flycast/core/deps/vixl/aarch64/disasm-aarch64.h

373 lines
17 KiB
C++

// Copyright 2015, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_AARCH64_DISASM_AARCH64_H
#define VIXL_AARCH64_DISASM_AARCH64_H
#include <functional>
#include <unordered_map>
#include <utility>
#include "../globals-vixl.h"
#include "../utils-vixl.h"
#include "cpu-features-auditor-aarch64.h"
#include "decoder-aarch64.h"
#include "decoder-visitor-map-aarch64.h"
#include "instructions-aarch64.h"
#include "operands-aarch64.h"
namespace vixl {
namespace aarch64 {
class Disassembler : public DecoderVisitor {
public:
Disassembler();
Disassembler(char* text_buffer, int buffer_size);
virtual ~Disassembler();
char* GetOutput();
// Declare all Visitor functions.
virtual void Visit(Metadata* metadata,
const Instruction* instr) VIXL_OVERRIDE;
protected:
virtual void ProcessOutput(const Instruction* instr);
// Default output functions. The functions below implement a default way of
// printing elements in the disassembly. A sub-class can override these to
// customize the disassembly output.
// Prints the name of a register.
// TODO: This currently doesn't allow renaming of V registers.
virtual void AppendRegisterNameToOutput(const Instruction* instr,
const CPURegister& reg);
// Prints a PC-relative offset. This is used for example when disassembling
// branches to immediate offsets.
virtual void AppendPCRelativeOffsetToOutput(const Instruction* instr,
int64_t offset);
// Prints an address, in the general case. It can be code or data. This is
// used for example to print the target address of an ADR instruction.
virtual void AppendCodeRelativeAddressToOutput(const Instruction* instr,
const void* addr);
// Prints the address of some code.
// This is used for example to print the target address of a branch to an
// immediate offset.
// A sub-class can for example override this method to lookup the address and
// print an appropriate name.
virtual void AppendCodeRelativeCodeAddressToOutput(const Instruction* instr,
const void* addr);
// Prints the address of some data.
// This is used for example to print the source address of a load literal
// instruction.
virtual void AppendCodeRelativeDataAddressToOutput(const Instruction* instr,
const void* addr);
// Same as the above, but for addresses that are not relative to the code
// buffer. They are currently not used by VIXL.
virtual void AppendAddressToOutput(const Instruction* instr,
const void* addr);
virtual void AppendCodeAddressToOutput(const Instruction* instr,
const void* addr);
virtual void AppendDataAddressToOutput(const Instruction* instr,
const void* addr);
public:
// Get/Set the offset that should be added to code addresses when printing
// code-relative addresses in the AppendCodeRelative<Type>AddressToOutput()
// helpers.
// Below is an example of how a branch immediate instruction in memory at
// address 0xb010200 would disassemble with different offsets.
// Base address | Disassembly
// 0x0 | 0xb010200: b #+0xcc (addr 0xb0102cc)
// 0x10000 | 0xb000200: b #+0xcc (addr 0xb0002cc)
// 0xb010200 | 0x0: b #+0xcc (addr 0xcc)
void MapCodeAddress(int64_t base_address, const Instruction* instr_address);
int64_t CodeRelativeAddress(const void* instr);
private:
#define DECLARE(A) virtual void Visit##A(const Instruction* instr);
VISITOR_LIST(DECLARE)
#undef DECLARE
using FormToVisitorFnMap = std::unordered_map<
uint32_t,
std::function<void(Disassembler*, const Instruction*)>>;
static const FormToVisitorFnMap* GetFormToVisitorFnMap();
std::string mnemonic_;
uint32_t form_hash_;
void SetMnemonicFromForm(const std::string& form) {
if (form != "unallocated") {
VIXL_ASSERT(form.find_first_of('_') != std::string::npos);
mnemonic_ = form.substr(0, form.find_first_of('_'));
}
}
void Disassemble_PdT_PgZ_ZnT_ZmT(const Instruction* instr);
void Disassemble_ZdB_Zn1B_Zn2B_imm(const Instruction* instr);
void Disassemble_ZdB_ZnB_ZmB(const Instruction* instr);
void Disassemble_ZdD_PgM_ZnS(const Instruction* instr);
void Disassemble_ZdD_ZnD_ZmD(const Instruction* instr);
void Disassemble_ZdD_ZnD_ZmD_imm(const Instruction* instr);
void Disassemble_ZdD_ZnS_ZmS_imm(const Instruction* instr);
void Disassemble_ZdH_PgM_ZnS(const Instruction* instr);
void Disassemble_ZdH_ZnH_ZmH_imm(const Instruction* instr);
void Disassemble_ZdS_PgM_ZnD(const Instruction* instr);
void Disassemble_ZdS_PgM_ZnH(const Instruction* instr);
void Disassemble_ZdS_PgM_ZnS(const Instruction* instr);
void Disassemble_ZdS_ZnH_ZmH_imm(const Instruction* instr);
void Disassemble_ZdS_ZnS_ZmS(const Instruction* instr);
void Disassemble_ZdS_ZnS_ZmS_imm(const Instruction* instr);
void Disassemble_ZdT_PgM_ZnT(const Instruction* instr);
void Disassemble_ZdT_PgZ_ZnT_ZmT(const Instruction* instr);
void Disassemble_ZdT_Pg_Zn1T_Zn2T(const Instruction* instr);
void Disassemble_ZdT_Zn1T_Zn2T_ZmT(const Instruction* instr);
void Disassemble_ZdT_ZnT_ZmT(const Instruction* instr);
void Disassemble_ZdT_ZnT_ZmTb(const Instruction* instr);
void Disassemble_ZdT_ZnTb(const Instruction* instr);
void Disassemble_ZdT_ZnTb_ZmTb(const Instruction* instr);
void Disassemble_ZdaD_ZnD_ZmD_imm(const Instruction* instr);
void Disassemble_ZdaD_ZnH_ZmH_imm_const(const Instruction* instr);
void Disassemble_ZdaD_ZnS_ZmS_imm(const Instruction* instr);
void Disassemble_ZdaH_ZnH_ZmH_imm(const Instruction* instr);
void Disassemble_ZdaH_ZnH_ZmH_imm_const(const Instruction* instr);
void Disassemble_ZdaS_ZnB_ZmB_imm_const(const Instruction* instr);
void Disassemble_ZdaS_ZnH_ZmH(const Instruction* instr);
void Disassemble_ZdaS_ZnH_ZmH_imm(const Instruction* instr);
void Disassemble_ZdaS_ZnS_ZmS_imm(const Instruction* instr);
void Disassemble_ZdaS_ZnS_ZmS_imm_const(const Instruction* instr);
void Disassemble_ZdaT_PgM_ZnTb(const Instruction* instr);
void Disassemble_ZdaT_ZnT_ZmT(const Instruction* instr);
void Disassemble_ZdaT_ZnT_ZmT_const(const Instruction* instr);
void Disassemble_ZdaT_ZnT_const(const Instruction* instr);
void Disassemble_ZdaT_ZnTb_ZmTb(const Instruction* instr);
void Disassemble_ZdaT_ZnTb_ZmTb_const(const Instruction* instr);
void Disassemble_ZdnB_ZdnB(const Instruction* instr);
void Disassemble_ZdnB_ZdnB_ZmB(const Instruction* instr);
void Disassemble_ZdnS_ZdnS_ZmS(const Instruction* instr);
void Disassemble_ZdnT_PgM_ZdnT_ZmT(const Instruction* instr);
void Disassemble_ZdnT_PgM_ZdnT_const(const Instruction* instr);
void Disassemble_ZdnT_ZdnT_ZmT_const(const Instruction* instr);
void Disassemble_ZtD_PgZ_ZnD_Xm(const Instruction* instr);
void Disassemble_ZtD_Pg_ZnD_Xm(const Instruction* instr);
void Disassemble_ZtS_PgZ_ZnS_Xm(const Instruction* instr);
void Disassemble_ZtS_Pg_ZnS_Xm(const Instruction* instr);
void Disassemble_ZdaS_ZnB_ZmB(const Instruction* instr);
void Disassemble_Vd4S_Vn16B_Vm16B(const Instruction* instr);
void DisassembleCpy(const Instruction* instr);
void DisassembleSet(const Instruction* instr);
void DisassembleMinMaxImm(const Instruction* instr);
void DisassembleSVEShiftLeftImm(const Instruction* instr);
void DisassembleSVEShiftRightImm(const Instruction* instr);
void DisassembleSVEAddSubCarry(const Instruction* instr);
void DisassembleSVEAddSubHigh(const Instruction* instr);
void DisassembleSVEComplexIntAddition(const Instruction* instr);
void DisassembleSVEBitwiseTernary(const Instruction* instr);
void DisassembleSVEFlogb(const Instruction* instr);
void DisassembleSVEFPPair(const Instruction* instr);
void DisassembleNoArgs(const Instruction* instr);
void DisassembleNEONMulByElementLong(const Instruction* instr);
void DisassembleNEONDotProdByElement(const Instruction* instr);
void DisassembleNEONFPMulByElement(const Instruction* instr);
void DisassembleNEONHalfFPMulByElement(const Instruction* instr);
void DisassembleNEONFPMulByElementLong(const Instruction* instr);
void DisassembleNEONComplexMulByElement(const Instruction* instr);
void DisassembleNEON2RegLogical(const Instruction* instr);
void DisassembleNEON2RegExtract(const Instruction* instr);
void DisassembleNEON2RegAddlp(const Instruction* instr);
void DisassembleNEON2RegCompare(const Instruction* instr);
void DisassembleNEON2RegFPCompare(const Instruction* instr);
void DisassembleNEON2RegFPConvert(const Instruction* instr);
void DisassembleNEON2RegFP(const Instruction* instr);
void DisassembleNEON3SameLogical(const Instruction* instr);
void DisassembleNEON3SameFHM(const Instruction* instr);
void DisassembleNEON3SameNoD(const Instruction* instr);
void DisassembleNEONShiftLeftLongImm(const Instruction* instr);
void DisassembleNEONShiftRightImm(const Instruction* instr);
void DisassembleNEONShiftRightNarrowImm(const Instruction* instr);
void DisassembleNEONScalarSatMulLongIndex(const Instruction* instr);
void DisassembleNEONFPScalarMulIndex(const Instruction* instr);
void DisassembleNEONFPScalar3Same(const Instruction* instr);
void DisassembleNEONScalar3SameOnlyD(const Instruction* instr);
void DisassembleNEONFPAcrossLanes(const Instruction* instr);
void DisassembleNEONFP16AcrossLanes(const Instruction* instr);
void DisassembleNEONScalarShiftImmOnlyD(const Instruction* instr);
void DisassembleNEONScalarShiftRightNarrowImm(const Instruction* instr);
void DisassembleNEONScalar2RegMiscOnlyD(const Instruction* instr);
void DisassembleNEONFPScalar2RegMisc(const Instruction* instr);
void DisassembleMTELoadTag(const Instruction* instr);
void DisassembleMTEStoreTag(const Instruction* instr);
void DisassembleMTEStoreTagPair(const Instruction* instr);
void Disassemble_XdSP_XnSP_Xm(const Instruction* instr);
void Disassemble_XdSP_XnSP_uimm6_uimm4(const Instruction* instr);
void Disassemble_Xd_XnSP_Xm(const Instruction* instr);
void Disassemble_Xd_XnSP_XmSP(const Instruction* instr);
void Format(const Instruction* instr,
const char* mnemonic,
const char* format0,
const char* format1 = NULL);
void FormatWithDecodedMnemonic(const Instruction* instr,
const char* format0,
const char* format1 = NULL);
void Substitute(const Instruction* instr, const char* string);
int SubstituteField(const Instruction* instr, const char* format);
int SubstituteRegisterField(const Instruction* instr, const char* format);
int SubstitutePredicateRegisterField(const Instruction* instr,
const char* format);
int SubstituteImmediateField(const Instruction* instr, const char* format);
int SubstituteLiteralField(const Instruction* instr, const char* format);
int SubstituteBitfieldImmediateField(const Instruction* instr,
const char* format);
int SubstituteShiftField(const Instruction* instr, const char* format);
int SubstituteExtendField(const Instruction* instr, const char* format);
int SubstituteConditionField(const Instruction* instr, const char* format);
int SubstitutePCRelAddressField(const Instruction* instr, const char* format);
int SubstituteBranchTargetField(const Instruction* instr, const char* format);
int SubstituteLSRegOffsetField(const Instruction* instr, const char* format);
int SubstitutePrefetchField(const Instruction* instr, const char* format);
int SubstituteBarrierField(const Instruction* instr, const char* format);
int SubstituteSysOpField(const Instruction* instr, const char* format);
int SubstituteCrField(const Instruction* instr, const char* format);
int SubstituteIntField(const Instruction* instr, const char* format);
int SubstituteSVESize(const Instruction* instr, const char* format);
int SubstituteTernary(const Instruction* instr, const char* format);
std::pair<unsigned, unsigned> GetRegNumForField(const Instruction* instr,
char reg_prefix,
const char* field);
bool RdIsZROrSP(const Instruction* instr) const {
return (instr->GetRd() == kZeroRegCode);
}
bool RnIsZROrSP(const Instruction* instr) const {
return (instr->GetRn() == kZeroRegCode);
}
bool RmIsZROrSP(const Instruction* instr) const {
return (instr->GetRm() == kZeroRegCode);
}
bool RaIsZROrSP(const Instruction* instr) const {
return (instr->GetRa() == kZeroRegCode);
}
bool IsMovzMovnImm(unsigned reg_size, uint64_t value);
int64_t code_address_offset() const { return code_address_offset_; }
protected:
void ResetOutput();
void AppendToOutput(const char* string, ...) PRINTF_CHECK(2, 3);
void set_code_address_offset(int64_t code_address_offset) {
code_address_offset_ = code_address_offset;
}
char* buffer_;
uint32_t buffer_pos_;
uint32_t buffer_size_;
bool own_buffer_;
int64_t code_address_offset_;
};
class PrintDisassembler : public Disassembler {
public:
explicit PrintDisassembler(FILE* stream)
: cpu_features_auditor_(NULL),
cpu_features_prefix_("// Needs: "),
cpu_features_suffix_(""),
signed_addresses_(false),
stream_(stream) {}
// Convenience helpers for quick disassembly, without having to manually
// create a decoder.
void DisassembleBuffer(const Instruction* start, uint64_t size);
void DisassembleBuffer(const Instruction* start, const Instruction* end);
void Disassemble(const Instruction* instr);
// If a CPUFeaturesAuditor is specified, it will be used to annotate
// disassembly. The CPUFeaturesAuditor is expected to visit the instructions
// _before_ the disassembler, such that the CPUFeatures information is
// available when the disassembler is called.
void RegisterCPUFeaturesAuditor(CPUFeaturesAuditor* auditor) {
cpu_features_auditor_ = auditor;
}
// Set the prefix to appear before the CPU features annotations.
void SetCPUFeaturesPrefix(const char* prefix) {
VIXL_ASSERT(prefix != NULL);
cpu_features_prefix_ = prefix;
}
// Set the suffix to appear after the CPU features annotations.
void SetCPUFeaturesSuffix(const char* suffix) {
VIXL_ASSERT(suffix != NULL);
cpu_features_suffix_ = suffix;
}
// By default, addresses are printed as simple, unsigned 64-bit hex values.
//
// With `PrintSignedAddresses(true)`:
// - negative addresses are printed as "-0x1234...",
// - positive addresses have a leading space, like " 0x1234...", to maintain
// alignment.
//
// This is most useful in combination with Disassembler::MapCodeAddress(...).
void PrintSignedAddresses(bool s) { signed_addresses_ = s; }
protected:
virtual void ProcessOutput(const Instruction* instr) VIXL_OVERRIDE;
CPUFeaturesAuditor* cpu_features_auditor_;
const char* cpu_features_prefix_;
const char* cpu_features_suffix_;
bool signed_addresses_;
private:
FILE* stream_;
};
} // namespace aarch64
} // namespace vixl
#endif // VIXL_AARCH64_DISASM_AARCH64_H