flycast/core/rend/vulkan/vulkan_renderer.cpp

590 lines
20 KiB
C++

/*
Created on: Oct 2, 2019
Copyright 2019 flyinghead
This file is part of Flycast.
Flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
Flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#include <memory>
#include <math.h>
#include "vulkan.h"
#include "hw/pvr/Renderer_if.h"
#include "hw/pvr/ta_ctx.h"
#include "../gui.h"
#include "rend/sorter.h"
#include "buffer.h"
#include "pipeline.h"
#include "shaders.h"
#include "texture.h"
#include "utils.h"
extern bool ProcessFrame(TA_context* ctx);
class VulkanRenderer : public Renderer
{
public:
bool Init() override
{
printf("VulkanRenderer::Init\n");
InitUniforms();
pipelineManager.Init();
return true;
}
void Resize(int w, int h) override
{
}
void Term() override
{
printf("VulkanRenderer::Term\n");
GetContext()->WaitIdle();
killtex();
glslang::FinalizeProcess();
}
bool Process(TA_context* ctx) override
{
if (ctx->rend.isRenderFramebuffer)
{
// TODO RenderFramebuffer();
return false;
}
GetContext()->NewFrame();
if (ProcessFrame(ctx))
return true;
// FIXME
GetContext()->BeginRenderPass();
GetContext()->EndFrame();
GetContext()->Present();
return false;
}
void DrawOSD(bool clear_screen) override
{
}
bool Render() override
{
extern float fb_scale_x, fb_scale_y;
extern bool fog_needs_update;
bool is_rtt = pvrrc.isRTT;
float dc_width = 640;
float dc_height = 480;
if (is_rtt)
{
dc_width = pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1;
dc_height = pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1;
}
scale_x = 1;
scale_y = 1;
float scissoring_scale_x = 1;
if (!is_rtt && !pvrrc.isRenderFramebuffer)
{
scale_x = fb_scale_x;
scale_y = fb_scale_y;
if (SCALER_CTL.interlace == 0 && SCALER_CTL.vscalefactor > 0x400)
scale_y *= roundf((float)SCALER_CTL.vscalefactor / 0x400);
//work out scaling parameters !
//Pixel doubling is on VO, so it does not affect any pixel operations
//A second scaling is used here for scissoring
if (VO_CONTROL.pixel_double)
{
scissoring_scale_x = 0.5f;
scale_x *= 0.5f;
}
if (SCALER_CTL.hscale)
{
scissoring_scale_x /= 2;
scale_x*=2;
}
}
dc_width *= scale_x;
dc_height *= scale_y;
float screen_stretching = settings.rend.ScreenStretching / 100.f;
float screen_scaling = settings.rend.ScreenScaling / 100.f;
float dc2s_scale_h;
float ds2s_offs_x;
VertexShaderUniforms vtxUniforms;
if (is_rtt)
{
vtxUniforms.scale[0] = 2.0f / dc_width;
vtxUniforms.scale[1] = 2.0f / dc_height; // FIXME CT2 needs 480 here instead of dc_height=512
vtxUniforms.scale[2] = 1;
vtxUniforms.scale[3] = 1;
}
else
{
if (settings.rend.Rotate90)
{
dc2s_scale_h = screen_height / 640.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 480.0f * screen_stretching) / 2;
vtxUniforms.scale[0] = -2.0f / (screen_width / dc2s_scale_h * scale_x) * screen_stretching;
vtxUniforms.scale[1] = 2.0f / dc_width;
vtxUniforms.scale[2] = 1 - 2 * ds2s_offs_x / screen_width;
vtxUniforms.scale[3] = 1;
}
else
{
dc2s_scale_h = screen_height / 480.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 640.0f * screen_stretching) / 2;
vtxUniforms.scale[0] = 2.0f / (screen_width / dc2s_scale_h * scale_x) * screen_stretching;
vtxUniforms.scale[1] = 1.5f / dc_height; // FIXME 1.5 WTF?
vtxUniforms.scale[2] = 1 - 2 * ds2s_offs_x / screen_width;
vtxUniforms.scale[3] = 1;
}
//-1 -> too much to left
}
vtxUniforms.extra_depth_scale = settings.rend.ExtraDepthScale;
FragmentShaderUniforms fragUniforms;
fragUniforms.extra_depth_scale = settings.rend.ExtraDepthScale;
//VERT and RAM fog color constants
u8* fog_colvert_bgra=(u8*)&FOG_COL_VERT;
u8* fog_colram_bgra=(u8*)&FOG_COL_RAM;
fragUniforms.sp_FOG_COL_VERT[0]=fog_colvert_bgra[2]/255.0f;
fragUniforms.sp_FOG_COL_VERT[1]=fog_colvert_bgra[1]/255.0f;
fragUniforms.sp_FOG_COL_VERT[2]=fog_colvert_bgra[0]/255.0f;
fragUniforms.sp_FOG_COL_RAM[0]=fog_colram_bgra [2]/255.0f;
fragUniforms.sp_FOG_COL_RAM[1]=fog_colram_bgra [1]/255.0f;
fragUniforms.sp_FOG_COL_RAM[2]=fog_colram_bgra [0]/255.0f;
//Fog density constant
u8* fog_density=(u8*)&FOG_DENSITY;
float fog_den_mant=fog_density[1]/128.0f; //bit 7 -> x. bit, so [6:0] -> fraction -> /128
s32 fog_den_exp=(s8)fog_density[0];
fragUniforms.sp_FOG_DENSITY = fog_den_mant * powf(2.0f, fog_den_exp);
fragUniforms.colorClampMin[0] = ((pvrrc.fog_clamp_min >> 16) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[1] = ((pvrrc.fog_clamp_min >> 8) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[2] = ((pvrrc.fog_clamp_min >> 0) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[3] = ((pvrrc.fog_clamp_min >> 24) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[0] = ((pvrrc.fog_clamp_max >> 16) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[1] = ((pvrrc.fog_clamp_max >> 8) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[2] = ((pvrrc.fog_clamp_max >> 0) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[3] = ((pvrrc.fog_clamp_max >> 24) & 0xFF) / 255.0f;
CheckFogTexture();
fragUniforms.cp_AlphaTestValue = (PT_ALPHA_REF & 0xFF) / 255.0f;
ModVolShaderUniforms modVolUniforms;
modVolUniforms.sp_ShaderColor = 1 - FPU_SHAD_SCALE.scale_factor / 256.f;
SortTriangles();
UploadUniforms(vtxUniforms, fragUniforms, modVolUniforms);
GetContext()->BeginRenderPass();
vk::CommandBuffer cmdBuffer = GetContext()->GetCurrentCommandBuffer();
// Upload vertex and index buffers
UploadMainBuffer();
// Update per-frame descriptor set and bind it
pipelineManager.GetDescriptorSets().UpdateUniforms(*vertexUniformBuffer, *fragmentUniformBuffer, fogTexture->GetImageView());
pipelineManager.GetDescriptorSets().BindPerFrameDescriptorSets(cmdBuffer);
// Reset per-poly descriptor set pool
pipelineManager.GetDescriptorSets().Reset();
// Bind vertex and index buffers
const vk::DeviceSize offsets[] = { 0 };
cmdBuffer.bindVertexBuffers(0, 1, &mainBuffers[GetCurrentImage()]->buffer.get(), offsets);
cmdBuffer.bindIndexBuffer(*mainBuffers[GetCurrentImage()]->buffer, pvrrc.verts.bytes(), vk::IndexType::eUint32);
cmdBuffer.setViewport(0, vk::Viewport(0.0f, 0.0f, static_cast<float>(GetContext()->GetViewPort().width),
static_cast<float>(GetContext()->GetViewPort().width), 1.0f, 0.0f));
cmdBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), GetContext()->GetViewPort()));
RenderPass previous_pass = {};
for (int render_pass = 0; render_pass < pvrrc.render_passes.used(); render_pass++)
{
const RenderPass& current_pass = pvrrc.render_passes.head()[render_pass];
DEBUG_LOG(RENDERER, "Render pass %d OP %d PT %d TR %d MV %d", render_pass + 1,
current_pass.op_count - previous_pass.op_count,
current_pass.pt_count - previous_pass.pt_count,
current_pass.tr_count - previous_pass.tr_count,
current_pass.mvo_count - previous_pass.mvo_count);
DrawList(cmdBuffer, ListType_Opaque, false, pvrrc.global_param_op, previous_pass.op_count, current_pass.op_count - previous_pass.op_count);
DrawList(cmdBuffer, ListType_Punch_Through, false, pvrrc.global_param_pt, previous_pass.pt_count, current_pass.pt_count - previous_pass.pt_count);
if (current_pass.autosort)
{
if (!settings.rend.PerStripSorting)
{
DrawSorted(cmdBuffer, sortedPolys[render_pass]);
}
else
{
SortPParams(previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
DrawList(cmdBuffer, ListType_Translucent, true, pvrrc.global_param_tr, previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
}
}
else
DrawList(cmdBuffer, ListType_Translucent, false, pvrrc.global_param_tr, previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
previous_pass = current_pass;
}
if (!is_rtt)
gui_display_osd();
GetContext()->EndFrame();
return !is_rtt;
}
void Present() override
{
GetContext()->Present();
}
virtual u64 GetTexture(TSP tsp, TCW tcw) override
{
Texture* tf = static_cast<Texture*>(getTextureCacheData(tsp, tcw, [](){
return (BaseTextureCacheData *)new Texture(VulkanContext::Instance()->GetPhysicalDevice(), *VulkanContext::Instance()->GetDevice());
}));
if (tf->IsNew())
tf->Create();
//update if needed
if (tf->NeedsUpdate())
tf->Update();
else
tf->CheckCustomTexture();
return tf->GetIntId();
}
private:
VulkanContext *GetContext() const { return VulkanContext::Instance(); }
int GetCurrentImage() const { return GetContext()->GetCurrentImageIndex(); }
// FIXME Code dup
s32 SetTileClip(u32 val, float *values)
{
if (!settings.rend.Clipping)
return 0;
u32 clipmode = val >> 28;
s32 clip_mode;
if (clipmode < 2)
{
clip_mode = 0; //always passes
}
else if (clipmode & 1)
clip_mode = -1; //render stuff outside the region
else
clip_mode = 1; //render stuff inside the region
float csx = 0, csy = 0, cex = 0, cey = 0;
csx = (float)(val & 63);
cex = (float)((val >> 6) & 63);
csy = (float)((val >> 12) & 31);
cey = (float)((val >> 17) & 31);
csx = csx * 32;
cex = cex * 32 + 32;
csy = csy * 32;
cey = cey * 32 + 32;
if (csx <= 0 && csy <= 0 && cex >= 640 && cey >= 480)
return 0;
if (values != nullptr && clip_mode)
{
if (!pvrrc.isRTT)
{
csx /= scale_x;
csy /= scale_y;
cex /= scale_x;
cey /= scale_y;
float dc2s_scale_h;
float ds2s_offs_x;
float screen_stretching = settings.rend.ScreenStretching / 100.f;
if (settings.rend.Rotate90)
{
float t = cex;
cex = cey;
cey = 640 - csx;
csx = csy;
csy = 640 - t;
dc2s_scale_h = screen_height / 640.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 480.0 * screen_stretching) / 2;
}
else
{
dc2s_scale_h = screen_height / 480.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 640.0 * screen_stretching) / 2;
}
csx = csx * dc2s_scale_h * screen_stretching + ds2s_offs_x;
cex = cex * dc2s_scale_h * screen_stretching + ds2s_offs_x;
csy = csy * dc2s_scale_h;
cey = cey * dc2s_scale_h;
}
else if (!settings.rend.RenderToTextureBuffer)
{
csx *= settings.rend.RenderToTextureUpscale;
csy *= settings.rend.RenderToTextureUpscale;
cex *= settings.rend.RenderToTextureUpscale;
cey *= settings.rend.RenderToTextureUpscale;
}
values[0] = csx;
values[1] = csy;
values[2] = cex;
values[3] = cey;
}
return clip_mode;
}
void DrawList(const vk::CommandBuffer& cmdBuffer, u32 listType, bool sortTriangles, const List<PolyParam>& polys, u32 first, u32 count)
{
for (u32 i = first; i < count; i++)
{
const PolyParam &pp = polys.head()[i];
float trilinearAlpha;
if (pp.pcw.Texture && pp.tsp.FilterMode > 1 && listType != ListType_Punch_Through)
{
trilinearAlpha = 0.25 * (pp.tsp.MipMapD & 0x3);
if (pp.tsp.FilterMode == 2)
// Trilinear pass A
trilinearAlpha = 1.0 - trilinearAlpha;
}
else
trilinearAlpha = 1.f;
std::array<float, 5> pushConstants = { 0, 0, 0, 0, trilinearAlpha };
SetTileClip(pp.tileclip, &pushConstants[0]);
cmdBuffer.pushConstants<float>(pipelineManager.GetDescriptorSets().GetPipelineLayout(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants);
if (pp.pcw.Texture)
pipelineManager.GetDescriptorSets().SetTexture(pp.texid, pp.tsp);
vk::Pipeline pipeline = pipelineManager.GetPipeline(listType, sortTriangles, pp);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
if (pp.pcw.Texture)
pipelineManager.GetDescriptorSets().BindPerPolyDescriptorSets(cmdBuffer, pp.texid, pp.tsp);
cmdBuffer.drawIndexed(pp.count, 1, pp.first, 0, 0);
}
}
void SortTriangles()
{
sortedPolys.resize(pvrrc.render_passes.used());
sortedIndexes.resize(pvrrc.render_passes.used());
sortedIndexCount = 0;
RenderPass previousPass = {};
for (int render_pass = 0; render_pass < pvrrc.render_passes.used(); render_pass++)
{
const RenderPass& current_pass = pvrrc.render_passes.head()[render_pass];
sortedIndexes[render_pass].clear();
if (current_pass.autosort)
{
GenSorted(previousPass.tr_count, current_pass.tr_count - previousPass.tr_count, sortedPolys[render_pass], sortedIndexes[render_pass]);
for (auto& poly : sortedPolys[render_pass])
poly.first += sortedIndexCount;
sortedIndexCount += sortedIndexes[render_pass].size();
}
else
sortedPolys[render_pass].clear();
previousPass = current_pass;
}
}
// FIXME Code dup with DrawList()
void DrawSorted(const vk::CommandBuffer& cmdBuffer, const std::vector<SortTrigDrawParam>& polys)
{
for (const SortTrigDrawParam& param : polys)
{
float trilinearAlpha;
if (param.ppid->pcw.Texture && param.ppid->tsp.FilterMode > 1)
{
trilinearAlpha = 0.25 * (param.ppid->tsp.MipMapD & 0x3);
if (param.ppid->tsp.FilterMode == 2)
// Trilinear pass A
trilinearAlpha = 1.0 - trilinearAlpha;
}
else
trilinearAlpha = 1.f;
std::array<float, 5> pushConstants = { 0, 0, 0, 0, trilinearAlpha };
SetTileClip(param.ppid->tileclip, &pushConstants[0]);
cmdBuffer.pushConstants<float>(pipelineManager.GetDescriptorSets().GetPipelineLayout(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants);
if (param.ppid->pcw.Texture)
pipelineManager.GetDescriptorSets().SetTexture(param.ppid->texid, param.ppid->tsp);
vk::Pipeline pipeline = pipelineManager.GetPipeline(ListType_Translucent, true, *param.ppid);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
if (param.ppid->pcw.Texture)
pipelineManager.GetDescriptorSets().BindPerPolyDescriptorSets(cmdBuffer, param.ppid->texid, param.ppid->tsp);
cmdBuffer.drawIndexed(param.count, 1, pvrrc.idx.used() + param.first, 0, 0);
}
}
void InitUniforms()
{
vertexUniformBuffer = GetContext()->GetDevice()->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(),
sizeof(VertexShaderUniforms), vk::BufferUsageFlagBits::eUniformBuffer));
vk::MemoryRequirements memRequirements = GetContext()->GetDevice()->getBufferMemoryRequirements(vertexUniformBuffer.get());
vertexUniformMemSize = memRequirements.size;
u32 typeIndex = findMemoryType(GetContext()->GetPhysicalDevice().getMemoryProperties(), memRequirements.memoryTypeBits,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
vertexUniformMemory = GetContext()->GetDevice()->allocateMemoryUnique(vk::MemoryAllocateInfo(vertexUniformMemSize, typeIndex));
GetContext()->GetDevice()->bindBufferMemory(vertexUniformBuffer.get(), vertexUniformMemory.get(), 0);
fragmentUniformBuffer = GetContext()->GetDevice()->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(),
sizeof(FragmentShaderUniforms), vk::BufferUsageFlagBits::eUniformBuffer));
memRequirements = GetContext()->GetDevice()->getBufferMemoryRequirements(fragmentUniformBuffer.get());
fragmentUniformsMemSize = memRequirements.size;
typeIndex = findMemoryType(GetContext()->GetPhysicalDevice().getMemoryProperties(), memRequirements.memoryTypeBits,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
fragmentUniformMemory = GetContext()->GetDevice()->allocateMemoryUnique(vk::MemoryAllocateInfo(fragmentUniformsMemSize, typeIndex));
GetContext()->GetDevice()->bindBufferMemory(fragmentUniformBuffer.get(), fragmentUniformMemory.get(), 0);
modVolUniformBuffer = GetContext()->GetDevice()->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(),
sizeof(ModVolShaderUniforms), vk::BufferUsageFlagBits::eUniformBuffer));
memRequirements = GetContext()->GetDevice()->getBufferMemoryRequirements(modVolUniformBuffer.get());
modVolUniformsMemSize = memRequirements.size;
typeIndex = findMemoryType(GetContext()->GetPhysicalDevice().getMemoryProperties(), memRequirements.memoryTypeBits,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
modVolUniformMemory = GetContext()->GetDevice()->allocateMemoryUnique(vk::MemoryAllocateInfo(modVolUniformsMemSize, typeIndex));
GetContext()->GetDevice()->bindBufferMemory(modVolUniformBuffer.get(), modVolUniformMemory.get(), 0);
}
void UploadUniforms(const VertexShaderUniforms& vertexUniforms, const FragmentShaderUniforms& fragmentUniforms, const ModVolShaderUniforms& modVolUniforms)
{
uint8_t* pData = static_cast<uint8_t*>(GetContext()->GetDevice()->mapMemory(vertexUniformMemory.get(), 0, vertexUniformMemSize));
memcpy(pData, &vertexUniforms, sizeof(vertexUniforms));
GetContext()->GetDevice()->unmapMemory(vertexUniformMemory.get());
pData = static_cast<uint8_t*>(GetContext()->GetDevice()->mapMemory(fragmentUniformMemory.get(), 0, fragmentUniformsMemSize));
memcpy(pData, &fragmentUniforms, sizeof(fragmentUniforms));
GetContext()->GetDevice()->unmapMemory(fragmentUniformMemory.get());
pData = static_cast<uint8_t*>(GetContext()->GetDevice()->mapMemory(modVolUniformMemory.get(), 0, modVolUniformsMemSize));
memcpy(pData, &modVolUniforms, sizeof(modVolUniforms));
GetContext()->GetDevice()->unmapMemory(modVolUniformMemory.get());
}
void UploadMainBuffer()
{
u32 totalSize = pvrrc.verts.bytes() + pvrrc.idx.bytes() + sortedIndexCount * sizeof(u32);
if (mainBuffers.empty())
{
for (int i = 0; i < GetContext()->GetSwapChainSize(); i++)
mainBuffers.push_back(std::unique_ptr<BufferData>(new BufferData(GetContext()->GetPhysicalDevice(), GetContext()->GetDevice().get(),
std::max(512 * 1024u, totalSize), vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eIndexBuffer)));
}
else if (mainBuffers[GetCurrentImage()]->m_size < totalSize)
{
u32 newSize = mainBuffers[GetCurrentImage()]->m_size;
while (newSize < totalSize)
newSize *= 2;
INFO_LOG(RENDERER, "Increasing main buffer size %d -> %d", (u32)mainBuffers[GetCurrentImage()]->m_size, newSize);
mainBuffers[GetCurrentImage()] = std::unique_ptr<BufferData>(new BufferData(GetContext()->GetPhysicalDevice(), GetContext()->GetDevice().get(), newSize,
vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eIndexBuffer));
}
std::vector<const void *> chunks;
std::vector<u32> chunkSizes;
chunks.push_back(pvrrc.verts.head());
chunkSizes.push_back(pvrrc.verts.bytes());
chunks.push_back(pvrrc.idx.head());
chunkSizes.push_back(pvrrc.idx.bytes());
for (const std::vector<u32>& idx : sortedIndexes)
{
if (!idx.empty())
{
chunks.push_back(&idx[0]);
chunkSizes.push_back(idx.size() * sizeof(u32));
}
}
mainBuffers[GetCurrentImage()]->upload(GetContext()->GetDevice().get(), chunks.size(), &chunkSizes[0], &chunks[0]);
}
void CheckFogTexture()
{
if (!fogTexture)
{
fogTexture = std::unique_ptr<Texture>(new Texture(GetContext()->GetPhysicalDevice(), *GetContext()->GetDevice()));
fogTexture->tex_type = TextureType::_8;
fog_needs_update = true;
}
if (!fog_needs_update || !settings.rend.Fog)
return;
fog_needs_update = false;
u8 texData[256];
MakeFogTexture(texData);
fogTexture->UploadToGPU(128, 2, texData);
}
// temp stuff
float scale_x;
float scale_y;
std::vector<std::vector<SortTrigDrawParam>> sortedPolys;
std::vector<std::vector<u32>> sortedIndexes;
u32 sortedIndexCount;
std::unique_ptr<Texture> fogTexture;
// Uniforms
vk::UniqueBuffer vertexUniformBuffer;
vk::UniqueBuffer fragmentUniformBuffer;
vk::UniqueBuffer modVolUniformBuffer;
vk::UniqueDeviceMemory vertexUniformMemory;
vk::UniqueDeviceMemory fragmentUniformMemory;
vk::UniqueDeviceMemory modVolUniformMemory;
vk::DeviceSize vertexUniformMemSize;
vk::DeviceSize fragmentUniformsMemSize;
vk::DeviceSize modVolUniformsMemSize;
// Buffers
std::vector<std::unique_ptr<BufferData>> mainBuffers;
ShaderManager shaderManager;
PipelineManager pipelineManager;
};
Renderer* rend_Vulkan()
{
return new VulkanRenderer();
}