flycast/core/hw/sh4/dyna/decoder.cpp

1216 lines
24 KiB
C++

/*
Ugly, hacky, bad code
It decodes sh4 opcodes too
*/
#include "types.h"
#ifndef HOST_NO_REC
#include "decoder.h"
#include "shil.h"
#include "ngen.h"
#include "hw/sh4/sh4_opcode_list.h"
#include "hw/sh4/sh4_core.h"
#include "hw/sh4/sh4_mem.h"
#include "decoder_opcodes.h"
RuntimeBlockInfo* blk;
const char idle_hash[] =
//BIOS
">:1:05:BD3BE51F:1E886EE6:6BDB3F70:7FB25EA3:DE0083A8"
">:1:04:CB0C9B99:5082FB07:50A46C46:4035B1F1:6A9F47DC"
">:1:04:26AEABE5:E9D01A08:C25DD887:EEAFF173:CE2BBA10"
">:1:0A:5785DC3D:68688650:C5E1AFB3:7F686AE5:89538042"
//SC
">:1:0A:5693F8B9:E5C0D65C:ABF59CAC:B05DF34C:4A359E4A"
">:1:04:BC1C1C9C:C17809D5:1EA4548E:8CD97AFE:E263253F"
">:1:04:DD9FDF9D:55306FAD:4B3FDAEF:1D58EE41:11301FF1"
//HH
">:1:07:3778EBBC:29B99980:3E6CBA8E:4CA0C16A:AD952F27"
">:1:04:23F5F301:89CDFEC8:EBB8EB1A:57709C84:55EA4585"
//these look very suspicious, but I'm not sure about any of them
//cross testing w/ IKA makes them more suspects than not
">:1:0D:DF0C1754:1E3DDC72:E845B7BF:AE1FC6D2:8644F261"
">:1:04:DB35BCA0:AB19570C:0E0E54D7:CCA83E6E:A8D17744"
//IKA
//Also on HH, dunno if IDLESKIP
//Looks like this one is
">:1:04:DB35BCA0:AB19570C:0E0E54D7:CCA83E6E:A8D17744"
//Similar to the hh 1:07 one, dunno if idleskip
//Looks like yhis one is
">:1:0D:DF0C1754:1E3DDC72:E845B7BF:AE1FC6D2:8644F261"
//also does the -1 load
//looks like this one is
">1:08:AF4AC687:08BA1CD0:18592E67:45174350:C9EADF11";
shil_param mk_imm(u32 immv)
{
return shil_param(FMT_IMM,immv);
}
shil_param mk_reg(Sh4RegType reg)
{
return shil_param(reg);
}
shil_param mk_regi(int reg)
{
return mk_reg((Sh4RegType)reg);
}
enum NextDecoderOperation
{
NDO_NextOp, //pc+=2
NDO_End, //End the block, Type = BlockEndType
NDO_Delayslot, //pc+=2, NextOp=DelayOp
NDO_Jump, //pc=JumpAddr,NextOp=JumpOp
};
struct
{
NextDecoderOperation NextOp;
NextDecoderOperation DelayOp;
NextDecoderOperation JumpOp;
u32 JumpAddr;
u32 NextAddr;
BlockEndType BlockType;
struct
{
bool FPR64; //64 bit FPU opcodes
bool FSZ64; //64 bit FPU moves
bool RoundToZero; //false -> Round to nearest.
u32 rpc;
bool is_delayslot;
} cpu;
ngen_features ngen;
struct
{
bool has_readm;
bool has_writem;
bool has_fpu;
} info;
void Setup(u32 rpc,fpscr_t fpu_cfg)
{
cpu.rpc=rpc;
cpu.is_delayslot=false;
cpu.FPR64=fpu_cfg.PR;
cpu.FSZ64=fpu_cfg.SZ;
cpu.RoundToZero=fpu_cfg.RM==1;
verify(fpu_cfg.RM<2);
//what about fp/fs ?
NextOp=NDO_NextOp;
BlockType=BET_SCL_Intr;
JumpAddr=0xFFFFFFFF;
NextAddr=0xFFFFFFFF;
info.has_readm=false;
info.has_writem=false;
info.has_fpu=false;
}
} state;
void Emit(shilop op,shil_param rd=shil_param(),shil_param rs1=shil_param(),shil_param rs2=shil_param(),u32 flags=0,shil_param rs3=shil_param(),shil_param rd2=shil_param())
{
shil_opcode sp;
sp.flags=flags;
sp.op=op;
sp.rd=(rd);
sp.rd2=(rd2);
sp.rs1=(rs1);
sp.rs2=(rs2);
sp.rs3=(rs3);
sp.guest_offs=state.cpu.rpc-blk->addr;
blk->oplist.push_back(sp);
}
void dec_fallback(u32 op)
{
shil_opcode opcd;
opcd.op=shop_ifb;
opcd.rs1=shil_param(FMT_IMM,OpDesc[op]->NeedPC());
opcd.rs2=shil_param(FMT_IMM,state.cpu.rpc+2);
opcd.rs3=shil_param(FMT_IMM,op);
blk->oplist.push_back(opcd);
}
#if 1
#define FMT_I32 ERROR!WRONG++!!
#define FMT_F32 ERROR!WRONG++!!
#define FMT_F32 ERROR!WRONG++!!
#define FMT_TYPE ERROR!WRONG++!!
#define FMT_REG ERROR!WRONG++!!
#define FMT_IMM ERROR!WRONG++!!
#define FMT_PARAM ERROR!WRONG++!!
#define FMT_MASK ERROR!WRONG++!!
void dec_DynamicSet(u32 regbase,u32 offs=0)
{
if (offs==0)
Emit(shop_jdyn,reg_pc_dyn,mk_reg((Sh4RegType)regbase));
else
Emit(shop_jdyn,reg_pc_dyn,mk_reg((Sh4RegType)regbase),mk_imm(offs));
}
void dec_End(u32 dst,BlockEndType flags,bool delay)
{
if (state.ngen.OnlyDynamicEnds && flags == BET_StaticJump)
{
Emit(shop_mov32,mk_reg(reg_nextpc),mk_imm(dst));
dec_DynamicSet(reg_nextpc);
dec_End(0xFFFFFFFF,BET_DynamicJump,delay);
return;
}
if (state.ngen.OnlyDynamicEnds)
{
verify(flags == BET_DynamicJump);
}
state.BlockType=flags;
state.NextOp=delay?NDO_Delayslot:NDO_End;
state.DelayOp=NDO_End;
state.JumpAddr=dst;
state.NextAddr=state.cpu.rpc+2+(delay?2:0);
}
#define GetN(str) ((str>>8) & 0xf)
#define GetM(str) ((str>>4) & 0xf)
#define GetImm4(str) ((str>>0) & 0xf)
#define GetImm8(str) ((str>>0) & 0xff)
#define GetSImm8(str) ((s8)((str>>0) & 0xff))
#define GetImm12(str) ((str>>0) & 0xfff)
#define GetSImm12(str) (((s16)((GetImm12(str))<<4))>>4)
#define SR_STATUS_MASK 0x700083F2
#define SR_T_MASK 1
u32 dec_jump_simm8(u32 op)
{
return state.cpu.rpc + GetSImm8(op)*2 + 4;
}
u32 dec_jump_simm12(u32 op)
{
return state.cpu.rpc + GetSImm12(op)*2 + 4;
}
u32 dec_set_pr()
{
u32 retaddr=state.cpu.rpc + 4;
Emit(shop_mov32,reg_pr,mk_imm(retaddr));
return retaddr;
}
void dec_write_sr(shil_param src)
{
Emit(shop_and,mk_reg(reg_sr_status),src,mk_imm(SR_STATUS_MASK));
Emit(shop_and,mk_reg(reg_sr_T),src,mk_imm(SR_T_MASK));
}
//bf <bdisp8>
sh4dec(i1000_1011_iiii_iiii)
{
dec_End(dec_jump_simm8(op),BET_Cond_0,false);
}
//bf.s <bdisp8>
sh4dec(i1000_1111_iiii_iiii)
{
blk->has_jcond=true;
Emit(shop_jcond,reg_pc_dyn,reg_sr_T);
dec_End(dec_jump_simm8(op),BET_Cond_0,true);
}
//bt <bdisp8>
sh4dec(i1000_1001_iiii_iiii)
{
dec_End(dec_jump_simm8(op),BET_Cond_1,false);
}
//bt.s <bdisp8>
sh4dec(i1000_1101_iiii_iiii)
{
blk->has_jcond=true;
Emit(shop_jcond,reg_pc_dyn,reg_sr_T);
dec_End(dec_jump_simm8(op),BET_Cond_1,true);
}
//bra <bdisp12>
sh4dec(i1010_iiii_iiii_iiii)
{
dec_End(dec_jump_simm12(op),BET_StaticJump,true);
}
//braf <REG_N>
sh4dec(i0000_nnnn_0010_0011)
{
u32 n = GetN(op);
dec_DynamicSet(reg_r0+n,state.cpu.rpc + 4);
dec_End(0xFFFFFFFF,BET_DynamicJump,true);
}
//jmp @<REG_N>
sh4dec(i0100_nnnn_0010_1011)
{
u32 n = GetN(op);
dec_DynamicSet(reg_r0+n);
dec_End(0xFFFFFFFF,BET_DynamicJump,true);
}
//bsr <bdisp12>
sh4dec(i1011_iiii_iiii_iiii)
{
//TODO: set PR
dec_set_pr();
dec_End(dec_jump_simm12(op),BET_StaticCall,true);
}
//bsrf <REG_N>
sh4dec(i0000_nnnn_0000_0011)
{
u32 n = GetN(op);
//TODO: set PR
u32 retaddr=dec_set_pr();
dec_DynamicSet(reg_r0+n,retaddr);
dec_End(0xFFFFFFFF,BET_DynamicCall,true);
}
//jsr @<REG_N>
sh4dec(i0100_nnnn_0000_1011)
{
u32 n = GetN(op);
//TODO: Set pr
dec_set_pr();
dec_DynamicSet(reg_r0+n);
dec_End(0xFFFFFFFF,BET_DynamicCall,true);
}
//rts
sh4dec(i0000_0000_0000_1011)
{
dec_DynamicSet(reg_pr);
dec_End(0xFFFFFFFF,BET_DynamicRet,true);
}
//rte
sh4dec(i0000_0000_0010_1011)
{
//TODO: Write SR, Check intr
dec_write_sr(reg_ssr);
Emit(shop_sync_sr);
dec_DynamicSet(reg_spc);
dec_End(0xFFFFFFFF,BET_DynamicIntr,true);
}
//trapa #<imm>
sh4dec(i1100_0011_iiii_iiii)
{
//TODO: ifb
dec_fallback(op);
dec_DynamicSet(reg_nextpc);
dec_End(0xFFFFFFFF,BET_DynamicJump,false);
}
//sleep
sh4dec(i0000_0000_0001_1011)
{
//TODO: ifb
dec_fallback(op);
dec_DynamicSet(reg_nextpc);
dec_End(0xFFFFFFFF,BET_DynamicJump,false);
}
//ldc.l @<REG_N>+,SR
sh4dec(i0100_nnnn_0000_0111)
{
/*
u32 sr_t;
ReadMemU32(sr_t,r[n]);
if (sh4_exept_raised)
return;
sr.SetFull(sr_t);
r[n] += 4;
if (UpdateSR())
{
//FIXME only if interrupts got on .. :P
UpdateINTC();
}*/
dec_End(0xFFFFFFFF,BET_StaticIntr,false);
}
//ldc <REG_N>,SR
sh4dec(i0100_nnnn_0000_1110)
{
u32 n = GetN(op);
dec_write_sr((Sh4RegType)(reg_r0+n));
Emit(shop_sync_sr);
dec_End(0xFFFFFFFF,BET_StaticIntr,false);
}
//nop !
sh4dec(i0000_0000_0000_1001)
{
}
sh4dec(i1111_0011_1111_1101)
{
//fpscr.SZ is bit 20
Emit(shop_xor,reg_fpscr,reg_fpscr,mk_imm(1<<20));
state.cpu.FSZ64=!state.cpu.FSZ64;
}
//frchg
sh4dec(i1111_1011_1111_1101)
{
Emit(shop_xor,reg_fpscr,reg_fpscr,mk_imm(1<<21));
Emit(shop_mov32,reg_old_fpscr,reg_fpscr);
shil_param rmn;//null param
Emit(shop_frswap,regv_xmtrx,regv_fmtrx,regv_xmtrx,0,rmn,regv_fmtrx);
}
//not-so-elegant, but avoids extra opcodes and temporalities ..
//rotcl
sh4dec(i0100_nnnn_0010_0100)
{
u32 n = GetN(op);
Sh4RegType rn=(Sh4RegType)(reg_r0+n);
Emit(shop_rocl,rn,rn,reg_sr_T,0,shil_param(),reg_sr_T);
/*
Emit(shop_ror,rn,rn,mk_imm(31));
Emit(shop_xor,rn,rn,reg_sr_T); //Only affects last bit (swap part a)
Emit(shop_xor,reg_sr_T,reg_sr_T,rn); //srT -> rn
Emit(shop_and,reg_sr_T,reg_sr_T,mk_imm(1)); //Keep only last bit
Emit(shop_xor,rn,rn,reg_sr_T); //Only affects last bit (swap part b)
*/
}
//rotcr
sh4dec(i0100_nnnn_0010_0101)
{
u32 n = GetN(op);
Sh4RegType rn=(Sh4RegType)(reg_r0+n);
Emit(shop_rocr,rn,rn,reg_sr_T,0,shil_param(),reg_sr_T);
/*
Emit(shop_xor,rn,rn,reg_sr_T); //Only affects last bit (swap part a)
Emit(shop_xor,reg_sr_T,reg_sr_T,rn); //srT -> rn
Emit(shop_and,reg_sr_T,reg_sr_T,mk_imm(1)); //Keep only last bit
Emit(shop_xor,rn,rn,reg_sr_T); //Only affects last bit (swap part b)
Emit(shop_ror,rn,rn,mk_imm(1));
*/
}
#endif
const Sh4RegType SREGS[] =
{
reg_mach,
reg_macl,
reg_pr,
reg_sgr,
NoReg,
reg_fpul,
reg_fpscr,
NoReg,
NoReg,
NoReg,
NoReg,
NoReg,
NoReg,
NoReg,
NoReg,
reg_dbr,
};
const Sh4RegType CREGS[] =
{
reg_sr,
reg_gbr,
reg_vbr,
reg_ssr,
reg_spc,
NoReg,
NoReg,
NoReg,
reg_r0_Bank,
reg_r1_Bank,
reg_r2_Bank,
reg_r3_Bank,
reg_r4_Bank,
reg_r5_Bank,
reg_r6_Bank,
reg_r7_Bank,
};
void dec_param(DecParam p,shil_param& r1,shil_param& r2, u32 op)
{
switch(p)
{
//constants
case PRM_PC_D8_x2:
r1=mk_imm((state.cpu.rpc+4)+(GetImm8(op)<<1));
break;
case PRM_PC_D8_x4:
r1=mk_imm(((state.cpu.rpc+4)&0xFFFFFFFC)+(GetImm8(op)<<2));
break;
case PRM_ZERO:
r1= mk_imm(0);
break;
case PRM_ONE:
r1= mk_imm(1);
break;
case PRM_TWO:
r1= mk_imm(2);
break;
case PRM_TWO_INV:
r1= mk_imm(~2);
break;
case PRM_ONE_F32:
r1= mk_imm(0x3f800000);
break;
//imms
case PRM_SIMM8:
r1=mk_imm(GetSImm8(op));
break;
case PRM_UIMM8:
r1=mk_imm(GetImm8(op));
break;
//direct registers
case PRM_R0:
r1=mk_reg(reg_r0);
break;
case PRM_RN:
r1=mk_regi(reg_r0+GetN(op));
break;
case PRM_RM:
r1=mk_regi(reg_r0+GetM(op));
break;
case PRM_FRN_SZ:
if (state.cpu.FSZ64)
{
int rx=GetN(op)/2;
if (GetN(op)&1)
rx+=regv_xd_0;
else
rx+=regv_dr_0;
r1=mk_regi(rx);
break;
}
case PRM_FRN:
r1=mk_regi(reg_fr_0+GetN(op));
break;
case PRM_FRM_SZ:
if (state.cpu.FSZ64)
{
int rx=GetM(op)/2;
if (GetM(op)&1)
rx+=regv_xd_0;
else
rx+=regv_dr_0;
r1=mk_regi(rx);
break;
}
case PRM_FRM:
r1=mk_regi(reg_fr_0+GetM(op));
break;
case PRM_FPUL:
r1=mk_regi(reg_fpul);
break;
case PRM_FPN: //float pair, 3 bits
r1=mk_regi(regv_dr_0+GetN(op)/2);
break;
case PRM_FVN: //float quad, 2 bits
r1=mk_regi(regv_fv_0+GetN(op)/4);
break;
case PRM_FVM: //float quad, 2 bits
r1=mk_regi(regv_fv_0+(GetN(op)&0x3));
break;
case PRM_XMTRX: //float matrix, 0 bits
r1=mk_regi(regv_xmtrx);
break;
case PRM_FRM_FR0:
r1=mk_regi(reg_fr_0+GetM(op));
r2=mk_regi(reg_fr_0);
break;
case PRM_SR_T:
r1=mk_regi(reg_sr_T);
break;
case PRM_SR_STATUS:
r1=mk_regi(reg_sr_status);
break;
case PRM_SREG: //FPUL/FPSCR/MACH/MACL/PR/DBR/SGR
r1=mk_regi(SREGS[GetM(op)]);
break;
case PRM_CREG: //SR/GBR/VBR/SSR/SPC/<RM_BANK>
r1=mk_regi(CREGS[GetM(op)]);
break;
//reg/imm reg/reg
case PRM_RN_D4_x1:
case PRM_RN_D4_x2:
case PRM_RN_D4_x4:
{
u32 shft=p-PRM_RN_D4_x1;
r1=mk_regi(reg_r0+GetN(op));
r2=mk_imm(GetImm4(op)<<shft);
}
break;
case PRM_RN_R0:
r1=mk_regi(reg_r0+GetN(op));
r2=mk_regi(reg_r0);
break;
case PRM_RM_D4_x1:
case PRM_RM_D4_x2:
case PRM_RM_D4_x4:
{
u32 shft=p-PRM_RM_D4_x1;
r1=mk_regi(reg_r0+GetM(op));
r2=mk_imm(GetImm4(op)<<shft);
}
break;
case PRM_RM_R0:
r1=mk_regi(reg_r0+GetM(op));
r2=mk_regi(reg_r0);
break;
case PRM_GBR_D8_x1:
case PRM_GBR_D8_x2:
case PRM_GBR_D8_x4:
{
u32 shft=p-PRM_GBR_D8_x1;
r1=mk_regi(reg_gbr);
r2=mk_imm(GetImm8(op)<<shft);
}
break;
default:
die("Non-supported parameter used");
}
}
#define MASK_N_M 0xF00F
#define MASK_N 0xF0FF
#define MASK_NONE 0xFFFF
#define DIV0U_KEY 0x0019
#define DIV0S_KEY 0x2007
#define DIV1_KEY 0x3004
#define ROTCL_KEY 0x4024
Sh4RegType div_som_reg1;
Sh4RegType div_som_reg2;
Sh4RegType div_som_reg3;
u32 MatchDiv32(u32 pc , Sh4RegType &reg1,Sh4RegType &reg2 , Sh4RegType &reg3)
{
u32 v_pc=pc;
u32 match=1;
for (int i=0;i<32;i++)
{
u16 opcode=ReadMem16(v_pc);
v_pc+=2;
if ((opcode&MASK_N)==ROTCL_KEY)
{
if (reg1==NoReg)
reg1=(Sh4RegType)GetN(opcode);
else if (reg1!=(Sh4RegType)GetN(opcode))
break;
match++;
}
else
{
//printf("DIV MATCH BROKEN BY: %s\n",OpDesc[opcode]->diss);
break;
}
opcode=ReadMem16(v_pc);
v_pc+=2;
if ((opcode&MASK_N_M)==DIV1_KEY)
{
if (reg2==NoReg)
reg2=(Sh4RegType)GetM(opcode);
else if (reg2!=(Sh4RegType)GetM(opcode))
break;
if (reg2==reg1)
break;
if (reg3==NoReg)
reg3=(Sh4RegType)GetN(opcode);
else if (reg3!=(Sh4RegType)GetN(opcode))
break;
if (reg3==reg1)
break;
match++;
}
else
break;
}
return match;
}
bool MatchDiv32u(u32 op,u32 pc)
{
div_som_reg1=NoReg;
div_som_reg2=NoReg;
div_som_reg3=NoReg;
u32 match=MatchDiv32(pc+2,div_som_reg1,div_som_reg2,div_som_reg3);
//log("DIV32U matched %d%% @ 0x%X\n",match*100/65,pc);
if (match==65)
{
//DIV32U was perfectly matched :)
return true;
}
else //no match ...
return false;
}
bool MatchDiv32s(u32 op,u32 pc)
{
u32 n = GetN(op);
u32 m = GetM(op);
div_som_reg1=NoReg;
div_som_reg2=(Sh4RegType)m;
div_som_reg3=(Sh4RegType)n;
u32 match=MatchDiv32(pc+2,div_som_reg1,div_som_reg2,div_som_reg3);
printf("DIV32S matched %d%% @ 0x%X\n",match*100/65,pc);
if (match==65)
{
//DIV32S was perfectly matched :)
printf("div32s %d/%d/%d\n",div_som_reg1,div_som_reg2,div_som_reg3);
return true;
}
else //no match ...
{
/*
printf("%04X\n",ReadMem16(pc-2));
printf("%04X\n",ReadMem16(pc-0));
printf("%04X\n",ReadMem16(pc+2));
printf("%04X\n",ReadMem16(pc+4));
printf("%04X\n",ReadMem16(pc+6));*/
return false;
}
}
/*
//This ended up too rare (and too hard to match)
bool MatchDiv0S_0(u32 pc)
{
if (ReadMem16(pc+0)==0x233A && //XOR r3,r3
ReadMem16(pc+2)==0x2137 && //DIV0S r3,r1
ReadMem16(pc+4)==0x322A && //SUBC r2,r2
ReadMem16(pc+6)==0x313A && //SUBC r3,r1
(ReadMem16(pc+8)&0xF00F)==0x2007) //DIV0S x,x
return true;
else
return false;
}
*/
bool dec_generic(u32 op)
{
DecMode mode;DecParam d;DecParam s;shilop natop;u32 e;
if (OpDesc[op]->decode==0)
return false;
u64 inf=OpDesc[op]->decode;
e=(u32)(inf>>32);
mode=(DecMode)((inf>>24)&0xFF);
d=(DecParam)((inf>>16)&0xFF);
s=(DecParam)((inf>>8)&0xFF);
natop=(shilop)((inf>>0)&0xFF);
/*
if ((op&0xF00F)==0x300E)
{
return false;
}*/
/*
if (mode==DM_ADC)
return false;
*/
bool transfer_64=false;
if (op>=0xF000)
{
state.info.has_fpu=true;
//return false;//FPU off for now
if (state.cpu.FPR64 /*|| state.cpu.FSZ64*/)
return false;
if (state.cpu.FSZ64 && (d==PRM_FRN_SZ || d==PRM_FRM_SZ || s==PRM_FRN_SZ || s==PRM_FRM_SZ))
{
transfer_64=true;
}
}
shil_param rs1,rs2,rs3,rd;
dec_param(s,rs2,rs3,op);
dec_param(d,rs1,rs3,op);
switch(mode)
{
case DM_ReadSRF:
Emit(shop_mov32,rs1,reg_sr_status);
Emit(shop_or,rs1,rs1,reg_sr_T);
break;
case DM_WriteTOp:
Emit(natop,reg_sr_T,rs1,rs2);
break;
case DM_DT:
verify(natop==shop_sub);
Emit(natop,rs1,rs1,rs2);
Emit(shop_seteq,mk_reg(reg_sr_T),rs1,mk_imm(0));
break;
case DM_Shift:
if (natop==shop_shl && e==1)
Emit(shop_shr,mk_reg(reg_sr_T),rs1,mk_imm(31));
else if (e==1)
Emit(shop_and,mk_reg(reg_sr_T),rs1,mk_imm(1));
Emit(natop,rs1,rs1,mk_imm(e));
break;
case DM_Rot:
if (!(((s32)e>=0?e:-e)&0x1000))
{
if ((s32)e<0)
{
//left rotate
Emit(shop_shr,mk_reg(reg_sr_T),rs2,mk_imm(31));
e=-e;
}
else
{
//right rotate
Emit(shop_and,mk_reg(reg_sr_T),rs2,mk_imm(1));
}
}
e&=31;
Emit(natop,rs1,rs2,mk_imm(e));
break;
case DM_BinaryOp://d=d op s
if (e&1)
Emit(natop,rs1,rs1,rs2,0,rs3);
else
Emit(natop,shil_param(),rs1,rs2,0,rs3);
break;
case DM_UnaryOp: //d= op s
if (transfer_64 && natop==shop_mov32)
natop=shop_mov64;
if (natop==shop_cvt_i2f_n && state.cpu.RoundToZero)
natop=shop_cvt_i2f_z;
if (e&1)
Emit(natop,shil_param(),rs1);
else
Emit(natop,rs1,rs2);
break;
case DM_WriteM: //write(d,s)
{
//0 has no effect, so get rid of it
if (rs3.is_imm() && rs3._imm==0)
rs3=shil_param();
state.info.has_writem=true;
if (transfer_64) e=(s32)e*2;
bool update_after=false;
if ((s32)e<0)
{
if (rs1._reg!=rs2._reg) //reg shouldn't be updated if its written
{
Emit(shop_sub,rs1,rs1,mk_imm(-e));
}
else
{
verify(rs3.is_null());
rs3=mk_imm(e);
update_after=true;
}
}
Emit(shop_writem,shil_param(),rs1,rs2,(s32)e<0?-e:e,rs3);
if (update_after)
{
Emit(shop_sub,rs1,rs1,mk_imm(-e));
}
}
break;
case DM_ReadM:
//0 has no effect, so get rid of it
if (rs3.is_imm() && rs3._imm==0)
rs3=shil_param();
state.info.has_readm=true;
if (transfer_64) e=(s32)e*2;
Emit(shop_readm,rs1,rs2,shil_param(),(s32)e<0?-e:e,rs3);
if ((s32)e<0)
{
if (rs1._reg!=rs2._reg)//the reg shouldn't be updated if it was just read.
Emit(shop_add,rs2,rs2,mk_imm(-e));
}
break;
case DM_fiprOp:
{
shil_param rdd=mk_regi(rs1._reg+3);
Emit(natop,rdd,rs1,rs2);
}
break;
case DM_EXTOP:
{
Emit(natop,rs1,rs2,mk_imm(e==1?0xFF:0xFFFF));
}
break;
case DM_MUL:
{
shilop op;
shil_param rd=mk_reg(reg_macl);
shil_param rd2=shil_param();
switch((s32)e)
{
case 16: op=shop_mul_u16; break;
case -16: op=shop_mul_s16; break;
case -32: op=shop_mul_i32; break;
case 64: op=shop_mul_u64; rd2 = mk_reg(reg_mach); break;
case -64: op=shop_mul_s64; rd2 = mk_reg(reg_mach); break;
default:
die("DM_MUL: Failed to classify opcode");
}
Emit(op,rd,rs1,rs2,0,shil_param(),rd2);
}
break;
case DM_DIV0:
{
if (e==1)
{
if (MatchDiv32u(op,state.cpu.rpc))
{
verify(!state.cpu.is_delayslot);
//div32u
Emit(shop_div32u,mk_reg(div_som_reg1),mk_reg(div_som_reg1),mk_reg(div_som_reg2),0,shil_param(),mk_reg(div_som_reg3));
Emit(shop_and,mk_reg(reg_sr_T),mk_reg(div_som_reg1),mk_imm(1));
Emit(shop_shr,mk_reg(div_som_reg1),mk_reg(div_som_reg1),mk_imm(1));
Emit(shop_div32p2,mk_reg(div_som_reg3),mk_reg(div_som_reg3),mk_reg(div_som_reg2),0,shil_param(reg_sr_T));
//skip the aggregated opcodes
state.cpu.rpc+=128;
blk->guest_cycles+=CPU_RATIO*64;
}
else
{
//clear QM (bits 8,9)
u32 qm=(1<<8)|(1<<9);
Emit(shop_and,mk_reg(reg_sr_status),mk_reg(reg_sr_status),mk_imm(~qm));
//clear T !
Emit(shop_mov32,mk_reg(reg_sr_T),mk_imm(0));
}
}
else
{
if (MatchDiv32s(op,state.cpu.rpc))
{
verify(!state.cpu.is_delayslot);
//div32s
Emit(shop_div32s,mk_reg(div_som_reg1),mk_reg(div_som_reg1),mk_reg(div_som_reg2),0,shil_param(),mk_reg(div_som_reg3));
Emit(shop_and,mk_reg(reg_sr_T),mk_reg(div_som_reg1),mk_imm(1));
Emit(shop_sar,mk_reg(div_som_reg1),mk_reg(div_som_reg1),mk_imm(1));
Emit(shop_div32p2,mk_reg(div_som_reg3),mk_reg(div_som_reg3),mk_reg(div_som_reg2),0,shil_param(reg_sr_T));
//skip the aggregated opcodes
state.cpu.rpc+=128;
blk->guest_cycles+=CPU_RATIO*64;
}
else
{
//sr.Q=r[n]>>31;
//sr.M=r[m]>>31;
//sr.T=sr.M^sr.Q;
//This is nasty because there isn't a temp reg ..
//VERY NASTY
//Clear Q & M
Emit(shop_and,mk_reg(reg_sr_status),mk_reg(reg_sr_status),mk_imm(~((1<<8)|(1<<9))));
//sr.Q=r[n]>>31;
Emit(shop_sar,mk_reg(reg_sr_T),rs1,mk_imm(31));
Emit(shop_and,mk_reg(reg_sr_T),mk_reg(reg_sr_T),mk_imm(1<<8));
Emit(shop_or,mk_reg(reg_sr_status),mk_reg(reg_sr_status),mk_reg(reg_sr_T));
//sr.M=r[m]>>31;
Emit(shop_sar,mk_reg(reg_sr_T),rs2,mk_imm(31));
Emit(shop_and,mk_reg(reg_sr_T),mk_reg(reg_sr_T),mk_imm(1<<9));
Emit(shop_or,mk_reg(reg_sr_status),mk_reg(reg_sr_status),mk_reg(reg_sr_T));
//sr.T=sr.M^sr.Q;
Emit(shop_xor,mk_reg(reg_sr_T),rs1,rs2);
Emit(shop_shr,mk_reg(reg_sr_T),mk_reg(reg_sr_T),mk_imm(31));
}
}
}
break;
case DM_ADC:
{
Emit(natop,rs1,rs1,rs2,0,mk_reg(reg_sr_T),mk_reg(reg_sr_T));
}
break;
default:
verify(false);
}
return true;
}
void dec_DecodeBlock(RuntimeBlockInfo* rbi,u32 max_cycles)
{
blk=rbi;
state.Setup(blk->addr,blk->fpu_cfg);
#ifndef HOST_NO_REC
ngen_GetFeatures(&state.ngen);
#endif
blk->guest_opcodes=0;
for(;;)
{
switch(state.NextOp)
{
case NDO_Delayslot:
state.NextOp=state.DelayOp;
state.cpu.is_delayslot=true;
//there is no break here by design
case NDO_NextOp:
{
if (blk->guest_cycles>=max_cycles && !state.cpu.is_delayslot)
{
dec_End(state.cpu.rpc,BET_StaticJump,false);
}
else
{
/*
if (MatchDiv0S_0(state.cpu.rpc))
{
//can also be emitted as
//sar r2,31
//subcs r1,1
//in arm
//r1=r1-sign bit
//r2=sign mask
Emit(shop_shl,mk_reg(reg_sr_T),mk_reg(reg_r2),mk_imm(31));
Emit(shop_sar,mk_reg(reg_r2),mk_reg(reg_r2),mk_imm(31));
Emit(shop_sub,mk_reg(reg_r1),mk_reg(reg_r1),mk_reg(reg_sr_T));
blk->guest_cycles+=CPU_RATIO*4;
state.cpu.rpc+=2*4;
continue;
}
*/
u32 op=ReadMem16(state.cpu.rpc);
if (op==0 && state.cpu.is_delayslot)
{
printf("Delayslot 0 hack!\n");
}
else
{
blk->guest_opcodes++;
if (op>=0xF000)
blk->guest_cycles+=0;
else
blk->guest_cycles+=CPU_RATIO;
verify(!(state.cpu.is_delayslot && OpDesc[op]->SetPC()));
if (state.ngen.OnlyDynamicEnds || !OpDesc[op]->rec_oph)
{
if (state.ngen.InterpreterFallback || !dec_generic(op))
{
dec_fallback(op);
if (OpDesc[op]->SetPC())
{
dec_DynamicSet(reg_nextpc);
dec_End(0xFFFFFFFF,BET_DynamicJump,false);
}
if (OpDesc[op]->SetFPSCR() && !state.cpu.is_delayslot)
{
dec_End(state.cpu.rpc+2,BET_StaticJump,false);
}
}
/*
else if (state.info.has_readm || state.info.has_writem)
{
if (!state.cpu.is_delayslot)
dec_End(state.cpu.rpc+2,BET_StaticJump,false);
}
*/
}
else
{
OpDesc[op]->rec_oph(op);
}
}
state.cpu.rpc+=2;
}
}
break;
case NDO_Jump:
die("Too old");
state.NextOp=state.JumpOp;
state.cpu.rpc=state.JumpAddr;
break;
case NDO_End:
goto _end;
}
}
_end:
blk->sh4_code_size=state.cpu.rpc-blk->addr;
blk->NextBlock=state.NextAddr;
blk->BranchBlock=state.JumpAddr;
blk->BlockType=state.BlockType;
#if HOST_OS == OS_WINDOWS
switch(rbi->addr)
{
case 0x8C09ED16:
case 0x8C0BA50E:
case 0x8C0BA506:
case 0x8C0BA526:
case 0x8C224800:
printf("HASH: %08X reloc %s\n",blk->addr,blk->hash(false,true));
break;
}
#endif
//cycle tricks
if (settings.dynarec.idleskip)
{
//Experimental hash-id based idle skip
if (strstr(idle_hash,blk->hash(false,true)))
{
//printf("IDLESKIP: %08X reloc match %s\n",blk->addr,blk->hash(false,true));
blk->guest_cycles=max_cycles*100;
}
else
{
//Small-n-simple idle loop detector :p
if (state.info.has_readm && !state.info.has_writem && !state.info.has_fpu && blk->guest_opcodes<6)
{
if (blk->BlockType==BET_Cond_0 || blk->BlockType==BET_Cond_1 && blk->BranchBlock<=blk->addr)
{
blk->guest_cycles*=3;
}
if (blk->BranchBlock==blk->addr)
{
blk->guest_cycles*=10;
}
}
//if in syscalls area (ip.bin etc) skip fast :p
if ((blk->addr&0x1FFF0000)==0x0C000000)
{
if (blk->addr&0x8000)
{
//ip.bin (boot loader/img etc)
blk->guest_cycles*=15;
}
else
{
//syscalls
blk->guest_cycles*=5;
}
}
//blk->guest_cycles=5;
}
}
else
{
blk->guest_cycles*=1.5;
}
//make sure we don't use wayy-too-many cycles
blk->guest_cycles=min(blk->guest_cycles,max_cycles);
//make sure we don't use wayy-too-few cycles
blk->guest_cycles=max(1U,blk->guest_cycles);
blk=0;
}
#endif