flycast/core/hw/pvr/ta_ctx.h

417 lines
8.9 KiB
C++

#pragma once
#include "types.h"
#include "ta_structs.h"
#include "pvr_regs.h"
#include "helper_classes.h"
#include "stdclass.h"
#include "oslib/oslib.h"
#include <mutex>
class BaseTextureCacheData;
struct N2LightModel;
//Vertex storage types
struct Vertex
{
float x,y,z;
u8 col[4];
u8 spc[4];
float u,v;
// Two volumes format
u8 col1[4];
u8 spc1[4];
float u1,v1;
// Naomi2 normal
float nx,ny,nz;
};
struct PolyParam
{
u32 first; //entry index , holds vertex/pos data
u32 count;
BaseTextureCacheData *texture;
TSP tsp;
TCW tcw;
PCW pcw;
ISP_TSP isp;
float zvZ;
u32 tileclip;
//float zMin,zMax;
TSP tsp1;
TCW tcw1;
BaseTextureCacheData *texture1;
const float *mvMatrix;
const float *normalMatrix;
const float *projMatrix;
float glossCoef[2];
const N2LightModel *lightModel;
bool envMapping[2];
bool constantColor[2];
bool diffuseColor[2];
bool specularColor[2];
void init()
{
first = 0;
count = 0;
texture = nullptr;
tsp.full = 0;
tcw.full = 0;
pcw.full = 0;
isp.full = 0;
zvZ = 0;
tileclip = 0;
tsp1.full = -1;
tcw1.full = -1;
texture1 = nullptr;
mvMatrix = nullptr;
normalMatrix = nullptr;
projMatrix = nullptr;
glossCoef[0] = 0;
glossCoef[1] = 0;
lightModel = nullptr;
envMapping[0] = false;
envMapping[1] = false;
constantColor[0] = false;
constantColor[1] = false;
diffuseColor[0] = false;
diffuseColor[1] = false;
specularColor[0] = false;
specularColor[1] = false;
}
bool equivalentIgnoreCullingDirection(const PolyParam& other) const
{
return ((pcw.full ^ other.pcw.full) & 0x300CE) == 0
&& ((isp.full ^ other.isp.full) & 0xF4000000) == 0
&& tcw.full == other.tcw.full
&& tsp.full == other.tsp.full
&& tileclip == other.tileclip
&& tcw1.full == other.tcw1.full
&& tsp1.full == other.tsp1.full
&& mvMatrix == other.mvMatrix
&& normalMatrix == other.normalMatrix
&& projMatrix == other.projMatrix
&& glossCoef[0] == other.glossCoef[0]
&& glossCoef[1] == other.glossCoef[1]
&& lightModel == other.lightModel
&& envMapping[0] == other.envMapping[0]
&& constantColor[0] == other.constantColor[0]
&& diffuseColor[0] == other.diffuseColor[0]
&& specularColor[0] == other.specularColor[0]
&& envMapping[1] == other.envMapping[1]
&& constantColor[1] == other.constantColor[1]
&& diffuseColor[1] == other.diffuseColor[1]
&& specularColor[1] == other.specularColor[1];
}
bool isNaomi2() const { return projMatrix != nullptr; }
};
struct ModifierVolumeParam
{
u32 first;
u32 count;
ISP_Modvol isp;
const float *mvMatrix;
const float *projMatrix;
void init()
{
first = 0;
count = 0;
isp.full = 0;
mvMatrix = nullptr;
projMatrix = nullptr;
}
bool isNaomi2() const { return projMatrix != nullptr; }
};
struct ModTriangle
{
f32 x0,y0,z0,x1,y1,z1,x2,y2,z2;
};
constexpr size_t MAX_PASSES = 10;
struct tad_context
{
u8* thd_data;
u8* thd_root;
u8* thd_old_data;
void Clear()
{
thd_old_data = thd_data = thd_root;
}
void ClearPartial()
{
thd_old_data = thd_data;
thd_data = thd_root;
}
u8* End()
{
return thd_data == thd_root ? thd_old_data : thd_data;
}
void Reset(u8* ptr)
{
thd_root = ptr;
Clear();
}
};
struct RenderPass {
bool autosort;
bool z_clear;
u32 op_count;
u32 mvo_count;
u32 pt_count;
u32 tr_count;
u32 mvo_tr_count;
};
struct N2Matrix
{
float mat[16];
};
struct N2Light
{
float color[4];
float direction[4]; // For parallel/spot
float position[4]; // For spot/point
int parallel;
int routing;
int dmode;
int smode;
int diffuse[2];
int specular[2];
float attnDistA;
float attnDistB;
float attnAngleA; // For spot
float attnAngleB;
int distAttnMode; // For spot/point
int _pad[3];
};
struct N2LightModel
{
N2Light lights[16];
float ambientBase[2][4]; // base ambient colors
float ambientOffset[2][4]; // offset ambient colors
int ambientMaterialBase[2]; // base ambient light is multiplied by model material/color
int ambientMaterialOffset[2];// offset ambient light is multiplied by model material/color
int lightCount;
int useBaseOver; // base color overflows into offset color
int bumpId1; // Light index for vol0 bump mapping
int bumpId2; // Light index for vol1 bump mapping
};
struct rend_context
{
u8* proc_start;
u8* proc_end;
f32 fZ_min;
f32 fZ_max;
bool Overrun;
bool isRTT;
bool isRenderFramebuffer;
FB_X_CLIP_type fb_X_CLIP;
FB_Y_CLIP_type fb_Y_CLIP;
RGBAColor fog_clamp_min;
RGBAColor fog_clamp_max;
List<Vertex> verts;
List<u32> idx;
List<ModTriangle> modtrig;
List<ModifierVolumeParam> global_param_mvo;
List<ModifierVolumeParam> global_param_mvo_tr;
List<PolyParam> global_param_op;
List<PolyParam> global_param_pt;
List<PolyParam> global_param_tr;
List<RenderPass> render_passes;
List<N2Matrix> matrices;
List<N2LightModel> lightModels;
void Clear()
{
verts.Clear();
idx.Clear();
global_param_op.Clear();
global_param_pt.Clear();
global_param_tr.Clear();
modtrig.Clear();
global_param_mvo.Clear();
global_param_mvo_tr.Clear();
render_passes.Clear();
// Reserve space for background poly
global_param_op.Append()->init();
verts.Append(4);
Overrun = false;
fZ_min = 1000000.0f;
fZ_max = 1.0f;
isRenderFramebuffer = false;
matrices.Clear();
lightModels.Clear();
}
void newRenderPass();
};
#define TA_DATA_SIZE (8 * 1024 * 1024)
//vertex lists
struct TA_context
{
u32 Address;
std::mutex rend_inuse;
tad_context tad;
rend_context rend;
TA_context *nextContext = nullptr;
/*
Dreamcast games use up to 20k vtx, 30k idx, 1k (in total) parameters.
at 30 fps, thats 600kvtx (900 stripped)
at 20 fps thats 1.2M vtx (~ 1.8M stripped)
allocations allow much more than that !
some stats:
recv: idx: 33528, vtx: 23451, op: 128, pt: 4, tr: 133, mvo: 14, modt: 342
sc: idx: 26150, vtx: 17417, op: 162, pt: 12, tr: 244, mvo: 6, modt: 2044
doa2le: idx: 47178, vtx: 34046, op: 868, pt: 0, tr: 354, mvo: 92, modt: 976 (overruns)
ika: idx: 46748, vtx: 33818, op: 984, pt: 9, tr: 234, mvo: 10, modt: 16, ov: 0
ct: idx: 30920, vtx: 21468, op: 752, pt: 0, tr: 360, mvo: 101, modt: 732, ov: 0
sa2: idx: 36094, vtx: 24520, op: 1330, pt: 10, tr: 177, mvo: 39, modt: 360, ov: 0
*/
void MarkRend()
{
rend.proc_start = tad.thd_root;
rend.proc_end = tad.End();
}
void Alloc()
{
tad.Reset((u8*)allocAligned(32, TA_DATA_SIZE));
rend.verts.InitBytes(16 * 1024 * 1024, &rend.Overrun, "verts"); //up to 4 mb of vtx data/frame = ~ 96k vtx/frame
rend.idx.Init(512 * 1024, &rend.Overrun, "idx"); //up to 120K indexes ( idx have stripification overhead )
rend.global_param_op.Init(32768, &rend.Overrun, "global_param_op");
rend.global_param_pt.Init(5120, &rend.Overrun, "global_param_pt");
rend.global_param_mvo.Init(4096, &rend.Overrun, "global_param_mvo");
rend.global_param_tr.Init(32768, &rend.Overrun, "global_param_tr");
rend.global_param_mvo_tr.Init(4096, &rend.Overrun, "global_param_mvo_tr");
rend.modtrig.Init(16384, &rend.Overrun, "modtrig");
rend.render_passes.Init(sizeof(RenderPass) * MAX_PASSES, &rend.Overrun, "render_passes"); // 10 render passes
rend.matrices.Init(2000, &rend.Overrun, "matrices");
rend.lightModels.Init(100, &rend.Overrun, "lightModels");
Reset();
}
void Reset()
{
verify(tad.End() - tad.thd_root <= TA_DATA_SIZE);
tad.Clear();
rend_inuse.lock();
rend.Clear();
rend.proc_end = rend.proc_start = tad.thd_root;
rend_inuse.unlock();
}
~TA_context()
{
verify(tad.End() - tad.thd_root <= TA_DATA_SIZE);
freeAligned(tad.thd_root);
rend.verts.Free();
rend.idx.Free();
rend.global_param_op.Free();
rend.global_param_pt.Free();
rend.global_param_tr.Free();
rend.modtrig.Free();
rend.global_param_mvo.Free();
rend.global_param_mvo_tr.Free();
rend.render_passes.Free();
rend.matrices.Free();
rend.lightModels.Free();
}
};
extern TA_context* ta_ctx;
extern tad_context ta_tad;
TA_context* tactx_Pop(u32 addr);
void tactx_Term();
/*
Ta Context
Rend Context
*/
#define TACTX_NONE (0xFFFFFFFF)
void SetCurrentTARC(u32 addr);
bool QueueRender(TA_context* ctx);
TA_context* DequeueRender();
void FinishRender(TA_context* ctx);
//must be moved to proper header
void FillBGP(TA_context* ctx);
bool rend_framePending();
void SerializeTAContext(Serializer& ser);
void DeserializeTAContext(Deserializer& deser);
void ta_add_poly(const PolyParam& pp);
void ta_add_poly(int listType, const ModifierVolumeParam& mvp);
void ta_add_vertex(const Vertex& vtx);
void ta_add_triangle(const ModTriangle& tri);
float* ta_add_matrix(const float *matrix);
N2LightModel *ta_add_light(const N2LightModel& light);
u32 ta_add_ta_data(u32 *data, u32 size);
int getTAContextAddresses(u32 *addresses);
u32 ta_get_tileclip();
void ta_set_tileclip(u32 tileclip);
u32 ta_get_list_type();
void ta_set_list_type(u32 listType);
void ta_parse_reset();
class TAParserException : public FlycastException
{
public:
TAParserException() : FlycastException("") {}
};