flycast/core/hw/aica/dsp_arm32.cpp

420 lines
10 KiB
C++

/*
Copyright 2021 flyinghead
This file is part of reicast.
reicast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
reicast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with reicast. If not, see <https://www.gnu.org/licenses/>.
*/
#include "build.h"
#if HOST_CPU == CPU_ARM && FEAT_DSPREC != DYNAREC_NONE
#include "dsp.h"
#include "aica.h"
#include "aica_if.h"
#include "hw/mem/_vmem.h"
#include <aarch32/macro-assembler-aarch32.h>
using namespace vixl::aarch32;
namespace dsp
{
constexpr size_t CodeSize = 4096 * 8; //32 kb, 8 pages
#if defined(__unix__)
alignas(4096) static u8 DynCode[CodeSize] __attribute__((section(".text")));
#else
#error "Unsupported platform for arm32 DSP dynarec"
#endif
class DSPAssembler : public MacroAssembler
{
public:
DSPAssembler(u8 *code_buffer, size_t size) : MacroAssembler(code_buffer, size, A32) {}
void compile(DSPState *DSP)
{
this->DSP = DSP;
DEBUG_LOG(AICA_ARM, "DSPAssembler::compile recompiling for arm32 at %p", GetBuffer()->GetStartAddress<void*>());
RegisterList regList = RegisterList::Union(
RegisterList(r4, r5, r6, r7),
RegisterList(r8, r9, r10, lr));
Push(regList);
Mov(r8, (uintptr_t)&DSP->TEMP[0]); // r8 points to TEMP, right after the code
Mov(r7, (uintptr_t)DSPData); // r7 points to DSPData
const Register& INPUTS = r4; // 24 bits
const Register& ACC = r5; // 26 bits - saved
const Register& B = r10; // 26 bits - saved
const Register& X = r6; // 24 bits
const Register& Y = r9; // 13 bits
Mov(ACC, 0);
Mov(B, 0);
Str(B, dsp_operand(&DSP->FRC_REG));
Str(B, dsp_operand(&DSP->Y_REG));
Str(B, dsp_operand(&DSP->ADRS_REG));
for (int step = 0; step < 128; ++step)
{
u32 *mpro = &DSPData->MPRO[step * 4];
Instruction op;
DecodeInst(mpro, &op);
const u32 COEF = step;
if (op.XSEL || op.YRL || (op.ADRL && op.SHIFT != 3))
{
if (op.IRA <= 0x1f)
//INPUTS = DSP->MEMS[op.IRA];
Ldr(INPUTS, dsp_operand(DSP->MEMS, op.IRA));
else if (op.IRA <= 0x2F)
{
//INPUTS = DSP->MIXS[op.IRA - 0x20] << 4; // MIXS is 20 bit
Ldr(INPUTS, dsp_operand(DSP->MIXS, op.IRA - 0x20));
Lsl(INPUTS, INPUTS, 4);
}
else if (op.IRA <= 0x31)
{
//INPUTS = DSPData->EXTS[op.IRA - 0x30] << 8; // EXTS is 16 bits
Ldr(INPUTS, dspdata_operand(DSPData->EXTS, op.IRA - 0x30));
Lsl(INPUTS, INPUTS, 8);
}
else
{
Mov(INPUTS, 0);
}
}
if (op.IWT)
{
//DSP->MEMS[op.IWA] = MEMVAL[step & 3]; // MEMVAL was selected in previous MRD
Ldr(r1, dsp_operand(DSP->MEMVAL, step & 3));
Str(r1, dsp_operand(DSP->MEMS, op.IWA));
}
// Operand sel
// B
if (!op.ZERO)
{
if (op.BSEL)
//B = ACC;
Mov(B, ACC);
else
{
//B = DSP->TEMP[(TRA + DSP->MDEC_CT) & 0x7F];
Ldr(r1, dsp_operand(&DSP->MDEC_CT));
if (op.TRA)
Add(r1, r1, op.TRA);
Bfc(r1, 7, 25);
Ldr(B, dsp_operand(DSP->TEMP, r1));
}
if (op.NEGB)
//B = 0 - B;
Rsb(B, B, 0);
}
// X
const Register* X_alias = &X;
if (op.XSEL)
//X = INPUTS;
X_alias = &INPUTS;
else
{
//X = DSP->TEMP[(TRA + DSP->MDEC_CT) & 0x7F];
if (!op.ZERO && !op.BSEL && !op.NEGB)
X_alias = &B;
else
{
Ldr(r1, dsp_operand(&DSP->MDEC_CT));
if (op.TRA)
Add(r1, r1, op.TRA);
Bfc(r1, 7, 25);
Ldr(X, dsp_operand(DSP->TEMP, r1));
}
}
// Y
if (op.YSEL == 0)
{
//Y = FRC_REG;
Ldr(Y, dsp_operand(&DSP->FRC_REG));
}
else if (op.YSEL == 1)
{
//Y = DSPData->COEF[COEF] >> 3; //COEF is 16 bits
Ldr(Y, dspdata_operand(DSPData->COEF, COEF));
Sbfx(Y, Y, 3, 13);
}
else if (op.YSEL == 2)
{
//Y = Y_REG >> 11;
Ldr(r1, dsp_operand(&DSP->Y_REG));
Asr(Y, r1, 11);
}
else if (op.YSEL == 3)
{
//Y = (Y_REG >> 4) & 0x0FFF;
Ldr(r1, dsp_operand(&DSP->Y_REG));
Ubfx(Y, r1, 4, 12);
}
if (op.YRL)
//Y_REG = INPUTS;
Str(INPUTS, dsp_operand(&DSP->Y_REG));
if (op.TWT || op.FRCL || op.MWT || (op.ADRL && op.SHIFT == 3) || op.EWT)
{
// Shifter
// There's a 1-step delay at the output of the X*Y + B adder. So we use the ACC value from the previous step.
if (op.SHIFT == 0)
{
// SHIFTED = clamp(ACC, -0x800000, 0x7FFFFF)
Ssat(r2, 24, ACC);
}
else if (op.SHIFT == 1)
{
//SHIFTED = ACC << 1; // x2 scale
// SHIFTED = clamp(SHIFTED, -0x800000, 0x7FFFFF)
Ssat(r2, 24, Operand(ACC, LSL, 1));
}
else if (op.SHIFT == 2)
{
//SHIFTED = ACC << 1; // x2 scale
Lsl(r2, ACC, 1);
}
else if (op.SHIFT == 3)
{
//SHIFTED = ACC;
Mov(r2, ACC);
}
Str(r2, dsp_operand(&DSP->SHIFTED));
}
// ACCUM
//ACC = (((s64)X * (s64)Y) >> 12) + B;
Smull(r0, r1, *X_alias, Y);
Lsr(r0, r0, 12);
Orr(ACC, r0, Operand(r1, LSL, 20));
if (!op.ZERO)
Add(ACC, ACC, B);
if (op.TWT)
{
//DSP->TEMP[(op.TWA + DSP->MDEC_CT) & 0x7F] = SHIFTED;
Ldr(r2, dsp_operand(&DSP->SHIFTED));
Ldr(r1, dsp_operand(&DSP->MDEC_CT));
if (op.TWA)
Add(r1, r1, op.TWA);
Bfc(r1, 7, 25);
Str(r2, dsp_operand(DSP->TEMP, r1));
}
if (op.FRCL)
{
Ldr(r2, dsp_operand(&DSP->SHIFTED));
if (op.SHIFT == 3)
//FRC_REG = SHIFTED & 0x0FFF;
Ubfx(r1, r2, 0, 12);
else
//FRC_REG = SHIFTED >> 11;
Asr(r1, r2, 11);
Str(r1, dsp_operand(&DSP->FRC_REG));
}
if (step & 1)
{
const Register& ADDR = r3;
if (op.MRD) // memory only allowed on odd. DoA inserts NOPs on even
{
//MEMVAL[(step + 2) & 3] = UNPACK(*(u16 *)&aica_ram[ADDR & ARAM_MASK]);
calculateADDR(ADDR, op);
Mov(r1, getAicaRam());
Ldrh(r0, MemOperand(r1, ADDR));
genCallRuntime(UNPACK);
Mov(r2, r0);
Str(r2, dsp_operand(DSP->MEMVAL, (step + 2) & 3));
}
if (op.MWT)
{
// *(u16 *)&aica_ram[ADDR & ARAM_MASK] = PACK(SHIFTED);
Ldr(r0, dsp_operand(&DSP->SHIFTED));
genCallRuntime(PACK);
Mov(r2, r0);
calculateADDR(ADDR, op);
Mov(r1, getAicaRam());
Strh(r2, MemOperand(r1, ADDR));
}
}
if (op.ADRL)
{
if (op.SHIFT == 3)
{
//ADRS_REG = SHIFTED >> 12;
Ldr(r2, dsp_operand(&DSP->SHIFTED));
Asr(r1, r2, 12);
}
else
{
//ADRS_REG = INPUTS >> 16;
Asr(r1, INPUTS, 16);
}
Str(r1, dsp_operand(&DSP->ADRS_REG));
}
if (op.EWT)
{
//DSPData->EFREG[op.EWA] = SHIFTED >> 8;
Ldr(r1, dsp_operand(&DSP->SHIFTED));
Asr(r1, r1, 8);
Str(r1, dspdata_operand(DSPData->EFREG, op.EWA));
}
}
Ldr(r1, dsp_operand(&DSP->MDEC_CT));
// DSP->MDEC_CT--
Subs(r1, r1, 1);
//if (dsp.MDEC_CT == 0)
// dsp.MDEC_CT = dsp.RBL + 1; // RBL is ring buffer length - 1
Mov(eq, r1, DSP->RBL + 1);
Str(r1, dsp_operand(&DSP->MDEC_CT));
Pop(regList);
Mov(pc, lr);
FinalizeCode();
vmem_platform_flush_cache(
GetBuffer()->GetStartAddress<char*>(), GetBuffer()->GetEndAddress<char*>(),
GetBuffer()->GetStartAddress<void*>(), GetBuffer()->GetEndAddress<void*>());
}
private:
MemOperand dsp_operand(void *data, int index = 0, u32 element_size = 4)
{
ptrdiff_t offset = ((u8*)data - (u8*)DSP) - offsetof(DSPState, TEMP) + index * element_size;
if (offset <= 4095)
return MemOperand(r8, offset);
Mov(r0, offset);
return MemOperand(r8, r0);
}
MemOperand dsp_operand(void *data, const Register& offset_reg, u32 element_size = 4)
{
ptrdiff_t offset = ((u8*)data - (u8*)DSP) - offsetof(DSPState, TEMP);
if (offset == 0)
return MemOperand(r8, offset_reg, LSL, element_size == 4 ? 2 : element_size == 2 ? 1 : 0);
Mov(r0, offset);
Add(r0, r0, Operand(offset_reg, LSL, element_size == 4 ? 2 : element_size == 2 ? 1 : 0));
return MemOperand(r8, r0);
}
MemOperand dspdata_operand(void *data, int index = 0, u32 element_size = 4)
{
ptrdiff_t offset = ((u8*)data - (u8*)DSPData) + index * element_size;
if (offset <= 4095)
return MemOperand(r7, offset);
Mov(r0, offset);
return MemOperand(r7, r0);
}
template <typename R, typename... P>
void genCallRuntime(R (*function)(P...))
{
ptrdiff_t offset = reinterpret_cast<uintptr_t>(function) - GetBuffer()->GetStartAddress<uintptr_t>();
verify((offset & 3) == 0);
if (offset >= -32 * 1024 * 1024 && offset <= 32 * 1024 * 1024)
{
Label function_label(offset);
Bl(&function_label);
}
else
{
Mov(r3, reinterpret_cast<uintptr_t>(function));
Blx(r3);
}
}
void calculateADDR(const Register& ADDR, const Instruction& op)
{
//u32 ADDR = DSPData->MADRS[op.MASA];
Ldr(ADDR, dspdata_operand(DSPData->MADRS, op.MASA));
if (op.ADREB)
{
//ADDR += ADRS_REG & 0x0FFF;
Ldr(r1, dsp_operand(&DSP->ADRS_REG));
Ubfx(r0, r1, 0, 12);
Add(ADDR, ADDR, r0);
}
if (op.NXADR)
//ADDR++;
Add(ADDR, ADDR, 1);
if (!op.TABLE)
{
//ADDR += DSP->MDEC_CT;
Ldr(r1, dsp_operand(&DSP->MDEC_CT));
Add(ADDR, ADDR, r1);
//ADDR &= DSP->RBL;
// RBL is constant for this program
And(ADDR, ADDR, DSP->RBL);
}
else
//ADDR &= 0xFFFF;
Bfc(ADDR, 16, 16);
//ADDR <<= 1; // Word -> byte address
Lsl(ADDR, ADDR, 1);
//ADDR += DSP->RBP; // RBP is already a byte address
// RBP is constant for this program
Add(ADDR, ADDR, DSP->RBP);
// ADDR & ARAM_MASK
if (ARAM_SIZE == 2*1024*1024)
Bfc(ADDR, 21, 11);
else if (ARAM_SIZE == 8*1024*1024)
Bfc(ADDR, 23, 9);
else
die("Unsupported ARAM_SIZE");
}
uintptr_t getAicaRam()
{
return reinterpret_cast<uintptr_t>(&aica_ram[0]);
}
DSPState *DSP = nullptr;
};
void recompile()
{
JITWriteProtect(false);
DSPAssembler assembler(DynCode, CodeSize);
assembler.compile(&state);
JITWriteProtect(true);
}
void recInit()
{
u8 *pCodeBuffer;
verify(vmem_platform_prepare_jit_block(DynCode, CodeSize, (void**)&pCodeBuffer));
}
void runStep()
{
((void (*)())DynCode)();
}
}
#endif