flycast/core/hw/naomi/naomi_m3comm.cpp

299 lines
7.6 KiB
C++

/*
Created on: Mar 15, 2020
Copyright 2020 flyinghead
This file is part of flycast.
flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#include "naomi_m3comm.h"
#include "naomi_regs.h"
#include "hw/holly/sb.h"
#include "hw/sh4/sh4_mem.h"
#include "network/naomi_network.h"
#include <chrono>
static inline u16 swap16(u16 w)
{
return (w >> 8) | (w << 8);
}
void NaomiM3Comm::closeNetwork()
{
network_stopping = true;
naomiNetwork.shutdown();
if (thread && thread->joinable())
thread->join();
}
void NaomiM3Comm::connectNetwork()
{
packet_number = 0;
if (naomiNetwork.syncNetwork())
{
slot_count = naomiNetwork.slotCount();
slot_id = naomiNetwork.slotId();
connectedState(true);
}
else
{
connectedState(false);
network_stopping = true;
naomiNetwork.shutdown();
}
}
void NaomiM3Comm::receiveNetwork()
{
const u32 slot_size = swap16(*(u16*)&m68k_ram[0x204]);
const u32 packet_size = slot_size * slot_count;
std::unique_ptr<u8[]> buf(new u8[packet_size]);
if (naomiNetwork.receive(buf.get(), packet_size))
{
packet_number += slot_count - 1;
*(u16*)&comm_ram[6] = swap16(packet_number);
std::unique_lock<std::mutex> lock(mem_mutex);
memcpy(&comm_ram[0x100 + slot_size], buf.get(), packet_size);
}
}
void NaomiM3Comm::sendNetwork()
{
if (naomiNetwork.hasToken())
{
const u32 packet_size = swap16(*(u16*)&m68k_ram[0x204]) * slot_count;
std::unique_lock<std::mutex> lock(mem_mutex);
naomiNetwork.send(&comm_ram[0x100], packet_size);
packet_number++;
*(u16*)&comm_ram[6] = swap16(packet_number);
}
}
u32 NaomiM3Comm::ReadMem(u32 address, u32 size)
{
switch (address & 255)
{
case NAOMI_COMM2_CTRL_addr & 255:
//DEBUG_LOG(NAOMI, "NAOMI_COMM2_CTRL read");
return comm_ctrl;
case NAOMI_COMM2_OFFSET_addr & 255:
//DEBUG_LOG(NAOMI, "NAOMI_COMM2_OFFSET read");
return comm_offset;
case NAOMI_COMM2_DATA_addr & 255:
{
u16 value;
if (comm_ctrl & 1)
value = *(u16*)&m68k_ram[comm_offset];
else
// TODO u16 *commram = (u16*)membank("comm_ram")->base();
value = *(u16*)&comm_ram[comm_offset];
value = swap16(value);
DEBUG_LOG(NAOMI, "NAOMI_COMM2_DATA %s read @ %04x: %x", (comm_ctrl & 1) ? "m68k ram" : "comm ram", comm_offset, value);
comm_offset += 2;
return value;
}
case NAOMI_COMM2_STATUS0_addr & 255:
DEBUG_LOG(NAOMI, "NAOMI_COMM2_STATUS0 read %x", comm_status0);
return comm_status0;
case NAOMI_COMM2_STATUS1_addr & 255:
DEBUG_LOG(NAOMI, "NAOMI_COMM2_STATUS1 read %x", comm_status1);
return comm_status1;
default:
DEBUG_LOG(NAOMI, "NaomiM3Comm::ReadMem unmapped: %08x sz %d", address, size);
return 0xffffffff;
}
}
void NaomiM3Comm::connectedState(bool success)
{
if (!success)
return;
memset(&comm_ram[0xf000], 0, 16);
comm_ram[0xf000] = 1;
comm_ram[0xf001] = 1;
comm_ram[0xf002] = m68k_ram[0x204];
comm_ram[0xf003] = m68k_ram[0x205];
u32 slot_size = swap16(*(u16*)&m68k_ram[0x204]);
memset(&comm_ram[0], 0, 32);
// 80000
comm_ram[0] = 0;
comm_ram[1] = slot_id == 0 ? 0 : 1;
// 80002
comm_ram[2] = 0x01;
comm_ram[3] = 0x01;
// 80004
if (slot_id == 0)
{
comm_ram[4] = 0;
comm_ram[5] = 0;
}
else
{
comm_ram[4] = 1;
comm_ram[5] = 1;
}
// 80006: packet number
comm_ram[6] = 0;
comm_ram[7] = 0;
// 80008
comm_ram[8] = slot_id == 0 ? 0x78 : 0x73;
comm_ram[9] = slot_id == 0 ? 0x30 : 0xa2;
// 8000A
*(u16 *)(comm_ram + 10) = 0x100 + slot_size; // offset of recvd data
// 8000C
*(u16 *)(comm_ram + 12) = slot_size * slot_count; // recvd data size
// 8000E
*(u16 *)(comm_ram + 14) = 0x100; // offset of sent data
// 80010
*(u16 *)(comm_ram + 16) = 0x80 + slot_size * slot_count; // sent data size
// FIXME wrungp uses 100, others 80
comm_status0 = 0xff01; // But 1 at connect time before f000 is read
comm_status1 = (slot_count << 8) | slot_id;
}
void NaomiM3Comm::WriteMem(u32 address, u32 data, u32 size)
{
switch (address & 255)
{
case NAOMI_COMM2_CTRL_addr & 255:
// bit 0: access RAM is 0 - communication RAM / 1 - M68K RAM
// bit 1: comm RAM bank (seems R/O for SH4)
// bit 5: M68K Reset
// bit 6: ???
// bit 7: might be M68K IRQ 5 or 2
// bit 14: G1 DMA bus master 0 - active / 1 - disabled
// bit 15: 0 - enable / 1 - disable this device ???
if (data & (1 << 5))
{
DEBUG_LOG(NAOMI, "NAOMI_COMM2_CTRL m68k reset");
memset(&comm_ram[0], 0, 32);
comm_status0 = 0; // varies...
comm_status1 = 0;
if (!thread || !thread->joinable())
startThread();
}
comm_ctrl = (u16)(data & ~(1 << 5));
//DEBUG_LOG(NAOMI, "NAOMI_COMM2_CTRL set to %x", comm_ctrl);
return;
case NAOMI_COMM2_OFFSET_addr & 255:
comm_offset = (u16)data;
//DEBUG_LOG(NAOMI, "NAOMI_COMM2_OFFSET set to %x", comm_offset);
return;
case NAOMI_COMM2_DATA_addr & 255:
DEBUG_LOG(NAOMI, "NAOMI_COMM2_DATA written @ %04x %04x", comm_offset, (u16)data);
data = swap16(data);
if (comm_ctrl & 1)
*(u16*)&m68k_ram[comm_offset] = (u16)data;
else
*(u16*)&comm_ram[comm_offset] = (u16)data;
comm_offset += 2;
return;
case NAOMI_COMM2_STATUS0_addr & 255:
comm_status0 = (u16)data;
//DEBUG_LOG(NAOMI, "NAOMI_COMM2_STATUS0 set to %x", comm_status0);
return;
case NAOMI_COMM2_STATUS1_addr & 255:
comm_status1 = (u16)data;
//DEBUG_LOG(NAOMI, "NAOMI_COMM2_STATUS1 set to %x", comm_status1);
return;
default:
break;
}
DEBUG_LOG(NAOMI, "NaomiM3Comm::WriteMem: %x <= %x sz %d", address, data, size);
}
bool NaomiM3Comm::DmaStart(u32 addr, u32 data)
{
if (comm_ctrl & 0x4000)
return false;
DEBUG_LOG(NAOMI, "NaomiM3Comm: DMA addr %08X <-> %04x len %d %s", SB_GDSTAR, comm_offset, SB_GDLEN, SB_GDDIR == 0 ? "OUT" : "IN");
std::unique_lock<std::mutex> lock(mem_mutex);
if (SB_GDDIR == 0)
{
// Network write
for (u32 i = 0; i < SB_GDLEN; i++)
comm_ram[comm_offset++] = ReadMem8_nommu(SB_GDSTAR + i);
}
else
{
// Network read
if (SB_GDLEN == 32 && (comm_ctrl & 1) == 0)
{
char buf[32 * 5 + 1];
buf[0] = 0;
for (u32 i = 0; i < SB_GDLEN; i++)
{
u8 value = comm_ram[comm_offset + i];
sprintf(buf + strlen(buf), "%02x ", value);
}
DEBUG_LOG(NAOMI, "Comm RAM read @%x: %s", comm_offset, buf);
}
for (u32 i = 0; i < SB_GDLEN; i++)
WriteMem8_nommu(SB_GDSTAR + i, comm_ram[comm_offset++]);
}
return true;
}
void NaomiM3Comm::startThread()
{
network_stopping = false;
thread = std::unique_ptr<std::thread>(new std::thread([this]() {
using the_clock = std::chrono::high_resolution_clock;
connectNetwork();
the_clock::time_point token_time = the_clock::now();
while (!network_stopping)
{
naomiNetwork.pipeSlaves();
receiveNetwork();
if (slot_id == 0 && naomiNetwork.hasToken())
{
const auto target_duration = std::chrono::milliseconds(10);
auto duration = the_clock::now() - token_time;
if (duration < target_duration)
{
DEBUG_LOG(NAOMI, "Sleeping for %ld ms", (long)std::chrono::duration_cast<std::chrono::milliseconds>(target_duration - duration).count());
std::this_thread::sleep_for(target_duration - duration);
}
token_time = the_clock::now();
}
sendNetwork();
}
DEBUG_LOG(NAOMI, "Network thread exiting");
}));
}