flycast/core/deps/vixl/aarch64/operands-aarch64.cc

470 lines
14 KiB
C++

// Copyright 2016, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "operands-aarch64.h"
namespace vixl {
namespace aarch64 {
// CPURegList utilities.
CPURegister CPURegList::PopLowestIndex(RegList mask) {
RegList list = list_ & mask;
if (list == 0) return NoCPUReg;
int index = CountTrailingZeros(list);
VIXL_ASSERT(((static_cast<RegList>(1) << index) & list) != 0);
Remove(index);
return CPURegister(index, size_, type_);
}
CPURegister CPURegList::PopHighestIndex(RegList mask) {
RegList list = list_ & mask;
if (list == 0) return NoCPUReg;
int index = CountLeadingZeros(list);
index = kRegListSizeInBits - 1 - index;
VIXL_ASSERT(((static_cast<RegList>(1) << index) & list) != 0);
Remove(index);
return CPURegister(index, size_, type_);
}
bool CPURegList::IsValid() const {
if (type_ == CPURegister::kNoRegister) {
// We can't use IsEmpty here because that asserts IsValid().
return list_ == 0;
} else {
bool is_valid = true;
// Try to create a CPURegister for each element in the list.
for (int i = 0; i < kRegListSizeInBits; i++) {
if (((list_ >> i) & 1) != 0) {
is_valid &= CPURegister(i, size_, type_).IsValid();
}
}
return is_valid;
}
}
void CPURegList::RemoveCalleeSaved() {
if (GetType() == CPURegister::kRegister) {
Remove(GetCalleeSaved(GetRegisterSizeInBits()));
} else if (GetType() == CPURegister::kVRegister) {
Remove(GetCalleeSavedV(GetRegisterSizeInBits()));
} else {
VIXL_ASSERT(GetType() == CPURegister::kNoRegister);
VIXL_ASSERT(IsEmpty());
// The list must already be empty, so do nothing.
}
}
CPURegList CPURegList::Union(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3) {
return Union(list_1, Union(list_2, list_3));
}
CPURegList CPURegList::Union(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3,
const CPURegList& list_4) {
return Union(Union(list_1, list_2), Union(list_3, list_4));
}
CPURegList CPURegList::Intersection(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3) {
return Intersection(list_1, Intersection(list_2, list_3));
}
CPURegList CPURegList::Intersection(const CPURegList& list_1,
const CPURegList& list_2,
const CPURegList& list_3,
const CPURegList& list_4) {
return Intersection(Intersection(list_1, list_2),
Intersection(list_3, list_4));
}
CPURegList CPURegList::GetCalleeSaved(unsigned size) {
return CPURegList(CPURegister::kRegister, size, 19, 29);
}
CPURegList CPURegList::GetCalleeSavedV(unsigned size) {
return CPURegList(CPURegister::kVRegister, size, 8, 15);
}
CPURegList CPURegList::GetCallerSaved(unsigned size) {
// Registers x0-x18 and lr (x30) are caller-saved.
CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18);
// Do not use lr directly to avoid initialisation order fiasco bugs for users.
list.Combine(Register(30, kXRegSize));
return list;
}
CPURegList CPURegList::GetCallerSavedV(unsigned size) {
// Registers d0-d7 and d16-d31 are caller-saved.
CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7);
list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31));
return list;
}
const CPURegList kCalleeSaved = CPURegList::GetCalleeSaved();
const CPURegList kCalleeSavedV = CPURegList::GetCalleeSavedV();
const CPURegList kCallerSaved = CPURegList::GetCallerSaved();
const CPURegList kCallerSavedV = CPURegList::GetCallerSavedV();
// Operand.
Operand::Operand(int64_t immediate)
: immediate_(immediate),
reg_(NoReg),
shift_(NO_SHIFT),
extend_(NO_EXTEND),
shift_amount_(0) {}
Operand::Operand(IntegerOperand immediate)
: immediate_(immediate.AsIntN(64)),
reg_(NoReg),
shift_(NO_SHIFT),
extend_(NO_EXTEND),
shift_amount_(0) {}
Operand::Operand(Register reg, Shift shift, unsigned shift_amount)
: reg_(reg),
shift_(shift),
extend_(NO_EXTEND),
shift_amount_(shift_amount) {
VIXL_ASSERT(shift != MSL);
VIXL_ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize));
VIXL_ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize));
VIXL_ASSERT(!reg.IsSP());
}
Operand::Operand(Register reg, Extend extend, unsigned shift_amount)
: reg_(reg),
shift_(NO_SHIFT),
extend_(extend),
shift_amount_(shift_amount) {
VIXL_ASSERT(reg.IsValid());
VIXL_ASSERT(shift_amount <= 4);
VIXL_ASSERT(!reg.IsSP());
// Extend modes SXTX and UXTX require a 64-bit register.
VIXL_ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX)));
}
bool Operand::IsImmediate() const { return reg_.Is(NoReg); }
bool Operand::IsPlainRegister() const {
return reg_.IsValid() &&
(((shift_ == NO_SHIFT) && (extend_ == NO_EXTEND)) ||
// No-op shifts.
((shift_ != NO_SHIFT) && (shift_amount_ == 0)) ||
// No-op extend operations.
// We can't include [US]XTW here without knowing more about the
// context; they are only no-ops for 32-bit operations.
//
// For example, this operand could be replaced with w1:
// __ Add(w0, w0, Operand(w1, UXTW));
// However, no plain register can replace it in this context:
// __ Add(x0, x0, Operand(w1, UXTW));
(((extend_ == UXTX) || (extend_ == SXTX)) && (shift_amount_ == 0)));
}
bool Operand::IsShiftedRegister() const {
return reg_.IsValid() && (shift_ != NO_SHIFT);
}
bool Operand::IsExtendedRegister() const {
return reg_.IsValid() && (extend_ != NO_EXTEND);
}
bool Operand::IsZero() const {
if (IsImmediate()) {
return GetImmediate() == 0;
} else {
return GetRegister().IsZero();
}
}
Operand Operand::ToExtendedRegister() const {
VIXL_ASSERT(IsShiftedRegister());
VIXL_ASSERT((shift_ == LSL) && (shift_amount_ <= 4));
return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_);
}
// MemOperand
MemOperand::MemOperand()
: base_(NoReg),
regoffset_(NoReg),
offset_(0),
addrmode_(Offset),
shift_(NO_SHIFT),
extend_(NO_EXTEND) {}
MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode)
: base_(base),
regoffset_(NoReg),
offset_(offset),
addrmode_(addrmode),
shift_(NO_SHIFT),
extend_(NO_EXTEND),
shift_amount_(0) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
}
MemOperand::MemOperand(Register base,
Register regoffset,
Extend extend,
unsigned shift_amount)
: base_(base),
regoffset_(regoffset),
offset_(0),
addrmode_(Offset),
shift_(NO_SHIFT),
extend_(extend),
shift_amount_(shift_amount) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
VIXL_ASSERT(!regoffset.IsSP());
VIXL_ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX));
// SXTX extend mode requires a 64-bit offset register.
VIXL_ASSERT(regoffset.Is64Bits() || (extend != SXTX));
}
MemOperand::MemOperand(Register base,
Register regoffset,
Shift shift,
unsigned shift_amount)
: base_(base),
regoffset_(regoffset),
offset_(0),
addrmode_(Offset),
shift_(shift),
extend_(NO_EXTEND),
shift_amount_(shift_amount) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
VIXL_ASSERT(regoffset.Is64Bits() && !regoffset.IsSP());
VIXL_ASSERT(shift == LSL);
}
MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode)
: base_(base),
regoffset_(NoReg),
addrmode_(addrmode),
shift_(NO_SHIFT),
extend_(NO_EXTEND),
shift_amount_(0) {
VIXL_ASSERT(base.Is64Bits() && !base.IsZero());
if (offset.IsImmediate()) {
offset_ = offset.GetImmediate();
} else if (offset.IsShiftedRegister()) {
VIXL_ASSERT((addrmode == Offset) || (addrmode == PostIndex));
regoffset_ = offset.GetRegister();
shift_ = offset.GetShift();
shift_amount_ = offset.GetShiftAmount();
extend_ = NO_EXTEND;
offset_ = 0;
// These assertions match those in the shifted-register constructor.
VIXL_ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP());
VIXL_ASSERT(shift_ == LSL);
} else {
VIXL_ASSERT(offset.IsExtendedRegister());
VIXL_ASSERT(addrmode == Offset);
regoffset_ = offset.GetRegister();
extend_ = offset.GetExtend();
shift_amount_ = offset.GetShiftAmount();
shift_ = NO_SHIFT;
offset_ = 0;
// These assertions match those in the extended-register constructor.
VIXL_ASSERT(!regoffset_.IsSP());
VIXL_ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX));
VIXL_ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX)));
}
}
bool MemOperand::IsPlainRegister() const {
return IsImmediateOffset() && (GetOffset() == 0);
}
bool MemOperand::IsEquivalentToPlainRegister() const {
if (regoffset_.Is(NoReg)) {
// Immediate offset, pre-index or post-index.
return GetOffset() == 0;
} else if (GetRegisterOffset().IsZero()) {
// Zero register offset, pre-index or post-index.
// We can ignore shift and extend options because they all result in zero.
return true;
}
return false;
}
bool MemOperand::IsImmediateOffset() const {
return (addrmode_ == Offset) && regoffset_.Is(NoReg);
}
bool MemOperand::IsRegisterOffset() const {
return (addrmode_ == Offset) && !regoffset_.Is(NoReg);
}
bool MemOperand::IsPreIndex() const { return addrmode_ == PreIndex; }
bool MemOperand::IsPostIndex() const { return addrmode_ == PostIndex; }
bool MemOperand::IsImmediatePreIndex() const {
return IsPreIndex() && regoffset_.Is(NoReg);
}
bool MemOperand::IsImmediatePostIndex() const {
return IsPostIndex() && regoffset_.Is(NoReg);
}
void MemOperand::AddOffset(int64_t offset) {
VIXL_ASSERT(IsImmediateOffset());
offset_ += offset;
}
bool SVEMemOperand::IsValid() const {
#ifdef VIXL_DEBUG
{
// It should not be possible for an SVEMemOperand to match multiple types.
int count = 0;
if (IsScalarPlusImmediate()) count++;
if (IsScalarPlusScalar()) count++;
if (IsScalarPlusVector()) count++;
if (IsVectorPlusImmediate()) count++;
if (IsVectorPlusScalar()) count++;
if (IsVectorPlusVector()) count++;
VIXL_ASSERT(count <= 1);
}
#endif
// We can't have a register _and_ an immediate offset.
if ((offset_ != 0) && (!regoffset_.IsNone())) return false;
if (shift_amount_ != 0) {
// Only shift and extend modifiers can take a shift amount.
switch (mod_) {
case NO_SVE_OFFSET_MODIFIER:
case SVE_MUL_VL:
return false;
case SVE_LSL:
case SVE_UXTW:
case SVE_SXTW:
// Fall through.
break;
}
}
return IsScalarPlusImmediate() || IsScalarPlusScalar() ||
IsScalarPlusVector() || IsVectorPlusImmediate() ||
IsVectorPlusScalar() || IsVectorPlusVector();
}
bool SVEMemOperand::IsEquivalentToScalar() const {
if (IsScalarPlusImmediate()) {
return GetImmediateOffset() == 0;
}
if (IsScalarPlusScalar()) {
// We can ignore the shift because it will still result in zero.
return GetScalarOffset().IsZero();
}
// Forms involving vectors are never equivalent to a single scalar.
return false;
}
bool SVEMemOperand::IsPlainRegister() const {
if (IsScalarPlusImmediate()) {
return GetImmediateOffset() == 0;
}
return false;
}
GenericOperand::GenericOperand(const CPURegister& reg)
: cpu_register_(reg), mem_op_size_(0) {
if (reg.IsQ()) {
VIXL_ASSERT(reg.GetSizeInBits() > static_cast<int>(kXRegSize));
// Support for Q registers is not implemented yet.
VIXL_UNIMPLEMENTED();
}
}
GenericOperand::GenericOperand(const MemOperand& mem_op, size_t mem_op_size)
: cpu_register_(NoReg), mem_op_(mem_op), mem_op_size_(mem_op_size) {
if (mem_op_size_ > kXRegSizeInBytes) {
// We only support generic operands up to the size of X registers.
VIXL_UNIMPLEMENTED();
}
}
bool GenericOperand::Equals(const GenericOperand& other) const {
if (!IsValid() || !other.IsValid()) {
// Two invalid generic operands are considered equal.
return !IsValid() && !other.IsValid();
}
if (IsCPURegister() && other.IsCPURegister()) {
return GetCPURegister().Is(other.GetCPURegister());
} else if (IsMemOperand() && other.IsMemOperand()) {
return GetMemOperand().Equals(other.GetMemOperand()) &&
(GetMemOperandSizeInBytes() == other.GetMemOperandSizeInBytes());
}
return false;
}
}
} // namespace vixl::aarch64