flycast/core/rend/gles/naomi2.cpp

365 lines
9.0 KiB
C++

/*
Copyright 2022 flyinghead
This file is part of Flycast.
Flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
Flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#include "naomi2.h"
const char* N2VertexShader = R"(
uniform mat4 mvMat;
uniform mat4 normalMat;
uniform mat4 projMat;
uniform mat4 ndcMat;
uniform int envMapping[2];
uniform int bumpMapping;
uniform int pp_Number;
// Vertex input
in vec3 in_pos;
#if POSITION_ONLY == 0
in vec4 in_base;
in vec4 in_offs;
in vec2 in_uv;
in vec3 in_normal;
#if pp_TwoVolumes == 1
in vec4 in_base1;
in vec4 in_offs1;
in vec2 in_uv1;
#endif
// output
INTERPOLATION out highp vec4 vtx_base;
INTERPOLATION out highp vec4 vtx_offs;
#if pp_TwoVolumes == 1
INTERPOLATION out vec4 vtx_base1;
INTERPOLATION out vec4 vtx_offs1;
out vec2 vtx_uv1;
#endif
#endif
out highp vec3 vtx_uv;
#ifdef OIT_RENDER
flat out uint vtx_index;
#endif
void wDivide(inout vec4 vpos)
{
vpos = vec4(vpos.xy / vpos.w, 1.0 / vpos.w, 1.0);
vpos = ndcMat * vpos;
#if POSITION_ONLY == 1
vtx_uv = vec3(0.0, 0.0, vpos.z);
#else
#if pp_Gouraud == 1
vtx_base *= vpos.z;
vtx_offs *= vpos.z;
#if pp_TwoVolumes == 1
vtx_base1 *= vpos.z;
vtx_offs1 *= vpos.z;
#endif
#endif
vtx_uv = vec3(vtx_uv.xy * vpos.z, vpos.z);
#if pp_TwoVolumes == 1
vtx_uv1 *= vpos.z;
#endif
#endif
vpos.w = 1.0;
vpos.z = 0.0;
}
void main()
{
vec4 vpos = mvMat * vec4(in_pos, 1.0);
#if POSITION_ONLY == 0
vtx_base = in_base;
vtx_offs = in_offs;
#if LIGHT_ON == 1
vec3 vnorm = normalize(mat3(normalMat) * in_normal);
#endif
#if pp_TwoVolumes == 1
vtx_base1 = in_base1;
vtx_offs1 = in_offs1;
vtx_uv1 = in_uv1;
#if LIGHT_ON == 1
// FIXME need offset0 and offset1 for bump maps
if (bumpMapping == 1)
computeBumpMap(vtx_offs, vtx_offs1, vpos.xyz, in_normal, normalMat);
else
{
computeColors(vtx_base1, vtx_offs1, 1, vpos.xyz, vnorm);
#if pp_Texture == 0
vtx_base1 += vtx_offs1;
#endif
}
if (envMapping[1] == 1)
computeEnvMap(vtx_uv1.xy, vpos.xyz, vnorm);
#endif
#endif
#if LIGHT_ON == 1
if (bumpMapping == 0)
{
computeColors(vtx_base, vtx_offs, 0, vpos.xyz, vnorm);
#if pp_Texture == 0
vtx_base += vtx_offs;
#endif
}
#endif
vtx_uv.xy = in_uv;
#if LIGHT_ON == 1
if (envMapping[0] == 1)
computeEnvMap(vtx_uv.xy, vpos.xyz, vnorm);
#endif
#endif
vpos = projMat * vpos;
wDivide(vpos);
#ifdef OIT_RENDER
vtx_index = uint(pp_Number) + uint(gl_VertexID);
#endif
gl_Position = vpos;
}
)";
const char* N2ColorShader = R"(
#define PI 3.1415926
#define LMODE_SINGLE_SIDED 0
#define LMODE_DOUBLE_SIDED 1
#define LMODE_DOUBLE_SIDED_WITH_TOLERANCE 2
#define LMODE_SPECIAL_EFFECT 3
#define LMODE_THIN_SURFACE 4
#define LMODE_BUMP_MAP 5
#define ROUTING_SPEC_TO_OFFSET 1
#define ROUTING_DIFF_TO_OFFSET 2
#define ROUTING_ATTENUATION 1 // not handled
#define ROUTING_FOG 2 // not handled
#define ROUTING_ALPHA 4
#define ROUTING_SUB 8
struct N2Light
{
vec4 color;
vec4 direction; // For parallel/spot
vec4 position; // For spot/point
int parallel;
int diffuse[2];
int specular[2];
int routing;
int dmode;
int smode;
int distAttnMode; // For spot/point
float attnDistA;
float attnDistB;
float attnAngleA; // For spot
float attnAngleB;
};
uniform N2Light lights[16];
uniform int lightCount;
uniform vec4 ambientBase[2];
uniform vec4 ambientOffset[2];
uniform int ambientMaterialBase[2];
uniform int ambientMaterialOffset[2];
uniform int useBaseOver;
uniform int bumpId0;
uniform int bumpId1;
// model attributes
uniform float glossCoef[2];
uniform int constantColor[2];
void computeColors(inout vec4 baseCol, inout vec4 offsetCol, int volIdx, vec3 position, vec3 normal)
{
if (constantColor[volIdx] == 1)
return;
vec3 diffuse = vec3(0.0);
vec3 specular = vec3(0.0);
float diffuseAlpha = 0.0;
float specularAlpha = 0.0;
vec3 reflectDir = reflect(normalize(position), normal);
const float BASE_FACTOR = 2.0;
for (int i = 0; i < lightCount; i++)
{
vec3 lightDir; // direction to the light
vec3 lightColor = lights[i].color.rgb;
if (lights[i].parallel == 1)
{
lightDir = normalize(lights[i].direction.xyz);
}
else
{
lightDir = normalize(lights[i].position.xyz - position);
if (lights[i].attnDistA != 1.0 || lights[i].attnDistB != 0.0)
{
float distance = length(lights[i].position.xyz - position);
if (lights[i].distAttnMode == 0)
distance = 1.0 / distance;
lightColor *= clamp(lights[i].attnDistB * distance + lights[i].attnDistA, 0.0, 1.0);
}
if (lights[i].attnAngleA != 1.0 || lights[i].attnAngleB != 0.0)
{
vec3 spotDir = lights[i].direction.xyz;
float cosAngle = 1.0 - max(0.0, dot(lightDir, spotDir));
lightColor *= clamp(cosAngle * lights[i].attnAngleB + lights[i].attnAngleA, 0.0, 1.0);
}
}
if (lights[i].diffuse[volIdx] == 1)
{
float factor = (lights[i].routing & ROUTING_SUB) != 0 ? -BASE_FACTOR : BASE_FACTOR;
if (lights[i].dmode == LMODE_SINGLE_SIDED)
factor *= max(dot(normal, lightDir), 0.0);
else if (lights[i].dmode == LMODE_DOUBLE_SIDED)
factor *= abs(dot(normal, lightDir));
if ((lights[i].routing & ROUTING_ALPHA) != 0)
diffuseAlpha += lightColor.r * factor;
else
{
if ((lights[i].routing & ROUTING_DIFF_TO_OFFSET) == 0)
diffuse += lightColor * factor * baseCol.rgb;
else
specular += lightColor * factor * baseCol.rgb;
}
}
if (lights[i].specular[volIdx] == 1)
{
float factor = (lights[i].routing & ROUTING_SUB) != 0 ? -BASE_FACTOR : BASE_FACTOR;
if (lights[i].smode == LMODE_SINGLE_SIDED)
factor *= clamp(pow(max(dot(lightDir, reflectDir), 0.0), glossCoef[volIdx]), 0.0, 1.0);
else if (lights[i].smode == LMODE_DOUBLE_SIDED)
factor *= clamp(pow(abs(dot(lightDir, reflectDir)), glossCoef[volIdx]), 0.0, 1.0);
if ((lights[i].routing & ROUTING_ALPHA) != 0)
specularAlpha += lightColor.r * factor;
else
{
if ((lights[i].routing & ROUTING_SPEC_TO_OFFSET) == 0)
diffuse += lightColor * factor * offsetCol.rgb;
else
specular += lightColor * factor * offsetCol.rgb;
}
}
}
// ambient light
if (ambientMaterialBase[volIdx] == 1)
diffuse += ambientBase[volIdx].rgb * baseCol.rgb;
else
diffuse += ambientBase[volIdx].rgb;
if (ambientMaterialOffset[volIdx] == 1)
specular += ambientOffset[volIdx].rgb * offsetCol.rgb;
else
specular += ambientOffset[volIdx].rgb;
baseCol.rgb = diffuse;
offsetCol.rgb = specular;
baseCol.a += diffuseAlpha;
offsetCol.a += specularAlpha;
if (useBaseOver == 1)
{
vec4 overflow = max(baseCol - vec4(1.0), 0.0);
offsetCol += overflow;
}
baseCol = clamp(baseCol, 0.0, 1.0);
offsetCol = clamp(offsetCol, 0.0, 1.0);
}
void computeEnvMap(inout vec2 uv, vec3 position, vec3 normal)
{
// Spherical mapping
//vec3 r = reflect(normalize(position), normal);
//float m = 2.0 * sqrt(r.x * r.x + r.y * r.y + (r.z + 1.0) * (r.z + 1.0));
//uv += r.xy / m + 0.5;
// Cheap env mapping
uv += normal.xy / 2.0 + 0.5;
uv = clamp(uv, 0.0, 1.0);
}
void computeBumpMap(inout vec4 color0, vec4 color1, vec3 position, vec3 normal, mat4 normalMat)
{
// TODO
//if (bumpId0 == -1)
return;
normal = normalize(normal);
vec3 tangent = color0.xyz;
if (tangent.x > 0.5)
tangent.x -= 1.0;
if (tangent.y > 0.5)
tangent.y -= 1.0;
if (tangent.z > 0.5)
tangent.z -= 1.0;
tangent = normalize(tangent);
vec3 bitangent = color1.xyz;
if (bitangent.x > 0.5)
bitangent.x -= 1.0;
if (bitangent.y > 0.5)
bitangent.y -= 1.0;
if (bitangent.z > 0.5)
bitangent.z -= 1.0;
bitangent = normalize(bitangent);
float scaleDegree = color0.w;
float scaleOffset = color1.w;
vec3 lightDir; // direction to the light
if (lights[bumpId0].parallel == 1)
lightDir = lights[bumpId0].direction.xyz;
else
lightDir = lights[bumpId0].position.xyz - position;
lightDir = normalize(lightDir * mat3(normalMat));
float n = dot(lightDir, normal);
float cosQ = dot(lightDir, tangent);
float sinQ = dot(lightDir, bitangent);
float sinT = clamp(n, 0.0, 1.0);
float k1 = 1.0 - scaleDegree;
float k2 = scaleDegree * sinT;
float k3 = scaleDegree * sqrt(1.0 - sinT * sinT); // cos T
float q = acos(cosQ);
if (sinQ < 0.0)
q = 2.0 * PI - q;
color0.r = k2;
color0.g = k3;
color0.b = q / PI / 2.0;
color0.a = k1;
color0 = clamp(color0, 0.0, 1.0);
}
)";
N2VertexSource::N2VertexSource(bool gouraud, bool geometryOnly, bool texture) : OpenGlSource()
{
addConstant("pp_Gouraud", gouraud);
addConstant("POSITION_ONLY", geometryOnly);
addConstant("pp_TwoVolumes", 0);
addConstant("pp_Texture", (int)texture);
addConstant("LIGHT_ON", 1);
addSource(VertexCompatShader);
addSource(GouraudSource);
if (!geometryOnly)
addSource(N2ColorShader);
addSource(N2VertexShader);
}