//------------------------------------------------------------------------------------- // DirectXMathConvert.inl -- SIMD C++ Math library // // THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF // ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A // PARTICULAR PURPOSE. // // Copyright (c) Microsoft Corporation. All rights reserved. // // http://go.microsoft.com/fwlink/?LinkID=615560 //------------------------------------------------------------------------------------- #pragma once /**************************************************************************** * * Data conversion * ****************************************************************************/ //------------------------------------------------------------------------------ #pragma warning(push) #pragma warning(disable:4701) // C4701: false positives inline XMVECTOR XM_CALLCONV XMConvertVectorIntToFloat ( FXMVECTOR VInt, uint32_t DivExponent ) { assert(DivExponent<32); #if defined(_XM_NO_INTRINSICS_) float fScale = 1.0f / (float)(1U << DivExponent); uint32_t ElementIndex = 0; XMVECTOR Result; do { int32_t iTemp = (int32_t)VInt.vector4_u32[ElementIndex]; Result.vector4_f32[ElementIndex] = ((float)iTemp) * fScale; } while (++ElementIndex<4); return Result; #elif defined(_XM_ARM_NEON_INTRINSICS_) float fScale = 1.0f / (float)(1U << DivExponent); float32x4_t vResult = vcvtq_f32_s32( VInt ); return vmulq_n_f32( vResult, fScale ); #else // _XM_SSE_INTRINSICS_ // Convert to floats XMVECTOR vResult = _mm_cvtepi32_ps(_mm_castps_si128(VInt)); // Convert DivExponent into 1.0f/(1< (65536.0f*32768.0f)-128.0f) { iResult = 0x7FFFFFFF; } else { iResult = (int32_t)fTemp; } Result.vector4_u32[ElementIndex] = (uint32_t)iResult; } while (++ElementIndex<4); return Result; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t vResult = vmulq_n_f32(VFloat, (float)(1U << MulExponent)); // In case of positive overflow, detect it uint32x4_t vOverflow = vcgtq_f32(vResult,g_XMMaxInt); // Float to int conversion int32x4_t vResulti = vcvtq_s32_f32(vResult); // If there was positive overflow, set to 0x7FFFFFFF vResult = vandq_u32(vOverflow,g_XMAbsMask); vOverflow = vbicq_u32(vResulti,vOverflow); vOverflow = vorrq_u32(vOverflow,vResult); return vOverflow; #else // _XM_SSE_INTRINSICS_ XMVECTOR vResult = _mm_set_ps1((float)(1U << MulExponent)); vResult = _mm_mul_ps(vResult,VFloat); // In case of positive overflow, detect it XMVECTOR vOverflow = _mm_cmpgt_ps(vResult,g_XMMaxInt); // Float to int conversion __m128i vResulti = _mm_cvttps_epi32(vResult); // If there was positive overflow, set to 0x7FFFFFFF vResult = _mm_and_ps(vOverflow,g_XMAbsMask); vOverflow = _mm_andnot_ps(vOverflow,_mm_castsi128_ps(vResulti)); vOverflow = _mm_or_ps(vOverflow,vResult); return vOverflow; #endif } //------------------------------------------------------------------------------ inline XMVECTOR XM_CALLCONV XMConvertVectorUIntToFloat ( FXMVECTOR VUInt, uint32_t DivExponent ) { assert(DivExponent<32); #if defined(_XM_NO_INTRINSICS_) float fScale = 1.0f / (float)(1U << DivExponent); uint32_t ElementIndex = 0; XMVECTOR Result; do { Result.vector4_f32[ElementIndex] = (float)VUInt.vector4_u32[ElementIndex] * fScale; } while (++ElementIndex<4); return Result; #elif defined(_XM_ARM_NEON_INTRINSICS_) float fScale = 1.0f / (float)(1U << DivExponent); float32x4_t vResult = vcvtq_f32_u32( VUInt ); return vmulq_n_f32( vResult, fScale ); #else // _XM_SSE_INTRINSICS_ // For the values that are higher than 0x7FFFFFFF, a fixup is needed // Determine which ones need the fix. XMVECTOR vMask = _mm_and_ps(VUInt,g_XMNegativeZero); // Force all values positive XMVECTOR vResult = _mm_xor_ps(VUInt,vMask); // Convert to floats vResult = _mm_cvtepi32_ps(_mm_castps_si128(vResult)); // Convert 0x80000000 -> 0xFFFFFFFF __m128i iMask = _mm_srai_epi32(_mm_castps_si128(vMask),31); // For only the ones that are too big, add the fixup vMask = _mm_and_ps(_mm_castsi128_ps(iMask),g_XMFixUnsigned); vResult = _mm_add_ps(vResult,vMask); // Convert DivExponent into 1.0f/(1<= (65536.0f*65536.0f)) { uResult = 0xFFFFFFFFU; } else { uResult = (uint32_t)fTemp; } Result.vector4_u32[ElementIndex] = uResult; } while (++ElementIndex<4); return Result; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t vResult = vmulq_n_f32(VFloat,(float)(1U << MulExponent)); // In case of overflow, detect it uint32x4_t vOverflow = vcgtq_f32(vResult,g_XMMaxUInt); // Float to int conversion uint32x4_t vResulti = vcvtq_u32_f32(vResult); // If there was overflow, set to 0xFFFFFFFFU vResult = vbicq_u32(vResulti,vOverflow); vOverflow = vorrq_u32(vOverflow,vResult); return vOverflow; #else // _XM_SSE_INTRINSICS_ XMVECTOR vResult = _mm_set_ps1(static_cast(1U << MulExponent)); vResult = _mm_mul_ps(vResult,VFloat); // Clamp to >=0 vResult = _mm_max_ps(vResult,g_XMZero); // Any numbers that are too big, set to 0xFFFFFFFFU XMVECTOR vOverflow = _mm_cmpgt_ps(vResult,g_XMMaxUInt); XMVECTOR vValue = g_XMUnsignedFix; // Too large for a signed integer? XMVECTOR vMask = _mm_cmpge_ps(vResult,vValue); // Zero for number's lower than 0x80000000, 32768.0f*65536.0f otherwise vValue = _mm_and_ps(vValue,vMask); // Perform fixup only on numbers too large (Keeps low bit precision) vResult = _mm_sub_ps(vResult,vValue); __m128i vResulti = _mm_cvttps_epi32(vResult); // Convert from signed to unsigned pnly if greater than 0x80000000 vMask = _mm_and_ps(vMask,g_XMNegativeZero); vResult = _mm_xor_ps(_mm_castsi128_ps(vResulti),vMask); // On those that are too large, set to 0xFFFFFFFF vResult = _mm_or_ps(vResult,vOverflow); return vResult; #endif } #pragma warning(pop) /**************************************************************************** * * Vector and matrix load operations * ****************************************************************************/ //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadInt(const uint32_t* pSource) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_u32[0] = *pSource; V.vector4_u32[1] = 0; V.vector4_u32[2] = 0; V.vector4_u32[3] = 0; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x4_t zero = vdupq_n_u32(0); return vld1q_lane_u32( pSource, zero, 0 ); #elif defined(_XM_SSE_INTRINSICS_) return _mm_load_ss( reinterpret_cast(pSource) ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadFloat(const float* pSource) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = *pSource; V.vector4_f32[1] = 0.f; V.vector4_f32[2] = 0.f; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t zero = vdupq_n_f32(0); return vld1q_lane_f32( pSource, zero, 0 ); #elif defined(_XM_SSE_INTRINSICS_) return _mm_load_ss( pSource ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadInt2 ( const uint32_t* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_u32[0] = pSource[0]; V.vector4_u32[1] = pSource[1]; V.vector4_u32[2] = 0; V.vector4_u32[3] = 0; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t x = vld1_u32( pSource ); uint32x2_t zero = vdup_n_u32(0); return vcombine_u32( x, zero ); #elif defined(_XM_SSE_INTRINSICS_) __m128 x = _mm_load_ss( reinterpret_cast(pSource) ); __m128 y = _mm_load_ss( reinterpret_cast(pSource+1) ); return _mm_unpacklo_ps( x, y ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadInt2A ( const uint32_t* pSource ) { assert(pSource); assert(((uintptr_t)pSource & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_u32[0] = pSource[0]; V.vector4_u32[1] = pSource[1]; V.vector4_u32[2] = 0; V.vector4_u32[3] = 0; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t x = vld1_u32_ex( pSource, 64 ); uint32x2_t zero = vdup_n_u32(0); return vcombine_u32( x, zero ); #elif defined(_XM_SSE_INTRINSICS_) __m128i V = _mm_loadl_epi64( reinterpret_cast(pSource) ); return _mm_castsi128_ps(V); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadFloat2 ( const XMFLOAT2* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = pSource->x; V.vector4_f32[1] = pSource->y; V.vector4_f32[2] = 0.f; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x2_t x = vld1_f32( reinterpret_cast(pSource) ); float32x2_t zero = vdup_n_f32(0); return vcombine_f32( x, zero ); #elif defined(_XM_SSE_INTRINSICS_) __m128 x = _mm_load_ss( &pSource->x ); __m128 y = _mm_load_ss( &pSource->y ); return _mm_unpacklo_ps( x, y ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadFloat2A ( const XMFLOAT2A* pSource ) { assert(pSource); assert(((uintptr_t)pSource & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = pSource->x; V.vector4_f32[1] = pSource->y; V.vector4_f32[2] = 0.f; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x2_t x = vld1_f32_ex( reinterpret_cast(pSource), 64 ); float32x2_t zero = vdup_n_f32(0); return vcombine_f32( x, zero ); #elif defined(_XM_SSE_INTRINSICS_) __m128i V = _mm_loadl_epi64( reinterpret_cast(pSource) ); return _mm_castsi128_ps(V); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadSInt2 ( const XMINT2* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = (float)pSource->x; V.vector4_f32[1] = (float)pSource->y; V.vector4_f32[2] = 0.f; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) int32x2_t x = vld1_s32( reinterpret_cast(pSource) ); float32x2_t v = vcvt_f32_s32( x ); float32x2_t zero = vdup_n_f32(0); return vcombine_f32( v, zero ); #elif defined(_XM_SSE_INTRINSICS_) __m128 x = _mm_load_ss( reinterpret_cast(&pSource->x) ); __m128 y = _mm_load_ss( reinterpret_cast(&pSource->y) ); __m128 V = _mm_unpacklo_ps( x, y ); return _mm_cvtepi32_ps(_mm_castps_si128(V)); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadUInt2 ( const XMUINT2* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = (float)pSource->x; V.vector4_f32[1] = (float)pSource->y; V.vector4_f32[2] = 0.f; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t x = vld1_u32( reinterpret_cast(pSource) ); float32x2_t v = vcvt_f32_u32( x ); float32x2_t zero = vdup_n_f32(0); return vcombine_f32( v, zero ); #elif defined(_XM_SSE_INTRINSICS_) __m128 x = _mm_load_ss( reinterpret_cast(&pSource->x) ); __m128 y = _mm_load_ss( reinterpret_cast(&pSource->y) ); __m128 V = _mm_unpacklo_ps( x, y ); // For the values that are higher than 0x7FFFFFFF, a fixup is needed // Determine which ones need the fix. XMVECTOR vMask = _mm_and_ps(V,g_XMNegativeZero); // Force all values positive XMVECTOR vResult = _mm_xor_ps(V,vMask); // Convert to floats vResult = _mm_cvtepi32_ps(_mm_castps_si128(vResult)); // Convert 0x80000000 -> 0xFFFFFFFF __m128i iMask = _mm_srai_epi32(_mm_castps_si128(vMask),31); // For only the ones that are too big, add the fixup vMask = _mm_and_ps(_mm_castsi128_ps(iMask),g_XMFixUnsigned); vResult = _mm_add_ps(vResult,vMask); return vResult; #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadInt3 ( const uint32_t* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_u32[0] = pSource[0]; V.vector4_u32[1] = pSource[1]; V.vector4_u32[2] = pSource[2]; V.vector4_u32[3] = 0; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t x = vld1_u32( pSource ); uint32x2_t zero = vdup_n_u32(0); uint32x2_t y = vld1_lane_u32( pSource+2, zero, 0 ); return vcombine_u32( x, y ); #elif defined(_XM_SSE_INTRINSICS_) __m128 x = _mm_load_ss( reinterpret_cast(pSource) ); __m128 y = _mm_load_ss( reinterpret_cast(pSource+1) ); __m128 z = _mm_load_ss( reinterpret_cast(pSource+2) ); __m128 xy = _mm_unpacklo_ps( x, y ); return _mm_movelh_ps( xy, z ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadInt3A ( const uint32_t* pSource ) { assert(pSource); assert(((uintptr_t)pSource & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_u32[0] = pSource[0]; V.vector4_u32[1] = pSource[1]; V.vector4_u32[2] = pSource[2]; V.vector4_u32[3] = 0; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) // Reads an extra integer which is zero'd uint32x4_t V = vld1q_u32_ex( pSource, 128 ); return vsetq_lane_u32( 0, V, 3 ); #elif defined(_XM_SSE_INTRINSICS_) // Reads an extra integer which is zero'd __m128i V = _mm_load_si128( reinterpret_cast(pSource) ); V = _mm_and_si128( V, g_XMMask3 ); return _mm_castsi128_ps(V); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadFloat3 ( const XMFLOAT3* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = pSource->x; V.vector4_f32[1] = pSource->y; V.vector4_f32[2] = pSource->z; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x2_t x = vld1_f32( reinterpret_cast(pSource) ); float32x2_t zero = vdup_n_f32(0); float32x2_t y = vld1_lane_f32( reinterpret_cast(pSource)+2, zero, 0 ); return vcombine_f32( x, y ); #elif defined(_XM_SSE_INTRINSICS_) __m128 x = _mm_load_ss( &pSource->x ); __m128 y = _mm_load_ss( &pSource->y ); __m128 z = _mm_load_ss( &pSource->z ); __m128 xy = _mm_unpacklo_ps( x, y ); return _mm_movelh_ps( xy, z ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadFloat3A ( const XMFLOAT3A* pSource ) { assert(pSource); assert(((uintptr_t)pSource & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = pSource->x; V.vector4_f32[1] = pSource->y; V.vector4_f32[2] = pSource->z; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) // Reads an extra float which is zero'd float32x4_t V = vld1q_f32_ex( reinterpret_cast(pSource), 128 ); return vsetq_lane_f32( 0, V, 3 ); #elif defined(_XM_SSE_INTRINSICS_) // Reads an extra float which is zero'd __m128 V = _mm_load_ps( &pSource->x ); return _mm_and_ps( V, g_XMMask3 ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadSInt3 ( const XMINT3* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = (float)pSource->x; V.vector4_f32[1] = (float)pSource->y; V.vector4_f32[2] = (float)pSource->z; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) int32x2_t x = vld1_s32( reinterpret_cast(pSource) ); int32x2_t zero = vdup_n_s32(0); int32x2_t y = vld1_lane_s32( reinterpret_cast(pSource)+2, zero, 0 ); int32x4_t v = vcombine_s32( x, y ); return vcvtq_f32_s32( v ); #elif defined(_XM_SSE_INTRINSICS_) __m128 x = _mm_load_ss( reinterpret_cast(&pSource->x) ); __m128 y = _mm_load_ss( reinterpret_cast(&pSource->y) ); __m128 z = _mm_load_ss( reinterpret_cast(&pSource->z) ); __m128 xy = _mm_unpacklo_ps( x, y ); __m128 V = _mm_movelh_ps( xy, z ); return _mm_cvtepi32_ps(_mm_castps_si128(V)); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadUInt3 ( const XMUINT3* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = (float)pSource->x; V.vector4_f32[1] = (float)pSource->y; V.vector4_f32[2] = (float)pSource->z; V.vector4_f32[3] = 0.f; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t x = vld1_u32( reinterpret_cast(pSource) ); uint32x2_t zero = vdup_n_u32(0); uint32x2_t y = vld1_lane_u32( reinterpret_cast(pSource)+2, zero, 0 ); uint32x4_t v = vcombine_u32( x, y ); return vcvtq_f32_u32( v ); #elif defined(_XM_SSE_INTRINSICS_) __m128 x = _mm_load_ss( reinterpret_cast(&pSource->x) ); __m128 y = _mm_load_ss( reinterpret_cast(&pSource->y) ); __m128 z = _mm_load_ss( reinterpret_cast(&pSource->z) ); __m128 xy = _mm_unpacklo_ps( x, y ); __m128 V = _mm_movelh_ps( xy, z ); // For the values that are higher than 0x7FFFFFFF, a fixup is needed // Determine which ones need the fix. XMVECTOR vMask = _mm_and_ps(V,g_XMNegativeZero); // Force all values positive XMVECTOR vResult = _mm_xor_ps(V,vMask); // Convert to floats vResult = _mm_cvtepi32_ps(_mm_castps_si128(vResult)); // Convert 0x80000000 -> 0xFFFFFFFF __m128i iMask = _mm_srai_epi32(_mm_castps_si128(vMask),31); // For only the ones that are too big, add the fixup vMask = _mm_and_ps(_mm_castsi128_ps(iMask),g_XMFixUnsigned); vResult = _mm_add_ps(vResult,vMask); return vResult; #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadInt4 ( const uint32_t* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_u32[0] = pSource[0]; V.vector4_u32[1] = pSource[1]; V.vector4_u32[2] = pSource[2]; V.vector4_u32[3] = pSource[3]; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) return vld1q_u32( pSource ); #elif defined(_XM_SSE_INTRINSICS_) __m128i V = _mm_loadu_si128( reinterpret_cast(pSource) ); return _mm_castsi128_ps(V); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadInt4A ( const uint32_t* pSource ) { assert(pSource); assert(((uintptr_t)pSource & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_u32[0] = pSource[0]; V.vector4_u32[1] = pSource[1]; V.vector4_u32[2] = pSource[2]; V.vector4_u32[3] = pSource[3]; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) return vld1q_u32_ex( pSource, 128 ); #elif defined(_XM_SSE_INTRINSICS_) __m128i V = _mm_load_si128( reinterpret_cast(pSource) ); return _mm_castsi128_ps(V); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadFloat4 ( const XMFLOAT4* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = pSource->x; V.vector4_f32[1] = pSource->y; V.vector4_f32[2] = pSource->z; V.vector4_f32[3] = pSource->w; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) return vld1q_f32( reinterpret_cast(pSource) ); #elif defined(_XM_SSE_INTRINSICS_) return _mm_loadu_ps( &pSource->x ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadFloat4A ( const XMFLOAT4A* pSource ) { assert(pSource); assert(((uintptr_t)pSource & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = pSource->x; V.vector4_f32[1] = pSource->y; V.vector4_f32[2] = pSource->z; V.vector4_f32[3] = pSource->w; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) return vld1q_f32_ex( reinterpret_cast(pSource), 128 ); #elif defined(_XM_SSE_INTRINSICS_) return _mm_load_ps( &pSource->x ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadSInt4 ( const XMINT4* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = (float)pSource->x; V.vector4_f32[1] = (float)pSource->y; V.vector4_f32[2] = (float)pSource->z; V.vector4_f32[3] = (float)pSource->w; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) int32x4_t v = vld1q_s32( reinterpret_cast(pSource) ); return vcvtq_f32_s32( v ); #elif defined(_XM_SSE_INTRINSICS_) __m128i V = _mm_loadu_si128( reinterpret_cast(pSource) ); return _mm_cvtepi32_ps(V); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMVECTOR XM_CALLCONV XMLoadUInt4 ( const XMUINT4* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMVECTOR V; V.vector4_f32[0] = (float)pSource->x; V.vector4_f32[1] = (float)pSource->y; V.vector4_f32[2] = (float)pSource->z; V.vector4_f32[3] = (float)pSource->w; return V; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x4_t v = vld1q_u32( reinterpret_cast(pSource) ); return vcvtq_f32_u32( v ); #elif defined(_XM_SSE_INTRINSICS_) __m128i V = _mm_loadu_si128( reinterpret_cast(pSource) ); // For the values that are higher than 0x7FFFFFFF, a fixup is needed // Determine which ones need the fix. XMVECTOR vMask = _mm_and_ps(_mm_castsi128_ps(V),g_XMNegativeZero); // Force all values positive XMVECTOR vResult = _mm_xor_ps(_mm_castsi128_ps(V),vMask); // Convert to floats vResult = _mm_cvtepi32_ps(_mm_castps_si128(vResult)); // Convert 0x80000000 -> 0xFFFFFFFF __m128i iMask = _mm_srai_epi32(_mm_castps_si128(vMask),31); // For only the ones that are too big, add the fixup vMask = _mm_and_ps(_mm_castsi128_ps(iMask),g_XMFixUnsigned); vResult = _mm_add_ps(vResult,vMask); return vResult; #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMMATRIX XM_CALLCONV XMLoadFloat3x3 ( const XMFLOAT3X3* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMMATRIX M; M.r[0].vector4_f32[0] = pSource->m[0][0]; M.r[0].vector4_f32[1] = pSource->m[0][1]; M.r[0].vector4_f32[2] = pSource->m[0][2]; M.r[0].vector4_f32[3] = 0.0f; M.r[1].vector4_f32[0] = pSource->m[1][0]; M.r[1].vector4_f32[1] = pSource->m[1][1]; M.r[1].vector4_f32[2] = pSource->m[1][2]; M.r[1].vector4_f32[3] = 0.0f; M.r[2].vector4_f32[0] = pSource->m[2][0]; M.r[2].vector4_f32[1] = pSource->m[2][1]; M.r[2].vector4_f32[2] = pSource->m[2][2]; M.r[2].vector4_f32[3] = 0.0f; M.r[3].vector4_f32[0] = 0.0f; M.r[3].vector4_f32[1] = 0.0f; M.r[3].vector4_f32[2] = 0.0f; M.r[3].vector4_f32[3] = 1.0f; return M; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t v0 = vld1q_f32( &pSource->m[0][0] ); float32x4_t v1 = vld1q_f32( &pSource->m[1][1] ); float32x2_t v2 = vcreate_f32( (uint64_t)*(const uint32_t*)&pSource->m[2][2] ); float32x4_t T = vextq_f32( v0, v1, 3 ); XMMATRIX M; M.r[0] = vandq_u32( v0, g_XMMask3 ); M.r[1] = vandq_u32( T, g_XMMask3 ); M.r[2] = vcombine_f32( vget_high_f32(v1), v2 ); M.r[3] = g_XMIdentityR3; return M; #elif defined(_XM_SSE_INTRINSICS_) __m128 Z = _mm_setzero_ps(); __m128 V1 = _mm_loadu_ps( &pSource->m[0][0] ); __m128 V2 = _mm_loadu_ps( &pSource->m[1][1] ); __m128 V3 = _mm_load_ss( &pSource->m[2][2] ); __m128 T1 = _mm_unpackhi_ps( V1, Z ); __m128 T2 = _mm_unpacklo_ps( V2, Z ); __m128 T3 = _mm_shuffle_ps( V3, T2, _MM_SHUFFLE( 0, 1, 0, 0 ) ); __m128 T4 = _mm_movehl_ps( T2, T3 ); __m128 T5 = _mm_movehl_ps( Z, T1 ); XMMATRIX M; M.r[0] = _mm_movelh_ps( V1, T1 ); M.r[1] = _mm_add_ps( T4, T5 ); M.r[2] = _mm_shuffle_ps( V2, V3, _MM_SHUFFLE(1, 0, 3, 2) ); M.r[3] = g_XMIdentityR3; return M; #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMMATRIX XM_CALLCONV XMLoadFloat4x3 ( const XMFLOAT4X3* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMMATRIX M; M.r[0].vector4_f32[0] = pSource->m[0][0]; M.r[0].vector4_f32[1] = pSource->m[0][1]; M.r[0].vector4_f32[2] = pSource->m[0][2]; M.r[0].vector4_f32[3] = 0.0f; M.r[1].vector4_f32[0] = pSource->m[1][0]; M.r[1].vector4_f32[1] = pSource->m[1][1]; M.r[1].vector4_f32[2] = pSource->m[1][2]; M.r[1].vector4_f32[3] = 0.0f; M.r[2].vector4_f32[0] = pSource->m[2][0]; M.r[2].vector4_f32[1] = pSource->m[2][1]; M.r[2].vector4_f32[2] = pSource->m[2][2]; M.r[2].vector4_f32[3] = 0.0f; M.r[3].vector4_f32[0] = pSource->m[3][0]; M.r[3].vector4_f32[1] = pSource->m[3][1]; M.r[3].vector4_f32[2] = pSource->m[3][2]; M.r[3].vector4_f32[3] = 1.0f; return M; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t v0 = vld1q_f32( &pSource->m[0][0] ); float32x4_t v1 = vld1q_f32( &pSource->m[1][1] ); float32x4_t v2 = vld1q_f32( &pSource->m[2][2] ); float32x4_t T1 = vextq_f32( v0, v1, 3 ); float32x4_t T2 = vcombine_f32( vget_high_f32(v1), vget_low_f32(v2) ); float32x4_t T3 = vextq_f32( v2, v2, 1 ); XMMATRIX M; M.r[0] = vandq_u32( v0, g_XMMask3 ); M.r[1] = vandq_u32( T1, g_XMMask3 ); M.r[2] = vandq_u32( T2, g_XMMask3 ); M.r[3] = vsetq_lane_f32( 1.f, T3, 3 ); return M; #elif defined(_XM_SSE_INTRINSICS_) // Use unaligned load instructions to // load the 12 floats // vTemp1 = x1,y1,z1,x2 XMVECTOR vTemp1 = _mm_loadu_ps(&pSource->m[0][0]); // vTemp2 = y2,z2,x3,y3 XMVECTOR vTemp2 = _mm_loadu_ps(&pSource->m[1][1]); // vTemp4 = z3,x4,y4,z4 XMVECTOR vTemp4 = _mm_loadu_ps(&pSource->m[2][2]); // vTemp3 = x3,y3,z3,z3 XMVECTOR vTemp3 = _mm_shuffle_ps(vTemp2,vTemp4,_MM_SHUFFLE(0,0,3,2)); // vTemp2 = y2,z2,x2,x2 vTemp2 = _mm_shuffle_ps(vTemp2,vTemp1,_MM_SHUFFLE(3,3,1,0)); // vTemp2 = x2,y2,z2,z2 vTemp2 = XM_PERMUTE_PS(vTemp2,_MM_SHUFFLE(1,1,0,2)); // vTemp1 = x1,y1,z1,0 vTemp1 = _mm_and_ps(vTemp1,g_XMMask3); // vTemp2 = x2,y2,z2,0 vTemp2 = _mm_and_ps(vTemp2,g_XMMask3); // vTemp3 = x3,y3,z3,0 vTemp3 = _mm_and_ps(vTemp3,g_XMMask3); // vTemp4i = x4,y4,z4,0 __m128i vTemp4i = _mm_srli_si128(_mm_castps_si128(vTemp4),32/8); // vTemp4i = x4,y4,z4,1.0f vTemp4i = _mm_or_si128(vTemp4i,g_XMIdentityR3); XMMATRIX M(vTemp1, vTemp2, vTemp3, _mm_castsi128_ps(vTemp4i)); return M; #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMMATRIX XM_CALLCONV XMLoadFloat4x3A ( const XMFLOAT4X3A* pSource ) { assert(pSource); assert(((uintptr_t)pSource & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) XMMATRIX M; M.r[0].vector4_f32[0] = pSource->m[0][0]; M.r[0].vector4_f32[1] = pSource->m[0][1]; M.r[0].vector4_f32[2] = pSource->m[0][2]; M.r[0].vector4_f32[3] = 0.0f; M.r[1].vector4_f32[0] = pSource->m[1][0]; M.r[1].vector4_f32[1] = pSource->m[1][1]; M.r[1].vector4_f32[2] = pSource->m[1][2]; M.r[1].vector4_f32[3] = 0.0f; M.r[2].vector4_f32[0] = pSource->m[2][0]; M.r[2].vector4_f32[1] = pSource->m[2][1]; M.r[2].vector4_f32[2] = pSource->m[2][2]; M.r[2].vector4_f32[3] = 0.0f; M.r[3].vector4_f32[0] = pSource->m[3][0]; M.r[3].vector4_f32[1] = pSource->m[3][1]; M.r[3].vector4_f32[2] = pSource->m[3][2]; M.r[3].vector4_f32[3] = 1.0f; return M; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t v0 = vld1q_f32_ex( &pSource->m[0][0], 128 ); float32x4_t v1 = vld1q_f32_ex( &pSource->m[1][1], 128 ); float32x4_t v2 = vld1q_f32_ex( &pSource->m[2][2], 128 ); float32x4_t T1 = vextq_f32( v0, v1, 3 ); float32x4_t T2 = vcombine_f32( vget_high_f32(v1), vget_low_f32(v2) ); float32x4_t T3 = vextq_f32( v2, v2, 1 ); XMMATRIX M; M.r[0] = vandq_u32( v0, g_XMMask3 ); M.r[1] = vandq_u32( T1, g_XMMask3 ); M.r[2] = vandq_u32( T2, g_XMMask3 ); M.r[3] = vsetq_lane_f32( 1.f, T3, 3 ); return M; #elif defined(_XM_SSE_INTRINSICS_) // Use aligned load instructions to // load the 12 floats // vTemp1 = x1,y1,z1,x2 XMVECTOR vTemp1 = _mm_load_ps(&pSource->m[0][0]); // vTemp2 = y2,z2,x3,y3 XMVECTOR vTemp2 = _mm_load_ps(&pSource->m[1][1]); // vTemp4 = z3,x4,y4,z4 XMVECTOR vTemp4 = _mm_load_ps(&pSource->m[2][2]); // vTemp3 = x3,y3,z3,z3 XMVECTOR vTemp3 = _mm_shuffle_ps(vTemp2,vTemp4,_MM_SHUFFLE(0,0,3,2)); // vTemp2 = y2,z2,x2,x2 vTemp2 = _mm_shuffle_ps(vTemp2,vTemp1,_MM_SHUFFLE(3,3,1,0)); // vTemp2 = x2,y2,z2,z2 vTemp2 = XM_PERMUTE_PS(vTemp2,_MM_SHUFFLE(1,1,0,2)); // vTemp1 = x1,y1,z1,0 vTemp1 = _mm_and_ps(vTemp1,g_XMMask3); // vTemp2 = x2,y2,z2,0 vTemp2 = _mm_and_ps(vTemp2,g_XMMask3); // vTemp3 = x3,y3,z3,0 vTemp3 = _mm_and_ps(vTemp3,g_XMMask3); // vTemp4i = x4,y4,z4,0 __m128i vTemp4i = _mm_srli_si128(_mm_castps_si128(vTemp4),32/8); // vTemp4i = x4,y4,z4,1.0f vTemp4i = _mm_or_si128(vTemp4i,g_XMIdentityR3); XMMATRIX M(vTemp1, vTemp2, vTemp3, _mm_castsi128_ps(vTemp4i)); return M; #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMMATRIX XM_CALLCONV XMLoadFloat4x4 ( const XMFLOAT4X4* pSource ) { assert(pSource); #if defined(_XM_NO_INTRINSICS_) XMMATRIX M; M.r[0].vector4_f32[0] = pSource->m[0][0]; M.r[0].vector4_f32[1] = pSource->m[0][1]; M.r[0].vector4_f32[2] = pSource->m[0][2]; M.r[0].vector4_f32[3] = pSource->m[0][3]; M.r[1].vector4_f32[0] = pSource->m[1][0]; M.r[1].vector4_f32[1] = pSource->m[1][1]; M.r[1].vector4_f32[2] = pSource->m[1][2]; M.r[1].vector4_f32[3] = pSource->m[1][3]; M.r[2].vector4_f32[0] = pSource->m[2][0]; M.r[2].vector4_f32[1] = pSource->m[2][1]; M.r[2].vector4_f32[2] = pSource->m[2][2]; M.r[2].vector4_f32[3] = pSource->m[2][3]; M.r[3].vector4_f32[0] = pSource->m[3][0]; M.r[3].vector4_f32[1] = pSource->m[3][1]; M.r[3].vector4_f32[2] = pSource->m[3][2]; M.r[3].vector4_f32[3] = pSource->m[3][3]; return M; #elif defined(_XM_ARM_NEON_INTRINSICS_) XMMATRIX M; M.r[0] = vld1q_f32( reinterpret_cast(&pSource->_11) ); M.r[1] = vld1q_f32( reinterpret_cast(&pSource->_21) ); M.r[2] = vld1q_f32( reinterpret_cast(&pSource->_31) ); M.r[3] = vld1q_f32( reinterpret_cast(&pSource->_41) ); return M; #elif defined(_XM_SSE_INTRINSICS_) XMMATRIX M; M.r[0] = _mm_loadu_ps( &pSource->_11 ); M.r[1] = _mm_loadu_ps( &pSource->_21 ); M.r[2] = _mm_loadu_ps( &pSource->_31 ); M.r[3] = _mm_loadu_ps( &pSource->_41 ); return M; #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline XMMATRIX XM_CALLCONV XMLoadFloat4x4A ( const XMFLOAT4X4A* pSource ) { assert(pSource); assert(((uintptr_t)pSource & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) XMMATRIX M; M.r[0].vector4_f32[0] = pSource->m[0][0]; M.r[0].vector4_f32[1] = pSource->m[0][1]; M.r[0].vector4_f32[2] = pSource->m[0][2]; M.r[0].vector4_f32[3] = pSource->m[0][3]; M.r[1].vector4_f32[0] = pSource->m[1][0]; M.r[1].vector4_f32[1] = pSource->m[1][1]; M.r[1].vector4_f32[2] = pSource->m[1][2]; M.r[1].vector4_f32[3] = pSource->m[1][3]; M.r[2].vector4_f32[0] = pSource->m[2][0]; M.r[2].vector4_f32[1] = pSource->m[2][1]; M.r[2].vector4_f32[2] = pSource->m[2][2]; M.r[2].vector4_f32[3] = pSource->m[2][3]; M.r[3].vector4_f32[0] = pSource->m[3][0]; M.r[3].vector4_f32[1] = pSource->m[3][1]; M.r[3].vector4_f32[2] = pSource->m[3][2]; M.r[3].vector4_f32[3] = pSource->m[3][3]; return M; #elif defined(_XM_ARM_NEON_INTRINSICS_) XMMATRIX M; M.r[0] = vld1q_f32_ex( reinterpret_cast(&pSource->_11), 128 ); M.r[1] = vld1q_f32_ex( reinterpret_cast(&pSource->_21), 128 ); M.r[2] = vld1q_f32_ex( reinterpret_cast(&pSource->_31), 128 ); M.r[3] = vld1q_f32_ex( reinterpret_cast(&pSource->_41), 128 ); return M; #elif defined(_XM_SSE_INTRINSICS_) XMMATRIX M; M.r[0] = _mm_load_ps( &pSource->_11 ); M.r[1] = _mm_load_ps( &pSource->_21 ); M.r[2] = _mm_load_ps( &pSource->_31 ); M.r[3] = _mm_load_ps( &pSource->_41 ); return M; #endif } /**************************************************************************** * * Vector and matrix store operations * ****************************************************************************/ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreInt ( uint32_t* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) *pDestination = XMVectorGetIntX( V ); #elif defined(_XM_ARM_NEON_INTRINSICS_) vst1q_lane_u32( pDestination, *reinterpret_cast(&V), 0 ); #elif defined(_XM_SSE_INTRINSICS_) _mm_store_ss( reinterpret_cast(pDestination), V ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat ( float* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) *pDestination = XMVectorGetX( V ); #elif defined(_XM_ARM_NEON_INTRINSICS_) vst1q_lane_f32( pDestination, V, 0 ); #elif defined(_XM_SSE_INTRINSICS_) _mm_store_ss( pDestination, V ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreInt2 ( uint32_t* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination[0] = V.vector4_u32[0]; pDestination[1] = V.vector4_u32[1]; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t VL = vget_low_u32(V); vst1_u32( pDestination, VL ); #elif defined(_XM_SSE_INTRINSICS_) XMVECTOR T = XM_PERMUTE_PS( V, _MM_SHUFFLE( 1, 1, 1, 1 ) ); _mm_store_ss( reinterpret_cast(&pDestination[0]), V ); _mm_store_ss( reinterpret_cast(&pDestination[1]), T ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreInt2A ( uint32_t* pDestination, FXMVECTOR V ) { assert(pDestination); assert(((uintptr_t)pDestination & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) pDestination[0] = V.vector4_u32[0]; pDestination[1] = V.vector4_u32[1]; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t VL = vget_low_u32(V); vst1_u32_ex( pDestination, VL, 64 ); #elif defined(_XM_SSE_INTRINSICS_) _mm_storel_epi64( reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(V) ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat2 ( XMFLOAT2* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = V.vector4_f32[0]; pDestination->y = V.vector4_f32[1]; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x2_t VL = vget_low_f32(V); vst1_f32( reinterpret_cast(pDestination), VL ); #elif defined(_XM_SSE_INTRINSICS_) XMVECTOR T = XM_PERMUTE_PS( V, _MM_SHUFFLE( 1, 1, 1, 1 ) ); _mm_store_ss( &pDestination->x, V ); _mm_store_ss( &pDestination->y, T ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat2A ( XMFLOAT2A* pDestination, FXMVECTOR V ) { assert(pDestination); assert(((uintptr_t)pDestination & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) pDestination->x = V.vector4_f32[0]; pDestination->y = V.vector4_f32[1]; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x2_t VL = vget_low_f32(V); vst1_f32_ex( reinterpret_cast(pDestination), VL, 64 ); #elif defined(_XM_SSE_INTRINSICS_) _mm_storel_epi64( reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(V) ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreSInt2 ( XMINT2* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = (int32_t)V.vector4_f32[0]; pDestination->y = (int32_t)V.vector4_f32[1]; #elif defined(_XM_ARM_NEON_INTRINSICS_) int32x2_t v = vget_low_s32(V); v = vcvt_s32_f32( v ); vst1_s32( reinterpret_cast(pDestination), v ); #elif defined(_XM_SSE_INTRINSICS_) // In case of positive overflow, detect it XMVECTOR vOverflow = _mm_cmpgt_ps(V,g_XMMaxInt); // Float to int conversion __m128i vResulti = _mm_cvttps_epi32(V); // If there was positive overflow, set to 0x7FFFFFFF XMVECTOR vResult = _mm_and_ps(vOverflow,g_XMAbsMask); vOverflow = _mm_andnot_ps(vOverflow,_mm_castsi128_ps(vResulti)); vOverflow = _mm_or_ps(vOverflow,vResult); // Write two ints XMVECTOR T = XM_PERMUTE_PS( vOverflow, _MM_SHUFFLE( 1, 1, 1, 1 ) ); _mm_store_ss( reinterpret_cast(&pDestination->x), vOverflow ); _mm_store_ss( reinterpret_cast(&pDestination->y), T ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreUInt2 ( XMUINT2* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = (uint32_t)V.vector4_f32[0]; pDestination->y = (uint32_t)V.vector4_f32[1]; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x2_t v = vget_low_f32(V); uint32x2_t iv = vcvt_u32_f32( v ); vst1_u32( reinterpret_cast(pDestination), iv ); #elif defined(_XM_SSE_INTRINSICS_) // Clamp to >=0 XMVECTOR vResult = _mm_max_ps(V,g_XMZero); // Any numbers that are too big, set to 0xFFFFFFFFU XMVECTOR vOverflow = _mm_cmpgt_ps(vResult,g_XMMaxUInt); XMVECTOR vValue = g_XMUnsignedFix; // Too large for a signed integer? XMVECTOR vMask = _mm_cmpge_ps(vResult,vValue); // Zero for number's lower than 0x80000000, 32768.0f*65536.0f otherwise vValue = _mm_and_ps(vValue,vMask); // Perform fixup only on numbers too large (Keeps low bit precision) vResult = _mm_sub_ps(vResult,vValue); __m128i vResulti = _mm_cvttps_epi32(vResult); // Convert from signed to unsigned pnly if greater than 0x80000000 vMask = _mm_and_ps(vMask,g_XMNegativeZero); vResult = _mm_xor_ps(_mm_castsi128_ps(vResulti),vMask); // On those that are too large, set to 0xFFFFFFFF vResult = _mm_or_ps(vResult,vOverflow); // Write two uints XMVECTOR T = XM_PERMUTE_PS( vResult, _MM_SHUFFLE( 1, 1, 1, 1 ) ); _mm_store_ss( reinterpret_cast(&pDestination->x), vResult ); _mm_store_ss( reinterpret_cast(&pDestination->y), T ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreInt3 ( uint32_t* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination[0] = V.vector4_u32[0]; pDestination[1] = V.vector4_u32[1]; pDestination[2] = V.vector4_u32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t VL = vget_low_u32(V); vst1_u32( pDestination, VL ); vst1q_lane_u32( pDestination+2, *reinterpret_cast(&V), 2 ); #elif defined(_XM_SSE_INTRINSICS_) XMVECTOR T1 = XM_PERMUTE_PS(V,_MM_SHUFFLE(1,1,1,1)); XMVECTOR T2 = XM_PERMUTE_PS(V,_MM_SHUFFLE(2,2,2,2)); _mm_store_ss( reinterpret_cast(pDestination), V ); _mm_store_ss( reinterpret_cast(&pDestination[1]), T1 ); _mm_store_ss( reinterpret_cast(&pDestination[2]), T2 ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreInt3A ( uint32_t* pDestination, FXMVECTOR V ) { assert(pDestination); assert(((uintptr_t)pDestination & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) pDestination[0] = V.vector4_u32[0]; pDestination[1] = V.vector4_u32[1]; pDestination[2] = V.vector4_u32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x2_t VL = vget_low_u32(V); vst1_u32_ex( pDestination, VL, 64 ); vst1q_lane_u32( pDestination+2, *reinterpret_cast(&V), 2 ); #elif defined(_XM_SSE_INTRINSICS_) XMVECTOR T = XM_PERMUTE_PS(V,_MM_SHUFFLE(2,2,2,2)); _mm_storel_epi64( reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(V) ); _mm_store_ss( reinterpret_cast(&pDestination[2]), T ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat3 ( XMFLOAT3* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = V.vector4_f32[0]; pDestination->y = V.vector4_f32[1]; pDestination->z = V.vector4_f32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x2_t VL = vget_low_f32(V); vst1_f32( reinterpret_cast(pDestination), VL ); vst1q_lane_f32( reinterpret_cast(pDestination)+2, V, 2 ); #elif defined(_XM_SSE_INTRINSICS_) XMVECTOR T1 = XM_PERMUTE_PS(V,_MM_SHUFFLE(1,1,1,1)); XMVECTOR T2 = XM_PERMUTE_PS(V,_MM_SHUFFLE(2,2,2,2)); _mm_store_ss( &pDestination->x, V ); _mm_store_ss( &pDestination->y, T1 ); _mm_store_ss( &pDestination->z, T2 ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat3A ( XMFLOAT3A* pDestination, FXMVECTOR V ) { assert(pDestination); assert(((uintptr_t)pDestination & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) pDestination->x = V.vector4_f32[0]; pDestination->y = V.vector4_f32[1]; pDestination->z = V.vector4_f32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x2_t VL = vget_low_f32(V); vst1_f32_ex( reinterpret_cast(pDestination), VL, 64 ); vst1q_lane_f32( reinterpret_cast(pDestination)+2, V, 2 ); #elif defined(_XM_SSE_INTRINSICS_) XMVECTOR T = XM_PERMUTE_PS(V,_MM_SHUFFLE(2,2,2,2)); _mm_storel_epi64( reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(V) ); _mm_store_ss( &pDestination->z, T ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreSInt3 ( XMINT3* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = (int32_t)V.vector4_f32[0]; pDestination->y = (int32_t)V.vector4_f32[1]; pDestination->z = (int32_t)V.vector4_f32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) int32x4_t v = vcvtq_s32_f32(V); int32x2_t vL = vget_low_s32(v); vst1_s32( reinterpret_cast(pDestination), vL ); vst1q_lane_s32( reinterpret_cast(pDestination)+2, v, 2 ); #elif defined(_XM_SSE_INTRINSICS_) // In case of positive overflow, detect it XMVECTOR vOverflow = _mm_cmpgt_ps(V,g_XMMaxInt); // Float to int conversion __m128i vResulti = _mm_cvttps_epi32(V); // If there was positive overflow, set to 0x7FFFFFFF XMVECTOR vResult = _mm_and_ps(vOverflow,g_XMAbsMask); vOverflow = _mm_andnot_ps(vOverflow,_mm_castsi128_ps(vResulti)); vOverflow = _mm_or_ps(vOverflow,vResult); // Write 3 uints XMVECTOR T1 = XM_PERMUTE_PS(vOverflow,_MM_SHUFFLE(1,1,1,1)); XMVECTOR T2 = XM_PERMUTE_PS(vOverflow,_MM_SHUFFLE(2,2,2,2)); _mm_store_ss( reinterpret_cast(&pDestination->x), vOverflow ); _mm_store_ss( reinterpret_cast(&pDestination->y), T1 ); _mm_store_ss( reinterpret_cast(&pDestination->z), T2 ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreUInt3 ( XMUINT3* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = (uint32_t)V.vector4_f32[0]; pDestination->y = (uint32_t)V.vector4_f32[1]; pDestination->z = (uint32_t)V.vector4_f32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x4_t v = vcvtq_u32_f32(V); uint32x2_t vL = vget_low_u32(v); vst1_u32( reinterpret_cast(pDestination), vL ); vst1q_lane_u32( reinterpret_cast(pDestination)+2, v, 2 ); #elif defined(_XM_SSE_INTRINSICS_) // Clamp to >=0 XMVECTOR vResult = _mm_max_ps(V,g_XMZero); // Any numbers that are too big, set to 0xFFFFFFFFU XMVECTOR vOverflow = _mm_cmpgt_ps(vResult,g_XMMaxUInt); XMVECTOR vValue = g_XMUnsignedFix; // Too large for a signed integer? XMVECTOR vMask = _mm_cmpge_ps(vResult,vValue); // Zero for number's lower than 0x80000000, 32768.0f*65536.0f otherwise vValue = _mm_and_ps(vValue,vMask); // Perform fixup only on numbers too large (Keeps low bit precision) vResult = _mm_sub_ps(vResult,vValue); __m128i vResulti = _mm_cvttps_epi32(vResult); // Convert from signed to unsigned pnly if greater than 0x80000000 vMask = _mm_and_ps(vMask,g_XMNegativeZero); vResult = _mm_xor_ps(_mm_castsi128_ps(vResulti),vMask); // On those that are too large, set to 0xFFFFFFFF vResult = _mm_or_ps(vResult,vOverflow); // Write 3 uints XMVECTOR T1 = XM_PERMUTE_PS(vResult,_MM_SHUFFLE(1,1,1,1)); XMVECTOR T2 = XM_PERMUTE_PS(vResult,_MM_SHUFFLE(2,2,2,2)); _mm_store_ss( reinterpret_cast(&pDestination->x), vResult ); _mm_store_ss( reinterpret_cast(&pDestination->y), T1 ); _mm_store_ss( reinterpret_cast(&pDestination->z), T2 ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreInt4 ( uint32_t* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination[0] = V.vector4_u32[0]; pDestination[1] = V.vector4_u32[1]; pDestination[2] = V.vector4_u32[2]; pDestination[3] = V.vector4_u32[3]; #elif defined(_XM_ARM_NEON_INTRINSICS_) vst1q_u32( pDestination, V ); #elif defined(_XM_SSE_INTRINSICS_) _mm_storeu_si128( reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(V) ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreInt4A ( uint32_t* pDestination, FXMVECTOR V ) { assert(pDestination); assert(((uintptr_t)pDestination & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) pDestination[0] = V.vector4_u32[0]; pDestination[1] = V.vector4_u32[1]; pDestination[2] = V.vector4_u32[2]; pDestination[3] = V.vector4_u32[3]; #elif defined(_XM_ARM_NEON_INTRINSICS_) vst1q_u32_ex( pDestination, V, 128 ); #elif defined(_XM_SSE_INTRINSICS_) _mm_store_si128( reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(V) ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat4 ( XMFLOAT4* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = V.vector4_f32[0]; pDestination->y = V.vector4_f32[1]; pDestination->z = V.vector4_f32[2]; pDestination->w = V.vector4_f32[3]; #elif defined(_XM_ARM_NEON_INTRINSICS_) vst1q_f32( reinterpret_cast(pDestination), V ); #elif defined(_XM_SSE_INTRINSICS_) _mm_storeu_ps( &pDestination->x, V ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat4A ( XMFLOAT4A* pDestination, FXMVECTOR V ) { assert(pDestination); assert(((uintptr_t)pDestination & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) pDestination->x = V.vector4_f32[0]; pDestination->y = V.vector4_f32[1]; pDestination->z = V.vector4_f32[2]; pDestination->w = V.vector4_f32[3]; #elif defined(_XM_ARM_NEON_INTRINSICS_) vst1q_f32_ex( reinterpret_cast(pDestination), V, 128 ); #elif defined(_XM_SSE_INTRINSICS_) _mm_store_ps( &pDestination->x, V ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreSInt4 ( XMINT4* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = (int32_t)V.vector4_f32[0]; pDestination->y = (int32_t)V.vector4_f32[1]; pDestination->z = (int32_t)V.vector4_f32[2]; pDestination->w = (int32_t)V.vector4_f32[3]; #elif defined(_XM_ARM_NEON_INTRINSICS_) int32x4_t v = vcvtq_s32_f32(V); vst1q_s32( reinterpret_cast(pDestination), v ); #elif defined(_XM_SSE_INTRINSICS_) // In case of positive overflow, detect it XMVECTOR vOverflow = _mm_cmpgt_ps(V,g_XMMaxInt); // Float to int conversion __m128i vResulti = _mm_cvttps_epi32(V); // If there was positive overflow, set to 0x7FFFFFFF XMVECTOR vResult = _mm_and_ps(vOverflow,g_XMAbsMask); vOverflow = _mm_andnot_ps(vOverflow,_mm_castsi128_ps(vResulti)); vOverflow = _mm_or_ps(vOverflow,vResult); _mm_storeu_si128( reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(vOverflow) ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreUInt4 ( XMUINT4* pDestination, FXMVECTOR V ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->x = (uint32_t)V.vector4_f32[0]; pDestination->y = (uint32_t)V.vector4_f32[1]; pDestination->z = (uint32_t)V.vector4_f32[2]; pDestination->w = (uint32_t)V.vector4_f32[3]; #elif defined(_XM_ARM_NEON_INTRINSICS_) uint32x4_t v = vcvtq_u32_f32(V); vst1q_u32( reinterpret_cast(pDestination), v ); #elif defined(_XM_SSE_INTRINSICS_) // Clamp to >=0 XMVECTOR vResult = _mm_max_ps(V,g_XMZero); // Any numbers that are too big, set to 0xFFFFFFFFU XMVECTOR vOverflow = _mm_cmpgt_ps(vResult,g_XMMaxUInt); XMVECTOR vValue = g_XMUnsignedFix; // Too large for a signed integer? XMVECTOR vMask = _mm_cmpge_ps(vResult,vValue); // Zero for number's lower than 0x80000000, 32768.0f*65536.0f otherwise vValue = _mm_and_ps(vValue,vMask); // Perform fixup only on numbers too large (Keeps low bit precision) vResult = _mm_sub_ps(vResult,vValue); __m128i vResulti = _mm_cvttps_epi32(vResult); // Convert from signed to unsigned pnly if greater than 0x80000000 vMask = _mm_and_ps(vMask,g_XMNegativeZero); vResult = _mm_xor_ps(_mm_castsi128_ps(vResulti),vMask); // On those that are too large, set to 0xFFFFFFFF vResult = _mm_or_ps(vResult,vOverflow); _mm_storeu_si128( reinterpret_cast<__m128i*>(pDestination), _mm_castps_si128(vResult) ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat3x3 ( XMFLOAT3X3* pDestination, FXMMATRIX M ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->m[0][0] = M.r[0].vector4_f32[0]; pDestination->m[0][1] = M.r[0].vector4_f32[1]; pDestination->m[0][2] = M.r[0].vector4_f32[2]; pDestination->m[1][0] = M.r[1].vector4_f32[0]; pDestination->m[1][1] = M.r[1].vector4_f32[1]; pDestination->m[1][2] = M.r[1].vector4_f32[2]; pDestination->m[2][0] = M.r[2].vector4_f32[0]; pDestination->m[2][1] = M.r[2].vector4_f32[1]; pDestination->m[2][2] = M.r[2].vector4_f32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t T1 = vextq_f32( M.r[0], M.r[1], 1 ); float32x4_t T2 = vbslq_f32( g_XMMask3, M.r[0], T1 ); vst1q_f32( &pDestination->m[0][0], T2 ); T1 = vextq_f32( M.r[1], M.r[1], 1 ); T2 = vcombine_f32( vget_low_f32(T1), vget_low_f32(M.r[2]) ); vst1q_f32( &pDestination->m[1][1], T2 ); vst1q_lane_f32( &pDestination->m[2][2], M.r[2], 2 ); #elif defined(_XM_SSE_INTRINSICS_) XMVECTOR vTemp1 = M.r[0]; XMVECTOR vTemp2 = M.r[1]; XMVECTOR vTemp3 = M.r[2]; XMVECTOR vWork = _mm_shuffle_ps(vTemp1,vTemp2,_MM_SHUFFLE(0,0,2,2)); vTemp1 = _mm_shuffle_ps(vTemp1,vWork,_MM_SHUFFLE(2,0,1,0)); _mm_storeu_ps(&pDestination->m[0][0],vTemp1); vTemp2 = _mm_shuffle_ps(vTemp2,vTemp3,_MM_SHUFFLE(1,0,2,1)); _mm_storeu_ps(&pDestination->m[1][1],vTemp2); vTemp3 = XM_PERMUTE_PS(vTemp3,_MM_SHUFFLE(2,2,2,2)); _mm_store_ss(&pDestination->m[2][2],vTemp3); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat4x3 ( XMFLOAT4X3* pDestination, FXMMATRIX M ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->m[0][0] = M.r[0].vector4_f32[0]; pDestination->m[0][1] = M.r[0].vector4_f32[1]; pDestination->m[0][2] = M.r[0].vector4_f32[2]; pDestination->m[1][0] = M.r[1].vector4_f32[0]; pDestination->m[1][1] = M.r[1].vector4_f32[1]; pDestination->m[1][2] = M.r[1].vector4_f32[2]; pDestination->m[2][0] = M.r[2].vector4_f32[0]; pDestination->m[2][1] = M.r[2].vector4_f32[1]; pDestination->m[2][2] = M.r[2].vector4_f32[2]; pDestination->m[3][0] = M.r[3].vector4_f32[0]; pDestination->m[3][1] = M.r[3].vector4_f32[1]; pDestination->m[3][2] = M.r[3].vector4_f32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t T1 = vextq_f32( M.r[0], M.r[1], 1 ); float32x4_t T2 = vbslq_f32( g_XMMask3, M.r[0], T1 ); vst1q_f32( &pDestination->m[0][0], T2 ); T1 = vextq_f32( M.r[1], M.r[1], 1 ); T2 = vcombine_f32( vget_low_f32(T1), vget_low_f32(M.r[2]) ); vst1q_f32( &pDestination->m[1][1], T2 ); T1 = vdupq_lane_f32( vget_high_f32( M.r[2] ), 0 ); T2 = vextq_f32( T1, M.r[3], 3 ); vst1q_f32( &pDestination->m[2][2], T2 ); #elif defined(_XM_SSE_INTRINSICS_) XMVECTOR vTemp1 = M.r[0]; XMVECTOR vTemp2 = M.r[1]; XMVECTOR vTemp3 = M.r[2]; XMVECTOR vTemp4 = M.r[3]; XMVECTOR vTemp2x = _mm_shuffle_ps(vTemp2,vTemp3,_MM_SHUFFLE(1,0,2,1)); vTemp2 = _mm_shuffle_ps(vTemp2,vTemp1,_MM_SHUFFLE(2,2,0,0)); vTemp1 = _mm_shuffle_ps(vTemp1,vTemp2,_MM_SHUFFLE(0,2,1,0)); vTemp3 = _mm_shuffle_ps(vTemp3,vTemp4,_MM_SHUFFLE(0,0,2,2)); vTemp3 = _mm_shuffle_ps(vTemp3,vTemp4,_MM_SHUFFLE(2,1,2,0)); _mm_storeu_ps(&pDestination->m[0][0],vTemp1); _mm_storeu_ps(&pDestination->m[1][1],vTemp2x); _mm_storeu_ps(&pDestination->m[2][2],vTemp3); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat4x3A ( XMFLOAT4X3A* pDestination, FXMMATRIX M ) { assert(pDestination); assert(((uintptr_t)pDestination & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) pDestination->m[0][0] = M.r[0].vector4_f32[0]; pDestination->m[0][1] = M.r[0].vector4_f32[1]; pDestination->m[0][2] = M.r[0].vector4_f32[2]; pDestination->m[1][0] = M.r[1].vector4_f32[0]; pDestination->m[1][1] = M.r[1].vector4_f32[1]; pDestination->m[1][2] = M.r[1].vector4_f32[2]; pDestination->m[2][0] = M.r[2].vector4_f32[0]; pDestination->m[2][1] = M.r[2].vector4_f32[1]; pDestination->m[2][2] = M.r[2].vector4_f32[2]; pDestination->m[3][0] = M.r[3].vector4_f32[0]; pDestination->m[3][1] = M.r[3].vector4_f32[1]; pDestination->m[3][2] = M.r[3].vector4_f32[2]; #elif defined(_XM_ARM_NEON_INTRINSICS_) float32x4_t T1 = vextq_f32( M.r[0], M.r[1], 1 ); float32x4_t T2 = vbslq_f32( g_XMMask3, M.r[0], T1 ); vst1q_f32_ex( &pDestination->m[0][0], T2, 128 ); T1 = vextq_f32( M.r[1], M.r[1], 1 ); T2 = vcombine_f32( vget_low_f32(T1), vget_low_f32(M.r[2]) ); vst1q_f32_ex( &pDestination->m[1][1], T2, 128 ); T1 = vdupq_lane_f32( vget_high_f32( M.r[2] ), 0 ); T2 = vextq_f32( T1, M.r[3], 3 ); vst1q_f32_ex( &pDestination->m[2][2], T2, 128 ); #elif defined(_XM_SSE_INTRINSICS_) // x1,y1,z1,w1 XMVECTOR vTemp1 = M.r[0]; // x2,y2,z2,w2 XMVECTOR vTemp2 = M.r[1]; // x3,y3,z3,w3 XMVECTOR vTemp3 = M.r[2]; // x4,y4,z4,w4 XMVECTOR vTemp4 = M.r[3]; // z1,z1,x2,y2 XMVECTOR vTemp = _mm_shuffle_ps(vTemp1,vTemp2,_MM_SHUFFLE(1,0,2,2)); // y2,z2,x3,y3 (Final) vTemp2 = _mm_shuffle_ps(vTemp2,vTemp3,_MM_SHUFFLE(1,0,2,1)); // x1,y1,z1,x2 (Final) vTemp1 = _mm_shuffle_ps(vTemp1,vTemp,_MM_SHUFFLE(2,0,1,0)); // z3,z3,x4,x4 vTemp3 = _mm_shuffle_ps(vTemp3,vTemp4,_MM_SHUFFLE(0,0,2,2)); // z3,x4,y4,z4 (Final) vTemp3 = _mm_shuffle_ps(vTemp3,vTemp4,_MM_SHUFFLE(2,1,2,0)); // Store in 3 operations _mm_store_ps(&pDestination->m[0][0],vTemp1); _mm_store_ps(&pDestination->m[1][1],vTemp2); _mm_store_ps(&pDestination->m[2][2],vTemp3); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat4x4 ( XMFLOAT4X4* pDestination, FXMMATRIX M ) { assert(pDestination); #if defined(_XM_NO_INTRINSICS_) pDestination->m[0][0] = M.r[0].vector4_f32[0]; pDestination->m[0][1] = M.r[0].vector4_f32[1]; pDestination->m[0][2] = M.r[0].vector4_f32[2]; pDestination->m[0][3] = M.r[0].vector4_f32[3]; pDestination->m[1][0] = M.r[1].vector4_f32[0]; pDestination->m[1][1] = M.r[1].vector4_f32[1]; pDestination->m[1][2] = M.r[1].vector4_f32[2]; pDestination->m[1][3] = M.r[1].vector4_f32[3]; pDestination->m[2][0] = M.r[2].vector4_f32[0]; pDestination->m[2][1] = M.r[2].vector4_f32[1]; pDestination->m[2][2] = M.r[2].vector4_f32[2]; pDestination->m[2][3] = M.r[2].vector4_f32[3]; pDestination->m[3][0] = M.r[3].vector4_f32[0]; pDestination->m[3][1] = M.r[3].vector4_f32[1]; pDestination->m[3][2] = M.r[3].vector4_f32[2]; pDestination->m[3][3] = M.r[3].vector4_f32[3]; #elif defined(_XM_ARM_NEON_INTRINSICS_) vst1q_f32( reinterpret_cast(&pDestination->_11), M.r[0] ); vst1q_f32( reinterpret_cast(&pDestination->_21), M.r[1] ); vst1q_f32( reinterpret_cast(&pDestination->_31), M.r[2] ); vst1q_f32( reinterpret_cast(&pDestination->_41), M.r[3] ); #elif defined(_XM_SSE_INTRINSICS_) _mm_storeu_ps( &pDestination->_11, M.r[0] ); _mm_storeu_ps( &pDestination->_21, M.r[1] ); _mm_storeu_ps( &pDestination->_31, M.r[2] ); _mm_storeu_ps( &pDestination->_41, M.r[3] ); #endif } //------------------------------------------------------------------------------ _Use_decl_annotations_ inline void XM_CALLCONV XMStoreFloat4x4A ( XMFLOAT4X4A* pDestination, FXMMATRIX M ) { assert(pDestination); assert(((uintptr_t)pDestination & 0xF) == 0); #if defined(_XM_NO_INTRINSICS_) pDestination->m[0][0] = M.r[0].vector4_f32[0]; pDestination->m[0][1] = M.r[0].vector4_f32[1]; pDestination->m[0][2] = M.r[0].vector4_f32[2]; pDestination->m[0][3] = M.r[0].vector4_f32[3]; pDestination->m[1][0] = M.r[1].vector4_f32[0]; pDestination->m[1][1] = M.r[1].vector4_f32[1]; pDestination->m[1][2] = M.r[1].vector4_f32[2]; pDestination->m[1][3] = M.r[1].vector4_f32[3]; pDestination->m[2][0] = M.r[2].vector4_f32[0]; pDestination->m[2][1] = M.r[2].vector4_f32[1]; pDestination->m[2][2] = M.r[2].vector4_f32[2]; pDestination->m[2][3] = M.r[2].vector4_f32[3]; pDestination->m[3][0] = M.r[3].vector4_f32[0]; pDestination->m[3][1] = M.r[3].vector4_f32[1]; pDestination->m[3][2] = M.r[3].vector4_f32[2]; pDestination->m[3][3] = M.r[3].vector4_f32[3]; #elif defined(_XM_ARM_NEON_INTRINSICS_) vst1q_f32_ex( reinterpret_cast(&pDestination->_11), M.r[0], 128 ); vst1q_f32_ex( reinterpret_cast(&pDestination->_21), M.r[1], 128 ); vst1q_f32_ex( reinterpret_cast(&pDestination->_31), M.r[2], 128 ); vst1q_f32_ex( reinterpret_cast(&pDestination->_41), M.r[3], 128 ); #elif defined(_XM_SSE_INTRINSICS_) _mm_store_ps( &pDestination->_11, M.r[0] ); _mm_store_ps( &pDestination->_21, M.r[1] ); _mm_store_ps( &pDestination->_31, M.r[2] ); _mm_store_ps( &pDestination->_41, M.r[3] ); #endif }