flycast/core/hw/sh4/sh4_mmr.cpp

868 lines
16 KiB
C++

/*
Sh4 internal register routing (P4 & 'area 7')
*/
#include <array>
#include "types.h"
#include "sh4_mmr.h"
#include "hw/mem/_vmem.h"
#include "modules/mmu.h"
#include "modules/ccn.h"
#include "modules/modules.h"
#include "sh4_cache.h"
//64bytes of sq // now on context ~
std::array<u8, OnChipRAM_SIZE> OnChipRAM;
//All registers are 4 byte aligned
std::array<RegisterStruct, 18> CCN;
std::array<RegisterStruct, 9> UBC;
std::array<RegisterStruct, 19> BSC;
std::array<RegisterStruct, 17> DMAC;
std::array<RegisterStruct, 5> CPG;
std::array<RegisterStruct, 16> RTC;
std::array<RegisterStruct, 5> INTC;
std::array<RegisterStruct, 12> TMU;
std::array<RegisterStruct, 8> SCI;
std::array<RegisterStruct, 10> SCIF;
static u32 sh4io_read_noacc(u32 addr)
{
INFO_LOG(SH4, "sh4io: Invalid read access @@ %08X", addr);
return 0;
}
static void sh4io_write_noacc(u32 addr, u32 data)
{
INFO_LOG(SH4, "sh4io: Invalid write access @@ %08X %08X", addr, data);
}
static void sh4io_write_const(u32 addr, u32 data)
{
INFO_LOG(SH4, "sh4io: Const write ignored @@ %08X <- %08X", addr, data);
}
template<class T>
void sh4_rio_reg(T& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf)
{
u32 idx=(addr&255)/4;
verify(idx < arr.size());
arr[idx].flags = flags;
if (flags == RIO_NO_ACCESS)
{
arr[idx].readFunctionAddr=&sh4io_read_noacc;
arr[idx].writeFunctionAddr=&sh4io_write_noacc;
}
else if (flags == RIO_CONST)
{
arr[idx].writeFunctionAddr=&sh4io_write_const;
}
else
{
arr[idx].data32=0;
if (flags & REG_RF)
arr[idx].readFunctionAddr=rf;
if (flags & REG_WF)
arr[idx].writeFunctionAddr=wf==0?&sh4io_write_noacc:wf;
}
}
template void sh4_rio_reg(std::array<RegisterStruct, 5>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template void sh4_rio_reg(std::array<RegisterStruct, 8>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template void sh4_rio_reg(std::array<RegisterStruct, 9>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template void sh4_rio_reg(std::array<RegisterStruct, 10>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template void sh4_rio_reg(std::array<RegisterStruct, 12>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template void sh4_rio_reg(std::array<RegisterStruct, 16>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template void sh4_rio_reg(std::array<RegisterStruct, 17>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template void sh4_rio_reg(std::array<RegisterStruct, 18>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template void sh4_rio_reg(std::array<RegisterStruct, 19>& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf);
template<u32 sz, class T>
u32 sh4_rio_read(T& regs, u32 addr)
{
u32 offset = addr&255;
#ifdef TRACE
if (offset & 3/*(size-1)*/) //4 is min align size
{
INFO_LOG(SH4, "Unaligned System Bus register read");
}
#endif
offset>>=2;
#ifdef TRACE
if (regs[offset].flags & sz)
{
#endif
if (!(regs[offset].flags & REG_RF) )
{
if (sz==4)
return regs[offset].data32;
else if (sz==2)
return regs[offset].data16;
else
return regs[offset].data8;
}
else
{
return regs[offset].readFunctionAddr(addr);
}
#ifdef TRACE
}
else
{
INFO_LOG(SH4, "ERROR [wrong size read on register]");
}
#endif
return 0;
}
template<u32 sz, class T>
void sh4_rio_write(T& regs, u32 addr, u32 data)
{
u32 offset = addr&255;
#ifdef TRACE
if (offset & 3/*(size-1)*/) //4 is min align size
{
INFO_LOG(SH4, "Unaligned System bus register write");
}
#endif
offset>>=2;
#ifdef TRACE
if (regs[offset].flags & sz)
{
#endif
if (!(regs[offset].flags & REG_WF) )
{
if (sz==4)
regs[offset].data32=data;
else if (sz==2)
regs[offset].data16=(u16)data;
else
regs[offset].data8=(u8)data;
return;
}
else
{
//printf("RSW: %08X\n",addr);
regs[offset].writeFunctionAddr(addr,data);
return;
}
#ifdef TRACE
}
else
{
INFO_LOG(SH4, "ERROR: Wrong size write on register - offset=%x, data=%x, size=%d",offset,data,sz);
}
#endif
}
//Region P4
//Read P4
template <class T>
T DYNACALL ReadMem_P4(u32 addr)
{
constexpr size_t sz = sizeof(T);
switch((addr>>24)&0xFF)
{
case 0xE0:
case 0xE1:
case 0xE2:
case 0xE3:
INFO_LOG(SH4, "Unhandled p4 read [Store queue] 0x%x", addr);
return 0;
case 0xF0:
DEBUG_LOG(SH4, "IC Address read %08x", addr);
if (sz == 4)
return icache.ReadAddressArray(addr);
else
return 0;
case 0xF1:
DEBUG_LOG(SH4, "IC Data read %08x", addr);
if (sz == 4)
return icache.ReadDataArray(addr);
else
return 0;
case 0xF2:
{
u32 entry=(addr>>8)&3;
return ITLB[entry].Address.reg_data | (ITLB[entry].Data.V<<8);
}
case 0xF3:
{
u32 entry=(addr>>8)&3;
return ITLB[entry].Data.reg_data;
}
case 0xF4:
DEBUG_LOG(SH4, "OC Address read %08x", addr);
if (sz == 4)
return ocache.ReadAddressArray(addr);
else
return 0;
case 0xF5:
DEBUG_LOG(SH4, "OC Data read %08x", addr);
if (sz == 4)
return ocache.ReadDataArray(addr);
else
return 0;
case 0xF6:
{
u32 entry=(addr>>8)&63;
u32 rv=UTLB[entry].Address.reg_data;
rv|=UTLB[entry].Data.D<<9;
rv|=UTLB[entry].Data.V<<8;
return rv;
}
case 0xF7:
{
u32 entry=(addr>>8)&63;
return UTLB[entry].Data.reg_data;
}
case 0xFF:
INFO_LOG(SH4, "Unhandled p4 read [area7] 0x%x", addr);
break;
default:
INFO_LOG(SH4, "Unhandled p4 read [Reserved] 0x%x", addr);
break;
}
return 0;
}
//Write P4
template <class T>
void DYNACALL WriteMem_P4(u32 addr,T data)
{
constexpr size_t sz = sizeof(T);
switch((addr>>24)&0xFF)
{
case 0xE0:
case 0xE1:
case 0xE2:
case 0xE3:
INFO_LOG(SH4, "Unhandled p4 Write [Store queue] 0x%x", addr);
break;
case 0xF0:
DEBUG_LOG(SH4, "IC Address write %08x = %x", addr, data);
if (sz == 4)
icache.WriteAddressArray(addr, data);
return;
case 0xF1:
DEBUG_LOG(SH4, "IC Data write %08x = %x", addr, data);
if (sz == 4)
icache.WriteDataArray(addr, data);
return;
case 0xF2:
{
u32 entry=(addr>>8)&3;
ITLB[entry].Address.reg_data=data & 0xFFFFFCFF;
ITLB[entry].Data.V=(data>>8) & 1;
ITLB_Sync(entry);
return;
}
case 0xF3:
{
u32 entry=(addr>>8)&3;
if (addr&0x800000)
{
ITLB[entry].Assistance.reg_data = data & 0xf;
}
else
{
ITLB[entry].Data.reg_data=data;
}
ITLB_Sync(entry);
return;
}
case 0xF4:
// DEBUG_LOG(SH4, "OC Address write %08x = %x", addr, data);
if (sz == 4)
ocache.WriteAddressArray(addr, data);
return;
case 0xF5:
DEBUG_LOG(SH4, "OC Data write %08x = %x", addr, data);
if (sz == 4)
ocache.WriteDataArray(addr, data);
return;
case 0xF6:
{
if (addr&0x80)
{
CCN_PTEH_type t;
t.reg_data=data;
u32 va=t.VPN<<10;
for (int i=0;i<64;i++)
{
if (mmu_match(va,UTLB[i].Address,UTLB[i].Data))
{
UTLB[i].Data.V=((u32)data>>8)&1;
UTLB[i].Data.D=((u32)data>>9)&1;
UTLB_Sync(i);
}
}
for (int i=0;i<4;i++)
{
if (mmu_match(va,ITLB[i].Address,ITLB[i].Data))
{
ITLB[i].Data.V=((u32)data>>8)&1;
ITLB[i].Data.D=((u32)data>>9)&1;
ITLB_Sync(i);
}
}
}
else
{
u32 entry=(addr>>8)&63;
UTLB[entry].Address.reg_data=data & 0xFFFFFCFF;
UTLB[entry].Data.D=(data>>9)&1;
UTLB[entry].Data.V=(data>>8)&1;
UTLB_Sync(entry);
}
return;
}
break;
case 0xF7:
{
u32 entry=(addr>>8)&63;
if (addr&0x800000)
{
UTLB[entry].Assistance.reg_data = data & 0xf;
}
else
{
UTLB[entry].Data.reg_data=data;
}
UTLB_Sync(entry);
return;
}
case 0xFF:
INFO_LOG(SH4, "Unhandled p4 Write [area7] 0x%x = %x", addr, data);
break;
default:
INFO_LOG(SH4, "Unhandled p4 Write [Reserved] 0x%x", addr);
break;
}
}
//***********
//**Area 7**
//***********
#define OUT_OF_RANGE(reg) INFO_LOG(SH4, "Out of range on register %s index %x", reg, addr)
#define A7_REG_HASH(addr) (((addr) >> 16) & 0x1FFF)
//Read P4 memory-mapped registers
template <class T>
T DYNACALL ReadMem_p4mmr(u32 addr)
{
constexpr size_t sz = sizeof(T);
/*
if (likely(addr==0xffd80024))
{
return TMU_TCNT(2);
}
else if (likely(addr==0xFFD8000C))
{
return TMU_TCNT(0);
}
else */if (likely(addr==0xFF000028))
{
return CCN_INTEVT;
}
else if (likely(addr==0xFFA0002C))
{
return DMAC_CHCR(2).full;
}
addr&=0x1FFFFFFF;
u32 map_base=addr>>16;
switch (expected(map_base, A7_REG_HASH(TMU_BASE_addr)))
{
case A7_REG_HASH(CCN_BASE_addr):
if (addr<=0x1F000044)
{
return (T)sh4_rio_read<sz>(CCN, addr);
}
else
{
OUT_OF_RANGE("CCN");
return 0;
}
break;
case A7_REG_HASH(UBC_BASE_addr):
if (addr<=0x1F200020)
{
return (T)sh4_rio_read<sz>(UBC, addr);
}
else
{
OUT_OF_RANGE("UBC");
return 0;
}
break;
case A7_REG_HASH(BSC_BASE_addr):
if (addr<=0x1F800048)
{
return (T)sh4_rio_read<sz>(BSC, addr);
}
else
{
OUT_OF_RANGE("BSC");
return 0;
}
break;
case A7_REG_HASH(BSC_SDMR2_addr):
//dram settings 2 / write only
INFO_LOG(SH4, "Read from write-only registers [dram settings 2]");
return 0;
case A7_REG_HASH(BSC_SDMR3_addr):
//dram settings 3 / write only
INFO_LOG(SH4, "Read from write-only registers [dram settings 3]");
return 0;
case A7_REG_HASH(DMAC_BASE_addr):
if (addr<=0x1FA00040)
{
return (T)sh4_rio_read<sz>(DMAC, addr);
}
else
{
OUT_OF_RANGE("DMAC");
return 0;
}
break;
case A7_REG_HASH(CPG_BASE_addr):
if (addr<=0x1FC00010)
{
return (T)sh4_rio_read<sz>(CPG, addr);
}
else
{
OUT_OF_RANGE("CPG");
return 0;
}
break;
case A7_REG_HASH(RTC_BASE_addr):
if (addr<=0x1FC8003C)
{
return (T)sh4_rio_read<sz>(RTC, addr);
}
else
{
OUT_OF_RANGE("RTC");
return 0;
}
break;
case A7_REG_HASH(INTC_BASE_addr):
if (addr<=0x1FD00010)
{
return (T)sh4_rio_read<sz>(INTC, addr);
}
else
{
OUT_OF_RANGE("INTC");
return 0;
}
break;
case A7_REG_HASH(TMU_BASE_addr):
if (addr<=0x1FD8002C)
{
return (T)sh4_rio_read<sz>(TMU, addr);
}
else
{
OUT_OF_RANGE("TMU");
return 0;
}
break;
case A7_REG_HASH(SCI_BASE_addr):
if (addr<=0x1FE0001C)
{
return (T)sh4_rio_read<sz>(SCI, addr);
}
else
{
OUT_OF_RANGE("SCI");
return 0;
}
break;
case A7_REG_HASH(SCIF_BASE_addr):
if (addr<=0x1FE80024)
{
return (T)sh4_rio_read<sz>(SCIF, addr);
}
else
{
OUT_OF_RANGE("SCIF");
return 0;
}
break;
// Who really cares about ht-UDI? it's not existent on the Dreamcast IIRC
case A7_REG_HASH(UDI_BASE_addr):
switch(addr)
{
//UDI SDIR 0x1FF00000 0x1FF00000 16 0xFFFF Held Held Held Pclk
case UDI_SDIR_addr :
break;
//UDI SDDR 0x1FF00008 0x1FF00008 32 Held Held Held Held Pclk
case UDI_SDDR_addr :
break;
}
break;
}
INFO_LOG(SH4, "Unknown Read from P4 mmr - addr=%x", addr);
return 0;
}
//Write P4 memory-mapped registers
template <class T>
void DYNACALL WriteMem_p4mmr(u32 addr,T data)
{
constexpr size_t sz = sizeof(T);
if (likely(addr==0xFF000038))
{
CCN_QACR_write<0>(addr,data);
return;
}
else if (likely(addr==0xFF00003C))
{
CCN_QACR_write<1>(addr,data);
return;
}
addr&=0x1FFFFFFF;
u32 map_base=addr>>16;
switch (map_base)
{
case A7_REG_HASH(CCN_BASE_addr):
if (addr<=0x1F00003C)
{
sh4_rio_write<sz>(CCN, addr, data);
}
else
{
OUT_OF_RANGE("CCN");
}
return;
case A7_REG_HASH(UBC_BASE_addr):
if (addr<=0x1F200020)
{
sh4_rio_write<sz>(UBC, addr, data);
}
else
{
OUT_OF_RANGE("UBC");
}
return;
case A7_REG_HASH(BSC_BASE_addr):
if (addr<=0x1F800048)
{
sh4_rio_write<sz>(BSC, addr, data);
}
else
{
OUT_OF_RANGE("BSC");
}
return;
case A7_REG_HASH(BSC_SDMR2_addr):
//dram settings 2 / write only
return;
case A7_REG_HASH(BSC_SDMR3_addr):
//dram settings 3 / write only
return;
case A7_REG_HASH(DMAC_BASE_addr):
if (addr<=0x1FA00040)
{
sh4_rio_write<sz>(DMAC, addr, data);
}
else
{
OUT_OF_RANGE("DMAC");
}
return;
case A7_REG_HASH(CPG_BASE_addr):
if (addr<=0x1FC00010)
{
sh4_rio_write<sz>(CPG, addr, data);
}
else
{
OUT_OF_RANGE("CPG");
}
return;
case A7_REG_HASH(RTC_BASE_addr):
if (addr<=0x1FC8003C)
{
sh4_rio_write<sz>(RTC, addr, data);
}
else
{
OUT_OF_RANGE("RTC");
}
return;
case A7_REG_HASH(INTC_BASE_addr):
if (addr<=0x1FD0000C)
{
sh4_rio_write<sz>(INTC, addr, data);
}
else
{
OUT_OF_RANGE("INTC");
}
return;
case A7_REG_HASH(TMU_BASE_addr):
if (addr<=0x1FD8002C)
{
sh4_rio_write<sz>(TMU, addr, data);
}
else
{
OUT_OF_RANGE("TMU");
}
return;
case A7_REG_HASH(SCI_BASE_addr):
if (addr<=0x1FE0001C)
{
sh4_rio_write<sz>(SCI, addr, data);
}
else
{
OUT_OF_RANGE("SCI");
}
return;
case A7_REG_HASH(SCIF_BASE_addr):
if (addr<=0x1FE80024)
{
sh4_rio_write<sz>(SCIF, addr, data);
}
else
{
OUT_OF_RANGE("SCIF");
}
return;
//who really cares about ht-udi ? it's not existent on dc iirc ..
case A7_REG_HASH(UDI_BASE_addr):
switch(addr)
{
//UDI SDIR 0xFFF00000 0x1FF00000 16 0xFFFF Held Held Held Pclk
case UDI_SDIR_addr :
break;
//UDI SDDR 0xFFF00008 0x1FF00008 32 Held Held Held Held Pclk
case UDI_SDDR_addr :
break;
}
break;
}
INFO_LOG(SH4, "Write to P4 mmr not implemented, addr=%x, data=%x", addr, data);
}
//***********
//On Chip Ram
//***********
template <class T>
T DYNACALL ReadMem_area7_OCR(u32 addr)
{
if (CCN_CCR.ORA == 1)
return *(T *)&OnChipRAM[addr & OnChipRAM_MASK];
INFO_LOG(SH4, "On Chip Ram Read, but OCR is disabled. addr %x", addr);
return 0;
}
template <class T>
void DYNACALL WriteMem_area7_OCR(u32 addr, T data)
{
if (CCN_CCR.ORA == 1)
*(T *)&OnChipRAM[addr & OnChipRAM_MASK] = data;
else
INFO_LOG(SH4, "On Chip Ram Write, but OCR is disabled. addr %x", addr);
}
template <class T>
static void init_regs(T& regs)
{
for (auto& reg : regs)
{
reg.flags = RIO_NO_ACCESS;
reg.readFunctionAddr = &sh4io_read_noacc;
reg.writeFunctionAddr = &sh4io_write_noacc;
}
}
//Init/Res/Term
void sh4_mmr_init()
{
init_regs(CCN);
init_regs(UBC);
init_regs(BSC);
init_regs(DMAC);
init_regs(CPG);
init_regs(RTC);
init_regs(INTC);
init_regs(TMU);
init_regs(SCI);
init_regs(SCIF);
//initialise Register structs
bsc_init();
ccn_init();
cpg_init();
dmac_init();
intc_init();
rtc_init();
serial_init();
tmu_init();
ubc_init();
}
void sh4_mmr_reset(bool hard)
{
if (hard)
{
for (auto& reg : CCN)
reg.reset();
for (auto& reg : UBC)
reg.reset();
for (auto& reg : BSC)
reg.reset();
for (auto& reg : DMAC)
reg.reset();
for (auto& reg : CPG)
reg.reset();
for (auto& reg : RTC)
reg.reset();
for (auto& reg : INTC)
reg.reset();
for (auto& reg : TMU)
reg.reset();
for (auto& reg : SCI)
reg.reset();
for (auto& reg : SCIF)
reg.reset();
}
OnChipRAM = {};
//Reset register values
bsc_reset(hard);
ccn_reset(hard);
cpg_reset();
dmac_reset();
intc_reset();
rtc_reset();
serial_reset();
tmu_reset(hard);
ubc_reset();
}
void sh4_mmr_term()
{
//free any alloc'd resources [if any]
ubc_term();
tmu_term();
serial_term();
rtc_term();
intc_term();
dmac_term();
cpg_term();
ccn_term();
bsc_term();
}
// AREA 7--Sh4 Regs
static _vmem_handler p4mmr_handler;
static _vmem_handler area7_ocr_handler;
void map_area7_init()
{
p4mmr_handler = _vmem_register_handler_Template(ReadMem_p4mmr, WriteMem_p4mmr);
area7_ocr_handler = _vmem_register_handler_Template(ReadMem_area7_OCR, WriteMem_area7_OCR);
}
void map_area7(u32 base)
{
// on-chip RAM: 7C000000-7FFFFFFF
if (base == 0x60)
_vmem_map_handler(area7_ocr_handler, 0x7C, 0x7F);
}
//P4
void map_p4()
{
//P4 Region :
_vmem_handler p4_handler = _vmem_register_handler_Template(ReadMem_P4, WriteMem_P4);
//register this before mmr and SQ so they overwrite it and handle em
//default P4 handler
//0xE0000000-0xFFFFFFFF
_vmem_map_handler(p4_handler,0xE0,0xFF);
//Store Queues -- Write only 32bit
_vmem_map_block(sq_both,0xE0,0xE0,63);
_vmem_map_block(sq_both,0xE1,0xE1,63);
_vmem_map_block(sq_both,0xE2,0xE2,63);
_vmem_map_block(sq_both,0xE3,0xE3,63);
_vmem_map_handler(p4mmr_handler, 0xFF, 0xFF);
}