFloat3x3: num *= 3; break;
default:
BX_WARN(0, "Unsupported uniform MTLDataType: %d", uniform.dataType);
break;
}
const PredefinedUniform::Enum predefined = nameToPredefinedUniformEnum(name);
if (PredefinedUniform::Count != predefined)
{
ps->m_predefined[ps->m_numPredefined].m_loc = uint32_t(uniform.offset);
ps->m_predefined[ps->m_numPredefined].m_count = uint16_t(num);
ps->m_predefined[ps->m_numPredefined].m_type = uint8_t(predefined|fragmentBit);
++ps->m_numPredefined;
}
else
{
const UniformRegInfo* info = s_renderMtl->m_uniformReg.find(name);
BX_WARN(NULL != info, "User defined uniform '%s' is not found, it won't be set.", name);
if (NULL != info)
{
if (NULL == constantBuffer)
{
constantBuffer = UniformBuffer::create(1024);
}
UniformType::Enum type = convertMtlType(dataType);
constantBuffer->writeUniformHandle( (UniformType::Enum)(type|fragmentBit), uint32_t(uniform.offset), info->m_handle, uint16_t(num) );
BX_TRACE("store %s %d offset:%d", name, info->m_handle, uint32_t(uniform.offset) );
}
}
}
}
}
else if (arg.type == MTLArgumentTypeBuffer
&& arg.index > 0
&& NULL != arg.bufferStructType)
{
const char* name = utf8String(arg.name);
BX_UNUSED(name);
if (arg.index >= BGFX_CONFIG_MAX_TEXTURE_SAMPLERS)
{
BX_TRACE(
"Binding index is too large %d max is %d. "
"User defined uniform '%s' won't be set."
, int32_t(arg.index - 1)
, BGFX_CONFIG_MAX_TEXTURE_SAMPLERS - 1
, name
);
}
else
{
ps->m_bindingTypes[arg.index-1] = fragmentBit
? PipelineStateMtl::BindToFragmentShader
: PipelineStateMtl::BindToVertexShader
;
BX_TRACE("Buffer %s index: %d", name, int32_t(arg.index-1) );
}
}
else if (arg.type == MTLArgumentTypeTexture)
{
const char* name = utf8String(arg.name);
if (arg.index >= BGFX_CONFIG_MAX_TEXTURE_SAMPLERS)
{
BX_WARN(false, "Binding index is too large %d max is %d. User defined uniform '%s' won't be set.", int(arg.index), BGFX_CONFIG_MAX_TEXTURE_SAMPLERS - 1, name);
}
else
{
ps->m_bindingTypes[arg.index] = fragmentBit ? PipelineStateMtl::BindToFragmentShader : PipelineStateMtl::BindToVertexShader;
const UniformRegInfo* info = s_renderMtl->m_uniformReg.find(name);
if (info)
{
BX_TRACE("texture %s %d index:%d", name, info->m_handle, uint32_t(arg.index) );
}
else
{
BX_TRACE("image %s index:%d", name, uint32_t(arg.index) );
}
}
}
else if (arg.type == MTLArgumentTypeSampler)
{
BX_TRACE("sampler: %s index:%d", utf8String(arg.name), arg.index);
}
}
}
if (NULL != constantBuffer)
{
constantBuffer->finish();
}
}
}
PipelineStateMtl* getPipelineState(
uint64_t _state
, uint32_t _rgba
, FrameBufferHandle _fbh
, uint8_t _numStreams
, const VertexLayout** _layouts
, ProgramHandle _program
, uint8_t _numInstanceData
)
{
_state &= (0
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_BLEND_INDEPENDENT
| BGFX_STATE_MSAA
| BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
);
const bool independentBlendEnable = !!(BGFX_STATE_BLEND_INDEPENDENT & _state);
const ProgramMtl& program = m_program[_program.idx];
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(_state);
murmur.add(independentBlendEnable ? _rgba : 0);
murmur.add(_numInstanceData);
if (!isValid(_fbh) )
{
murmur.add(m_mainFrameBuffer.m_pixelFormatHash);
}
else
{
FrameBufferMtl& frameBuffer = m_frameBuffers[_fbh.idx];
murmur.add(frameBuffer.m_pixelFormatHash);
}
murmur.add(program.m_vsh->m_hash);
if (NULL != program.m_fsh)
{
murmur.add(program.m_fsh->m_hash);
}
for (uint8_t ii = 0; ii < _numStreams; ++ii)
{
murmur.add(_layouts[ii]->m_hash);
}
uint32_t hash = murmur.end();
PipelineStateMtl* pso = m_pipelineStateCache.find(hash);
if (NULL == pso)
{
pso = BX_NEW(g_allocator, PipelineStateMtl);
RenderPipelineDescriptor pd = m_renderPipelineDescriptor;
reset(pd);
pd.alphaToCoverageEnabled = !!(BGFX_STATE_BLEND_ALPHA_TO_COVERAGE & _state);
uint32_t frameBufferAttachment = 1;
if (!isValid(_fbh)
|| s_renderMtl->m_frameBuffers[_fbh.idx].m_swapChain)
{
SwapChainMtl* swapChain = !isValid(_fbh)
? s_renderMtl->m_mainFrameBuffer.m_swapChain
: s_renderMtl->m_frameBuffers[_fbh.idx].m_swapChain
;
pd.sampleCount = NULL != swapChain->m_backBufferColorMsaa
? swapChain->m_backBufferColorMsaa.sampleCount()
: 1
;
pd.colorAttachments[0].pixelFormat = swapChain->currentDrawableTexture().pixelFormat;
pd.depthAttachmentPixelFormat = swapChain->m_backBufferDepth.m_obj.pixelFormat;
pd.stencilAttachmentPixelFormat = swapChain->m_backBufferStencil.m_obj.pixelFormat;
}
else
{
const FrameBufferMtl& frameBuffer = m_frameBuffers[_fbh.idx];
frameBufferAttachment = frameBuffer.m_num;
for (uint32_t ii = 0; ii < frameBuffer.m_num; ++ii)
{
const TextureMtl& texture = m_textures[frameBuffer.m_colorHandle[ii].idx];
pd.sampleCount = NULL != texture.m_ptrMsaa
? texture.m_ptrMsaa.sampleCount()
: 1
;
pd.colorAttachments[ii].pixelFormat = texture.m_ptr.m_obj.pixelFormat;
}
if (isValid(frameBuffer.m_depthHandle) )
{
const TextureMtl& texture = m_textures[frameBuffer.m_depthHandle.idx];
pd.depthAttachmentPixelFormat = texture.m_ptr.m_obj.pixelFormat;
pd.sampleCount = NULL != texture.m_ptrMsaa
? texture.m_ptrMsaa.sampleCount()
: 1
;
if (NULL != texture.m_ptrStencil)
{
pd.stencilAttachmentPixelFormat = texture.m_ptrStencil.m_obj.pixelFormat;
}
else
{
if (texture.m_textureFormat == TextureFormat::D24S8)
{
pd.stencilAttachmentPixelFormat = texture.m_ptr.m_obj.pixelFormat;
}
}
}
}
const uint32_t blend = uint32_t( (_state&BGFX_STATE_BLEND_MASK )>>BGFX_STATE_BLEND_SHIFT);
const uint32_t equation = uint32_t( (_state&BGFX_STATE_BLEND_EQUATION_MASK)>>BGFX_STATE_BLEND_EQUATION_SHIFT);
const uint32_t srcRGB = (blend )&0xf;
const uint32_t dstRGB = (blend>> 4)&0xf;
const uint32_t srcA = (blend>> 8)&0xf;
const uint32_t dstA = (blend>>12)&0xf;
const uint32_t equRGB = (equation )&0x7;
const uint32_t equA = (equation>>3)&0x7;
uint8_t writeMask = 0;
writeMask |= (_state&BGFX_STATE_WRITE_R) ? MTLColorWriteMaskRed : 0;
writeMask |= (_state&BGFX_STATE_WRITE_G) ? MTLColorWriteMaskGreen : 0;
writeMask |= (_state&BGFX_STATE_WRITE_B) ? MTLColorWriteMaskBlue : 0;
writeMask |= (_state&BGFX_STATE_WRITE_A) ? MTLColorWriteMaskAlpha : 0;
for (uint32_t ii = 0; ii < (independentBlendEnable ? 1 : frameBufferAttachment); ++ii)
{
RenderPipelineColorAttachmentDescriptor drt = pd.colorAttachments[ii];
drt.blendingEnabled = !!(BGFX_STATE_BLEND_MASK & _state);
drt.sourceRGBBlendFactor = s_blendFactor[srcRGB][0];
drt.destinationRGBBlendFactor = s_blendFactor[dstRGB][0];
drt.rgbBlendOperation = s_blendEquation[equRGB];
drt.sourceAlphaBlendFactor = s_blendFactor[srcA][1];
drt.destinationAlphaBlendFactor = s_blendFactor[dstA][1];
drt.alphaBlendOperation = s_blendEquation[equA];
drt.writeMask = writeMask;
}
if (independentBlendEnable)
{
for (uint32_t ii = 1, rgba = _rgba; ii < frameBufferAttachment; ++ii, rgba >>= 11)
{
RenderPipelineColorAttachmentDescriptor drt = pd.colorAttachments[ii];
drt.blendingEnabled = 0 != (rgba&0x7ff);
const uint32_t src = (rgba )&0xf;
const uint32_t dst = (rgba>>4)&0xf;
const uint32_t equationIndex = (rgba>>8)&0x7;
drt.sourceRGBBlendFactor = s_blendFactor[src][0];
drt.destinationRGBBlendFactor = s_blendFactor[dst][0];
drt.rgbBlendOperation = s_blendEquation[equationIndex];
drt.sourceAlphaBlendFactor = s_blendFactor[src][1];
drt.destinationAlphaBlendFactor = s_blendFactor[dst][1];
drt.alphaBlendOperation = s_blendEquation[equationIndex];
drt.writeMask = writeMask;
}
}
pd.vertexFunction = program.m_vsh->m_function;
pd.fragmentFunction = program.m_fsh != NULL ? program.m_fsh->m_function : NULL;
VertexDescriptor vertexDesc = m_vertexDescriptor;
reset(vertexDesc);
bool attrSet[Attrib::Count] = {};
uint8_t stream = 0;
for (; stream < _numStreams; ++stream)
{
const VertexLayout& layout = *_layouts[stream];
bool streamUsed = false;
for (uint32_t ii = 0; Attrib::Count != program.m_used[ii]; ++ii)
{
Attrib::Enum attr = Attrib::Enum(program.m_used[ii]);
if (attrSet[attr])
continue;
const uint32_t loc = program.m_attributes[attr];
uint8_t num;
AttribType::Enum type;
bool normalized;
bool asInt;
layout.decode(attr, num, type, normalized, asInt);
BX_ASSERT(num <= 4, "num must be <= 4");
if (UINT16_MAX != layout.m_attributes[attr])
{
vertexDesc.attributes[loc].format = s_attribType[type][num-1][normalized?1:0];
vertexDesc.attributes[loc].bufferIndex = stream+1;
vertexDesc.attributes[loc].offset = layout.m_offset[attr];
BX_TRACE("attrib: %s format: %d offset: %d", s_attribName[attr], (int)vertexDesc.attributes[loc].format, (int)vertexDesc.attributes[loc].offset);
attrSet[attr] = true;
streamUsed = true;
}
}
if (streamUsed) {
vertexDesc.layouts[stream+1].stride = layout.getStride();
vertexDesc.layouts[stream+1].stepFunction = MTLVertexStepFunctionPerVertex;
}
}
for (uint32_t ii = 0; Attrib::Count != program.m_used[ii]; ++ii)
{
Attrib::Enum attr = Attrib::Enum(program.m_used[ii]);
const uint32_t loc = program.m_attributes[attr];
if (!attrSet[attr])
{
vertexDesc.attributes[loc].format = MTLVertexFormatUChar2;
vertexDesc.attributes[loc].bufferIndex = 1;
vertexDesc.attributes[loc].offset = 0;
}
}
if (0 < _numInstanceData)
{
for (uint32_t ii = 0; UINT16_MAX != program.m_instanceData[ii]; ++ii)
{
const uint32_t loc = program.m_instanceData[ii];
vertexDesc.attributes[loc].format = MTLVertexFormatFloat4;
vertexDesc.attributes[loc].bufferIndex = stream+1;
vertexDesc.attributes[loc].offset = ii*16;
}
vertexDesc.layouts[stream+1].stride = _numInstanceData * 16;
vertexDesc.layouts[stream+1].stepFunction = MTLVertexStepFunctionPerInstance;
vertexDesc.layouts[stream+1].stepRate = 1;
}
pd.vertexDescriptor = vertexDesc;
{
RenderPipelineReflection reflection = NULL;
pso->m_rps = m_device.newRenderPipelineStateWithDescriptor(pd, MTLPipelineOptionBufferTypeInfo, &reflection);
if (NULL != reflection)
{
processArguments(pso, reflection.vertexArguments, reflection.fragmentArguments);
}
}
m_pipelineStateCache.add(hash, pso);
m_pipelineProgram.push_back({hash, _program});
}
return pso;
}
PipelineStateMtl* getPipelineState(
uint64_t _state
, uint32_t _rgba
, FrameBufferHandle _fbh
, VertexLayoutHandle _layoutHandle
, ProgramHandle _program
, uint16_t _numInstanceData
)
{
const VertexLayout* layout = &m_vertexLayouts[_layoutHandle.idx];
return getPipelineState(
_state
, _rgba
, _fbh
, 1
, &layout
, _program
, _numInstanceData
);
}
PipelineStateMtl* getComputePipelineState(ProgramHandle _program)
{
ProgramMtl& program = m_program[_program.idx];
if (NULL == program.m_computePS)
{
PipelineStateMtl* pso = BX_NEW(g_allocator, PipelineStateMtl);
program.m_computePS = pso;
ComputePipelineReflection reflection = NULL;
pso->m_cps = m_device.newComputePipelineStateWithFunction(program.m_vsh->m_function, MTLPipelineOptionBufferTypeInfo, &reflection);
processArguments(pso, reflection.arguments, NULL);
for (uint32_t ii = 0; ii < 3; ++ii)
{
pso->m_numThreads[ii] = program.m_vsh->m_numThreads[ii];
}
}
return program.m_computePS;
}
SamplerState getSamplerState(uint32_t _flags)
{
_flags &= BGFX_SAMPLER_BITS_MASK;
SamplerState sampler = m_samplerStateCache.find(_flags);
if (NULL == sampler)
{
m_samplerDescriptor.sAddressMode = s_textureAddress[(_flags&BGFX_SAMPLER_U_MASK)>>BGFX_SAMPLER_U_SHIFT];
m_samplerDescriptor.tAddressMode = s_textureAddress[(_flags&BGFX_SAMPLER_V_MASK)>>BGFX_SAMPLER_V_SHIFT];
m_samplerDescriptor.rAddressMode = s_textureAddress[(_flags&BGFX_SAMPLER_W_MASK)>>BGFX_SAMPLER_W_SHIFT];
m_samplerDescriptor.minFilter = s_textureFilterMinMag[(_flags&BGFX_SAMPLER_MIN_MASK)>>BGFX_SAMPLER_MIN_SHIFT];
m_samplerDescriptor.magFilter = s_textureFilterMinMag[(_flags&BGFX_SAMPLER_MAG_MASK)>>BGFX_SAMPLER_MAG_SHIFT];
m_samplerDescriptor.mipFilter = s_textureFilterMip[(_flags&BGFX_SAMPLER_MIP_MASK)>>BGFX_SAMPLER_MIP_SHIFT];
m_samplerDescriptor.lodMinClamp = 0;
m_samplerDescriptor.lodMaxClamp = FLT_MAX;
m_samplerDescriptor.normalizedCoordinates = TRUE;
m_samplerDescriptor.maxAnisotropy = (0 != (_flags & (BGFX_SAMPLER_MIN_ANISOTROPIC|BGFX_SAMPLER_MAG_ANISOTROPIC) ) ) ? m_mainFrameBuffer.m_swapChain->m_maxAnisotropy : 1;
if (m_macOS11Runtime
|| [m_device supportsFeatureSet:(MTLFeatureSet)4 /*MTLFeatureSet_iOS_GPUFamily3_v1*/])
{
const uint32_t cmpFunc = (_flags&BGFX_SAMPLER_COMPARE_MASK)>>BGFX_SAMPLER_COMPARE_SHIFT;
m_samplerDescriptor.compareFunction = 0 == cmpFunc
? MTLCompareFunctionNever
: s_cmpFunc[cmpFunc]
;
}
sampler = m_device.newSamplerStateWithDescriptor(m_samplerDescriptor);
m_samplerStateCache.add(_flags, sampler);
}
return sampler;
}
bool isVisible(Frame* _render, OcclusionQueryHandle _handle, bool _visible)
{
m_occlusionQuery.resolve(_render);
return _visible == (0 != _render->m_occlusion[_handle.idx]);
}
BlitCommandEncoder getBlitCommandEncoder()
{
if (NULL == m_blitCommandEncoder)
{
endEncoding();
if (NULL == m_commandBuffer)
{
m_commandBuffer = m_cmd.alloc();
}
m_blitCommandEncoder = m_commandBuffer.blitCommandEncoder();
}
return m_blitCommandEncoder;
}
void endEncoding()
{
if (0 != m_renderCommandEncoder)
{
m_renderCommandEncoder.endEncoding();
m_renderCommandEncoder = 0;
}
if (0 != m_computeCommandEncoder)
{
m_computeCommandEncoder.endEncoding();
m_computeCommandEncoder = 0;
}
if (0 != m_blitCommandEncoder)
{
m_blitCommandEncoder.endEncoding();
m_blitCommandEncoder = 0;
}
}
Device m_device;
OcclusionQueryMTL m_occlusionQuery;
TimerQueryMtl m_gpuTimer;
CommandQueueMtl m_cmd;
bool m_iOS9Runtime;
bool m_macOS11Runtime;
bool m_hasPixelFormatDepth32Float_Stencil8;
bool m_hasStoreActionStoreAndMultisampleResolve;
Buffer m_uniformBuffer;
Buffer m_uniformBuffers[BGFX_CONFIG_MAX_FRAME_LATENCY];
uint32_t m_uniformBufferVertexOffset;
uint32_t m_uniformBufferFragmentOffset;
uint8_t m_bufferIndex;
uint16_t m_numWindows;
FrameBufferHandle m_windows[BGFX_CONFIG_MAX_FRAME_BUFFERS];
IndexBufferMtl m_indexBuffers[BGFX_CONFIG_MAX_INDEX_BUFFERS];
VertexBufferMtl m_vertexBuffers[BGFX_CONFIG_MAX_VERTEX_BUFFERS];
ShaderMtl m_shaders[BGFX_CONFIG_MAX_SHADERS];
ProgramMtl m_program[BGFX_CONFIG_MAX_PROGRAMS];
TextureMtl m_textures[BGFX_CONFIG_MAX_TEXTURES];
FrameBufferMtl m_mainFrameBuffer;
FrameBufferMtl m_frameBuffers[BGFX_CONFIG_MAX_FRAME_BUFFERS];
VertexLayout m_vertexLayouts[BGFX_CONFIG_MAX_VERTEX_LAYOUTS];
UniformRegistry m_uniformReg;
void* m_uniforms[BGFX_CONFIG_MAX_UNIFORMS];
struct PipelineProgram
{
uint64_t key;
ProgramHandle program;
};
typedef stl::vector<PipelineProgram> PipelineProgramArray;
PipelineProgramArray m_pipelineProgram;
StateCacheT<PipelineStateMtl*> m_pipelineStateCache;
StateCacheT<DepthStencilState> m_depthStencilStateCache;
StateCacheT<SamplerState> m_samplerStateCache;
TextVideoMem m_textVideoMem;
FrameBufferHandle m_fbh;
bool m_rtMsaa;
Resolution m_resolution;
void* m_capture;
uint32_t m_captureSize;
// descriptors
RenderPipelineDescriptor m_renderPipelineDescriptor;
DepthStencilDescriptor m_depthStencilDescriptor;
StencilDescriptor m_frontFaceStencilDescriptor;
StencilDescriptor m_backFaceStencilDescriptor;
VertexDescriptor m_vertexDescriptor;
TextureDescriptor m_textureDescriptor;
SamplerDescriptor m_samplerDescriptor;
// currently active objects data
Texture m_screenshotTarget;
ShaderMtl m_screenshotBlitProgramVsh;
ShaderMtl m_screenshotBlitProgramFsh;
ProgramMtl m_screenshotBlitProgram;
RenderPipelineState m_screenshotBlitRenderPipelineState;
CommandBuffer m_commandBuffer;
BlitCommandEncoder m_blitCommandEncoder;
RenderCommandEncoder m_renderCommandEncoder;
ComputeCommandEncoder m_computeCommandEncoder;
FrameBufferHandle m_renderCommandEncoderFrameBufferHandle;
};
RendererContextI* rendererCreate(const Init& _init)
{
s_renderMtl = BX_NEW(g_allocator, RendererContextMtl);
if (!s_renderMtl->init(_init) )
{
BX_DELETE(g_allocator, s_renderMtl);
s_renderMtl = NULL;
}
return s_renderMtl;
}
void rendererDestroy()
{
s_renderMtl->shutdown();
BX_DELETE(g_allocator, s_renderMtl);
s_renderMtl = NULL;
}
void writeString(bx::WriterI* _writer, const char* _str)
{
bx::write(_writer, _str, (int32_t)bx::strLen(_str), bx::ErrorAssert{});
}
void ShaderMtl::create(const Memory* _mem)
{
bx::MemoryReader reader(_mem->data, _mem->size);
bx::ErrorAssert err;
uint32_t magic;
bx::read(&reader, magic, &err);
uint32_t hashIn;
bx::read(&reader, hashIn, &err);
uint32_t hashOut;
if (isShaderVerLess(magic, 6) )
{
hashOut = hashIn;
}
else
{
bx::read(&reader, hashOut, &err);
}
uint16_t count;
bx::read(&reader, count, &err);
BX_TRACE("%s Shader consts %d"
, getShaderTypeName(magic)
, count
);
for (uint32_t ii = 0; ii < count; ++ii)
{
uint8_t nameSize;
bx::read(&reader, nameSize, &err);
char name[256];
bx::read(&reader, &name, nameSize, &err);
name[nameSize] = '\0';
uint8_t type;
bx::read(&reader, type, &err);
uint8_t num;
bx::read(&reader, num, &err);
uint16_t regIndex;
bx::read(&reader, regIndex, &err);
uint16_t regCount;
bx::read(&reader, regCount, &err);
if (!isShaderVerLess(magic, 8) )
{
uint16_t texInfo = 0;
bx::read(&reader, texInfo, &err);
}
if (!isShaderVerLess(magic, 10) )
{
uint16_t texFormat = 0;
bx::read(&reader, texFormat, &err);
}
}
if (isShaderType(magic, 'C') )
{
for (uint32_t ii = 0; ii < 3; ++ii)
{
bx::read(&reader, m_numThreads[ii], &err);
}
}
uint32_t shaderSize;
bx::read(&reader, shaderSize, &err);
const char* code = (const char*)reader.getDataPtr();
bx::skip(&reader, shaderSize+1);
Library lib = s_renderMtl->m_device.newLibraryWithSource(code);
if (NULL != lib)
{
m_function = lib.newFunctionWithName(SHADER_FUNCTION_NAME);
release(lib);
}
BGFX_FATAL(NULL != m_function
, bgfx::Fatal::InvalidShader
, "Failed to create %s shader."
, getShaderTypeName(magic)
);
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(hashIn);
murmur.add(hashOut);
murmur.add(code, shaderSize);
// murmur.add(numAttrs);
// murmur.add(m_attrMask, numAttrs);
m_hash = murmur.end();
}
void ProgramMtl::create(const ShaderMtl* _vsh, const ShaderMtl* _fsh)
{
BX_ASSERT(NULL != _vsh->m_function.m_obj, "Vertex shader doesn't exist.");
m_vsh = _vsh;
m_fsh = _fsh;
// get attributes
bx::memSet(m_attributes, 0xff, sizeof(m_attributes) );
uint32_t used = 0;
uint32_t instUsed = 0;
if (NULL != _vsh->m_function.m_obj)
{
for (MTLVertexAttribute* attrib in _vsh->m_function.m_obj.vertexAttributes)
{
if (attrib.active)
{
const char* name = utf8String(attrib.name);
uint32_t loc = (uint32_t)attrib.attributeIndex;
BX_TRACE("attr %s: %d", name, loc);
for (uint8_t ii = 0; ii < Attrib::Count; ++ii)
{
if (0 == bx::strCmp(s_attribName[ii],name) )
{
m_attributes[ii] = loc;
m_used[used++] = ii;
break;
}
}
for (uint32_t ii = 0; ii < BX_COUNTOF(s_instanceDataName); ++ii)
{
if (0 == bx::strCmp(s_instanceDataName[ii],name) )
{
m_instanceData[instUsed++] = loc;
}
}
}
}
}
m_used[used] = Attrib::Count;
m_instanceData[instUsed] = UINT16_MAX;
}
void ProgramMtl::destroy()
{
m_vsh = NULL;
m_fsh = NULL;
if (NULL != m_computePS)
{
BX_DELETE(g_allocator, m_computePS);
m_computePS = NULL;
}
}
void BufferMtl::create(uint32_t _size, void* _data, uint16_t _flags, uint16_t _stride, bool _vertex)
{
BX_UNUSED(_stride);
m_size = _size;
m_flags = _flags;
m_vertex = _vertex;
if (NULL == _data)
{
m_ptr = s_renderMtl->m_device.newBufferWithLength(_size, 0);
}
else
{
m_ptr = s_renderMtl->m_device.newBufferWithBytes(_data, _size, 0);
}
}
void BufferMtl::update(uint32_t _offset, uint32_t _size, void* _data, bool _discard)
{
BlitCommandEncoder bce = s_renderMtl->getBlitCommandEncoder();
if (!m_vertex
&& !_discard)
{
if (NULL == m_dynamic)
{
m_dynamic = (uint8_t*)BX_ALLOC(g_allocator, m_size);
}
bx::memCopy(m_dynamic + _offset, _data, _size);
uint32_t start = _offset & 4;
uint32_t end = bx::strideAlign(_offset + _size, 4);
Buffer temp = s_renderMtl->m_device.newBufferWithBytes(m_dynamic, end - start, 0);
bce.copyFromBuffer(temp, 0, m_ptr, start, end - start);
s_renderMtl->m_cmd.release(temp);
}
else
{
Buffer temp = s_renderMtl->m_device.newBufferWithBytes(_data, _size, 0);
bce.copyFromBuffer(temp, 0, m_ptr, _offset, _size);
s_renderMtl->m_cmd.release(temp);
}
}
void VertexBufferMtl::create(uint32_t _size, void* _data, VertexLayoutHandle _layoutHandle, uint16_t _flags)
{
m_layoutHandle = _layoutHandle;
uint16_t stride = isValid(_layoutHandle)
? s_renderMtl->m_vertexLayouts[_layoutHandle.idx].m_stride
: 0
;
BufferMtl::create(_size, _data, _flags, stride, true);
}
void TextureMtl::create(const Memory* _mem, uint64_t _flags, uint8_t _skip)
{
m_sampler = s_renderMtl->getSamplerState(uint32_t(_flags) );
bimg::ImageContainer imageContainer;
if (bimg::imageParse(imageContainer, _mem->data, _mem->size) )
{
const bimg::ImageBlockInfo& blockInfo = getBlockInfo(bimg::TextureFormat::Enum(imageContainer.m_format) );
const uint8_t startLod = bx::min<uint8_t>(_skip, imageContainer.m_numMips-1);
bimg::TextureInfo ti;
bimg::imageGetSize(
&ti
, uint16_t(imageContainer.m_width >>startLod)
, uint16_t(imageContainer.m_height>>startLod)
, uint16_t(imageContainer.m_depth >>startLod)
, imageContainer.m_cubeMap
, 1 < imageContainer.m_numMips
, imageContainer.m_numLayers
, imageContainer.m_format
);
ti.numMips = bx::min<uint8_t>(imageContainer.m_numMips-startLod, ti.numMips);
m_flags = _flags;
m_width = ti.width;
m_height = ti.height;
m_depth = ti.depth;
m_requestedFormat = uint8_t(imageContainer.m_format);
m_textureFormat = uint8_t(getViableTextureFormat(imageContainer) );
const bool convert = m_textureFormat != m_requestedFormat;
const uint8_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
TextureDescriptor desc = s_renderMtl->m_textureDescriptor;
if (1 < ti.numLayers)
{
if (imageContainer.m_cubeMap)
{
desc.textureType = MTLTextureType(6); // MTLTextureTypeCubeArray
m_type = TextureCube;
}
else
{
desc.textureType = MTLTextureType2DArray;
m_type = Texture2D;
}
}
else if (imageContainer.m_cubeMap)
{
desc.textureType = MTLTextureTypeCube;
m_type = TextureCube;
}
else if (1 < imageContainer.m_depth)
{
desc.textureType = MTLTextureType3D;
m_type = Texture3D;
}
else
{
desc.textureType = MTLTextureType2D;
m_type = Texture2D;
}
m_numMips = ti.numMips;
const uint16_t numSides = ti.numLayers * (imageContainer.m_cubeMap ? 6 : 1);
const bool compressed = bimg::isCompressed(bimg::TextureFormat::Enum(m_textureFormat) );
const bool writeOnly = 0 != (_flags&BGFX_TEXTURE_RT_WRITE_ONLY);
const bool computeWrite = 0 != (_flags&BGFX_TEXTURE_COMPUTE_WRITE);
const bool renderTarget = 0 != (_flags&BGFX_TEXTURE_RT_MASK);
const bool srgb = 0 != (_flags&BGFX_TEXTURE_SRGB);
BX_TRACE("Texture %3d: %s (requested: %s), layers %d, %dx%d%s RT[%c], WO[%c], CW[%c], sRGB[%c]"
, this - s_renderMtl->m_textures
, getName( (TextureFormat::Enum)m_textureFormat)
, getName( (TextureFormat::Enum)m_requestedFormat)
, ti.numLayers
, ti.width
, ti.height
, imageContainer.m_cubeMap ? "x6" : ""
, renderTarget ? 'x' : ' '
, writeOnly ? 'x' : ' '
, computeWrite ? 'x' : ' '
, srgb ? 'x' : ' '
);
const uint32_t msaaQuality = bx::uint32_satsub( (_flags&BGFX_TEXTURE_RT_MSAA_MASK)>>BGFX_TEXTURE_RT_MSAA_SHIFT, 1);
const int32_t sampleCount = s_msaa[msaaQuality];
const TextureFormatInfo& tfi = s_textureFormat[m_textureFormat];
MTLPixelFormat format = MTLPixelFormatInvalid;
if (srgb)
{
format = tfi.m_fmtSrgb;
BX_WARN(format != MTLPixelFormatInvalid
, "sRGB not supported for texture format %d"
, m_textureFormat
);
}
if (format == MTLPixelFormatInvalid)
{
// not swizzled and not sRGB, or sRGB unsupported
format = tfi.m_fmt;
}
desc.pixelFormat = format;
desc.width = ti.width;
desc.height = ti.height;
desc.depth = bx::uint32_max(1,imageContainer.m_depth);
desc.mipmapLevelCount = ti.numMips;
desc.sampleCount = 1;
desc.arrayLength = ti.numLayers;
desc.swizzle = tfi.m_mapping;
if (s_renderMtl->m_iOS9Runtime
|| s_renderMtl->m_macOS11Runtime)
{
desc.cpuCacheMode = MTLCPUCacheModeDefaultCache;
desc.storageMode = (MTLStorageMode)(false
|| writeOnly
|| bimg::isDepth(bimg::TextureFormat::Enum(m_textureFormat) )
? 2 /* MTLStorageModePrivate */
: (BX_ENABLED(BX_PLATFORM_IOS)
? 0 /* MTLStorageModeShared */
: 1 /* MTLStorageModeManaged */
) );
desc.usage = MTLTextureUsageShaderRead;
if (computeWrite)
{
desc.usage |= MTLTextureUsageShaderWrite;
}
if (renderTarget)
{
desc.usage |= MTLTextureUsageRenderTarget;
}
}
m_ptr = s_renderMtl->m_device.newTextureWithDescriptor(desc);
if (sampleCount > 1)
{
desc.textureType = MTLTextureType2DMultisample;
desc.sampleCount = sampleCount;
if (s_renderMtl->m_iOS9Runtime
|| s_renderMtl->m_macOS11Runtime)
{
desc.storageMode = (MTLStorageMode)(2 /* MTLStorageModePrivate */);
}
m_ptrMsaa = s_renderMtl->m_device.newTextureWithDescriptor(desc);
}
if (m_requestedFormat == TextureFormat::D24S8
&& desc.pixelFormat == MTLPixelFormatDepth32Float)
{
desc.pixelFormat = MTLPixelFormatStencil8;
m_ptrStencil = s_renderMtl->m_device.newTextureWithDescriptor(desc);
}
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, ti.width*ti.height*4);
}
for (uint16_t side = 0; side < numSides; ++side)
{
uint32_t width = ti.width;
uint32_t height = ti.height;
uint32_t depth = ti.depth;
for (uint8_t lod = 0, num = ti.numMips; lod < num; ++lod)
{
width = bx::max(1u, width);
height = bx::max(1u, height);
depth = bx::max(1u, depth);
bimg::ImageMip mip;
if (bimg::imageGetRawData(imageContainer, side, lod+startLod, _mem->data, _mem->size, mip) )
{
const uint8_t* data = mip.m_data;
if (convert)
{
bimg::imageDecodeToBgra8(
g_allocator
, temp
, mip.m_data
, mip.m_width
, mip.m_height
, mip.m_width*4
, mip.m_format
);
data = temp;
}
MTLRegion region = { { 0, 0, 0 }, { width, height, depth } };
uint32_t bytesPerRow = 0;
uint32_t bytesPerImage = 0;
if (compressed && !convert)
{
if (format >= 160 /*PVRTC_RGB_2BPP*/
&& format <= 167 /*PVRTC_RGBA_4BPP_sRGB*/)
{
bytesPerRow = 0;
bytesPerImage = 0;
}
else
{
bytesPerRow = (mip.m_width / blockInfo.blockWidth)*mip.m_blockSize;
bytesPerImage = desc.textureType == MTLTextureType3D
? (mip.m_height/blockInfo.blockHeight)*bytesPerRow
: 0
;
}
}
else
{
bytesPerRow = width * bpp / 8;
bytesPerImage = desc.textureType == MTLTextureType3D
? bytesPerRow * height
: 0
;
}
m_ptr.replaceRegion(region, lod, side, data, bytesPerRow, bytesPerImage);
}
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
}
void TextureMtl::update(uint8_t _side, uint8_t _mip, const Rect& _rect, uint16_t _z, uint16_t _depth, uint16_t _pitch, const Memory* _mem)
{
const uint32_t bpp = bimg::getBitsPerPixel(bimg::TextureFormat::Enum(m_textureFormat) );
uint32_t rectpitch = _rect.m_width*bpp/8;
if (bimg::isCompressed(bimg::TextureFormat::Enum(m_textureFormat) ) )
{
if (m_ptr.pixelFormat() >= 160 /*PVRTC_RGB_2BPP*/
&& m_ptr.pixelFormat() <= 167 /*PVRTC_RGBA_4BPP_sRGB*/)
{
rectpitch = 0;
}
else
{
const bimg::ImageBlockInfo& blockInfo = bimg::getBlockInfo(bimg::TextureFormat::Enum(m_textureFormat) );
rectpitch = (_rect.m_width / blockInfo.blockWidth)*blockInfo.blockSize;
}
}
const uint32_t srcpitch = UINT16_MAX == _pitch ? rectpitch : _pitch;
const uint32_t slice = ( (m_type == Texture3D) ? 0 : _side + _z * (m_type == TextureCube ? 6 : 1) );
const uint16_t zz = (m_type == Texture3D) ? _z : 0 ;
const bool convert = m_textureFormat != m_requestedFormat;
uint8_t* data = _mem->data;
uint8_t* temp = NULL;
if (convert)
{
temp = (uint8_t*)BX_ALLOC(g_allocator, rectpitch*_rect.m_height);
bimg::imageDecodeToBgra8(
g_allocator
, temp
, data
, _rect.m_width
, _rect.m_height
, srcpitch
, bimg::TextureFormat::Enum(m_requestedFormat)
);
data = temp;
}
if (NULL != s_renderMtl->m_renderCommandEncoder)
{
s_renderMtl->m_cmd.finish(true);
MTLRegion region =
{
{ _rect.m_x, _rect.m_y, zz },
{ _rect.m_width, _rect.m_height, _depth },
};
m_ptr.replaceRegion(region, _mip, slice, data, srcpitch, srcpitch * _rect.m_height);
}
else
{
BlitCommandEncoder bce = s_renderMtl->getBlitCommandEncoder();
TextureDescriptor desc = s_renderMtl->m_textureDescriptor;
desc.textureType = _depth > 1 ? MTLTextureType3D : MTLTextureType2D;
desc.pixelFormat = m_ptr.pixelFormat();
desc.width = _rect.m_width;
desc.height = _rect.m_height;
desc.depth = _depth;
desc.mipmapLevelCount = 1;
desc.sampleCount = 1;
desc.arrayLength = 1;
if (s_renderMtl->m_iOS9Runtime
|| s_renderMtl->m_macOS11Runtime)
{
desc.cpuCacheMode = MTLCPUCacheModeDefaultCache;
desc.storageMode = BX_ENABLED(BX_PLATFORM_IOS)
? (MTLStorageMode)0 // MTLStorageModeShared
: (MTLStorageMode)1 // MTLStorageModeManaged
;
desc.usage = 0;
}
Texture tempTexture = s_renderMtl->m_device.newTextureWithDescriptor(desc);
MTLRegion region =
{
{ 0, 0, 0 },
{ _rect.m_width, _rect.m_height, _depth },
};
tempTexture.replaceRegion(region, 0, 0, data, srcpitch, srcpitch * _rect.m_height);
bce.copyFromTexture(tempTexture, 0, 0, MTLOriginMake(0,0,0), MTLSizeMake(_rect.m_width, _rect.m_height, _depth),
m_ptr, slice, _mip, MTLOriginMake(_rect.m_x, _rect.m_y, zz) );
release(tempTexture);
}
if (NULL != temp)
{
BX_FREE(g_allocator, temp);
}
}
void TextureMtl::commit(uint8_t _stage, bool _vertex, bool _fragment, uint32_t _flags, uint8_t _mip)
{
if (_vertex)
{
Texture p = _mip != UINT8_MAX ? getTextureMipLevel(_mip) : m_ptr;
s_renderMtl->m_renderCommandEncoder.setVertexTexture(p, _stage);
s_renderMtl->m_renderCommandEncoder.setVertexSamplerState(
0 == (BGFX_SAMPLER_INTERNAL_DEFAULT & _flags)
? s_renderMtl->getSamplerState(_flags)
: m_sampler
, _stage
);
}
if (_fragment)
{
Texture p = _mip != UINT8_MAX ? getTextureMipLevel(_mip) : m_ptr;
s_renderMtl->m_renderCommandEncoder.setFragmentTexture(p, _stage);
s_renderMtl->m_renderCommandEncoder.setFragmentSamplerState(
0 == (BGFX_SAMPLER_INTERNAL_DEFAULT & _flags)
? s_renderMtl->getSamplerState(_flags)
: m_sampler
, _stage
);
}
}
Texture TextureMtl::getTextureMipLevel(int _mip)
{
if (_mip >= 0
&& _mip < m_numMips
&& NULL != m_ptr)
{
if (NULL == m_ptrMips[_mip])
{
if (TextureCube == m_type)
{
m_ptrMips[_mip] = m_ptr.newTextureViewWithPixelFormat(
m_ptr.pixelFormat()
, MTLTextureType2DArray
, NSMakeRange(_mip,1)
, NSMakeRange(0,m_ptr.arrayLength() * 6)
);
}
else
{
m_ptrMips[_mip] = m_ptr.newTextureViewWithPixelFormat(
m_ptr.pixelFormat()
, m_ptr.textureType()
, NSMakeRange(_mip,1)
, NSMakeRange(0,m_ptr.arrayLength() )
);
}
}
return m_ptrMips[_mip];
}
return 0;
}
SwapChainMtl::~SwapChainMtl()
{
MTL_RELEASE(m_metalLayer);
MTL_RELEASE(m_drawable);
MTL_RELEASE(m_drawableTexture);
MTL_RELEASE(m_backBufferDepth);
MTL_RELEASE(m_backBufferStencil);
if (NULL != m_backBufferColorMsaa)
{
MTL_RELEASE(m_backBufferColorMsaa);
}
}
void SwapChainMtl::init(void* _nwh)
{
if (m_metalLayer)
{
release(m_metalLayer);
}
if (NULL != NSClassFromString(@"MTKView") )
{
MTKView *view = (MTKView *)_nwh;
if (NULL != view && [view isKindOfClass:NSClassFromString(@"MTKView")])
{
m_metalLayer = (CAMetalLayer *)view.layer;
}
}
if (NULL != NSClassFromString(@"CAMetalLayer") )
{
if (NULL == m_metalLayer)
#if BX_PLATFORM_IOS
{
CAMetalLayer* metalLayer = (CAMetalLayer*)_nwh;
if (NULL == metalLayer
|| ![metalLayer isKindOfClass:NSClassFromString(@"CAMetalLayer")])
{
BX_WARN(false, "Unable to create Metal device. Please set platform data window to a CAMetalLayer");
return;
}
m_metalLayer = metalLayer;
}
#elif BX_PLATFORM_OSX
{
NSObject* nvh = (NSObject*)_nwh;
if ([nvh isKindOfClass:[CAMetalLayer class]])
{
CAMetalLayer* metalLayer = (CAMetalLayer*)_nwh;
m_metalLayer = metalLayer;
}
else
{
NSView *contentView;
if ([nvh isKindOfClass:[NSView class]])
{
contentView = (NSView*)nvh;
}
else if ([nvh isKindOfClass:[NSWindow class]])
{
NSWindow* nsWindow = (NSWindow*)nvh;
contentView = [nsWindow contentView];
}
else
{
BX_WARN(0, "Unable to create Metal device. Please set platform data window to an NSWindow, NSView, or CAMetalLayer");
return;
}
void (^setLayer)(void) = ^{
CALayer* layer = contentView.layer;
if(NULL != layer && [layer isKindOfClass:NSClassFromString(@"CAMetalLayer")])
{
m_metalLayer = (CAMetalLayer*)layer;
}
else
{
[contentView setWantsLayer:YES];
m_metalLayer = [CAMetalLayer layer];
[contentView setLayer:m_metalLayer];
}
};
if ([NSThread isMainThread])
{
setLayer();
}
else
{
bx::Semaphore semaphore;
bx::Semaphore* psemaphore = &semaphore;
CFRunLoopPerformBlock([[NSRunLoop mainRunLoop] getCFRunLoop],
kCFRunLoopCommonModes,
^{
setLayer();
psemaphore->post();
});
semaphore.wait();
}
}
}
#endif // BX_PLATFORM_*
}
if (NULL == m_metalLayer)
{
BX_WARN(NULL != s_renderMtl->m_device, "Unable to create Metal device.");
return;
}
m_metalLayer.device = s_renderMtl->m_device;
m_metalLayer.pixelFormat = MTLPixelFormatBGRA8Unorm;
m_metalLayer.magnificationFilter = kCAFilterNearest;
m_nwh = _nwh;
retain(m_metalLayer);
}
void SwapChainMtl::resize(FrameBufferMtl &_frameBuffer, uint32_t _width, uint32_t _height, uint32_t _flags, uint32_t _maximumDrawableCount)
{
const int32_t sampleCount = s_msaa[(_flags&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT];
#if BX_PLATFORM_OSX
#if __MAC_OS_X_VERSION_MAX_ALLOWED >= 101300
if (@available(macOS 10.13, *) )
{
m_metalLayer.displaySyncEnabled = 0 != (_flags&BGFX_RESET_VSYNC);
}
if (@available(macOS 10.13.2, *) )
{
m_metalLayer.maximumDrawableCount = bx::clamp<uint32_t>(_maximumDrawableCount != 0 ? _maximumDrawableCount : BGFX_CONFIG_MAX_FRAME_LATENCY, 2, 3);
}
#endif // __MAC_OS_X_VERSION_MAX_ALLOWED >= 101300
#endif // BX_PLATFORM_OSX
m_metalLayer.drawableSize = CGSizeMake(_width, _height);
m_metalLayer.pixelFormat = (_flags & BGFX_RESET_SRGB_BACKBUFFER)
? MTLPixelFormatBGRA8Unorm_sRGB
: MTLPixelFormatBGRA8Unorm
;
TextureDescriptor desc = s_renderMtl->m_textureDescriptor;
desc.textureType = sampleCount > 1 ? MTLTextureType2DMultisample : MTLTextureType2D;
if (s_renderMtl->m_hasPixelFormatDepth32Float_Stencil8)
{
desc.pixelFormat = MTLPixelFormatDepth32Float_Stencil8;
}
else
{
desc.pixelFormat = MTLPixelFormatDepth32Float;
}
desc.width = _width;
desc.height = _height;
desc.depth = 1;
desc.mipmapLevelCount = 1;
desc.sampleCount = sampleCount;
desc.arrayLength = 1;
if (s_renderMtl->m_iOS9Runtime
|| s_renderMtl->m_macOS11Runtime)
{
desc.cpuCacheMode = MTLCPUCacheModeDefaultCache;
desc.storageMode = MTLStorageModePrivate;
desc.usage = MTLTextureUsageRenderTarget;
}
if (NULL != m_backBufferDepth)
{
release(m_backBufferDepth);
}
m_backBufferDepth = s_renderMtl->m_device.newTextureWithDescriptor(desc);
if (NULL != m_backBufferStencil)
{
release(m_backBufferStencil);
}
if (s_renderMtl->m_hasPixelFormatDepth32Float_Stencil8)
{
m_backBufferStencil = m_backBufferDepth;
retain(m_backBufferStencil);
}
else
{
desc.pixelFormat = MTLPixelFormatStencil8;
m_backBufferStencil = s_renderMtl->m_device.newTextureWithDescriptor(desc);
}
if (sampleCount > 1)
{
if (NULL != m_backBufferColorMsaa)
{
release(m_backBufferColorMsaa);
}
desc.pixelFormat = m_metalLayer.pixelFormat;
m_backBufferColorMsaa = s_renderMtl->m_device.newTextureWithDescriptor(desc);
}
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(1);
murmur.add( (uint32_t)m_metalLayer.pixelFormat);
murmur.add( (uint32_t)m_backBufferDepth.pixelFormat() );
murmur.add( (uint32_t)m_backBufferStencil.pixelFormat() );
murmur.add( (uint32_t)sampleCount);
_frameBuffer.m_pixelFormatHash = murmur.end();
}
id <MTLTexture> SwapChainMtl::currentDrawableTexture()
{
if (NULL == m_drawableTexture)
{
m_drawable = m_metalLayer.nextDrawable;
if (m_drawable != NULL)
{
m_drawableTexture = m_drawable.texture;
retain(m_drawableTexture);
retain(m_drawable); // keep alive to be useable at 'flip'
}
else
{
TextureDescriptor desc = s_renderMtl->m_textureDescriptor;
desc.textureType = MTLTextureType2D;
desc.pixelFormat = m_metalLayer.pixelFormat;
desc.width = m_metalLayer.drawableSize.width;
desc.height = m_metalLayer.drawableSize.height;
desc.depth = 1;
desc.mipmapLevelCount = 1;
desc.sampleCount = 1;
desc.arrayLength = 1;
if (s_renderMtl->m_iOS9Runtime
|| s_renderMtl->m_macOS11Runtime)
{
desc.cpuCacheMode = MTLCPUCacheModeDefaultCache;
desc.storageMode = BX_ENABLED(BX_PLATFORM_IOS)
? (MTLStorageMode)0 // MTLStorageModeShared
: (MTLStorageMode)1 // MTLStorageModeManaged
;
desc.usage = MTLTextureUsageRenderTarget;
}
m_drawableTexture = s_renderMtl->m_device.newTextureWithDescriptor(desc);
}
}
return m_drawableTexture;
}
void FrameBufferMtl::create(uint8_t _num, const Attachment* _attachment)
{
m_swapChain = NULL;
m_denseIdx = UINT16_MAX;
m_num = 0;
m_width = 0;
m_height = 0;
for (uint32_t ii = 0; ii < _num; ++ii)
{
const Attachment& at = _attachment[ii];
TextureHandle handle = at.handle;
if (isValid(handle) )
{
const TextureMtl& texture = s_renderMtl->m_textures[handle.idx];
if (0 == m_width)
{
m_width = texture.m_width;
m_height = texture.m_height;
}
if (bimg::isDepth(bimg::TextureFormat::Enum(texture.m_textureFormat) ) )
{
m_depthHandle = handle;
m_depthAttachment = at;
}
else
{
m_colorHandle[m_num] = handle;
m_colorAttachment[m_num] = at;
m_num++;
}
}
}
bx::HashMurmur2A murmur;
murmur.begin();
murmur.add(m_num);
for (uint32_t ii = 0; ii < m_num; ++ii)
{
const TextureMtl& texture = s_renderMtl->m_textures[m_colorHandle[ii].idx];
murmur.add(uint32_t(texture.m_ptr.pixelFormat() ) );
}
if (!isValid(m_depthHandle) )
{
murmur.add(uint32_t(MTLPixelFormatInvalid) );
murmur.add(uint32_t(MTLPixelFormatInvalid) );
}
else
{
const TextureMtl& depthTexture = s_renderMtl->m_textures[m_depthHandle.idx];
murmur.add(uint32_t(depthTexture.m_ptr.pixelFormat() ) );
murmur.add(NULL != depthTexture.m_ptrStencil
? uint32_t(depthTexture.m_ptrStencil.pixelFormat() )
: uint32_t(MTLPixelFormatInvalid)
);
}
murmur.add(1); // SampleCount
m_pixelFormatHash = murmur.end();
}
void FrameBufferMtl::create(uint16_t _denseIdx, void* _nwh, uint32_t _width, uint32_t _height, TextureFormat::Enum _format, TextureFormat::Enum _depthFormat)
{
BX_UNUSED(_format, _depthFormat);
m_swapChain = BX_NEW(g_allocator, SwapChainMtl);
m_num = 0;
m_width = _width;
m_height = _height;
m_nwh = _nwh;
m_denseIdx = _denseIdx;
m_swapChain->init(_nwh);
}
void FrameBufferMtl::postReset()
{
}
uint16_t FrameBufferMtl::destroy()
{
if (NULL != m_swapChain)
{
BX_DELETE(g_allocator, m_swapChain);
m_swapChain = NULL;
}
m_num = 0;
m_nwh = NULL;
m_depthHandle.idx = kInvalidHandle;
uint16_t denseIdx = m_denseIdx;
m_denseIdx = UINT16_MAX;
return denseIdx;
}
void FrameBufferMtl::resolve()
{
BlitCommandEncoder bce = s_renderMtl->getBlitCommandEncoder();
for (uint32_t ii = 0; ii < m_num; ++ii)
{
if (0 != (m_colorAttachment[ii].resolve & BGFX_RESOLVE_AUTO_GEN_MIPS))
{
const TextureMtl& texture = s_renderMtl->m_textures[m_colorHandle[ii].idx];
const bool isRenderTarget = (texture.m_flags & BGFX_TEXTURE_RT_MASK);
const bool fmtSupport = 0 != (g_caps.formats[texture.m_textureFormat] & BGFX_CAPS_FORMAT_TEXTURE_MIP_AUTOGEN);
if (isRenderTarget
&& fmtSupport
&& texture.m_numMips > 1)
{
bce.generateMipmapsForTexture(texture.m_ptr);
}
}
}
s_renderMtl->endEncoding();
}
void CommandQueueMtl::init(Device _device)
{
m_commandQueue = _device.newCommandQueue();
m_framesSemaphore.post(BGFX_CONFIG_MAX_FRAME_LATENCY);
}
void CommandQueueMtl::shutdown()
{
finish(true);
MTL_RELEASE(m_commandQueue);
}
CommandBuffer CommandQueueMtl::alloc()
{
m_activeCommandBuffer = m_commandQueue.commandBuffer();
retain(m_activeCommandBuffer);
return m_activeCommandBuffer;
}
inline void commandBufferFinishedCallback(void* _data)
{
CommandQueueMtl* queue = (CommandQueueMtl*)_data;
if (queue)
{
queue->m_framesSemaphore.post();
}
}
void CommandQueueMtl::kick(bool _endFrame, bool _waitForFinish)
{
if (m_activeCommandBuffer)
{
if (_endFrame)
{
m_releaseWriteIndex = (m_releaseWriteIndex + 1) % BGFX_CONFIG_MAX_FRAME_LATENCY;
m_activeCommandBuffer.addCompletedHandler(commandBufferFinishedCallback, this);
}
m_activeCommandBuffer.commit();
if (_waitForFinish)
{
m_activeCommandBuffer.waitUntilCompleted();
}
MTL_RELEASE(m_activeCommandBuffer);
}
}
void CommandQueueMtl::finish(bool _finishAll)
{
if (_finishAll)
{
uint32_t count = m_activeCommandBuffer != NULL
? 2
: 3
;
for (uint32_t ii = 0; ii < count; ++ii)
{
consume();
}
m_framesSemaphore.post(count);
}
else
{
consume();
}
}
void CommandQueueMtl::release(NSObject* _ptr)
{
m_release[m_releaseWriteIndex].push_back(_ptr);
}
void CommandQueueMtl::consume()
{
m_framesSemaphore.wait();
m_releaseReadIndex = (m_releaseReadIndex + 1) % BGFX_CONFIG_MAX_FRAME_LATENCY;
ResourceArray& ra = m_release[m_releaseReadIndex];
for (ResourceArray::iterator it = ra.begin(), itEnd = ra.end(); it != itEnd; ++it)
{
bgfx::mtl::release(*it);
}
ra.clear();
}
void TimerQueryMtl::init()
{
m_frequency = bx::getHPFrequency();
}
void TimerQueryMtl::shutdown()
{
}
uint32_t TimerQueryMtl::begin(uint32_t _resultIdx, uint32_t _frameNum)
{
BX_UNUSED(_resultIdx);
BX_UNUSED(_frameNum);
return 0;
}
void TimerQueryMtl::end(uint32_t _idx)
{
BX_UNUSED(_idx);
}
static void setTimestamp(void* _data)
{
*( (int64_t*)_data) = bx::getHPCounter();
}
void TimerQueryMtl::addHandlers(CommandBuffer& _commandBuffer)
{
while (0 == m_control.reserve(1) )
{
m_control.consume(1);
}
uint32_t offset = m_control.m_current;
_commandBuffer.addScheduledHandler(setTimestamp, &m_result[offset].m_begin);
_commandBuffer.addCompletedHandler(setTimestamp, &m_result[offset].m_end);
m_control.commit(1);
}
bool TimerQueryMtl::get()
{
if (0 != m_control.available() )
{
uint32_t offset = m_control.m_read;
m_begin = m_result[offset].m_begin;
m_end = m_result[offset].m_end;
m_elapsed = m_end - m_begin;
m_control.consume(1);
return true;
}
return false;
}
void OcclusionQueryMTL::postReset()
{
MTL_RELEASE(m_buffer);
}
void OcclusionQueryMTL::preReset()
{
m_buffer = s_renderMtl->m_device.newBufferWithLength(BX_COUNTOF(m_query) * 8, 0);
}
void OcclusionQueryMTL::begin(RenderCommandEncoder& _rce, Frame* _render, OcclusionQueryHandle _handle)
{
while (0 == m_control.reserve(1) )
{
resolve(_render, true);
}
Query& query = m_query[m_control.m_current];
query.m_handle = _handle;
uint32_t offset = _handle.idx * 8;
_rce.setVisibilityResultMode(MTLVisibilityResultModeBoolean, offset);
}
void OcclusionQueryMTL::end(RenderCommandEncoder& _rce)
{
Query& query = m_query[m_control.m_current];
uint32_t offset = query.m_handle.idx * 8;
_rce.setVisibilityResultMode(MTLVisibilityResultModeDisabled, offset);
m_control.commit(1);
}
void OcclusionQueryMTL::resolve(Frame* _render, bool _wait)
{
BX_UNUSED(_wait);
while (0 != m_control.available() )
{
Query& query = m_query[m_control.m_read];
if (isValid(query.m_handle) )
{
uint64_t result = ( (uint64_t*)m_buffer.contents() )[query.m_handle.idx];
_render->m_occlusion[query.m_handle.idx] = int32_t(result);
}
m_control.consume(1);
}
}
void OcclusionQueryMTL::invalidate(OcclusionQueryHandle _handle)
{
const uint32_t size = m_control.m_size;
for (uint32_t ii = 0, num = m_control.available(); ii < num; ++ii)
{
Query& query = m_query[(m_control.m_read + ii) % size];
if (query.m_handle.idx == _handle.idx)
{
query.m_handle.idx = bgfx::kInvalidHandle;
}
}
}
void RendererContextMtl::submitBlit(BlitState& _bs, uint16_t _view)
{
if (!_bs.hasItem(_view) )
{
return;
}
endEncoding();
m_blitCommandEncoder = getBlitCommandEncoder();
while (_bs.hasItem(_view) )
{
const BlitItem& blit = _bs.advance();
const TextureMtl& src = m_textures[blit.m_src.idx];
const TextureMtl& dst = m_textures[blit.m_dst.idx];
#if BX_PLATFORM_OSX
bool readBack = !!(dst.m_flags & BGFX_TEXTURE_READ_BACK);
#endif // BX_PLATFORM_OSX
if (MTLTextureType3D == src.m_ptr.textureType() )
{
m_blitCommandEncoder.copyFromTexture(
src.m_ptr
, 0
, 0
, MTLOriginMake(blit.m_srcX, blit.m_srcY, blit.m_srcZ)
, MTLSizeMake(blit.m_width, blit.m_height, bx::uint32_imax(blit.m_depth, 1) )
, dst.m_ptr
, 0
, 0
, MTLOriginMake(blit.m_dstX, blit.m_dstY, blit.m_dstZ)
);
#if BX_PLATFORM_OSX
if (m_macOS11Runtime
&& readBack)
{
m_blitCommandEncoder.synchronizeResource(dst.m_ptr);
}
#endif // BX_PLATFORM_OSX
}
else
{
m_blitCommandEncoder.copyFromTexture(
src.m_ptr
, blit.m_srcZ
, blit.m_srcMip
, MTLOriginMake(blit.m_srcX, blit.m_srcY, 0)
, MTLSizeMake(blit.m_width, blit.m_height, 1)
, dst.m_ptr
, blit.m_dstZ
, blit.m_dstMip
, MTLOriginMake(blit.m_dstX, blit.m_dstY, 0)
);
#if BX_PLATFORM_OSX
if (m_macOS11Runtime
&& readBack)
{
m_blitCommandEncoder.synchronizeTexture(dst.m_ptr, 0, blit.m_dstMip);
}
#endif // BX_PLATFORM_OSX
}
}
if (0 != m_blitCommandEncoder)
{
m_blitCommandEncoder.endEncoding();
m_blitCommandEncoder = 0;
}
}
void RendererContextMtl::submit(Frame* _render, ClearQuad& _clearQuad, TextVideoMemBlitter& _textVideoMemBlitter)
{
m_cmd.finish(false);
if (NULL == m_commandBuffer)
{
m_commandBuffer = m_cmd.alloc();
}
BGFX_MTL_PROFILER_BEGIN_LITERAL("rendererSubmit", kColorFrame);
int64_t timeBegin = bx::getHPCounter();
int64_t captureElapsed = 0;
m_gpuTimer.addHandlers(m_commandBuffer);
if (m_blitCommandEncoder)
{
m_blitCommandEncoder.endEncoding();
m_blitCommandEncoder = 0;
}
updateResolution(_render->m_resolution);
if (0 != _render->m_numScreenShots
|| NULL != m_capture)
{
if (m_screenshotTarget)
{
if (m_screenshotTarget.width() != m_resolution.width
|| m_screenshotTarget.height() != m_resolution.height)
{
MTL_RELEASE(m_screenshotTarget);
}
}
if (NULL == m_screenshotTarget)
{
m_textureDescriptor.textureType = MTLTextureType2D;
m_textureDescriptor.pixelFormat = m_mainFrameBuffer.m_swapChain->m_metalLayer.pixelFormat;
m_textureDescriptor.width = m_resolution.width;
m_textureDescriptor.height = m_resolution.height;
m_textureDescriptor.depth = 1;
m_textureDescriptor.mipmapLevelCount = 1;
m_textureDescriptor.sampleCount = 1;
m_textureDescriptor.arrayLength = 1;
if (m_iOS9Runtime
|| m_macOS11Runtime)
{
m_textureDescriptor.cpuCacheMode = MTLCPUCacheModeDefaultCache;
m_textureDescriptor.storageMode = BX_ENABLED(BX_PLATFORM_IOS)
? (MTLStorageMode)0 // MTLStorageModeShared
: (MTLStorageMode)1 // MTLStorageModeManaged
;
m_textureDescriptor.usage = 0
| MTLTextureUsageRenderTarget
| MTLTextureUsageShaderRead
;
}
m_screenshotTarget = m_device.newTextureWithDescriptor(m_textureDescriptor);
}
}
else
{
MTL_RELEASE(m_screenshotTarget);
}
m_uniformBuffer = m_uniformBuffers[m_bufferIndex];
m_bufferIndex = (m_bufferIndex + 1) % BGFX_CONFIG_MAX_FRAME_LATENCY;
m_uniformBufferVertexOffset = 0;
m_uniformBufferFragmentOffset = 0;
if (0 < _render->m_iboffset)
{
BGFX_PROFILER_SCOPE("bgfx/Update transient index buffer", kColorResource);
TransientIndexBuffer* ib = _render->m_transientIb;
m_indexBuffers[ib->handle.idx].update(0, bx::strideAlign(_render->m_iboffset,4), ib->data, true);
}
if (0 < _render->m_vboffset)
{
BGFX_PROFILER_SCOPE("bgfx/Update transient vertex buffer", kColorResource);
TransientVertexBuffer* vb = _render->m_transientVb;
m_vertexBuffers[vb->handle.idx].update(0, bx::strideAlign(_render->m_vboffset,4), vb->data, true);
}
_render->sort();
RenderDraw currentState;
currentState.clear();
currentState.m_stateFlags = BGFX_STATE_NONE;
currentState.m_stencil = packStencil(BGFX_STENCIL_NONE, BGFX_STENCIL_NONE);
RenderBind currentBind;
currentBind.clear();
static ViewState viewState;
viewState.reset(_render);
uint32_t blendFactor = 0;
bool wireframe = !!(_render->m_debug&BGFX_DEBUG_WIREFRAME);
ProgramHandle currentProgram = BGFX_INVALID_HANDLE;
SortKey key;
uint16_t view = UINT16_MAX;
FrameBufferHandle fbh = { BGFX_CONFIG_MAX_FRAME_BUFFERS };
BlitState bs(_render);
const uint64_t primType = 0;
uint8_t primIndex = uint8_t(primType>>BGFX_STATE_PT_SHIFT);
PrimInfo prim = s_primInfo[primIndex];
const uint32_t maxComputeBindings = g_caps.limits.maxComputeBindings;
const uint32_t maxTextureSamplers = g_caps.limits.maxTextureSamplers;
RenderCommandEncoder rce;
PipelineStateMtl* currentPso = NULL;
bool wasCompute = false;
bool viewHasScissor = false;
Rect viewScissorRect;
viewScissorRect.clear();
uint32_t statsNumPrimsSubmitted[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumPrimsRendered[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumInstances[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumDrawIndirect[BX_COUNTOF(s_primInfo)] = {};
uint32_t statsNumIndices = 0;
uint32_t statsKeyType[2] = {};
Profiler<TimerQueryMtl> profiler(
_render
, m_gpuTimer
, s_viewName
);
m_occlusionQuery.resolve(_render);
if (0 == (_render->m_debug&BGFX_DEBUG_IFH) )
{
viewState.m_rect = _render->m_view[0].m_rect;
int32_t numItems = _render->m_numRenderItems;
for (int32_t item = 0; item < numItems;)
{
const uint64_t encodedKey = _render->m_sortKeys[item];
const bool isCompute = key.decode(encodedKey, _render->m_viewRemap);
statsKeyType[isCompute]++;
const bool viewChanged = 0
|| key.m_view != view
|| item == numItems
;
const uint32_t itemIdx = _render->m_sortValues[item];
const RenderItem& renderItem = _render->m_renderItem[itemIdx];
const RenderBind& renderBind = _render->m_renderItemBind[itemIdx];
++item;
if (viewChanged
|| (!isCompute && wasCompute) )
{
view = key.m_view;
currentProgram = BGFX_INVALID_HANDLE;
if (item > 1)
{
profiler.end();
}
BGFX_MTL_PROFILER_END();
setViewType(view, " ");
BGFX_MTL_PROFILER_BEGIN(view, kColorView);
profiler.begin(view);
viewState.m_rect = _render->m_view[view].m_rect;
submitBlit(bs, view);
if (!isCompute)
{
const Rect& scissorRect = _render->m_view[view].m_scissor;
viewHasScissor = !scissorRect.isZero();
viewScissorRect = viewHasScissor ? scissorRect : viewState.m_rect;
Clear& clr = _render->m_view[view].m_clear;
Rect viewRect = viewState.m_rect;
bool clearWithRenderPass = false;
if (NULL == m_renderCommandEncoder
|| fbh.idx != _render->m_view[view].m_fbh.idx)
{
endEncoding();
RenderPassDescriptor renderPassDescriptor = newRenderPassDescriptor();
renderPassDescriptor.visibilityResultBuffer = m_occlusionQuery.m_buffer;
fbh = _render->m_view[view].m_fbh;
uint32_t width = m_resolution.width;
uint32_t height = m_resolution.height;
if (isValid(fbh) )
{
FrameBufferMtl& frameBuffer = m_frameBuffers[fbh.idx];
width = frameBuffer.m_width;
height = frameBuffer.m_height;
}
clearWithRenderPass = true
&& 0 == viewRect.m_x
&& 0 == viewRect.m_y
&& width == viewRect.m_width
&& height == viewRect.m_height
;
setFrameBuffer(renderPassDescriptor, fbh);
if (clearWithRenderPass)
{
for (uint32_t ii = 0; ii < g_caps.limits.maxFBAttachments; ++ii)
{
MTLRenderPassColorAttachmentDescriptor* desc = renderPassDescriptor.colorAttachments[ii];
if (desc.texture != NULL)
{
if (0 != (BGFX_CLEAR_COLOR & clr.m_flags) )
{
if (0 != (BGFX_CLEAR_COLOR_USE_PALETTE & clr.m_flags) )
{
uint8_t index = (uint8_t)bx::uint32_min(BGFX_CONFIG_MAX_COLOR_PALETTE-1, clr.m_index[ii]);
const float* rgba = _render->m_colorPalette[index];
const float rr = rgba[0];
const float gg = rgba[1];
const float bb = rgba[2];
const float aa = rgba[3];
desc.clearColor = MTLClearColorMake(rr, gg, bb, aa);
}
else
{
float rr = clr.m_index[0]*1.0f/255.0f;
float gg = clr.m_index[1]*1.0f/255.0f;
float bb = clr.m_index[2]*1.0f/255.0f;
float aa = clr.m_index[3]*1.0f/255.0f;
desc.clearColor = MTLClearColorMake(rr, gg, bb, aa);
}
desc.loadAction = MTLLoadActionClear;
}
else
{
desc.loadAction = MTLLoadActionLoad;
}
if (NULL != m_capture
&& !isValid(fbh)
&& m_hasStoreActionStoreAndMultisampleResolve)
{
desc.storeAction = desc.texture.sampleCount > 1 ? MTLStoreActionStoreAndMultisampleResolve : MTLStoreActionStore;
}
else
{
desc.storeAction = desc.texture.sampleCount > 1 ? MTLStoreActionMultisampleResolve : MTLStoreActionStore;
}
}
}
RenderPassDepthAttachmentDescriptor depthAttachment = renderPassDescriptor.depthAttachment;
if (NULL != depthAttachment.texture)
{
depthAttachment.clearDepth = clr.m_depth;
depthAttachment.loadAction = 0 != (BGFX_CLEAR_DEPTH & clr.m_flags)
? MTLLoadActionClear
: MTLLoadActionLoad
;
depthAttachment.storeAction = NULL != m_mainFrameBuffer.m_swapChain->m_backBufferColorMsaa
? MTLStoreActionDontCare
: MTLStoreActionStore
;
}
RenderPassStencilAttachmentDescriptor stencilAttachment = renderPassDescriptor.stencilAttachment;
if (NULL != stencilAttachment.texture)
{
stencilAttachment.clearStencil = clr.m_stencil;
stencilAttachment.loadAction = 0 != (BGFX_CLEAR_STENCIL & clr.m_flags)
? MTLLoadActionClear
: MTLLoadActionLoad
;
stencilAttachment.storeAction = NULL != m_mainFrameBuffer.m_swapChain->m_backBufferColorMsaa
? MTLStoreActionDontCare
: MTLStoreActionStore
;
}
}
else
{
for (uint32_t ii = 0; ii < g_caps.limits.maxFBAttachments; ++ii)
{
MTLRenderPassColorAttachmentDescriptor* desc = renderPassDescriptor.colorAttachments[ii];
if (desc.texture != NULL)
{
desc.loadAction = MTLLoadActionLoad;
if (NULL != m_capture
&& !isValid(fbh)
&& m_hasStoreActionStoreAndMultisampleResolve)
{
desc.storeAction = desc.texture.sampleCount > 1 ? MTLStoreActionStoreAndMultisampleResolve : MTLStoreActionStore;
}
else
{
desc.storeAction = desc.texture.sampleCount > 1 ? MTLStoreActionMultisampleResolve : MTLStoreActionStore;
}
}
}
RenderPassDepthAttachmentDescriptor depthAttachment = renderPassDescriptor.depthAttachment;
if (NULL != depthAttachment.texture)
{
depthAttachment.loadAction = MTLLoadActionLoad;
depthAttachment.storeAction = MTLStoreActionStore;
}
RenderPassStencilAttachmentDescriptor stencilAttachment = renderPassDescriptor.stencilAttachment;
if (NULL != stencilAttachment.texture)
{
stencilAttachment.loadAction = MTLLoadActionLoad;
stencilAttachment.storeAction = MTLStoreActionStore;
}
}
rce = m_commandBuffer.renderCommandEncoderWithDescriptor(renderPassDescriptor);
m_renderCommandEncoder = rce;
m_renderCommandEncoderFrameBufferHandle = fbh;
MTL_RELEASE(renderPassDescriptor);
}
else if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
rce.popDebugGroup();
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
rce.pushDebugGroup(s_viewName[view]);
}
rce.setTriangleFillMode(wireframe ? MTLTriangleFillModeLines : MTLTriangleFillModeFill);
MTLViewport vp;
vp.originX = viewState.m_rect.m_x;
vp.originY = viewState.m_rect.m_y;
vp.width = viewState.m_rect.m_width;
vp.height = viewState.m_rect.m_height;
vp.znear = 0.0f;
vp.zfar = 1.0f;
rce.setViewport(vp);
MTLScissorRect sciRect = {
viewState.m_rect.m_x,
viewState.m_rect.m_y,
viewState.m_rect.m_width,
viewState.m_rect.m_height
};
rce.setScissorRect(sciRect);
if (BGFX_CLEAR_NONE != (clr.m_flags & BGFX_CLEAR_MASK)
&& !clearWithRenderPass)
{
clearQuad(_clearQuad, viewState.m_rect, clr, _render->m_colorPalette);
}
}
}
if (isCompute)
{
if (!wasCompute)
{
wasCompute = true;
endEncoding();
rce = NULL;
setViewType(view, "C");
BGFX_MTL_PROFILER_END();
BGFX_MTL_PROFILER_BEGIN(view, kColorCompute);
m_computeCommandEncoder = m_commandBuffer.computeCommandEncoder();
}
else if (viewChanged && BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
m_computeCommandEncoder.popDebugGroup();
}
if (viewChanged
&& BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
s_viewName[view][3] = L'C';
m_computeCommandEncoder.pushDebugGroup(s_viewName[view]);
s_viewName[view][3] = L' ';
}
const RenderCompute& compute = renderItem.compute;
bool programChanged = false;
rendererUpdateUniforms(this, _render->m_uniformBuffer[compute.m_uniformIdx], compute.m_uniformBegin, compute.m_uniformEnd);
if (key.m_program.idx != currentProgram.idx)
{
currentProgram = key.m_program;
currentPso = getComputePipelineState(currentProgram);
if (NULL == currentPso)
{
currentProgram = BGFX_INVALID_HANDLE;
continue;
}
m_computeCommandEncoder.setComputePipelineState(currentPso->m_cps);
programChanged = true;
}
if (isValid(currentProgram)
&& NULL != currentPso)
{
uint32_t vertexUniformBufferSize = currentPso->m_vshConstantBufferSize;
if (0 != vertexUniformBufferSize)
{
m_uniformBufferVertexOffset = bx::alignUp(
m_uniformBufferVertexOffset
, currentPso->m_vshConstantBufferAlignment
);
m_computeCommandEncoder.setBuffer(m_uniformBuffer, m_uniformBufferVertexOffset, 0);
}
UniformBuffer* vcb = currentPso->m_vshConstantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
viewState.setPredefined<4>(this, view, *currentPso, _render, compute);
m_uniformBufferVertexOffset += vertexUniformBufferSize;
}
BX_UNUSED(programChanged);
for (uint8_t stage = 0; stage < maxComputeBindings; ++stage)
{
const Binding& bind = renderBind.m_bind[stage];
if (kInvalidHandle != bind.m_idx)
{
switch (bind.m_type)
{
case Binding::Image:
{
TextureMtl& texture = m_textures[bind.m_idx];
m_computeCommandEncoder.setTexture(texture.getTextureMipLevel(bind.m_mip), stage);
}
break;
case Binding::Texture:
{
TextureMtl& texture = m_textures[bind.m_idx];
uint32_t flags = bind.m_samplerFlags;
m_computeCommandEncoder.setTexture(texture.m_ptr, stage);
m_computeCommandEncoder.setSamplerState(
0 == (BGFX_SAMPLER_INTERNAL_DEFAULT & flags)
? getSamplerState(flags)
: texture.m_sampler
, stage
);
}
break;
case Binding::IndexBuffer:
case Binding::VertexBuffer:
{
const BufferMtl& buffer = Binding::IndexBuffer == bind.m_type
? m_indexBuffers[bind.m_idx]
: m_vertexBuffers[bind.m_idx]
;
m_computeCommandEncoder.setBuffer(buffer.m_ptr, 0, stage + 1);
}
break;
}
}
}
MTLSize threadsPerGroup = MTLSizeMake(
currentPso->m_numThreads[0]
, currentPso->m_numThreads[1]
, currentPso->m_numThreads[2]
);
if (isValid(compute.m_indirectBuffer) )
{
const VertexBufferMtl& vb = m_vertexBuffers[compute.m_indirectBuffer.idx];
uint32_t numDrawIndirect = UINT16_MAX == compute.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: compute.m_numIndirect
;
uint32_t args = compute.m_startIndirect * BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
m_computeCommandEncoder.dispatchThreadgroupsWithIndirectBuffer(
vb.m_ptr
, args
, threadsPerGroup
);
args += BGFX_CONFIG_DRAW_INDIRECT_STRIDE;
}
}
else
{
m_computeCommandEncoder.dispatchThreadgroups(
MTLSizeMake(compute.m_numX, compute.m_numY, compute.m_numZ)
, threadsPerGroup
);
}
continue;
}
bool resetState = viewChanged || wasCompute;
if (wasCompute)
{
wasCompute = false;
currentProgram = BGFX_INVALID_HANDLE;
setViewType(view, " ");
BGFX_MTL_PROFILER_END();
BGFX_MTL_PROFILER_BEGIN(view, kColorDraw);
}
const RenderDraw& draw = renderItem.draw;
const bool hasOcclusionQuery = 0 != (draw.m_stateFlags & BGFX_STATE_INTERNAL_OCCLUSION_QUERY);
{
const bool occluded = true
&& isValid(draw.m_occlusionQuery)
&& !hasOcclusionQuery
&& !isVisible(_render, draw.m_occlusionQuery, 0 != (draw.m_submitFlags&BGFX_SUBMIT_INTERNAL_OCCLUSION_VISIBLE) )
;
if (occluded
|| _render->m_frameCache.isZeroArea(viewScissorRect, draw.m_scissor) )
{
if (resetState)
{
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
currentBind.clear();
}
continue;
}
}
const uint64_t newFlags = draw.m_stateFlags;
uint64_t changedFlags = currentState.m_stateFlags ^ draw.m_stateFlags;
currentState.m_stateFlags = newFlags;
const uint64_t newStencil = draw.m_stencil;
uint64_t changedStencil = currentState.m_stencil ^ draw.m_stencil;
currentState.m_stencil = newStencil;
if (resetState)
{
currentState.clear();
currentState.m_scissor = !draw.m_scissor;
changedFlags = BGFX_STATE_MASK;
changedStencil = packStencil(BGFX_STENCIL_MASK, BGFX_STENCIL_MASK);
currentState.m_stateFlags = newFlags;
currentState.m_stencil = newStencil;
currentBind.clear();
currentProgram = BGFX_INVALID_HANDLE;
setDepthStencilState(newFlags, packStencil(BGFX_STENCIL_DEFAULT, BGFX_STENCIL_DEFAULT) );
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
}
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
}
uint16_t scissor = draw.m_scissor;
if (currentState.m_scissor != scissor)
{
currentState.m_scissor = scissor;
MTLScissorRect rc;
if (UINT16_MAX == scissor)
{
if (viewHasScissor)
{
rc.x = viewScissorRect.m_x;
rc.y = viewScissorRect.m_y;
rc.width = viewScissorRect.m_width;
rc.height = viewScissorRect.m_height;
}
else
{ // can't disable: set to view rect
rc.x = viewState.m_rect.m_x;
rc.y = viewState.m_rect.m_y;
rc.width = viewState.m_rect.m_width;
rc.height = viewState.m_rect.m_height;
}
}
else
{
Rect scissorRect;
scissorRect.setIntersect(viewScissorRect, _render->m_frameCache.m_rectCache.m_cache[scissor]);
rc.x = scissorRect.m_x;
rc.y = scissorRect.m_y;
rc.width = scissorRect.m_width;
rc.height = scissorRect.m_height;
}
rce.setScissorRect(rc);
}
if ( (0
| BGFX_STATE_WRITE_Z
| BGFX_STATE_DEPTH_TEST_MASK
) & changedFlags
|| 0 != changedStencil)
{
setDepthStencilState(newFlags,newStencil);
}
if ( (0
| BGFX_STATE_CULL_MASK
| BGFX_STATE_FRONT_CCW
| BGFX_STATE_ALPHA_REF_MASK
| BGFX_STATE_PT_MASK
) & changedFlags)
{
if (BGFX_STATE_FRONT_CCW & changedFlags)
{
rce.setFrontFacingWinding( (newFlags&BGFX_STATE_FRONT_CCW)
? MTLWindingCounterClockwise
: MTLWindingClockwise
);
}
if (BGFX_STATE_CULL_MASK & changedFlags)
{
const uint64_t pt = newFlags&BGFX_STATE_CULL_MASK;
const uint8_t cullIndex = uint8_t(pt>>BGFX_STATE_CULL_SHIFT);
rce.setCullMode(s_cullMode[cullIndex]);
}
if (BGFX_STATE_ALPHA_REF_MASK & changedFlags)
{
uint32_t ref = (newFlags&BGFX_STATE_ALPHA_REF_MASK)>>BGFX_STATE_ALPHA_REF_SHIFT;
viewState.m_alphaRef = ref/255.0f;
}
const uint64_t pt = newFlags&BGFX_STATE_PT_MASK;
primIndex = uint8_t(pt>>BGFX_STATE_PT_SHIFT);
if (prim.m_type != s_primInfo[primIndex].m_type)
{
prim = s_primInfo[primIndex];
}
}
if (blendFactor != draw.m_rgba
&& !(newFlags & BGFX_STATE_BLEND_INDEPENDENT) )
{
const uint32_t rgba = draw.m_rgba;
float rr = ( (rgba>>24) )/255.0f;
float gg = ( (rgba>>16)&0xff)/255.0f;
float bb = ( (rgba>> 8)&0xff)/255.0f;
float aa = ( (rgba )&0xff)/255.0f;
rce.setBlendColor(rr,gg,bb,aa);
blendFactor = draw.m_rgba;
}
bool programChanged = false;
rendererUpdateUniforms(this, _render->m_uniformBuffer[draw.m_uniformIdx], draw.m_uniformBegin, draw.m_uniformEnd);
bool vertexStreamChanged = hasVertexStreamChanged(currentState, draw);
if (key.m_program.idx != currentProgram.idx
|| vertexStreamChanged
|| (0
| BGFX_STATE_BLEND_MASK
| BGFX_STATE_BLEND_EQUATION_MASK
| BGFX_STATE_WRITE_RGB
| BGFX_STATE_WRITE_A
| BGFX_STATE_BLEND_INDEPENDENT
| BGFX_STATE_MSAA
| BGFX_STATE_BLEND_ALPHA_TO_COVERAGE
) & changedFlags
|| ( (blendFactor != draw.m_rgba) && !!(newFlags & BGFX_STATE_BLEND_INDEPENDENT) ) )
{
currentProgram = key.m_program;
currentState.m_streamMask = draw.m_streamMask;
currentState.m_instanceDataBuffer.idx = draw.m_instanceDataBuffer.idx;
currentState.m_instanceDataOffset = draw.m_instanceDataOffset;
currentState.m_instanceDataStride = draw.m_instanceDataStride;
const VertexLayout* layouts[BGFX_CONFIG_MAX_VERTEX_STREAMS];
uint32_t numVertices = draw.m_numVertices;
uint8_t numStreams = 0;
for (uint32_t idx = 0, streamMask = draw.m_streamMask
; 0 != streamMask
; streamMask >>= 1, idx += 1, ++numStreams
)
{
const uint32_t ntz = bx::uint32_cnttz(streamMask);
streamMask >>= ntz;
idx += ntz;
currentState.m_stream[idx].m_layoutHandle = draw.m_stream[idx].m_layoutHandle;
currentState.m_stream[idx].m_handle = draw.m_stream[idx].m_handle;
currentState.m_stream[idx].m_startVertex = draw.m_stream[idx].m_startVertex;
const uint16_t handle = draw.m_stream[idx].m_handle.idx;
const VertexBufferMtl& vb = m_vertexBuffers[handle];
const uint16_t decl = isValid(draw.m_stream[idx].m_layoutHandle)
? draw.m_stream[idx].m_layoutHandle.idx
: vb.m_layoutHandle.idx;
const VertexLayout& layout = m_vertexLayouts[decl];
const uint32_t stride = layout.m_stride;
layouts[numStreams] = &layout;
numVertices = bx::uint32_min(UINT32_MAX == draw.m_numVertices
? vb.m_size/stride
: draw.m_numVertices
, numVertices
);
const uint32_t offset = draw.m_stream[idx].m_startVertex * stride;
rce.setVertexBuffer(vb.m_ptr, offset, idx+1);
}
if (!isValid(currentProgram) )
{
continue;
}
else
{
currentPso = NULL;
if (0 < numStreams)
{
currentPso = getPipelineState(
newFlags
, draw.m_rgba
, fbh
, numStreams
, layouts
, currentProgram
, draw.m_instanceDataStride/16
);
}
if (NULL == currentPso)
{
currentProgram = BGFX_INVALID_HANDLE;
continue;
}
rce.setRenderPipelineState(currentPso->m_rps);
}
if (isValid(draw.m_instanceDataBuffer) )
{
const VertexBufferMtl& inst = m_vertexBuffers[draw.m_instanceDataBuffer.idx];
rce.setVertexBuffer(inst.m_ptr, draw.m_instanceDataOffset, numStreams+1);
}
programChanged = true;
}
if (isValid(currentProgram) )
{
const uint32_t vertexUniformBufferSize = currentPso->m_vshConstantBufferSize;
const uint32_t fragmentUniformBufferSize = currentPso->m_fshConstantBufferSize;
if (0 != vertexUniformBufferSize)
{
m_uniformBufferVertexOffset = bx::alignUp(
m_uniformBufferVertexOffset
, currentPso->m_vshConstantBufferAlignment
);
rce.setVertexBuffer(m_uniformBuffer, m_uniformBufferVertexOffset, 0);
}
m_uniformBufferFragmentOffset = m_uniformBufferVertexOffset + vertexUniformBufferSize;
if (0 != fragmentUniformBufferSize)
{
m_uniformBufferFragmentOffset = bx::alignUp(
m_uniformBufferFragmentOffset
, currentPso->m_fshConstantBufferAlignment
);
rce.setFragmentBuffer(m_uniformBuffer, m_uniformBufferFragmentOffset, 0);
}
UniformBuffer* vcb = currentPso->m_vshConstantBuffer;
if (NULL != vcb)
{
commit(*vcb);
}
UniformBuffer* fcb = currentPso->m_fshConstantBuffer;
if (NULL != fcb)
{
commit(*fcb);
}
viewState.setPredefined<4>(this, view, *currentPso, _render, draw);
m_uniformBufferFragmentOffset += fragmentUniformBufferSize;
m_uniformBufferVertexOffset = m_uniformBufferFragmentOffset;
}
if (isValid(currentProgram) )
{
uint8_t* bindingTypes = currentPso->m_bindingTypes;
for (uint8_t stage = 0; stage < maxTextureSamplers; ++stage)
{
const Binding& bind = renderBind.m_bind[stage];
Binding& current = currentBind.m_bind[stage];
if (current.m_idx != bind.m_idx
|| current.m_type != bind.m_type
|| current.m_samplerFlags != bind.m_samplerFlags
|| programChanged)
{
if (kInvalidHandle != bind.m_idx)
{
switch (bind.m_type)
{
case Binding::Image:
{
if (bind.m_access == Access::ReadWrite && 0 == (g_caps.supported & BGFX_CAPS_IMAGE_RW))
{
BGFX_FATAL(false, Fatal::DebugCheck,
"Failed to set image with access: Access::ReadWrite, device is not support image read&write");
}
if (
(bind.m_access == Access::Read && (0 == (g_caps.formats[bind.m_format] & BGFX_CAPS_FORMAT_TEXTURE_IMAGE_READ)))
|| (bind.m_access == Access::Write && (0 == (g_caps.formats[bind.m_format] & BGFX_CAPS_FORMAT_TEXTURE_IMAGE_WRITE)))
|| (bind.m_access == Access::ReadWrite && (0 == (g_caps.formats[bind.m_format] & (BGFX_CAPS_FORMAT_TEXTURE_IMAGE_READ|BGFX_CAPS_FORMAT_TEXTURE_IMAGE_WRITE))))
)
{
BGFX_FATAL(false, Fatal::DebugCheck,
"Failed to set image with access: %s, format:%s is not supoort", s_accessNames[bind.m_access], bimg::getName(bimg::TextureFormat::Enum(bind.m_format)));
}
TextureMtl& texture = m_textures[bind.m_idx];
texture.commit(
stage
, 0 != (bindingTypes[stage] & PipelineStateMtl::BindToVertexShader)
, 0 != (bindingTypes[stage] & PipelineStateMtl::BindToFragmentShader)
, bind.m_samplerFlags
, bind.m_mip
);
}
break;
case Binding::Texture:
{
TextureMtl& texture = m_textures[bind.m_idx];
texture.commit(
stage
, 0 != (bindingTypes[stage] & PipelineStateMtl::BindToVertexShader)
, 0 != (bindingTypes[stage] & PipelineStateMtl::BindToFragmentShader)
, bind.m_samplerFlags
);
}
break;
case Binding::IndexBuffer:
case Binding::VertexBuffer:
{
const BufferMtl& buffer = Binding::IndexBuffer == bind.m_type
? m_indexBuffers[bind.m_idx]
: m_vertexBuffers[bind.m_idx]
;
if (0 != (bindingTypes[stage] & PipelineStateMtl::BindToVertexShader) )
{
rce.setVertexBuffer(buffer.m_ptr, 0, stage + 1);
}
if (0 != (bindingTypes[stage] & PipelineStateMtl::BindToFragmentShader) )
{
rce.setFragmentBuffer(buffer.m_ptr, 0, stage + 1);
}
}
break;
}
}
}
current = bind;
}
}
if (0 != currentState.m_streamMask)
{
uint32_t numVertices = draw.m_numVertices;
if (UINT32_MAX == numVertices)
{
const VertexBufferMtl& vb = m_vertexBuffers[currentState.m_stream[0].m_handle.idx];
uint16_t decl = !isValid(vb.m_layoutHandle) ? draw.m_stream[0].m_layoutHandle.idx : vb.m_layoutHandle.idx;
const VertexLayout& layout = m_vertexLayouts[decl];
numVertices = vb.m_size/layout.m_stride;
}
uint32_t numIndices = 0;
uint32_t numPrimsSubmitted = 0;
uint32_t numInstances = 0;
uint32_t numPrimsRendered = 0;
uint32_t numDrawIndirect = 0;
if (hasOcclusionQuery)
{
m_occlusionQuery.begin(rce, _render, draw.m_occlusionQuery);
}
if (isValid(draw.m_indirectBuffer) )
{
const VertexBufferMtl& vb = m_vertexBuffers[draw.m_indirectBuffer.idx];
if (isValid(draw.m_indexBuffer) )
{
const bool isIndex16 = draw.isIndex16();
const MTLIndexType indexFormat = isIndex16 ? MTLIndexTypeUInt16 : MTLIndexTypeUInt32;
const IndexBufferMtl& ib = m_indexBuffers[draw.m_indexBuffer.idx];
numDrawIndirect = UINT16_MAX == draw.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: draw.m_numIndirect
;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
rce.drawIndexedPrimitives(prim.m_type, indexFormat, ib.m_ptr, 0, vb.m_ptr, (draw.m_startIndirect + ii )* BGFX_CONFIG_DRAW_INDIRECT_STRIDE);
}
}
else
{
numDrawIndirect = UINT16_MAX == draw.m_numIndirect
? vb.m_size/BGFX_CONFIG_DRAW_INDIRECT_STRIDE
: draw.m_numIndirect
;
for (uint32_t ii = 0; ii < numDrawIndirect; ++ii)
{
rce.drawPrimitives(prim.m_type, vb.m_ptr, (draw.m_startIndirect + ii) * BGFX_CONFIG_DRAW_INDIRECT_STRIDE);
}
}
}
else
{
if (isValid(draw.m_indexBuffer) )
{
const bool isIndex16 = draw.isIndex16();
const uint32_t indexSize = isIndex16 ? 2 : 4;
const MTLIndexType indexFormat = isIndex16 ? MTLIndexTypeUInt16 : MTLIndexTypeUInt32;
const IndexBufferMtl& ib = m_indexBuffers[draw.m_indexBuffer.idx];
if (UINT32_MAX == draw.m_numIndices)
{
numIndices = ib.m_size/indexSize;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.drawIndexedPrimitives(prim.m_type, numIndices, indexFormat, ib.m_ptr, 0, draw.m_numInstances);
}
else if (prim.m_min <= draw.m_numIndices)
{
numIndices = draw.m_numIndices;
numPrimsSubmitted = numIndices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.drawIndexedPrimitives(prim.m_type, numIndices, indexFormat, ib.m_ptr, draw.m_startIndex * indexSize,numInstances);
}
}
else
{
numPrimsSubmitted = numVertices/prim.m_div - prim.m_sub;
numInstances = draw.m_numInstances;
numPrimsRendered = numPrimsSubmitted*draw.m_numInstances;
rce.drawPrimitives(prim.m_type, 0, numVertices, draw.m_numInstances);
}
}
if (hasOcclusionQuery)
{
m_occlusionQuery.end(rce);
}
statsNumPrimsSubmitted[primIndex] += numPrimsSubmitted;
statsNumPrimsRendered[primIndex] += numPrimsRendered;
statsNumInstances[primIndex] += numInstances;
statsNumDrawIndirect[primIndex] += numDrawIndirect;
statsNumIndices += numIndices;
}
}
if (wasCompute)
{
invalidateCompute();
setViewType(view, "C");
BGFX_MTL_PROFILER_END();
BGFX_MTL_PROFILER_BEGIN(view, kColorCompute);
}
submitBlit(bs, BGFX_CONFIG_MAX_VIEWS);
if (0 < _render->m_numRenderItems)
{
captureElapsed = -bx::getHPCounter();
capture();
rce = m_renderCommandEncoder;
captureElapsed += bx::getHPCounter();
profiler.end();
}
}
if (BX_ENABLED(BGFX_CONFIG_DEBUG_ANNOTATION) )
{
if (0 < _render->m_numRenderItems)
{
rce.popDebugGroup();
}
}
BGFX_MTL_PROFILER_END();
int64_t timeEnd = bx::getHPCounter();
int64_t frameTime = timeEnd - timeBegin;
static int64_t min = frameTime;
static int64_t max = frameTime;
min = bx::min<int64_t>(min, frameTime);
max = bx::max<int64_t>(max, frameTime);
static uint32_t maxGpuLatency = 0;
static double maxGpuElapsed = 0.0f;
double elapsedGpuMs = 0.0;
do
{
double toGpuMs = 1000.0 / double(m_gpuTimer.m_frequency);
elapsedGpuMs = m_gpuTimer.m_elapsed * toGpuMs;
maxGpuElapsed = elapsedGpuMs > maxGpuElapsed ? elapsedGpuMs : maxGpuElapsed;
}
while (m_gpuTimer.get() );
maxGpuLatency = bx::uint32_imax(maxGpuLatency, m_gpuTimer.m_control.available()-1);
const int64_t timerFreq = bx::getHPFrequency();
Stats& perfStats = _render->m_perfStats;
perfStats.cpuTimeBegin = timeBegin;
perfStats.cpuTimeEnd = timeEnd;
perfStats.cpuTimerFreq = timerFreq;
perfStats.gpuTimeBegin = m_gpuTimer.m_begin;
perfStats.gpuTimeEnd = m_gpuTimer.m_end;
perfStats.gpuTimerFreq = m_gpuTimer.m_frequency;
perfStats.numDraw = statsKeyType[0];
perfStats.numCompute = statsKeyType[1];
perfStats.numBlit = _render->m_numBlitItems;
perfStats.maxGpuLatency = maxGpuLatency;
perfStats.gpuFrameNum = 0; // TODO: take from TimerQueryMtl::Result
bx::memCopy(perfStats.numPrims, statsNumPrimsRendered, sizeof(perfStats.numPrims) );
perfStats.gpuMemoryMax = -INT64_MAX;
perfStats.gpuMemoryUsed = -INT64_MAX;
rce.setTriangleFillMode(MTLTriangleFillModeFill);
if (_render->m_debug & (BGFX_DEBUG_IFH|BGFX_DEBUG_STATS) )
{
rce.pushDebugGroup("debugstats");
TextVideoMem& tvm = m_textVideoMem;
static int64_t next = timeEnd;
if (timeEnd >= next)
{
next = timeEnd + timerFreq;
double freq = double(timerFreq);
double toMs = 1000.0/freq;
tvm.clear();
uint16_t pos = 0;
tvm.printf(0, pos++, BGFX_CONFIG_DEBUG ? 0x8c : 0x8f
, " %s / " BX_COMPILER_NAME
" / " BX_CPU_NAME
" / " BX_ARCH_NAME
" / " BX_PLATFORM_NAME
" / Version 1.%d.%d (commit: " BGFX_REV_SHA1 ")"
, getRendererName()
, BGFX_API_VERSION
, BGFX_REV_NUMBER
);
pos = 10;
tvm.printf(10, pos++, 0x8b, " Frame: %7.3f, % 7.3f \x1f, % 7.3f \x1e [ms] / % 6.2f FPS "
, double(frameTime)*toMs
, double(min)*toMs
, double(max)*toMs
, freq/frameTime
);
const uint32_t msaa = (m_resolution.reset&BGFX_RESET_MSAA_MASK)>>BGFX_RESET_MSAA_SHIFT;
tvm.printf(10, pos++, 0x8b, " Reset flags: [%c] vsync, [%c] MSAAx%d, [%c] MaxAnisotropy "
, !!(m_resolution.reset&BGFX_RESET_VSYNC) ? '\xfe' : ' '
, 0 != msaa ? '\xfe' : ' '
, 1<<msaa
, !!(m_resolution.reset&BGFX_RESET_MAXANISOTROPY) ? '\xfe' : ' '
);
double elapsedCpuMs = double(frameTime)*toMs;
tvm.printf(10, pos++, 0x8b, " Submitted: %4d (draw %4d, compute %4d) / CPU %3.4f [ms] %c GPU %3.4f [ms] (latency %d)"
, _render->m_numRenderItems
, statsKeyType[0]
, statsKeyType[1]
, elapsedCpuMs
, elapsedCpuMs > maxGpuElapsed ? '>' : '<'
, maxGpuElapsed
, maxGpuLatency
);
maxGpuLatency = 0;
maxGpuElapsed = 0.0;
for (uint32_t ii = 0; ii < Topology::Count; ++ii)
{
tvm.printf(10, pos++, 0x8b, " %10s: %7d (#inst: %5d), submitted: %7d"
, getName(Topology::Enum(ii) )
, statsNumPrimsRendered[ii]
, statsNumInstances[ii]
, statsNumPrimsSubmitted[ii]
);
}
tvm.printf(10, pos++, 0x8b, " Indices: %7d ", statsNumIndices);
// tvm.printf(10, pos++, 0x8b, " Uniform size: %7d, Max: %7d ", _render->m_uniformEnd, _render->m_uniformMax);
tvm.printf(10, pos++, 0x8b, " DVB size: %7d ", _render->m_vboffset);
tvm.printf(10, pos++, 0x8b, " DIB size: %7d ", _render->m_iboffset);
pos++;
double captureMs = double(captureElapsed)*toMs;
tvm.printf(10, pos++, 0x8b, " Capture: %3.4f [ms]", captureMs);
uint8_t attr[2] = { 0x8c, 0x8a };
uint8_t attrIndex = _render->m_waitSubmit < _render->m_waitRender;
tvm.printf(10, pos++, attr[attrIndex &1], " Submit wait: %3.4f [ms]", _render->m_waitSubmit*toMs);
tvm.printf(10, pos++, attr[(attrIndex+1)&1], " Render wait: %3.4f [ms]", _render->m_waitRender*toMs);
min = frameTime;
max = frameTime;
}
blit(this, _textVideoMemBlitter, tvm);
rce = m_renderCommandEncoder;
rce.popDebugGroup();
}
else if (_render->m_debug & BGFX_DEBUG_TEXT)
{
rce.pushDebugGroup("debugtext");
blit(this, _textVideoMemBlitter, _render->m_textVideoMem);
rce = m_renderCommandEncoder;
rce.popDebugGroup();
}
endEncoding();
m_renderCommandEncoderFrameBufferHandle.idx = kInvalidHandle;
if (m_screenshotTarget)
{
RenderPassDescriptor renderPassDescriptor = newRenderPassDescriptor();
renderPassDescriptor.colorAttachments[0].texture = m_mainFrameBuffer.m_swapChain->currentDrawableTexture();
renderPassDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
rce = m_commandBuffer.renderCommandEncoderWithDescriptor(renderPassDescriptor);
MTL_RELEASE(renderPassDescriptor);
rce.setCullMode(MTLCullModeNone);
rce.setRenderPipelineState(m_screenshotBlitRenderPipelineState);
const SamplerState samplerState = getSamplerState(0
| BGFX_SAMPLER_U_CLAMP
| BGFX_SAMPLER_V_CLAMP
| BGFX_SAMPLER_MIN_POINT
| BGFX_SAMPLER_MAG_POINT
| BGFX_SAMPLER_MIP_POINT
);
rce.setFragmentSamplerState(samplerState, 0);
rce.setFragmentTexture(m_screenshotTarget, 0);
rce.drawPrimitives(MTLPrimitiveTypeTriangle, 0, 3, 1);
rce.endEncoding();
}
}
} /* namespace mtl */ } // namespace bgfx
#else
namespace bgfx { namespace mtl
{
RendererContextI* rendererCreate(const Init& _init)
{
BX_UNUSED(_init);
return NULL;
}
void rendererDestroy()
{
}
} /* namespace mtl */ } // namespace bgfx
#endif // BGFX_CONFIG_RENDERER_METAL