flycast/core/deps/vixl/aarch64/instructions-aarch64.cc

1420 lines
38 KiB
C++

// Copyright 2015, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "instructions-aarch64.h"
#include "assembler-aarch64.h"
namespace vixl {
namespace aarch64 {
static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
uint64_t value,
unsigned width) {
VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
(width == 32));
VIXL_ASSERT((reg_size == kBRegSize) || (reg_size == kHRegSize) ||
(reg_size == kSRegSize) || (reg_size == kDRegSize));
uint64_t result = value & ((UINT64_C(1) << width) - 1);
for (unsigned i = width; i < reg_size; i *= 2) {
result |= (result << i);
}
return result;
}
bool Instruction::CanTakeSVEMovprfx(const char* form,
const Instruction* movprfx) const {
return CanTakeSVEMovprfx(Hash(form), movprfx);
}
bool Instruction::CanTakeSVEMovprfx(uint32_t form_hash,
const Instruction* movprfx) const {
bool movprfx_is_predicated = movprfx->Mask(SVEMovprfxMask) == MOVPRFX_z_p_z;
bool movprfx_is_unpredicated =
movprfx->Mask(SVEConstructivePrefix_UnpredicatedMask) == MOVPRFX_z_z;
VIXL_ASSERT(movprfx_is_predicated != movprfx_is_unpredicated);
int movprfx_zd = movprfx->GetRd();
int movprfx_pg = movprfx_is_predicated ? movprfx->GetPgLow8() : -1;
VectorFormat movprfx_vform =
movprfx_is_predicated ? movprfx->GetSVEVectorFormat() : kFormatUndefined;
bool pg_matches_low8 = movprfx_pg == GetPgLow8();
bool vform_matches = movprfx_vform == GetSVEVectorFormat();
bool zd_matches = movprfx_zd == GetRd();
bool zd_isnt_zn = movprfx_zd != GetRn();
bool zd_isnt_zm = movprfx_zd != GetRm();
switch (form_hash) {
case "cdot_z_zzzi_s"_h:
case "sdot_z_zzzi_s"_h:
case "sudot_z_zzzi_s"_h:
case "udot_z_zzzi_s"_h:
case "usdot_z_zzzi_s"_h:
return (GetRd() != static_cast<int>(ExtractBits(18, 16))) &&
movprfx_is_unpredicated && zd_isnt_zn && zd_matches;
case "cdot_z_zzzi_d"_h:
case "sdot_z_zzzi_d"_h:
case "udot_z_zzzi_d"_h:
return (GetRd() != static_cast<int>(ExtractBits(19, 16))) &&
movprfx_is_unpredicated && zd_isnt_zn && zd_matches;
case "fmlalb_z_zzzi_s"_h:
case "fmlalt_z_zzzi_s"_h:
case "fmlslb_z_zzzi_s"_h:
case "fmlslt_z_zzzi_s"_h:
case "smlalb_z_zzzi_d"_h:
case "smlalb_z_zzzi_s"_h:
case "smlalt_z_zzzi_d"_h:
case "smlalt_z_zzzi_s"_h:
case "smlslb_z_zzzi_d"_h:
case "smlslb_z_zzzi_s"_h:
case "smlslt_z_zzzi_d"_h:
case "smlslt_z_zzzi_s"_h:
case "sqdmlalb_z_zzzi_d"_h:
case "sqdmlalb_z_zzzi_s"_h:
case "sqdmlalt_z_zzzi_d"_h:
case "sqdmlalt_z_zzzi_s"_h:
case "sqdmlslb_z_zzzi_d"_h:
case "sqdmlslb_z_zzzi_s"_h:
case "sqdmlslt_z_zzzi_d"_h:
case "sqdmlslt_z_zzzi_s"_h:
case "umlalb_z_zzzi_d"_h:
case "umlalb_z_zzzi_s"_h:
case "umlalt_z_zzzi_d"_h:
case "umlalt_z_zzzi_s"_h:
case "umlslb_z_zzzi_d"_h:
case "umlslb_z_zzzi_s"_h:
case "umlslt_z_zzzi_d"_h:
case "umlslt_z_zzzi_s"_h:
return (GetRd() != GetSVEMulLongZmAndIndex().first) &&
movprfx_is_unpredicated && zd_isnt_zn && zd_matches;
case "cmla_z_zzzi_h"_h:
case "cmla_z_zzzi_s"_h:
case "fcmla_z_zzzi_h"_h:
case "fcmla_z_zzzi_s"_h:
case "fmla_z_zzzi_d"_h:
case "fmla_z_zzzi_h"_h:
case "fmla_z_zzzi_s"_h:
case "fmls_z_zzzi_d"_h:
case "fmls_z_zzzi_h"_h:
case "fmls_z_zzzi_s"_h:
case "mla_z_zzzi_d"_h:
case "mla_z_zzzi_h"_h:
case "mla_z_zzzi_s"_h:
case "mls_z_zzzi_d"_h:
case "mls_z_zzzi_h"_h:
case "mls_z_zzzi_s"_h:
case "sqrdcmlah_z_zzzi_h"_h:
case "sqrdcmlah_z_zzzi_s"_h:
case "sqrdmlah_z_zzzi_d"_h:
case "sqrdmlah_z_zzzi_h"_h:
case "sqrdmlah_z_zzzi_s"_h:
case "sqrdmlsh_z_zzzi_d"_h:
case "sqrdmlsh_z_zzzi_h"_h:
case "sqrdmlsh_z_zzzi_s"_h:
return (GetRd() != GetSVEMulZmAndIndex().first) &&
movprfx_is_unpredicated && zd_isnt_zn && zd_matches;
case "adclb_z_zzz"_h:
case "adclt_z_zzz"_h:
case "bcax_z_zzz"_h:
case "bsl1n_z_zzz"_h:
case "bsl2n_z_zzz"_h:
case "bsl_z_zzz"_h:
case "cdot_z_zzz"_h:
case "cmla_z_zzz"_h:
case "eor3_z_zzz"_h:
case "eorbt_z_zz"_h:
case "eortb_z_zz"_h:
case "fmlalb_z_zzz"_h:
case "fmlalt_z_zzz"_h:
case "fmlslb_z_zzz"_h:
case "fmlslt_z_zzz"_h:
case "nbsl_z_zzz"_h:
case "saba_z_zzz"_h:
case "sabalb_z_zzz"_h:
case "sabalt_z_zzz"_h:
case "sbclb_z_zzz"_h:
case "sbclt_z_zzz"_h:
case "sdot_z_zzz"_h:
case "smlalb_z_zzz"_h:
case "smlalt_z_zzz"_h:
case "smlslb_z_zzz"_h:
case "smlslt_z_zzz"_h:
case "sqdmlalb_z_zzz"_h:
case "sqdmlalbt_z_zzz"_h:
case "sqdmlalt_z_zzz"_h:
case "sqdmlslb_z_zzz"_h:
case "sqdmlslbt_z_zzz"_h:
case "sqdmlslt_z_zzz"_h:
case "sqrdcmlah_z_zzz"_h:
case "sqrdmlah_z_zzz"_h:
case "sqrdmlsh_z_zzz"_h:
case "uaba_z_zzz"_h:
case "uabalb_z_zzz"_h:
case "uabalt_z_zzz"_h:
case "udot_z_zzz"_h:
case "umlalb_z_zzz"_h:
case "umlalt_z_zzz"_h:
case "umlslb_z_zzz"_h:
case "umlslt_z_zzz"_h:
case "usdot_z_zzz_s"_h:
case "fmmla_z_zzz_s"_h:
case "fmmla_z_zzz_d"_h:
case "smmla_z_zzz"_h:
case "ummla_z_zzz"_h:
case "usmmla_z_zzz"_h:
return movprfx_is_unpredicated && zd_isnt_zm && zd_isnt_zn && zd_matches;
case "addp_z_p_zz"_h:
case "cadd_z_zz"_h:
case "clasta_z_p_zz"_h:
case "clastb_z_p_zz"_h:
case "decd_z_zs"_h:
case "dech_z_zs"_h:
case "decw_z_zs"_h:
case "ext_z_zi_des"_h:
case "faddp_z_p_zz"_h:
case "fmaxnmp_z_p_zz"_h:
case "fmaxp_z_p_zz"_h:
case "fminnmp_z_p_zz"_h:
case "fminp_z_p_zz"_h:
case "ftmad_z_zzi"_h:
case "incd_z_zs"_h:
case "inch_z_zs"_h:
case "incw_z_zs"_h:
case "insr_z_v"_h:
case "smaxp_z_p_zz"_h:
case "sminp_z_p_zz"_h:
case "splice_z_p_zz_des"_h:
case "sqcadd_z_zz"_h:
case "sqdecd_z_zs"_h:
case "sqdech_z_zs"_h:
case "sqdecw_z_zs"_h:
case "sqincd_z_zs"_h:
case "sqinch_z_zs"_h:
case "sqincw_z_zs"_h:
case "srsra_z_zi"_h:
case "ssra_z_zi"_h:
case "umaxp_z_p_zz"_h:
case "uminp_z_p_zz"_h:
case "uqdecd_z_zs"_h:
case "uqdech_z_zs"_h:
case "uqdecw_z_zs"_h:
case "uqincd_z_zs"_h:
case "uqinch_z_zs"_h:
case "uqincw_z_zs"_h:
case "ursra_z_zi"_h:
case "usra_z_zi"_h:
case "xar_z_zzi"_h:
return movprfx_is_unpredicated && zd_isnt_zn && zd_matches;
case "add_z_zi"_h:
case "and_z_zi"_h:
case "decp_z_p_z"_h:
case "eor_z_zi"_h:
case "incp_z_p_z"_h:
case "insr_z_r"_h:
case "mul_z_zi"_h:
case "orr_z_zi"_h:
case "smax_z_zi"_h:
case "smin_z_zi"_h:
case "sqadd_z_zi"_h:
case "sqdecp_z_p_z"_h:
case "sqincp_z_p_z"_h:
case "sqsub_z_zi"_h:
case "sub_z_zi"_h:
case "subr_z_zi"_h:
case "umax_z_zi"_h:
case "umin_z_zi"_h:
case "uqadd_z_zi"_h:
case "uqdecp_z_p_z"_h:
case "uqincp_z_p_z"_h:
case "uqsub_z_zi"_h:
return movprfx_is_unpredicated && zd_matches;
case "cpy_z_p_i"_h:
if (movprfx_is_predicated) {
if (!vform_matches) return false;
if (movprfx_pg != GetRx<19, 16>()) return false;
}
// Only the merging form can take movprfx.
if (ExtractBit(14) == 0) return false;
return zd_matches;
case "fcpy_z_p_i"_h:
return (movprfx_is_unpredicated ||
((movprfx_pg == GetRx<19, 16>()) && vform_matches)) &&
zd_matches;
case "flogb_z_p_z"_h:
return (movprfx_is_unpredicated ||
((movprfx_vform == GetSVEVectorFormat(17)) && pg_matches_low8)) &&
zd_isnt_zn && zd_matches;
case "asr_z_p_zi"_h:
case "asrd_z_p_zi"_h:
case "lsl_z_p_zi"_h:
case "lsr_z_p_zi"_h:
case "sqshl_z_p_zi"_h:
case "sqshlu_z_p_zi"_h:
case "srshr_z_p_zi"_h:
case "uqshl_z_p_zi"_h:
case "urshr_z_p_zi"_h:
return (movprfx_is_unpredicated ||
((movprfx_vform ==
SVEFormatFromLaneSizeInBytesLog2(
GetSVEImmShiftAndLaneSizeLog2(true).second)) &&
pg_matches_low8)) &&
zd_matches;
case "fcvt_z_p_z_d2h"_h:
case "fcvt_z_p_z_d2s"_h:
case "fcvt_z_p_z_h2d"_h:
case "fcvt_z_p_z_s2d"_h:
case "fcvtx_z_p_z_d2s"_h:
case "fcvtzs_z_p_z_d2w"_h:
case "fcvtzs_z_p_z_d2x"_h:
case "fcvtzs_z_p_z_fp162x"_h:
case "fcvtzs_z_p_z_s2x"_h:
case "fcvtzu_z_p_z_d2w"_h:
case "fcvtzu_z_p_z_d2x"_h:
case "fcvtzu_z_p_z_fp162x"_h:
case "fcvtzu_z_p_z_s2x"_h:
case "scvtf_z_p_z_w2d"_h:
case "scvtf_z_p_z_x2d"_h:
case "scvtf_z_p_z_x2fp16"_h:
case "scvtf_z_p_z_x2s"_h:
case "ucvtf_z_p_z_w2d"_h:
case "ucvtf_z_p_z_x2d"_h:
case "ucvtf_z_p_z_x2fp16"_h:
case "ucvtf_z_p_z_x2s"_h:
return (movprfx_is_unpredicated ||
((movprfx_vform == kFormatVnD) && pg_matches_low8)) &&
zd_isnt_zn && zd_matches;
case "fcvtzs_z_p_z_fp162h"_h:
case "fcvtzu_z_p_z_fp162h"_h:
case "scvtf_z_p_z_h2fp16"_h:
case "ucvtf_z_p_z_h2fp16"_h:
return (movprfx_is_unpredicated ||
((movprfx_vform == kFormatVnH) && pg_matches_low8)) &&
zd_isnt_zn && zd_matches;
case "fcvt_z_p_z_h2s"_h:
case "fcvt_z_p_z_s2h"_h:
case "fcvtzs_z_p_z_fp162w"_h:
case "fcvtzs_z_p_z_s2w"_h:
case "fcvtzu_z_p_z_fp162w"_h:
case "fcvtzu_z_p_z_s2w"_h:
case "scvtf_z_p_z_w2fp16"_h:
case "scvtf_z_p_z_w2s"_h:
case "ucvtf_z_p_z_w2fp16"_h:
case "ucvtf_z_p_z_w2s"_h:
return (movprfx_is_unpredicated ||
((movprfx_vform == kFormatVnS) && pg_matches_low8)) &&
zd_isnt_zn && zd_matches;
case "fcmla_z_p_zzz"_h:
case "fmad_z_p_zzz"_h:
case "fmla_z_p_zzz"_h:
case "fmls_z_p_zzz"_h:
case "fmsb_z_p_zzz"_h:
case "fnmad_z_p_zzz"_h:
case "fnmla_z_p_zzz"_h:
case "fnmls_z_p_zzz"_h:
case "fnmsb_z_p_zzz"_h:
case "mad_z_p_zzz"_h:
case "mla_z_p_zzz"_h:
case "mls_z_p_zzz"_h:
case "msb_z_p_zzz"_h:
return (movprfx_is_unpredicated || (pg_matches_low8 && vform_matches)) &&
zd_isnt_zm && zd_isnt_zn && zd_matches;
case "abs_z_p_z"_h:
case "add_z_p_zz"_h:
case "and_z_p_zz"_h:
case "asr_z_p_zw"_h:
case "asr_z_p_zz"_h:
case "asrr_z_p_zz"_h:
case "bic_z_p_zz"_h:
case "cls_z_p_z"_h:
case "clz_z_p_z"_h:
case "cnot_z_p_z"_h:
case "cnt_z_p_z"_h:
case "cpy_z_p_v"_h:
case "eor_z_p_zz"_h:
case "fabd_z_p_zz"_h:
case "fabs_z_p_z"_h:
case "fadd_z_p_zz"_h:
case "fcadd_z_p_zz"_h:
case "fdiv_z_p_zz"_h:
case "fdivr_z_p_zz"_h:
case "fmax_z_p_zz"_h:
case "fmaxnm_z_p_zz"_h:
case "fmin_z_p_zz"_h:
case "fminnm_z_p_zz"_h:
case "fmul_z_p_zz"_h:
case "fmulx_z_p_zz"_h:
case "fneg_z_p_z"_h:
case "frecpx_z_p_z"_h:
case "frinta_z_p_z"_h:
case "frinti_z_p_z"_h:
case "frintm_z_p_z"_h:
case "frintn_z_p_z"_h:
case "frintp_z_p_z"_h:
case "frintx_z_p_z"_h:
case "frintz_z_p_z"_h:
case "fscale_z_p_zz"_h:
case "fsqrt_z_p_z"_h:
case "fsub_z_p_zz"_h:
case "fsubr_z_p_zz"_h:
case "lsl_z_p_zw"_h:
case "lsl_z_p_zz"_h:
case "lslr_z_p_zz"_h:
case "lsr_z_p_zw"_h:
case "lsr_z_p_zz"_h:
case "lsrr_z_p_zz"_h:
case "mul_z_p_zz"_h:
case "neg_z_p_z"_h:
case "not_z_p_z"_h:
case "orr_z_p_zz"_h:
case "rbit_z_p_z"_h:
case "revb_z_z"_h:
case "revh_z_z"_h:
case "revw_z_z"_h:
case "sabd_z_p_zz"_h:
case "sadalp_z_p_z"_h:
case "sdiv_z_p_zz"_h:
case "sdivr_z_p_zz"_h:
case "shadd_z_p_zz"_h:
case "shsub_z_p_zz"_h:
case "shsubr_z_p_zz"_h:
case "smax_z_p_zz"_h:
case "smin_z_p_zz"_h:
case "smulh_z_p_zz"_h:
case "sqabs_z_p_z"_h:
case "sqadd_z_p_zz"_h:
case "sqneg_z_p_z"_h:
case "sqrshl_z_p_zz"_h:
case "sqrshlr_z_p_zz"_h:
case "sqshl_z_p_zz"_h:
case "sqshlr_z_p_zz"_h:
case "sqsub_z_p_zz"_h:
case "sqsubr_z_p_zz"_h:
case "srhadd_z_p_zz"_h:
case "srshl_z_p_zz"_h:
case "srshlr_z_p_zz"_h:
case "sub_z_p_zz"_h:
case "subr_z_p_zz"_h:
case "suqadd_z_p_zz"_h:
case "sxtb_z_p_z"_h:
case "sxth_z_p_z"_h:
case "sxtw_z_p_z"_h:
case "uabd_z_p_zz"_h:
case "uadalp_z_p_z"_h:
case "udiv_z_p_zz"_h:
case "udivr_z_p_zz"_h:
case "uhadd_z_p_zz"_h:
case "uhsub_z_p_zz"_h:
case "uhsubr_z_p_zz"_h:
case "umax_z_p_zz"_h:
case "umin_z_p_zz"_h:
case "umulh_z_p_zz"_h:
case "uqadd_z_p_zz"_h:
case "uqrshl_z_p_zz"_h:
case "uqrshlr_z_p_zz"_h:
case "uqshl_z_p_zz"_h:
case "uqshlr_z_p_zz"_h:
case "uqsub_z_p_zz"_h:
case "uqsubr_z_p_zz"_h:
case "urecpe_z_p_z"_h:
case "urhadd_z_p_zz"_h:
case "urshl_z_p_zz"_h:
case "urshlr_z_p_zz"_h:
case "ursqrte_z_p_z"_h:
case "usqadd_z_p_zz"_h:
case "uxtb_z_p_z"_h:
case "uxth_z_p_z"_h:
case "uxtw_z_p_z"_h:
return (movprfx_is_unpredicated || (pg_matches_low8 && vform_matches)) &&
zd_isnt_zn && zd_matches;
case "cpy_z_p_r"_h:
case "fadd_z_p_zs"_h:
case "fmax_z_p_zs"_h:
case "fmaxnm_z_p_zs"_h:
case "fmin_z_p_zs"_h:
case "fminnm_z_p_zs"_h:
case "fmul_z_p_zs"_h:
case "fsub_z_p_zs"_h:
case "fsubr_z_p_zs"_h:
return (movprfx_is_unpredicated || (pg_matches_low8 && vform_matches)) &&
zd_matches;
default:
return false;
}
} // NOLINT(readability/fn_size)
bool Instruction::IsLoad() const {
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
return false;
}
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
return Mask(LoadStorePairLBit) != 0;
} else {
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
switch (op) {
case LDRB_w:
case LDRH_w:
case LDR_w:
case LDR_x:
case LDRSB_w:
case LDRSB_x:
case LDRSH_w:
case LDRSH_x:
case LDRSW_x:
case LDR_b:
case LDR_h:
case LDR_s:
case LDR_d:
case LDR_q:
return true;
default:
return false;
}
}
}
bool Instruction::IsStore() const {
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
return false;
}
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
return Mask(LoadStorePairLBit) == 0;
} else {
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
switch (op) {
case STRB_w:
case STRH_w:
case STR_w:
case STR_x:
case STR_b:
case STR_h:
case STR_s:
case STR_d:
case STR_q:
return true;
default:
return false;
}
}
}
std::pair<int, int> Instruction::GetSVEPermuteIndexAndLaneSizeLog2() const {
uint32_t imm_2 = ExtractBits<0x00C00000>();
uint32_t tsz_5 = ExtractBits<0x001F0000>();
uint32_t imm_7 = (imm_2 << 5) | tsz_5;
int lane_size_in_byte_log_2 = std::min(CountTrailingZeros(tsz_5), 5);
int index = ExtractUnsignedBitfield32(6, lane_size_in_byte_log_2 + 1, imm_7);
return std::make_pair(index, lane_size_in_byte_log_2);
}
// Get the register and index for SVE indexed multiplies encoded in the forms:
// .h : Zm = <18:16>, index = <22><20:19>
// .s : Zm = <18:16>, index = <20:19>
// .d : Zm = <19:16>, index = <20>
std::pair<int, int> Instruction::GetSVEMulZmAndIndex() const {
int reg_code = GetRmLow16();
int index = ExtractBits(20, 19);
// For .h, index uses bit zero of the size field, so kFormatVnB below implies
// half-word lane, with most-significant bit of the index zero.
switch (GetSVEVectorFormat()) {
case kFormatVnD:
index >>= 1; // Only bit 20 in the index for D lanes.
break;
case kFormatVnH:
index += 4; // Bit 22 is the top bit of index.
VIXL_FALLTHROUGH();
case kFormatVnB:
case kFormatVnS:
reg_code &= 7; // Three bits used for the register.
break;
default:
VIXL_UNIMPLEMENTED();
break;
}
return std::make_pair(reg_code, index);
}
// Get the register and index for SVE indexed long multiplies encoded in the
// forms:
// .h : Zm = <18:16>, index = <20:19><11>
// .s : Zm = <19:16>, index = <20><11>
std::pair<int, int> Instruction::GetSVEMulLongZmAndIndex() const {
int reg_code = GetRmLow16();
int index = ExtractBit(11);
// For long multiplies, the SVE size field <23:22> encodes the destination
// element size. The source element size is half the width.
switch (GetSVEVectorFormat()) {
case kFormatVnS:
reg_code &= 7;
index |= ExtractBits(20, 19) << 1;
break;
case kFormatVnD:
index |= ExtractBit(20) << 1;
break;
default:
VIXL_UNIMPLEMENTED();
break;
}
return std::make_pair(reg_code, index);
}
// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are
// not met.
uint64_t Instruction::GetImmLogical() const {
unsigned reg_size = GetSixtyFourBits() ? kXRegSize : kWRegSize;
int32_t n = GetBitN();
int32_t imm_s = GetImmSetBits();
int32_t imm_r = GetImmRotate();
return DecodeImmBitMask(n, imm_s, imm_r, reg_size);
}
// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are
// not met.
uint64_t Instruction::GetSVEImmLogical() const {
int n = GetSVEBitN();
int imm_s = GetSVEImmSetBits();
int imm_r = GetSVEImmRotate();
int lane_size_in_bytes_log2 = GetSVEBitwiseImmLaneSizeInBytesLog2();
switch (lane_size_in_bytes_log2) {
case kDRegSizeInBytesLog2:
case kSRegSizeInBytesLog2:
case kHRegSizeInBytesLog2:
case kBRegSizeInBytesLog2: {
int lane_size_in_bits = 1 << (lane_size_in_bytes_log2 + 3);
return DecodeImmBitMask(n, imm_s, imm_r, lane_size_in_bits);
}
default:
return 0;
}
}
std::pair<int, int> Instruction::GetSVEImmShiftAndLaneSizeLog2(
bool is_predicated) const {
Instr tsize =
is_predicated ? ExtractBits<0x00C00300>() : ExtractBits<0x00D80000>();
Instr imm_3 =
is_predicated ? ExtractBits<0x000000E0>() : ExtractBits<0x00070000>();
if (tsize == 0) {
// The bit field `tsize` means undefined if it is zero, so return a
// convenience value kWMinInt to indicate a failure case.
return std::make_pair(kWMinInt, kWMinInt);
}
int lane_size_in_bytes_log_2 = 32 - CountLeadingZeros(tsize, 32) - 1;
int esize = (1 << lane_size_in_bytes_log_2) * kBitsPerByte;
int shift = (2 * esize) - ((tsize << 3) | imm_3);
return std::make_pair(shift, lane_size_in_bytes_log_2);
}
int Instruction::GetSVEMsizeFromDtype(bool is_signed, int dtype_h_lsb) const {
Instr dtype_h = ExtractBits(dtype_h_lsb + 1, dtype_h_lsb);
if (is_signed) {
dtype_h = dtype_h ^ 0x3;
}
return dtype_h;
}
int Instruction::GetSVEEsizeFromDtype(bool is_signed, int dtype_l_lsb) const {
Instr dtype_l = ExtractBits(dtype_l_lsb + 1, dtype_l_lsb);
if (is_signed) {
dtype_l = dtype_l ^ 0x3;
}
return dtype_l;
}
int Instruction::GetSVEBitwiseImmLaneSizeInBytesLog2() const {
int n = GetSVEBitN();
int imm_s = GetSVEImmSetBits();
unsigned type_bitset =
(n << SVEImmSetBits_width) | (~imm_s & GetUintMask(SVEImmSetBits_width));
// An lane size is constructed from the n and imm_s bits according to
// the following table:
//
// N imms size
// 0 0xxxxx 32
// 0 10xxxx 16
// 0 110xxx 8
// 0 1110xx 8
// 0 11110x 8
// 1 xxxxxx 64
if (type_bitset == 0) {
// Bail out early since `HighestSetBitPosition` doesn't accept zero
// value input.
return -1;
}
switch (HighestSetBitPosition(type_bitset)) {
case 6:
return kDRegSizeInBytesLog2;
case 5:
return kSRegSizeInBytesLog2;
case 4:
return kHRegSizeInBytesLog2;
case 3:
case 2:
case 1:
return kBRegSizeInBytesLog2;
default:
// RESERVED encoding.
return -1;
}
}
int Instruction::GetSVEExtractImmediate() const {
const int imm8h_mask = 0x001F0000;
const int imm8l_mask = 0x00001C00;
return ExtractBits<imm8h_mask | imm8l_mask>();
}
uint64_t Instruction::DecodeImmBitMask(int32_t n,
int32_t imm_s,
int32_t imm_r,
int32_t size) const {
// An integer is constructed from the n, imm_s and imm_r bits according to
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1
// bits are set. The pattern is rotated right by R, and repeated across a
// 32 or 64-bit value, depending on destination register width.
//
if (n == 1) {
if (imm_s == 0x3f) {
return 0;
}
uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
return RotateRight(bits, imm_r, 64);
} else {
if ((imm_s >> 1) == 0x1f) {
return 0;
}
for (int width = 0x20; width >= 0x2; width >>= 1) {
if ((imm_s & width) == 0) {
int mask = width - 1;
if ((imm_s & mask) == mask) {
return 0;
}
uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
return RepeatBitsAcrossReg(size,
RotateRight(bits, imm_r & mask, width),
width);
}
}
}
VIXL_UNREACHABLE();
return 0;
}
uint32_t Instruction::GetImmNEONabcdefgh() const {
return GetImmNEONabc() << 5 | GetImmNEONdefgh();
}
Float16 Instruction::Imm8ToFloat16(uint32_t imm8) {
// Imm8: abcdefgh (8 bits)
// Half: aBbb.cdef.gh00.0000 (16 bits)
// where B is b ^ 1
uint32_t bits = imm8;
uint16_t bit7 = (bits >> 7) & 0x1;
uint16_t bit6 = (bits >> 6) & 0x1;
uint16_t bit5_to_0 = bits & 0x3f;
uint16_t result = (bit7 << 15) | ((4 - bit6) << 12) | (bit5_to_0 << 6);
return RawbitsToFloat16(result);
}
float Instruction::Imm8ToFP32(uint32_t imm8) {
// Imm8: abcdefgh (8 bits)
// Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
// where B is b ^ 1
uint32_t bits = imm8;
uint32_t bit7 = (bits >> 7) & 0x1;
uint32_t bit6 = (bits >> 6) & 0x1;
uint32_t bit5_to_0 = bits & 0x3f;
uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
return RawbitsToFloat(result);
}
Float16 Instruction::GetImmFP16() const { return Imm8ToFloat16(GetImmFP()); }
float Instruction::GetImmFP32() const { return Imm8ToFP32(GetImmFP()); }
double Instruction::Imm8ToFP64(uint32_t imm8) {
// Imm8: abcdefgh (8 bits)
// Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
// 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
// where B is b ^ 1
uint32_t bits = imm8;
uint64_t bit7 = (bits >> 7) & 0x1;
uint64_t bit6 = (bits >> 6) & 0x1;
uint64_t bit5_to_0 = bits & 0x3f;
uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
return RawbitsToDouble(result);
}
double Instruction::GetImmFP64() const { return Imm8ToFP64(GetImmFP()); }
Float16 Instruction::GetImmNEONFP16() const {
return Imm8ToFloat16(GetImmNEONabcdefgh());
}
float Instruction::GetImmNEONFP32() const {
return Imm8ToFP32(GetImmNEONabcdefgh());
}
double Instruction::GetImmNEONFP64() const {
return Imm8ToFP64(GetImmNEONabcdefgh());
}
unsigned CalcLSDataSize(LoadStoreOp op) {
VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
unsigned size = static_cast<Instr>(op) >> LSSize_offset;
if ((op & LSVector_mask) != 0) {
// Vector register memory operations encode the access size in the "size"
// and "opc" fields.
if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
size = kQRegSizeInBytesLog2;
}
}
return size;
}
unsigned CalcLSPairDataSize(LoadStorePairOp op) {
VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
switch (op) {
case STP_q:
case LDP_q:
return kQRegSizeInBytesLog2;
case STP_x:
case LDP_x:
case STP_d:
case LDP_d:
return kXRegSizeInBytesLog2;
default:
return kWRegSizeInBytesLog2;
}
}
int Instruction::GetImmBranchRangeBitwidth(ImmBranchType branch_type) {
switch (branch_type) {
case UncondBranchType:
return ImmUncondBranch_width;
case CondBranchType:
return ImmCondBranch_width;
case CompareBranchType:
return ImmCmpBranch_width;
case TestBranchType:
return ImmTestBranch_width;
default:
VIXL_UNREACHABLE();
return 0;
}
}
int32_t Instruction::GetImmBranchForwardRange(ImmBranchType branch_type) {
int32_t encoded_max = 1 << (GetImmBranchRangeBitwidth(branch_type) - 1);
return encoded_max * kInstructionSize;
}
bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
int64_t offset) {
return IsIntN(GetImmBranchRangeBitwidth(branch_type), offset);
}
const Instruction* Instruction::GetImmPCOffsetTarget() const {
const Instruction* base = this;
ptrdiff_t offset;
if (IsPCRelAddressing()) {
// ADR and ADRP.
offset = GetImmPCRel();
if (Mask(PCRelAddressingMask) == ADRP) {
base = AlignDown(base, kPageSize);
offset *= kPageSize;
} else {
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
}
} else {
// All PC-relative branches.
VIXL_ASSERT(GetBranchType() != UnknownBranchType);
// Relative branch offsets are instruction-size-aligned.
offset = GetImmBranch() * static_cast<int>(kInstructionSize);
}
return base + offset;
}
int Instruction::GetImmBranch() const {
switch (GetBranchType()) {
case CondBranchType:
return GetImmCondBranch();
case UncondBranchType:
return GetImmUncondBranch();
case CompareBranchType:
return GetImmCmpBranch();
case TestBranchType:
return GetImmTestBranch();
default:
VIXL_UNREACHABLE();
}
return 0;
}
void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
if (IsPCRelAddressing()) {
SetPCRelImmTarget(target);
} else {
SetBranchImmTarget(target);
}
}
void Instruction::SetPCRelImmTarget(const Instruction* target) {
ptrdiff_t imm21;
if ((Mask(PCRelAddressingMask) == ADR)) {
imm21 = target - this;
} else {
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
imm21 = target_page - this_page;
}
Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
}
void Instruction::SetBranchImmTarget(const Instruction* target) {
VIXL_ASSERT(((target - this) & 3) == 0);
Instr branch_imm = 0;
uint32_t imm_mask = 0;
int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
switch (GetBranchType()) {
case CondBranchType: {
branch_imm = Assembler::ImmCondBranch(offset);
imm_mask = ImmCondBranch_mask;
break;
}
case UncondBranchType: {
branch_imm = Assembler::ImmUncondBranch(offset);
imm_mask = ImmUncondBranch_mask;
break;
}
case CompareBranchType: {
branch_imm = Assembler::ImmCmpBranch(offset);
imm_mask = ImmCmpBranch_mask;
break;
}
case TestBranchType: {
branch_imm = Assembler::ImmTestBranch(offset);
imm_mask = ImmTestBranch_mask;
break;
}
default:
VIXL_UNREACHABLE();
}
SetInstructionBits(Mask(~imm_mask) | branch_imm);
}
void Instruction::SetImmLLiteral(const Instruction* source) {
VIXL_ASSERT(IsWordAligned(source));
ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
Instr mask = ImmLLiteral_mask;
SetInstructionBits(Mask(~mask) | imm);
}
VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
switch (vform) {
case kFormat8H:
return kFormat8B;
case kFormat4S:
return kFormat4H;
case kFormat2D:
return kFormat2S;
case kFormatH:
return kFormatB;
case kFormatS:
return kFormatH;
case kFormatD:
return kFormatS;
case kFormatVnH:
return kFormatVnB;
case kFormatVnS:
return kFormatVnH;
case kFormatVnD:
return kFormatVnS;
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
switch (vform) {
case kFormat8B:
return kFormat8H;
case kFormat4H:
return kFormat4S;
case kFormat2S:
return kFormat2D;
case kFormatB:
return kFormatH;
case kFormatH:
return kFormatS;
case kFormatS:
return kFormatD;
case kFormatVnB:
return kFormatVnH;
case kFormatVnH:
return kFormatVnS;
case kFormatVnS:
return kFormatVnD;
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat VectorFormatFillQ(VectorFormat vform) {
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return kFormat16B;
case kFormatH:
case kFormat4H:
case kFormat8H:
return kFormat8H;
case kFormatS:
case kFormat2S:
case kFormat4S:
return kFormat4S;
case kFormatD:
case kFormat1D:
case kFormat2D:
return kFormat2D;
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
switch (vform) {
case kFormat4H:
return kFormat8B;
case kFormat8H:
return kFormat16B;
case kFormat2S:
return kFormat4H;
case kFormat4S:
return kFormat8H;
case kFormat1D:
return kFormat2S;
case kFormat2D:
return kFormat4S;
case kFormatVnH:
return kFormatVnB;
case kFormatVnS:
return kFormatVnH;
case kFormatVnD:
return kFormatVnS;
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
switch (vform) {
case kFormat8B:
return kFormat16B;
case kFormat4H:
return kFormat8H;
case kFormat2S:
return kFormat4S;
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
switch (vform) {
case kFormat16B:
return kFormat8B;
case kFormat8H:
return kFormat4H;
case kFormat4S:
return kFormat2S;
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat ScalarFormatFromLaneSize(int lane_size_in_bits) {
switch (lane_size_in_bits) {
case 8:
return kFormatB;
case 16:
return kFormatH;
case 32:
return kFormatS;
case 64:
return kFormatD;
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
bool IsSVEFormat(VectorFormat vform) {
switch (vform) {
case kFormatVnB:
case kFormatVnH:
case kFormatVnS:
case kFormatVnD:
case kFormatVnQ:
case kFormatVnO:
return true;
default:
return false;
}
}
VectorFormat SVEFormatFromLaneSizeInBytes(int lane_size_in_bytes) {
switch (lane_size_in_bytes) {
case 1:
return kFormatVnB;
case 2:
return kFormatVnH;
case 4:
return kFormatVnS;
case 8:
return kFormatVnD;
case 16:
return kFormatVnQ;
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat SVEFormatFromLaneSizeInBits(int lane_size_in_bits) {
switch (lane_size_in_bits) {
case 8:
case 16:
case 32:
case 64:
case 128:
return SVEFormatFromLaneSizeInBytes(lane_size_in_bits / kBitsPerByte);
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat SVEFormatFromLaneSizeInBytesLog2(int lane_size_in_bytes_log2) {
switch (lane_size_in_bytes_log2) {
case 0:
case 1:
case 2:
case 3:
case 4:
return SVEFormatFromLaneSizeInBytes(1 << lane_size_in_bytes_log2);
default:
VIXL_UNREACHABLE();
return kFormatUndefined;
}
}
VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
}
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
VIXL_ASSERT(!IsSVEFormat(vform));
switch (vform) {
case kFormatB:
return kBRegSize;
case kFormatH:
return kHRegSize;
case kFormatS:
case kFormat2H:
return kSRegSize;
case kFormatD:
case kFormat8B:
case kFormat4H:
case kFormat2S:
case kFormat1D:
return kDRegSize;
case kFormat16B:
case kFormat8H:
case kFormat4S:
case kFormat2D:
return kQRegSize;
default:
VIXL_UNREACHABLE();
return 0;
}
}
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
return RegisterSizeInBitsFromFormat(vform) / 8;
}
unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
case kFormatVnB:
return 8;
case kFormatH:
case kFormat2H:
case kFormat4H:
case kFormat8H:
case kFormatVnH:
return 16;
case kFormatS:
case kFormat2S:
case kFormat4S:
case kFormatVnS:
return 32;
case kFormatD:
case kFormat1D:
case kFormat2D:
case kFormatVnD:
return 64;
case kFormatVnQ:
return 128;
case kFormatVnO:
return 256;
default:
VIXL_UNREACHABLE();
return 0;
}
}
int LaneSizeInBytesFromFormat(VectorFormat vform) {
return LaneSizeInBitsFromFormat(vform) / 8;
}
int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
case kFormatVnB:
return 0;
case kFormatH:
case kFormat2H:
case kFormat4H:
case kFormat8H:
case kFormatVnH:
return 1;
case kFormatS:
case kFormat2S:
case kFormat4S:
case kFormatVnS:
return 2;
case kFormatD:
case kFormat1D:
case kFormat2D:
case kFormatVnD:
return 3;
case kFormatVnQ:
return 4;
default:
VIXL_UNREACHABLE();
return 0;
}
}
int LaneCountFromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormat16B:
return 16;
case kFormat8B:
case kFormat8H:
return 8;
case kFormat4H:
case kFormat4S:
return 4;
case kFormat2H:
case kFormat2S:
case kFormat2D:
return 2;
case kFormat1D:
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD:
return 1;
default:
VIXL_UNREACHABLE();
return 0;
}
}
int MaxLaneCountFromFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormat8B:
case kFormat16B:
return 16;
case kFormatH:
case kFormat4H:
case kFormat8H:
return 8;
case kFormatS:
case kFormat2S:
case kFormat4S:
return 4;
case kFormatD:
case kFormat1D:
case kFormat2D:
return 2;
default:
VIXL_UNREACHABLE();
return 0;
}
}
// Does 'vform' indicate a vector format or a scalar format?
bool IsVectorFormat(VectorFormat vform) {
VIXL_ASSERT(vform != kFormatUndefined);
switch (vform) {
case kFormatB:
case kFormatH:
case kFormatS:
case kFormatD:
return false;
default:
return true;
}
}
int64_t MaxIntFromFormat(VectorFormat vform) {
int lane_size = LaneSizeInBitsFromFormat(vform);
return static_cast<int64_t>(GetUintMask(lane_size) >> 1);
}
int64_t MinIntFromFormat(VectorFormat vform) {
return -MaxIntFromFormat(vform) - 1;
}
uint64_t MaxUintFromFormat(VectorFormat vform) {
return GetUintMask(LaneSizeInBitsFromFormat(vform));
}
} // namespace aarch64
} // namespace vixl