388 lines
12 KiB
C++
388 lines
12 KiB
C++
/* sha1.h
|
|
*
|
|
* The sha1 hash function.
|
|
*/
|
|
|
|
/* nettle, low-level cryptographics library
|
|
*
|
|
* Copyright 2001 Peter Gutmann, Andrew Kuchling, Niels Moeller
|
|
*
|
|
* The nettle library is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The nettle library is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
* License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with the nettle library; see the file COPYING.LIB. If not, write to
|
|
* the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
|
|
* MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include "sha1.h"
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
static unsigned int READ_UINT32(const UINT8* data)
|
|
{
|
|
return ((UINT32)data[0] << 24) |
|
|
((UINT32)data[1] << 16) |
|
|
((UINT32)data[2] << 8) |
|
|
((UINT32)data[3]);
|
|
}
|
|
|
|
static void WRITE_UINT32(unsigned char* data, UINT32 val)
|
|
{
|
|
data[0] = (val >> 24) & 0xFF;
|
|
data[1] = (val >> 16) & 0xFF;
|
|
data[2] = (val >> 8) & 0xFF;
|
|
data[3] = (val >> 0) & 0xFF;
|
|
}
|
|
|
|
|
|
/* A block, treated as a sequence of 32-bit words. */
|
|
#define SHA1_DATA_LENGTH 16
|
|
|
|
/* The SHA f()-functions. The f1 and f3 functions can be optimized to
|
|
save one boolean operation each - thanks to Rich Schroeppel,
|
|
rcs@cs.arizona.edu for discovering this */
|
|
|
|
/* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) Rounds 0-19 */
|
|
#define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */
|
|
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
|
|
/* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */
|
|
#define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */
|
|
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
|
|
|
|
/* The SHA Mysterious Constants */
|
|
|
|
#define K1 0x5A827999L /* Rounds 0-19 */
|
|
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
|
|
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
|
|
#define K4 0xCA62C1D6L /* Rounds 60-79 */
|
|
|
|
/* SHA initial values */
|
|
|
|
#define h0init 0x67452301L
|
|
#define h1init 0xEFCDAB89L
|
|
#define h2init 0x98BADCFEL
|
|
#define h3init 0x10325476L
|
|
#define h4init 0xC3D2E1F0L
|
|
|
|
/* 32-bit rotate left - kludged with shifts */
|
|
#ifdef _MSC_VER
|
|
#define ROTL(n,X) _lrotl(X, n)
|
|
#else
|
|
#define ROTL(n,X) ( ( (X) << (n) ) | ( (X) >> ( 32 - (n) ) ) )
|
|
#endif
|
|
|
|
/* The initial expanding function. The hash function is defined over an
|
|
80-word expanded input array W, where the first 16 are copies of the input
|
|
data, and the remaining 64 are defined by
|
|
|
|
W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ]
|
|
|
|
This implementation generates these values on the fly in a circular
|
|
buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this
|
|
optimization.
|
|
|
|
The updated SHA changes the expanding function by adding a rotate of 1
|
|
bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor
|
|
for this information */
|
|
|
|
#define expand(W,i) ( W[ i & 15 ] = \
|
|
ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
|
|
W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )
|
|
|
|
|
|
/* The prototype SHA sub-round. The fundamental sub-round is:
|
|
|
|
a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data;
|
|
b' = a;
|
|
c' = ROTL( 30, b );
|
|
d' = c;
|
|
e' = d;
|
|
|
|
but this is implemented by unrolling the loop 5 times and renaming the
|
|
variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration.
|
|
This code is then replicated 20 times for each of the 4 functions, using
|
|
the next 20 values from the W[] array each time */
|
|
|
|
#define subRound(a, b, c, d, e, f, k, data) \
|
|
( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )
|
|
|
|
/* Initialize the SHA values */
|
|
|
|
void
|
|
sha1_init(struct sha1_ctx *ctx)
|
|
{
|
|
/* Set the h-vars to their initial values */
|
|
ctx->digest[ 0 ] = h0init;
|
|
ctx->digest[ 1 ] = h1init;
|
|
ctx->digest[ 2 ] = h2init;
|
|
ctx->digest[ 3 ] = h3init;
|
|
ctx->digest[ 4 ] = h4init;
|
|
|
|
/* Initialize bit count */
|
|
ctx->count_low = ctx->count_high = 0;
|
|
|
|
/* Initialize buffer */
|
|
ctx->index = 0;
|
|
}
|
|
|
|
/* Perform the SHA transformation. Note that this code, like MD5, seems to
|
|
break some optimizing compilers due to the complexity of the expressions
|
|
and the size of the basic block. It may be necessary to split it into
|
|
sections, e.g. based on the four subrounds
|
|
|
|
Note that this function destroys the data area */
|
|
|
|
static void
|
|
sha1_transform(UINT32 *state, UINT32 *data)
|
|
{
|
|
UINT32 A, B, C, D, E; /* Local vars */
|
|
|
|
/* Set up first buffer and local data buffer */
|
|
A = state[0];
|
|
B = state[1];
|
|
C = state[2];
|
|
D = state[3];
|
|
E = state[4];
|
|
|
|
/* Heavy mangling, in 4 sub-rounds of 20 interations each. */
|
|
subRound( A, B, C, D, E, f1, K1, data[ 0] );
|
|
subRound( E, A, B, C, D, f1, K1, data[ 1] );
|
|
subRound( D, E, A, B, C, f1, K1, data[ 2] );
|
|
subRound( C, D, E, A, B, f1, K1, data[ 3] );
|
|
subRound( B, C, D, E, A, f1, K1, data[ 4] );
|
|
subRound( A, B, C, D, E, f1, K1, data[ 5] );
|
|
subRound( E, A, B, C, D, f1, K1, data[ 6] );
|
|
subRound( D, E, A, B, C, f1, K1, data[ 7] );
|
|
subRound( C, D, E, A, B, f1, K1, data[ 8] );
|
|
subRound( B, C, D, E, A, f1, K1, data[ 9] );
|
|
subRound( A, B, C, D, E, f1, K1, data[10] );
|
|
subRound( E, A, B, C, D, f1, K1, data[11] );
|
|
subRound( D, E, A, B, C, f1, K1, data[12] );
|
|
subRound( C, D, E, A, B, f1, K1, data[13] );
|
|
subRound( B, C, D, E, A, f1, K1, data[14] );
|
|
subRound( A, B, C, D, E, f1, K1, data[15] );
|
|
subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) );
|
|
subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) );
|
|
subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) );
|
|
subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) );
|
|
|
|
subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) );
|
|
subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) );
|
|
subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) );
|
|
subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) );
|
|
subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) );
|
|
subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) );
|
|
subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) );
|
|
subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) );
|
|
subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) );
|
|
subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) );
|
|
subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) );
|
|
subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) );
|
|
subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) );
|
|
subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) );
|
|
subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) );
|
|
subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) );
|
|
subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) );
|
|
subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) );
|
|
subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) );
|
|
subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) );
|
|
|
|
subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) );
|
|
subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) );
|
|
subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) );
|
|
subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) );
|
|
subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) );
|
|
subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) );
|
|
subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) );
|
|
subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) );
|
|
subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) );
|
|
subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) );
|
|
subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) );
|
|
subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) );
|
|
subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) );
|
|
subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) );
|
|
subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) );
|
|
subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) );
|
|
subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) );
|
|
subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) );
|
|
subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) );
|
|
subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) );
|
|
|
|
subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) );
|
|
subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) );
|
|
subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) );
|
|
subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) );
|
|
subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) );
|
|
subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) );
|
|
subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) );
|
|
subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) );
|
|
subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) );
|
|
subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) );
|
|
subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) );
|
|
subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) );
|
|
subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) );
|
|
subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) );
|
|
subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) );
|
|
subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) );
|
|
subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) );
|
|
subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) );
|
|
subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) );
|
|
subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) );
|
|
|
|
/* Build message digest */
|
|
state[0] += A;
|
|
state[1] += B;
|
|
state[2] += C;
|
|
state[3] += D;
|
|
state[4] += E;
|
|
}
|
|
|
|
static void
|
|
sha1_block(struct sha1_ctx *ctx, const UINT8 *block)
|
|
{
|
|
UINT32 data[SHA1_DATA_LENGTH];
|
|
int i;
|
|
|
|
/* Update block count */
|
|
if (!++ctx->count_low)
|
|
++ctx->count_high;
|
|
|
|
/* Endian independent conversion */
|
|
for (i = 0; i<SHA1_DATA_LENGTH; i++, block += 4)
|
|
data[i] = READ_UINT32(block);
|
|
|
|
sha1_transform(ctx->digest, data);
|
|
}
|
|
|
|
void
|
|
sha1_update(struct sha1_ctx *ctx,
|
|
unsigned length, const UINT8 *buffer)
|
|
{
|
|
if (ctx->index)
|
|
{ /* Try to fill partial block */
|
|
unsigned left = SHA1_DATA_SIZE - ctx->index;
|
|
if (length < left)
|
|
{
|
|
memcpy(ctx->block + ctx->index, buffer, length);
|
|
ctx->index += length;
|
|
return; /* Finished */
|
|
}
|
|
else
|
|
{
|
|
memcpy(ctx->block + ctx->index, buffer, left);
|
|
sha1_block(ctx, ctx->block);
|
|
buffer += left;
|
|
length -= left;
|
|
}
|
|
}
|
|
while (length >= SHA1_DATA_SIZE)
|
|
{
|
|
sha1_block(ctx, buffer);
|
|
buffer += SHA1_DATA_SIZE;
|
|
length -= SHA1_DATA_SIZE;
|
|
}
|
|
ctx->index = length;
|
|
if (length)
|
|
/* Buffer leftovers */
|
|
memcpy(ctx->block, buffer, length);
|
|
}
|
|
|
|
/* Final wrapup - pad to SHA1_DATA_SIZE-byte boundary with the bit pattern
|
|
1 0* (64-bit count of bits processed, MSB-first) */
|
|
|
|
void
|
|
sha1_final(struct sha1_ctx *ctx)
|
|
{
|
|
UINT32 data[SHA1_DATA_LENGTH];
|
|
int i;
|
|
int words;
|
|
|
|
i = ctx->index;
|
|
|
|
/* Set the first char of padding to 0x80. This is safe since there is
|
|
always at least one byte free */
|
|
|
|
assert(i < SHA1_DATA_SIZE);
|
|
ctx->block[i++] = 0x80;
|
|
|
|
/* Fill rest of word */
|
|
for( ; i & 3; i++)
|
|
ctx->block[i] = 0;
|
|
|
|
/* i is now a multiple of the word size 4 */
|
|
words = i >> 2;
|
|
for (i = 0; i < words; i++)
|
|
data[i] = READ_UINT32(ctx->block + 4*i);
|
|
|
|
if (words > (SHA1_DATA_LENGTH-2))
|
|
{ /* No room for length in this block. Process it and
|
|
* pad with another one */
|
|
for (i = words ; i < SHA1_DATA_LENGTH; i++)
|
|
data[i] = 0;
|
|
sha1_transform(ctx->digest, data);
|
|
for (i = 0; i < (SHA1_DATA_LENGTH-2); i++)
|
|
data[i] = 0;
|
|
}
|
|
else
|
|
for (i = words ; i < SHA1_DATA_LENGTH - 2; i++)
|
|
data[i] = 0;
|
|
|
|
/* There are 512 = 2^9 bits in one block */
|
|
data[SHA1_DATA_LENGTH-2] = (ctx->count_high << 9) | (ctx->count_low >> 23);
|
|
data[SHA1_DATA_LENGTH-1] = (ctx->count_low << 9) | (ctx->index << 3);
|
|
sha1_transform(ctx->digest, data);
|
|
}
|
|
|
|
void
|
|
sha1_digest(const struct sha1_ctx *ctx,
|
|
unsigned length,
|
|
UINT8 *digest)
|
|
{
|
|
unsigned i;
|
|
unsigned words;
|
|
unsigned leftover;
|
|
|
|
assert(length <= SHA1_DIGEST_SIZE);
|
|
|
|
words = length / 4;
|
|
leftover = length % 4;
|
|
|
|
for (i = 0; i < words; i++, digest += 4)
|
|
WRITE_UINT32(digest, ctx->digest[i]);
|
|
|
|
if (leftover)
|
|
{
|
|
UINT32 word;
|
|
unsigned j = leftover;
|
|
|
|
assert(i < _SHA1_DIGEST_LENGTH);
|
|
|
|
word = ctx->digest[i];
|
|
|
|
switch (leftover)
|
|
{
|
|
default:
|
|
/* this is just here to keep the compiler happy; it can never happen */
|
|
case 3:
|
|
digest[--j] = (word >> 8) & 0xff;
|
|
/* Fall through */
|
|
case 2:
|
|
digest[--j] = (word >> 16) & 0xff;
|
|
/* Fall through */
|
|
case 1:
|
|
digest[--j] = (word >> 24) & 0xff;
|
|
}
|
|
}
|
|
}
|