flycast/core/rec-ARM/ngen_arm.S

254 lines
4.6 KiB
ArmAsm

@@
.arm
.align 8
.equ SH4_TIMESLICE, 448
.equ BM_BLOCKLIST_MASK, 65532 @FFFC
.equ CPU_RATIO, 5
@@@@@@@@@@ some helpers @@@@@@@@@@
.global do_sqw_nommu_area_3
@r0: addr
@r1: sq_both
do_sqw_nommu_area_3:
add r3,r1,#0x0C000000 @ get ram ptr from r1, part 1
and r2,r0,#0x20 @ SQ# selection, isolate
ubfx r0,r0,#5,#19 @ get ram offset
add r1,r2 @ SQ# selection, add to SQ ptr
add r3,#512 @ get ram ptr from r1, part 2
add r3,r0,lsl #5 @ ram + offset
vldm r1,{d0-d3}
vstm r3,{d0-d3}
bx lr
.global TAWriteSQ
@r0: addr
@r1: sq_both
TAWriteSQ:
BIC R3, R0, #0xFE000000 @clear unused bits
AND R0, R0, #0x20 @SQ#, isolate
CMP R3, #0x800000 @TA write?
ADD R0, R1, R0 @SQ#, add to SQ ptr
BCC _Z13ta_vtx_data32Pv @TA write?
TAWriteSQ_yuv:
CMP R3, #0x1000000 @Yuv write ?
BCS TAWriteSQ_vram
MOV R1, #1
B _Z8YUV_dataPjj
TAWriteSQ_vram: @vram write ..
#ifdef TARGET_IPHONE
bkpt #0
#else
bkpt
#endif
ubfx r0,r3,#5,#18 @ get vram offset
add r3,r1,#0x04000000 @ get vram ptr from r1, part 1
add r3,#512 @ get ram ptr from r1, part 2
add r3,r0,lsl #5 @ ram + offset
vldm r1,{d0-d3}
vstm r3,{d0-d3}
bx lr
@@@@@@@@@@ ngen_LinkBlock_*****_stub @@@@@@@@@@
.global ngen_LinkBlock_Generic_stub
ngen_LinkBlock_Generic_stub:
mov r1,r4 @ djump/pc -> in case we need it ..
b ngen_LinkBlock_Shared_stub
.global ngen_LinkBlock_cond_Branch_stub
ngen_LinkBlock_cond_Branch_stub:
mov r1,#1
b ngen_LinkBlock_Shared_stub
.global ngen_LinkBlock_cond_Next_stub
ngen_LinkBlock_cond_Next_stub:
mov r1,#0
b ngen_LinkBlock_Shared_stub
.global ngen_LinkBlock_Shared_stub
ngen_LinkBlock_Shared_stub:
mov r0,lr
sub r0,#4 @go before the call
bl rdv_LinkBlock
bx r0
@@@@@@@@@@ ngen_FailedToFindBlock_ @@@@@@@@@@
.global ngen_FailedToFindBlock_
ngen_FailedToFindBlock_:
mov r0,r4
bl rdv_FailedToFindBlock
bx r0
@@@@@@@@@@ ngen_blockcheckfail @@@@@@@@@@
.global ngen_blockcheckfail
ngen_blockcheckfail:
bl rdv_BlockCheckFail
bx r0
@@@@@@@@@@ ngen_mainloop @@@@@@@@@@
@ you can load the address of the sh4 reg struct on the mainloop init
@ using (u8*)regptr-(u8*)Sh4cntx
@ all registers are < 1024 bytes from that
@ so you can use reg+imm forms for it
.global ngen_mainloop
ngen_mainloop:
push { r4-r12,lr }
mov r9, #SH4_TIMESLICE @ load cycle counter
mov r8, r0 @Load context
ldr r4, [r8,#-184] @load pc
b no_update @Go to mainloop !
@this code is here for fall-through behavior of do_iter
.global intc_sched
intc_sched: @ next_pc _MUST_ be on ram
add r9,r9,#SH4_TIMESLICE
mov r4,lr
bl UpdateSystem
mov lr,r4
cmp r0,#0
bxeq lr @faster than bxeq r4 (as it should, call stack cache)
do_iter:
mov r0,r4
bl rdv_DoInterrupts
mov r4,r0
.global no_update
no_update: @ next_pc _MUST_ be on r4 *R4 NOT R0 anymore*
sub r2,r8,#33816576
ubfx r1,r4,#1,#23
ldr pc,[r2,r1,lsl #2]
@bic r1,r4,#0xFF000000
@ldr pc,[r2,r1,lsl #1]
pop {r4-r12,lr}
bx lr
end_ngen_mainloop:
@@@@@@@@@@ ngen_mainloop @@@@@@@@@@
.global arm_compilecode
arm_compilecode:
bl CompileCode
b arm_dispatch
#ifdef TARGET_IPHONE
Xarm_Reg: .word arm_Reg
XEntryPoints: .word EntryPoints
#endif
.global arm_mainloop
arm_mainloop: @(cntx,lookup_base,cycles)
push {r4,r5,r8,r9,lr}
#ifdef TARGET_IPHONE
ldr r8,Xarm_Reg @load cntx
ldr r4,XEntryPoints @load lookup base
#else
ldr r8,=arm_Reg @load cntx
ldr r4,=EntryPoints @load lookup base
#endif
ldr r5,[r8,#192] @load cycle count
add r5,r0 @add cycles for this timeslice
b arm_dispatch
.global arm_dispatch
arm_dispatch:
#ifdef TARGET_IPHONE
ldrd r0,r1,[r8,#184] @load: Next PC, interrupt
#else
ldrd r0,[r8,#184] @load: Next PC, interrupt
#endif
ubfx r2,r0,#2,#19
cmp r1,#0
bne arm_dofiq
ldr pc,[r4,r2,lsl #2]
arm_dofiq:
bl CPUFiq
b arm_dispatch
.global arm_exit
arm_exit:
str r5,[r8,#192] @if timeslice is over, save remaining cycles
pop {r4,r5,r8,r9,pc}
@@@@@@
@matrix mul
#ifndef _ANDROID
.global ftrv_asm
ftrv_asm:
@r0=dst,r1=vec,r2=mtx
@3x vld1.32 might be faster
vldm r2,{d16-d24}
vldm r1, {d0-d1}
VMUL.F32 Q2,Q8,d0[0]
VMLA.F32 Q2,Q9,d0[1]
VMLA.F32 Q2,Q10,d1[0]
VMLA.F32 Q2,Q11,d1[1]
vstm r0,{d4,d5}
bx lr
.global fipr_asm
fipr_asm:
@ vdot
@ idp=fr[n+0]*fr[m+0];
@ idp+=fr[n+1]*fr[m+1];
@ idp+=fr[n+2]*fr[m+2];
@ idp+=fr[n+3]*fr[m+3];
vldm r0, {d0,d1}
vldm r1, {d2,d3}
vmul.f32 q0,q1
@NEON is quite nice actually ! if only its performance was good enough ...
vpadd.f32 d0,d0,d1 @d0={d0[0]+d0[1], d1[0]+d1[1]}
vpadd.f32 d0,d0,d0 @d0={d0[0]+d0[1]+d1[0]+d1[1], d0[0]+d0[1]+d1[0]+d1[1]}
@store to ret ..
vmov r0,s0
bx lr
#endif