flycast/core/rend/gles/gles.cpp

1385 lines
35 KiB
C++

#include "glcache.h"
#include "gles.h"
#include "cfg/cfg.h"
#include "hw/pvr/ta.h"
#ifndef LIBRETRO
#include "rend/gui.h"
#else
#include "vmu_xhair.h"
#endif
#include "rend/osd.h"
#include "rend/TexCache.h"
#include "rend/transform_matrix.h"
#include "wsi/gl_context.h"
#include "emulator.h"
#include <cmath>
#ifdef GLES
#ifndef GL_RED
#define GL_RED 0x1903
#endif
#ifndef GL_MAJOR_VERSION
#define GL_MAJOR_VERSION 0x821B
#endif
#ifndef GL_MINOR_VERSION
#define GL_MINOR_VERSION 0x821C
#endif
#endif
//Fragment and vertex shaders code
const char* ShaderCompatSource = R"(
#define GLES2 0
#define GLES3 1
#define GL2 2
#define GL3 3
#if TARGET_GL == GL2
#define highp
#define lowp
#define mediump
#endif
#if TARGET_GL == GLES3
out highp vec4 FragColor;
#define gl_FragColor FragColor
#define FOG_CHANNEL a
#elif TARGET_GL == GL3
out highp vec4 FragColor;
#define gl_FragColor FragColor
#define FOG_CHANNEL r
#else
#define texture texture2D
#define FOG_CHANNEL a
#endif
)";
const char *VertexCompatShader = R"(
#if TARGET_GL == GLES2 || TARGET_GL == GL2
#define in attribute
#define out varying
#endif
)";
const char *PixelCompatShader = R"(
#if TARGET_GL == GLES2 || TARGET_GL == GL2
#define in varying
#endif
)";
static const char* GouraudSource = R"(
#if (TARGET_GL == GL3 || TARGET_GL == GLES3) && pp_Gouraud == 0
#define INTERPOLATION flat
#else
#define INTERPOLATION
#endif
)";
static const char* VertexShaderSource = R"(
/* Vertex constants*/
uniform highp vec4 depth_scale;
uniform highp mat4 normal_matrix;
uniform highp float sp_FOG_DENSITY;
/* Vertex input */
in highp vec4 in_pos;
in lowp vec4 in_base;
in lowp vec4 in_offs;
in highp vec2 in_uv;
/* output */
INTERPOLATION out lowp vec4 vtx_base;
INTERPOLATION out lowp vec4 vtx_offs;
out highp vec2 vtx_uv;
#if TARGET_GL == GLES2
out highp float fog_depth;
#endif
void main()
{
vtx_base = in_base;
vtx_offs = in_offs;
vtx_uv = in_uv;
highp vec4 vpos = normal_matrix * in_pos;
vpos.w = 1.0 / vpos.z;
#if TARGET_GL != GLES2
vpos.z = vpos.w;
#else
fog_depth = vpos.z * sp_FOG_DENSITY;
vpos.z = depth_scale.x + depth_scale.y * vpos.w;
#endif
vpos.xy *= vpos.w;
gl_Position = vpos;
}
)";
const char* PixelPipelineShader = R"(
#define PI 3.1415926
/* Shader program params*/
/* gles has no alpha test stage, so its emulated on the shader */
uniform lowp float cp_AlphaTestValue;
uniform lowp vec4 pp_ClipTest;
uniform lowp vec3 sp_FOG_COL_RAM,sp_FOG_COL_VERT;
uniform highp float sp_FOG_DENSITY;
uniform sampler2D tex,fog_table;
uniform lowp float trilinear_alpha;
uniform lowp vec4 fog_clamp_min;
uniform lowp vec4 fog_clamp_max;
#if pp_Palette == 1
uniform sampler2D palette;
uniform mediump int palette_index;
#endif
/* Vertex input*/
INTERPOLATION in lowp vec4 vtx_base;
INTERPOLATION in lowp vec4 vtx_offs;
in highp vec2 vtx_uv;
#if TARGET_GL == GLES2
in highp float fog_depth;
#endif
lowp float fog_mode2(highp float w)
{
#if TARGET_GL == GLES2
highp float z = clamp(fog_depth, 1.0, 255.9999);
#else
highp float z = clamp(w * sp_FOG_DENSITY, 1.0, 255.9999);
#endif
mediump float exp = floor(log2(z));
highp float m = z * 16.0 / pow(2.0, exp) - 16.0;
mediump float idx = floor(m) + exp * 16.0 + 0.5;
highp vec4 fog_coef = texture(fog_table, vec2(idx / 128.0, 0.75 - (m - floor(m)) / 2.0));
return fog_coef.FOG_CHANNEL;
}
highp vec4 fog_clamp(lowp vec4 col)
{
#if FogClamping == 1
return clamp(col, fog_clamp_min, fog_clamp_max);
#else
return col;
#endif
}
#if pp_Palette == 1
lowp vec4 palettePixel(highp vec2 coords)
{
highp int color_idx = int(floor(texture(tex, coords).FOG_CHANNEL * 255.0 + 0.5)) + palette_index;
#if TARGET_GL == GLES2 || TARGET_GL == GL2
highp vec2 c = vec2((mod(float(color_idx), 32.0) * 2.0 + 1.0) / 64.0, (float(color_idx / 32) * 2.0 + 1.0) / 64.0);
return texture(palette, c);
#else
highp ivec2 c = ivec2(color_idx % 32, color_idx / 32);
return texelFetch(palette, c, 0);
#endif
}
#endif
void main()
{
// Clip inside the box
#if pp_ClipInside == 1
if (gl_FragCoord.x >= pp_ClipTest.x && gl_FragCoord.x <= pp_ClipTest.z
&& gl_FragCoord.y >= pp_ClipTest.y && gl_FragCoord.y <= pp_ClipTest.w)
discard;
#endif
lowp vec4 color=vtx_base;
#if pp_UseAlpha==0
color.a=1.0;
#endif
#if pp_FogCtrl==3
color=vec4(sp_FOG_COL_RAM.rgb,fog_mode2(gl_FragCoord.w));
#endif
#if pp_Texture==1
{
#if pp_Palette == 0
lowp vec4 texcol = texture(tex, vtx_uv);
#else
lowp vec4 texcol = palettePixel(vtx_uv);
#endif
#if pp_BumpMap == 1
highp float s = PI / 2.0 * (texcol.a * 15.0 * 16.0 + texcol.r * 15.0) / 255.0;
highp float r = 2.0 * PI * (texcol.g * 15.0 * 16.0 + texcol.b * 15.0) / 255.0;
texcol.a = clamp(vtx_offs.a + vtx_offs.r * sin(s) + vtx_offs.g * cos(s) * cos(r - 2.0 * PI * vtx_offs.b), 0.0, 1.0);
texcol.rgb = vec3(1.0, 1.0, 1.0);
#else
#if pp_IgnoreTexA==1
texcol.a=1.0;
#endif
#if cp_AlphaTest == 1
if (cp_AlphaTestValue > texcol.a)
discard;
texcol.a = 1.0;
#endif
#endif
#if pp_ShadInstr==0
{
color=texcol;
}
#endif
#if pp_ShadInstr==1
{
color.rgb*=texcol.rgb;
color.a=texcol.a;
}
#endif
#if pp_ShadInstr==2
{
color.rgb=mix(color.rgb,texcol.rgb,texcol.a);
}
#endif
#if pp_ShadInstr==3
{
color*=texcol;
}
#endif
#if pp_Offset==1 && pp_BumpMap == 0
{
color.rgb+=vtx_offs.rgb;
}
#endif
}
#endif
color = fog_clamp(color);
#if pp_FogCtrl == 0
{
color.rgb=mix(color.rgb,sp_FOG_COL_RAM.rgb,fog_mode2(gl_FragCoord.w));
}
#endif
#if pp_FogCtrl == 1 && pp_Offset==1 && pp_BumpMap == 0
{
color.rgb=mix(color.rgb,sp_FOG_COL_VERT.rgb,vtx_offs.a);
}
#endif
#if pp_TriLinear == 1
color *= trilinear_alpha;
#endif
//color.rgb=vec3(gl_FragCoord.w * sp_FOG_DENSITY / 128.0);
#if TARGET_GL != GLES2
highp float w = gl_FragCoord.w * 100000.0;
gl_FragDepth = log2(1.0 + w) / 34.0;
#endif
gl_FragColor =color;
}
)";
static const char* ModifierVolumeShader = R"(
uniform lowp float sp_ShaderColor;
/* Vertex input*/
void main()
{
#if TARGET_GL != GLES2
highp float w = gl_FragCoord.w * 100000.0;
gl_FragDepth = log2(1.0 + w) / 34.0;
#endif
gl_FragColor=vec4(0.0, 0.0, 0.0, sp_ShaderColor);
}
)";
const char* OSD_VertexShader = R"(
uniform highp vec4 scale;
in highp vec4 in_pos;
in lowp vec4 in_base;
in mediump vec2 in_uv;
out lowp vec4 vtx_base;
out mediump vec2 vtx_uv;
void main()
{
vtx_base = in_base;
vtx_uv = in_uv;
highp vec4 vpos = in_pos;
vpos.w = 1.0;
vpos.z = vpos.w;
vpos.xy = vpos.xy * scale.xy - scale.zw;
gl_Position = vpos;
}
)";
const char* OSD_Shader = R"(
in lowp vec4 vtx_base;
in mediump vec2 vtx_uv;
uniform sampler2D tex;
void main()
{
gl_FragColor = vtx_base * texture(tex, vtx_uv);
}
)";
GLCache glcache;
gl_ctx gl;
int screen_width;
int screen_height;
GLuint fogTextureId;
GLuint paletteTextureId;
glm::mat4 ViewportMatrix;
#ifdef TEST_AUTOMATION
void do_swap_automation()
{
static FILE* video_file = fopen(cfgLoadStr("record", "rawvid","").c_str(), "wb");
extern bool do_screenshot;
if (video_file)
{
int bytesz = gl.ofbo.width * gl.ofbo.height * 3;
u8* img = new u8[bytesz];
glBindFramebuffer(GL_READ_FRAMEBUFFER, gl.ofbo.fbo);
glReadPixels(0, 0, gl.ofbo.width, gl.ofbo.height, GL_RGB, GL_UNSIGNED_BYTE, img);
fwrite(img, 1, bytesz, video_file);
delete[] img;
fflush(video_file);
}
if (do_screenshot)
{
int bytesz = gl.ofbo.width * gl.ofbo.height * 3;
u8* img = new u8[bytesz];
glBindFramebuffer(GL_READ_FRAMEBUFFER, gl.ofbo.fbo);
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(0, 0, gl.ofbo.width, gl.ofbo.height, GL_RGB, GL_UNSIGNED_BYTE, img);
dump_screenshot(img, gl.ofbo.width, gl.ofbo.height);
delete[] img;
dc_exit();
theGLContext.Term();
exit(0);
}
}
#endif
static void gl_delete_shaders()
{
for (const auto& it : gl.shaders)
{
if (it.second.program != 0)
glcache.DeleteProgram(it.second.program);
}
gl.shaders.clear();
glcache.DeleteProgram(gl.modvol_shader.program);
gl.modvol_shader.program = 0;
}
void termGLCommon()
{
termQuad();
postProcessor.term();
// palette, fog
glcache.DeleteTextures(1, &fogTextureId);
fogTextureId = 0;
glcache.DeleteTextures(1, &paletteTextureId);
paletteTextureId = 0;
// RTT
glDeleteBuffers(1, &gl.rtt.pbo);
gl.rtt.pbo = 0;
gl.rtt.pboSize = 0;
glDeleteFramebuffers(1, &gl.rtt.fbo);
gl.rtt.fbo = 0;
glcache.DeleteTextures(1, &gl.rtt.tex);
gl.rtt.tex = 0;
glDeleteRenderbuffers(1, &gl.rtt.depthb);
gl.rtt.depthb = 0;
gl.rtt.texAddress = ~0;
gl_free_osd_resources();
free_output_framebuffer();
glcache.DeleteTextures(1, &fbTextureId);
fbTextureId = 0;
#ifdef LIBRETRO
termVmuLightgun();
#endif
}
static void gles_term()
{
#ifndef GLES2
glDeleteVertexArrays(1, &gl.vbo.mainVAO);
gl.vbo.mainVAO = 0;
glDeleteVertexArrays(1, &gl.vbo.modvolVAO);
gl.vbo.modvolVAO = 0;
#endif
glDeleteBuffers(1, &gl.vbo.geometry);
gl.vbo.geometry = 0;
glDeleteBuffers(1, &gl.vbo.modvols);
glDeleteBuffers(1, &gl.vbo.idxs);
glDeleteBuffers(1, &gl.vbo.idxs2);
termGLCommon();
gl_delete_shaders();
}
void findGLVersion()
{
gl.index_type = GL_UNSIGNED_INT;
gl.gl_major = theGLContext.GetMajorVersion();
gl.gl_minor = theGLContext.GetMinorVersion();
gl.is_gles = theGLContext.IsGLES();
if (gl.is_gles)
{
if (gl.gl_major >= 3)
{
gl.gl_version = "GLES3";
gl.glsl_version_header = "#version 300 es";
}
else
{
gl.gl_version = "GLES2";
gl.glsl_version_header = "";
gl.index_type = GL_UNSIGNED_SHORT;
}
gl.single_channel_format = GL_ALPHA;
const char *extensions = (const char *)glGetString(GL_EXTENSIONS);
if (strstr(extensions, "GL_OES_packed_depth_stencil") != NULL)
gl.GL_OES_packed_depth_stencil_supported = true;
if (strstr(extensions, "GL_OES_depth24") != NULL)
gl.GL_OES_depth24_supported = true;
if (!gl.GL_OES_packed_depth_stencil_supported)
INFO_LOG(RENDERER, "Packed depth/stencil not supported: no modifier volumes when rendering to a texture");
GLint ranges[2];
GLint precision;
glGetShaderPrecisionFormat(GL_FRAGMENT_SHADER, GL_HIGH_FLOAT, ranges, &precision);
gl.highp_float_supported = (ranges[0] != 0 || ranges[1] != 0) && precision != 0;
}
else
{
if (gl.gl_major >= 3)
{
gl.gl_version = "GL3";
#if defined(__APPLE__)
gl.glsl_version_header = "#version 150";
#else
gl.glsl_version_header = "#version 130";
#endif
gl.single_channel_format = GL_RED;
}
else
{
gl.gl_version = "GL2";
gl.glsl_version_header = "#version 120";
gl.single_channel_format = GL_ALPHA;
}
gl.highp_float_supported = true;
}
gl.max_anisotropy = 1.f;
#if !defined(GLES2)
if (gl.gl_major >= 3)
{
bool anisotropicExtension = false;
const char *extensions = (const char *)glGetString(GL_EXTENSIONS);
// glGetString(GL_EXTENSIONS) is deprecated and might return NULL in core contexts.
// In that case, use glGetStringi instead
if (extensions == nullptr)
{
GLint n = 0;
glGetIntegerv(GL_NUM_EXTENSIONS, &n);
for (GLint i = 0; i < n; i++)
{
const char* extension = (const char *)glGetStringi(GL_EXTENSIONS, i);
if (!strcmp(extension, "GL_EXT_texture_filter_anisotropic"))
{
anisotropicExtension = true;
break;
}
}
}
else if (strstr(extensions, "GL_EXT_texture_filter_anisotropic") != nullptr)
anisotropicExtension = true;
if (anisotropicExtension)
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY, &gl.max_anisotropy);
}
#endif
gl.mesa_nouveau = strstr((const char *)glGetString(GL_VERSION), "Mesa") != nullptr && !strcmp((const char *)glGetString(GL_VENDOR), "nouveau");
NOTICE_LOG(RENDERER, "Open GL%s version %d.%d", gl.is_gles ? "ES" : "", gl.gl_major, gl.gl_minor);
while (glGetError() != GL_NO_ERROR)
;
}
struct ShaderUniforms_t ShaderUniforms;
GLuint gl_CompileShader(const char* shader,GLuint type)
{
GLint result;
GLint compile_log_len;
GLuint rv=glCreateShader(type);
glShaderSource(rv, 1,&shader, NULL);
glCompileShader(rv);
//lets see if it compiled ...
glGetShaderiv(rv, GL_COMPILE_STATUS, &result);
glGetShaderiv(rv, GL_INFO_LOG_LENGTH, &compile_log_len);
if (!result && compile_log_len>0)
{
char* compile_log=(char*)malloc(compile_log_len);
*compile_log=0;
glGetShaderInfoLog(rv, compile_log_len, &compile_log_len, compile_log);
WARN_LOG(RENDERER, "Shader: %s \n%s", result ? "compiled!" : "failed to compile", compile_log);
free(compile_log);
}
return rv;
}
GLuint gl_CompileAndLink(const char* VertexShader, const char* FragmentShader)
{
//create shaders
GLuint vs=gl_CompileShader(VertexShader ,GL_VERTEX_SHADER);
GLuint ps=gl_CompileShader(FragmentShader ,GL_FRAGMENT_SHADER);
GLuint program = glCreateProgram();
glAttachShader(program, vs);
glAttachShader(program, ps);
//bind vertex attribute to vbo inputs
glBindAttribLocation(program, VERTEX_POS_ARRAY, "in_pos");
glBindAttribLocation(program, VERTEX_COL_BASE_ARRAY, "in_base");
glBindAttribLocation(program, VERTEX_COL_OFFS_ARRAY, "in_offs");
glBindAttribLocation(program, VERTEX_UV_ARRAY, "in_uv");
glBindAttribLocation(program, VERTEX_COL_BASE1_ARRAY, "in_base1");
glBindAttribLocation(program, VERTEX_COL_OFFS1_ARRAY, "in_offs1");
glBindAttribLocation(program, VERTEX_UV1_ARRAY, "in_uv1");
#ifndef GLES
if (!gl.is_gles && gl.gl_major >= 3)
glBindFragDataLocation(program, 0, "FragColor");
#endif
glLinkProgram(program);
GLint result;
glGetProgramiv(program, GL_LINK_STATUS, &result);
GLint compile_log_len;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &compile_log_len);
if (!result && compile_log_len>0)
{
compile_log_len+= 1024;
char* compile_log=(char*)malloc(compile_log_len);
*compile_log=0;
glGetProgramInfoLog(program, compile_log_len, &compile_log_len, compile_log);
WARN_LOG(RENDERER, "Shader linking: %s \n (%d bytes), - %s -", result ? "linked" : "failed to link", compile_log_len, compile_log);
free(compile_log);
// Dump the shaders source for troubleshooting
INFO_LOG(RENDERER, "// VERTEX SHADER\n%s\n// END", VertexShader);
INFO_LOG(RENDERER, "// FRAGMENT SHADER\n%s\n// END", FragmentShader);
die("shader compile fail\n");
}
glDeleteShader(vs);
glDeleteShader(ps);
glcache.UseProgram(program);
verify(glIsProgram(program));
return program;
}
PipelineShader *GetProgram(bool cp_AlphaTest, bool pp_InsideClipping,
bool pp_Texture, bool pp_UseAlpha, bool pp_IgnoreTexA, u32 pp_ShadInstr, bool pp_Offset,
u32 pp_FogCtrl, bool pp_Gouraud, bool pp_BumpMap, bool fog_clamping, bool trilinear,
bool palette)
{
u32 rv=0;
rv |= pp_InsideClipping;
rv<<=1; rv|=cp_AlphaTest;
rv<<=1; rv|=pp_Texture;
rv<<=1; rv|=pp_UseAlpha;
rv<<=1; rv|=pp_IgnoreTexA;
rv<<=2; rv|=pp_ShadInstr;
rv<<=1; rv|=pp_Offset;
rv<<=2; rv|=pp_FogCtrl;
rv<<=1; rv|=pp_Gouraud;
rv<<=1; rv|=pp_BumpMap;
rv<<=1; rv|=fog_clamping;
rv<<=1; rv|=trilinear;
rv<<=1; rv|=palette;
PipelineShader *shader = &gl.shaders[rv];
if (shader->program == 0)
{
shader->cp_AlphaTest = cp_AlphaTest;
shader->pp_InsideClipping = pp_InsideClipping;
shader->pp_Texture = pp_Texture;
shader->pp_UseAlpha = pp_UseAlpha;
shader->pp_IgnoreTexA = pp_IgnoreTexA;
shader->pp_ShadInstr = pp_ShadInstr;
shader->pp_Offset = pp_Offset;
shader->pp_FogCtrl = pp_FogCtrl;
shader->pp_Gouraud = pp_Gouraud;
shader->pp_BumpMap = pp_BumpMap;
shader->fog_clamping = fog_clamping;
shader->trilinear = trilinear;
shader->palette = palette;
CompilePipelineShader(shader);
}
return shader;
}
class VertexSource : public OpenGlSource
{
public:
VertexSource(bool gouraud) : OpenGlSource() {
addConstant("pp_Gouraud", gouraud);
addSource(VertexCompatShader);
addSource(GouraudSource);
addSource(VertexShaderSource);
}
};
class FragmentShaderSource : public OpenGlSource
{
public:
FragmentShaderSource(const PipelineShader* s) : OpenGlSource()
{
addConstant("cp_AlphaTest", s->cp_AlphaTest);
addConstant("pp_ClipInside", s->pp_InsideClipping);
addConstant("pp_UseAlpha", s->pp_UseAlpha);
addConstant("pp_Texture", s->pp_Texture);
addConstant("pp_IgnoreTexA", s->pp_IgnoreTexA);
addConstant("pp_ShadInstr", s->pp_ShadInstr);
addConstant("pp_Offset", s->pp_Offset);
addConstant("pp_FogCtrl", s->pp_FogCtrl);
addConstant("pp_Gouraud", s->pp_Gouraud);
addConstant("pp_BumpMap", s->pp_BumpMap);
addConstant("FogClamping", s->fog_clamping);
addConstant("pp_TriLinear", s->trilinear);
addConstant("pp_Palette", s->palette);
addSource(PixelCompatShader);
addSource(GouraudSource);
addSource(PixelPipelineShader);
}
};
bool CompilePipelineShader(PipelineShader* s)
{
VertexSource vertexSource(s->pp_Gouraud);
FragmentShaderSource fragmentSource(s);
s->program = gl_CompileAndLink(vertexSource.generate().c_str(), fragmentSource.generate().c_str());
//setup texture 0 as the input for the shader
GLint gu = glGetUniformLocation(s->program, "tex");
if (s->pp_Texture==1)
glUniform1i(gu,0);
//get the uniform locations
s->depth_scale = glGetUniformLocation(s->program, "depth_scale");
s->pp_ClipTest = glGetUniformLocation(s->program, "pp_ClipTest");
s->sp_FOG_DENSITY = glGetUniformLocation(s->program, "sp_FOG_DENSITY");
s->cp_AlphaTestValue= glGetUniformLocation(s->program, "cp_AlphaTestValue");
//FOG_COL_RAM,FOG_COL_VERT,FOG_DENSITY;
if (s->pp_FogCtrl==1 && s->pp_Texture==1)
s->sp_FOG_COL_VERT=glGetUniformLocation(s->program, "sp_FOG_COL_VERT");
else
s->sp_FOG_COL_VERT=-1;
if (s->pp_FogCtrl==0 || s->pp_FogCtrl==3)
{
s->sp_FOG_COL_RAM=glGetUniformLocation(s->program, "sp_FOG_COL_RAM");
}
else
{
s->sp_FOG_COL_RAM=-1;
}
// Setup texture 1 as the fog table
gu = glGetUniformLocation(s->program, "fog_table");
if (gu != -1)
glUniform1i(gu, 1);
// And texture 2 as palette
gu = glGetUniformLocation(s->program, "palette");
if (gu != -1)
glUniform1i(gu, 2);
s->palette_index = glGetUniformLocation(s->program, "palette_index");
s->trilinear_alpha = glGetUniformLocation(s->program, "trilinear_alpha");
if (s->fog_clamping)
{
s->fog_clamp_min = glGetUniformLocation(s->program, "fog_clamp_min");
s->fog_clamp_max = glGetUniformLocation(s->program, "fog_clamp_max");
}
else
{
s->fog_clamp_min = -1;
s->fog_clamp_max = -1;
}
s->normal_matrix = glGetUniformLocation(s->program, "normal_matrix");
ShaderUniforms.Set(s);
return glIsProgram(s->program)==GL_TRUE;
}
static void SetupOSDVBO()
{
#ifndef GLES2
if (gl.OSD_SHADER.vao != 0)
{
glBindVertexArray(gl.OSD_SHADER.vao);
glBindBuffer(GL_ARRAY_BUFFER, gl.OSD_SHADER.geometry);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
return;
}
if (gl.gl_major >= 3)
{
glGenVertexArrays(1, &gl.OSD_SHADER.vao);
glBindVertexArray(gl.OSD_SHADER.vao);
}
#endif
if (gl.OSD_SHADER.geometry == 0)
glGenBuffers(1, &gl.OSD_SHADER.geometry);
glBindBuffer(GL_ARRAY_BUFFER, gl.OSD_SHADER.geometry);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
//setup vertex buffers attrib pointers
glEnableVertexAttribArray(VERTEX_POS_ARRAY);
glVertexAttribPointer(VERTEX_POS_ARRAY, 2, GL_FLOAT, GL_FALSE, sizeof(OSDVertex), (void*)offsetof(OSDVertex, x));
glEnableVertexAttribArray(VERTEX_COL_BASE_ARRAY);
glVertexAttribPointer(VERTEX_COL_BASE_ARRAY, 4, GL_UNSIGNED_BYTE, GL_TRUE, sizeof(OSDVertex), (void*)offsetof(OSDVertex, r));
glEnableVertexAttribArray(VERTEX_UV_ARRAY);
glVertexAttribPointer(VERTEX_UV_ARRAY, 2, GL_FLOAT, GL_FALSE, sizeof(OSDVertex), (void*)offsetof(OSDVertex, u));
glDisableVertexAttribArray(VERTEX_COL_OFFS_ARRAY);
glCheck();
}
void gl_load_osd_resources()
{
OpenGlSource vertexSource;
vertexSource.addSource(VertexCompatShader)
.addSource(OSD_VertexShader);
OpenGlSource fragmentSource;
fragmentSource.addSource(PixelCompatShader)
.addSource(OSD_Shader);
gl.OSD_SHADER.program = gl_CompileAndLink(vertexSource.generate().c_str(), fragmentSource.generate().c_str());
gl.OSD_SHADER.scale = glGetUniformLocation(gl.OSD_SHADER.program, "scale");
glUniform1i(glGetUniformLocation(gl.OSD_SHADER.program, "tex"), 0); //bind osd texture to slot 0
#ifdef __ANDROID__
if (gl.OSD_SHADER.osd_tex == 0)
{
int width, height;
u8 *image_data = loadOSDButtons(width, height);
//Now generate the OpenGL texture object
gl.OSD_SHADER.osd_tex = glcache.GenTexture();
glcache.BindTexture(GL_TEXTURE_2D, gl.OSD_SHADER.osd_tex);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (GLvoid *)image_data);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
delete[] image_data;
}
#endif
SetupOSDVBO();
}
void gl_free_osd_resources()
{
if (gl.OSD_SHADER.program != 0)
{
glcache.DeleteProgram(gl.OSD_SHADER.program);
gl.OSD_SHADER.program = 0;
}
if (gl.OSD_SHADER.osd_tex != 0) {
glcache.DeleteTextures(1, &gl.OSD_SHADER.osd_tex);
gl.OSD_SHADER.osd_tex = 0;
}
glDeleteBuffers(1, &gl.OSD_SHADER.geometry);
gl.OSD_SHADER.geometry = 0;
#ifndef GLES2
glDeleteVertexArrays(1, &gl.OSD_SHADER.vao);
gl.OSD_SHADER.vao = 0;
#endif
}
static void create_modvol_shader()
{
if (gl.modvol_shader.program != 0)
return;
VertexSource vertexShader(true);
OpenGlSource fragmentShader;
fragmentShader.addSource(PixelCompatShader)
.addSource(ModifierVolumeShader);
gl.modvol_shader.program = gl_CompileAndLink(vertexShader.generate().c_str(), fragmentShader.generate().c_str());
gl.modvol_shader.normal_matrix = glGetUniformLocation(gl.modvol_shader.program, "normal_matrix");
gl.modvol_shader.sp_ShaderColor = glGetUniformLocation(gl.modvol_shader.program, "sp_ShaderColor");
gl.modvol_shader.depth_scale = glGetUniformLocation(gl.modvol_shader.program, "depth_scale");
}
bool gl_create_resources()
{
if (gl.vbo.geometry != 0)
// Assume the resources have already been created
return true;
findGLVersion();
if (gl.gl_major >= 3)
// will be used later. Better fail fast
verify(glGenVertexArrays != nullptr);
//create vbos
glGenBuffers(1, &gl.vbo.geometry);
glGenBuffers(1, &gl.vbo.modvols);
glGenBuffers(1, &gl.vbo.idxs);
glGenBuffers(1, &gl.vbo.idxs2);
create_modvol_shader();
initQuad();
return true;
}
GLuint gl_CompileShader(const char* shader,GLuint type);
bool gl_create_resources();
//setup
#ifndef __APPLE__
void gl_DebugOutput(GLenum source,
GLenum type,
GLuint id,
GLenum severity,
GLsizei length,
const GLchar *message,
const void *userParam)
{
if (id == 131185)
return;
switch (severity)
{
default:
case GL_DEBUG_SEVERITY_NOTIFICATION:
case GL_DEBUG_SEVERITY_LOW:
DEBUG_LOG(RENDERER, "opengl:[%d] %s", id, message);
break;
case GL_DEBUG_SEVERITY_MEDIUM:
INFO_LOG(RENDERER, "opengl:[%d] %s", id, message);
break;
case GL_DEBUG_SEVERITY_HIGH:
WARN_LOG(RENDERER, "opengl:[%d] %s", id, message);
break;
}
}
#endif
bool gles_init()
{
glcache.EnableCache();
if (!gl_create_resources())
return false;
#if 0
glEnable(GL_DEBUG_OUTPUT);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS);
#ifdef GLES
glDebugMessageCallback((RGLGENGLDEBUGPROC)gl_DebugOutput, NULL);
#else
glDebugMessageCallback(gl_DebugOutput, NULL);
#endif
glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, NULL, GL_TRUE);
#endif
#if defined(GL_GENERATE_MIPMAP_HINT) && !defined(__SWITCH__)
if (gl.is_gles)
glHint(GL_GENERATE_MIPMAP_HINT, GL_FASTEST);
#endif
glCheck();
if (config::TextureUpscale > 1)
{
// Trick to preload the tables used by xBRZ
u32 src[] { 0x11111111, 0x22222222, 0x33333333, 0x44444444 };
u32 dst[16];
UpscalexBRZ(2, src, dst, 2, 2, false);
}
fog_needs_update = true;
palette_updated = true;
TextureCacheData::SetDirectXColorOrder(false);
return true;
}
void UpdateFogTexture(u8 *fog_table, GLenum texture_slot, GLint fog_image_format)
{
glActiveTexture(texture_slot);
if (fogTextureId == 0)
{
fogTextureId = glcache.GenTexture();
glcache.BindTexture(GL_TEXTURE_2D, fogTextureId);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
else
glcache.BindTexture(GL_TEXTURE_2D, fogTextureId);
u8 temp_tex_buffer[256];
MakeFogTexture(temp_tex_buffer);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage2D(GL_TEXTURE_2D, 0, fog_image_format, 128, 2, 0, fog_image_format, GL_UNSIGNED_BYTE, temp_tex_buffer);
glCheck();
glActiveTexture(GL_TEXTURE0);
}
void UpdatePaletteTexture(GLenum texture_slot)
{
glActiveTexture(texture_slot);
if (paletteTextureId == 0)
{
paletteTextureId = glcache.GenTexture();
glcache.BindTexture(GL_TEXTURE_2D, paletteTextureId);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glcache.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
else
glcache.BindTexture(GL_TEXTURE_2D, paletteTextureId);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, palette32_ram);
glCheck();
glActiveTexture(GL_TEXTURE0);
}
void OSD_DRAW(bool clear_screen)
{
#ifdef LIBRETRO
void DrawVmuTexture(u8 vmu_screen_number);
void DrawGunCrosshair(u8 port);
if (settings.platform.system == DC_PLATFORM_DREAMCAST)
{
for (int vmu_screen_number = 0 ; vmu_screen_number < 4 ; vmu_screen_number++)
if (vmu_lcd_status[vmu_screen_number * 2])
DrawVmuTexture(vmu_screen_number);
}
for (int lightgun_port = 0 ; lightgun_port < 4 ; lightgun_port++)
DrawGunCrosshair(lightgun_port);
#else
gui_display_osd();
#ifdef __ANDROID__
if (gl.OSD_SHADER.osd_tex == 0)
gl_load_osd_resources();
if (gl.OSD_SHADER.osd_tex != 0)
{
glcache.Disable(GL_SCISSOR_TEST);
glViewport(0, 0, screen_width, screen_height);
if (clear_screen)
{
glcache.ClearColor(0.7f, 0.7f, 0.7f, 1.f);
glClear(GL_COLOR_BUFFER_BIT);
render_output_framebuffer();
glViewport(0, 0, screen_width, screen_height);
}
#ifndef GLES2
if (gl.gl_major >= 3)
glBindVertexArray(gl.OSD_SHADER.vao);
else
#endif
SetupOSDVBO();
glBindBuffer(GL_ARRAY_BUFFER, gl.OSD_SHADER.geometry);
verify(glIsProgram(gl.OSD_SHADER.program));
glcache.UseProgram(gl.OSD_SHADER.program);
float scale_h = screen_height / 480.f;
float offs_x = (screen_width - scale_h * 640.f) / 2.f;
float scale[4];
scale[0] = 2.f / (screen_width / scale_h);
scale[1]= -2.f / 480.f;
scale[2]= 1.f - 2.f * offs_x / screen_width;
scale[3]= -1.f;
glUniform4fv(gl.OSD_SHADER.scale, 1, scale);
glActiveTexture(GL_TEXTURE0);
glcache.BindTexture(GL_TEXTURE_2D, gl.OSD_SHADER.osd_tex);
glBindFramebuffer(GL_FRAMEBUFFER, gl.ofbo.origFbo);
const std::vector<OSDVertex>& osdVertices = GetOSDVertices();
glBufferData(GL_ARRAY_BUFFER, osdVertices.size() * sizeof(OSDVertex), osdVertices.data(), GL_STREAM_DRAW); glCheck();
glcache.Enable(GL_BLEND);
glcache.Disable(GL_DEPTH_TEST);
glcache.BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glcache.DepthMask(false);
glcache.DepthFunc(GL_ALWAYS);
glcache.Disable(GL_CULL_FACE);
int dfa = osdVertices.size() / 4;
for (int i = 0; i < dfa; i++)
glDrawArrays(GL_TRIANGLE_STRIP, i * 4, 4);
glCheck();
}
#endif
#endif
#ifndef GLES2
if (gl.gl_major >= 3)
glBindVertexArray(0);
#endif
}
bool ProcessFrame(TA_context* ctx)
{
if (KillTex)
TexCache.Clear();
TexCache.Cleanup();
if (ctx->rend.isRenderFramebuffer)
{
RenderFramebuffer();
}
else
{
if (!ta_parse_vdrc(ctx))
return false;
}
return true;
}
static void upload_vertex_indices()
{
if (gl.index_type == GL_UNSIGNED_SHORT)
{
static bool overrun;
static List<u16> short_idx;
if (short_idx.daty != NULL)
short_idx.Free();
short_idx.Init(pvrrc.idx.used(), &overrun, NULL);
for (u32 *p = pvrrc.idx.head(); p < pvrrc.idx.LastPtr(0); p++)
*(short_idx.Append()) = *p;
glBufferData(GL_ELEMENT_ARRAY_BUFFER, short_idx.bytes(), short_idx.head(), GL_STREAM_DRAW);
}
else
glBufferData(GL_ELEMENT_ARRAY_BUFFER,pvrrc.idx.bytes(),pvrrc.idx.head(),GL_STREAM_DRAW);
glCheck();
}
bool RenderFrame(int width, int height)
{
bool is_rtt = pvrrc.isRTT;
float vtx_min_fZ = 0.f; //pvrrc.fZ_min;
float vtx_max_fZ = pvrrc.fZ_max;
//sanitise the values, now with NaN detection (for omap)
//0x49800000 is 1024*1024. Using integer math to avoid issues w/ infs and nans
if ((s32&)vtx_max_fZ < 0 || (u32&)vtx_max_fZ > 0x49800000)
vtx_max_fZ = 10 * 1024;
//add some extra range to avoid clipping border cases
vtx_min_fZ *= 0.98f;
vtx_max_fZ *= 1.001f;
TransformMatrix<COORD_OPENGL> matrices(pvrrc, width, height);
ShaderUniforms.normal_mat = matrices.GetNormalMatrix();
const glm::mat4& scissor_mat = matrices.GetScissorMatrix();
ViewportMatrix = matrices.GetViewportMatrix();
if (!is_rtt)
gcflip = 0;
else
gcflip = 1;
ShaderUniforms.depth_coefs[0] = 2 / (vtx_max_fZ - vtx_min_fZ);
ShaderUniforms.depth_coefs[1] = -vtx_min_fZ - 1;
ShaderUniforms.depth_coefs[2] = 0;
ShaderUniforms.depth_coefs[3] = 0;
//VERT and RAM fog color constants
u8* fog_colvert_bgra = (u8*)&FOG_COL_VERT;
u8* fog_colram_bgra = (u8*)&FOG_COL_RAM;
ShaderUniforms.ps_FOG_COL_VERT[0] = fog_colvert_bgra[2] / 255.0f;
ShaderUniforms.ps_FOG_COL_VERT[1] = fog_colvert_bgra[1] / 255.0f;
ShaderUniforms.ps_FOG_COL_VERT[2] = fog_colvert_bgra[0] / 255.0f;
ShaderUniforms.ps_FOG_COL_RAM[0] = fog_colram_bgra[2] / 255.0f;
ShaderUniforms.ps_FOG_COL_RAM[1] = fog_colram_bgra[1] / 255.0f;
ShaderUniforms.ps_FOG_COL_RAM[2] = fog_colram_bgra[0] / 255.0f;
//Fog density constant
u8* fog_density = (u8*)&FOG_DENSITY;
float fog_den_mant = fog_density[1] / 128.0f; //bit 7 -> x. bit, so [6:0] -> fraction -> /128
s32 fog_den_exp = (s8)fog_density[0];
ShaderUniforms.fog_den_float = fog_den_mant * powf(2.0f, fog_den_exp) * config::ExtraDepthScale;
ShaderUniforms.fog_clamp_min[0] = ((pvrrc.fog_clamp_min >> 16) & 0xFF) / 255.0f;
ShaderUniforms.fog_clamp_min[1] = ((pvrrc.fog_clamp_min >> 8) & 0xFF) / 255.0f;
ShaderUniforms.fog_clamp_min[2] = ((pvrrc.fog_clamp_min >> 0) & 0xFF) / 255.0f;
ShaderUniforms.fog_clamp_min[3] = ((pvrrc.fog_clamp_min >> 24) & 0xFF) / 255.0f;
ShaderUniforms.fog_clamp_max[0] = ((pvrrc.fog_clamp_max >> 16) & 0xFF) / 255.0f;
ShaderUniforms.fog_clamp_max[1] = ((pvrrc.fog_clamp_max >> 8) & 0xFF) / 255.0f;
ShaderUniforms.fog_clamp_max[2] = ((pvrrc.fog_clamp_max >> 0) & 0xFF) / 255.0f;
ShaderUniforms.fog_clamp_max[3] = ((pvrrc.fog_clamp_max >> 24) & 0xFF) / 255.0f;
if (fog_needs_update && config::Fog)
{
fog_needs_update = false;
UpdateFogTexture((u8 *)FOG_TABLE, GL_TEXTURE1, gl.single_channel_format);
}
if (palette_updated)
{
UpdatePaletteTexture(GL_TEXTURE2);
palette_updated = false;
}
glcache.UseProgram(gl.modvol_shader.program);
if (gl.modvol_shader.depth_scale != -1)
glUniform4fv(gl.modvol_shader.depth_scale, 1, ShaderUniforms.depth_coefs);
glUniformMatrix4fv(gl.modvol_shader.normal_matrix, 1, GL_FALSE, &ShaderUniforms.normal_mat[0][0]);
ShaderUniforms.PT_ALPHA=(PT_ALPHA_REF&0xFF)/255.0f;
for (const auto& it : gl.shaders)
{
glcache.UseProgram(it.second.program);
ShaderUniforms.Set(&it.second);
}
//setup render target first
#ifdef LIBRETRO
gl.ofbo.origFbo = glsm_get_current_framebuffer();
#else
gl.ofbo.origFbo = 0;
glGetIntegerv(GL_FRAMEBUFFER_BINDING, (GLint *)&gl.ofbo.origFbo);
#endif
if (is_rtt)
{
if (BindRTT() == 0)
return false;
}
else
{
#ifdef LIBRETRO
gl.ofbo.width = width;
gl.ofbo.height = height;
if (config::PowerVR2Filter && !pvrrc.isRenderFramebuffer)
glBindFramebuffer(GL_FRAMEBUFFER, postProcessor.getFramebuffer(width, height));
else
glBindFramebuffer(GL_FRAMEBUFFER, glsm_get_current_framebuffer());
glViewport(0, 0, width, height);
#else
if (init_output_framebuffer(width, height) == 0)
return false;
#endif
}
bool wide_screen_on = !is_rtt && config::Widescreen && !matrices.IsClipped() && !config::Rotate90;
//Color is cleared by the background plane
glcache.Disable(GL_SCISSOR_TEST);
glcache.DepthMask(GL_TRUE);
glClearDepthf(0.0);
glStencilMask(0xFF); glCheck();
glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glCheck();
//move vertex to gpu
if (!pvrrc.isRenderFramebuffer)
{
//Main VBO
glBindBuffer(GL_ARRAY_BUFFER, gl.vbo.geometry); glCheck();
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, gl.vbo.idxs); glCheck();
glBufferData(GL_ARRAY_BUFFER,pvrrc.verts.bytes(),pvrrc.verts.head(),GL_STREAM_DRAW); glCheck();
upload_vertex_indices();
//Modvol VBO
if (pvrrc.modtrig.used())
{
glBindBuffer(GL_ARRAY_BUFFER, gl.vbo.modvols); glCheck();
glBufferData(GL_ARRAY_BUFFER,pvrrc.modtrig.bytes(),pvrrc.modtrig.head(),GL_STREAM_DRAW); glCheck();
}
if (!wide_screen_on)
{
float fWidth;
float fHeight;
float min_x;
float min_y;
if (!is_rtt)
{
glm::vec4 clip_min(pvrrc.fb_X_CLIP.min, pvrrc.fb_Y_CLIP.min, 0, 1);
glm::vec4 clip_dim(pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1,
pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1, 0, 0);
clip_min = scissor_mat * clip_min;
clip_dim = scissor_mat * clip_dim;
min_x = clip_min[0];
min_y = clip_min[1];
fWidth = clip_dim[0];
fHeight = clip_dim[1];
if (fWidth < 0)
{
min_x += fWidth;
fWidth = -fWidth;
}
if (fHeight < 0)
{
min_y += fHeight;
fHeight = -fHeight;
}
if (matrices.GetSidebarWidth() > 0)
{
float scaled_offs_x = matrices.GetSidebarWidth();
glcache.ClearColor(0.f, 0.f, 0.f, 0.f);
glcache.Enable(GL_SCISSOR_TEST);
glcache.Scissor(0, 0, (GLsizei)lroundf(scaled_offs_x), (GLsizei)height);
glClear(GL_COLOR_BUFFER_BIT);
glcache.Scissor(width - scaled_offs_x, 0, (GLsizei)lroundf(scaled_offs_x + 1.f), (GLsizei)height);
glClear(GL_COLOR_BUFFER_BIT);
}
}
else
{
fWidth = pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1;
fHeight = pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1;
min_x = pvrrc.fb_X_CLIP.min;
min_y = pvrrc.fb_Y_CLIP.min;
if (config::RenderResolution > 480 && !config::RenderToTextureBuffer)
{
float scale = config::RenderResolution / 480.f;
min_x *= scale;
min_y *= scale;
fWidth *= scale;
fHeight *= scale;
}
}
ShaderUniforms.base_clipping.enabled = true;
ShaderUniforms.base_clipping.x = (int)lroundf(min_x);
ShaderUniforms.base_clipping.y = (int)lroundf(min_y);
ShaderUniforms.base_clipping.width = (int)lroundf(fWidth);
ShaderUniforms.base_clipping.height = (int)lroundf(fHeight);
glcache.Scissor(ShaderUniforms.base_clipping.x, ShaderUniforms.base_clipping.y, ShaderUniforms.base_clipping.width, ShaderUniforms.base_clipping.height);
glcache.Enable(GL_SCISSOR_TEST);
}
else
{
ShaderUniforms.base_clipping.enabled = false;
}
DrawStrips();
#ifdef LIBRETRO
if (config::PowerVR2Filter && !is_rtt)
postProcessor.render(glsm_get_current_framebuffer());
#endif
}
else
{
glcache.ClearColor(0.f, 0.f, 0.f, 0.f);
glClear(GL_COLOR_BUFFER_BIT);
DrawFramebuffer();
}
if (is_rtt)
ReadRTTBuffer();
#ifndef LIBRETRO
else
render_output_framebuffer();
#endif
#ifndef GLES2
if (gl.gl_major >= 3)
glBindVertexArray(0);
#endif
return !is_rtt;
}
bool OpenGLRenderer::Init()
{
return gles_init();
}
void OpenGLRenderer::Term()
{
TexCache.Clear();
gles_term();
}
bool OpenGLRenderer::Render()
{
RenderFrame(width, height);
if (pvrrc.isRTT)
return false;
DrawOSD(false);
frameRendered = true;
return true;
}
bool OpenGLRenderer::RenderLastFrame()
{
return render_output_framebuffer();
}
Renderer* rend_GLES2()
{
return new OpenGLRenderer();
}