flycast/core/hw/sh4/modules/mmu.cpp

718 lines
15 KiB
C++

#include "mmu.h"
#include "hw/sh4/sh4_if.h"
#include "hw/sh4/sh4_interrupts.h"
#include "hw/sh4/sh4_core.h"
#include "types.h"
#include "hw/mem/_vmem.h"
TLB_Entry UTLB[64];
TLB_Entry ITLB[4];
#if defined(NO_MMU)
//SQ fast remap , mainly hackish , assumes 1MB pages
//max 64MB can be remapped on SQ
u32 sq_remap[64];
//Sync memory mapping to MMU , suspend compiled blocks if needed.entry is a UTLB entry # , -1 is for full sync
bool UTLB_Sync(u32 entry)
{
if ((UTLB[entry].Address.VPN & (0xFC000000 >> 10)) == (0xE0000000 >> 10))
{
u32 vpn_sq = ((UTLB[entry].Address.VPN & 0x7FFFF) >> 10) & 0x3F;//upper bits are always known [0xE0/E1/E2/E3]
sq_remap[vpn_sq] = UTLB[entry].Data.PPN << 10;
printf("SQ remap %d : 0x%X to 0x%X\n", entry, UTLB[entry].Address.VPN << 10, UTLB[entry].Data.PPN << 10);
}
else
{
printf("MEM remap %d : 0x%X to 0x%X\n", entry, UTLB[entry].Address.VPN << 10, UTLB[entry].Data.PPN << 10);
}
return true;
}
//Sync memory mapping to MMU, suspend compiled blocks if needed.entry is a ITLB entry # , -1 is for full sync
void ITLB_Sync(u32 entry)
{
printf("ITLB MEM remap %d : 0x%X to 0x%X\n",entry,ITLB[entry].Address.VPN<<10,ITLB[entry].Data.PPN<<10);
}
void MMU_init()
{
}
void MMU_reset()
{
memset(UTLB,0,sizeof(UTLB));
memset(ITLB,0,sizeof(ITLB));
}
void MMU_term()
{
}
#else
/*
MMU support code
This is mostly hacked-on as the core was never meant to have mmu support
There are two modes, one with 'full' mmu emulation (for wince/bleem/wtfever)
and a fast-hack mode for 1mb sqremaps (for katana)
defining NO_MMU disables the full mmu emulation
*/
#include "mmu.h"
#include "mmu_impl.h"
#include "hw/sh4/sh4_if.h"
#include "ccn.h"
#include "hw/sh4/sh4_interrupts.h"
#include "hw/sh4/sh4_if.h"
#include "hw/mem/_vmem.h"
#define printf_mmu(...)
#define printf_win32(...)
//SQ fast remap , mailny hackish , assumes 1 mb pages
//max 64 mb can be remapped on SQ
const u32 mmu_mask[4] =
{
((0xFFFFFFFF) >> 10) << 10, //1 kb page
((0xFFFFFFFF) >> 12) << 12, //4 kb page
((0xFFFFFFFF) >> 16) << 16, //64 kb page
((0xFFFFFFFF) >> 20) << 20 //1 MB page
};
const u32 fast_reg_lut[8] =
{
0, 0, 0, 0 //P0-U0
, 1 //P1
, 1 //P2
, 0 //P3
, 1 //P4
};
const u32 ITLB_LRU_OR[4] =
{
0x00,//000xxx
0x20,//1xx00x
0x14,//x1x1x0
0x0B,//xx1x11
};
const u32 ITLB_LRU_AND[4] =
{
0x07,//000xxx
0x39,//1xx00x
0x3E,//x1x1x0
0x3F,//xx1x11
};
u32 ITLB_LRU_USE[64];
//sync mem mapping to mmu , suspend compiled blocks if needed.entry is a UTLB entry # , -1 is for full sync
bool UTLB_Sync(u32 entry)
{
printf_mmu("UTLB MEM remap %d : 0x%X to 0x%X : %d\n", entry, UTLB[entry].Address.VPN << 10, UTLB[entry].Data.PPN << 10, UTLB[entry].Data.V);
if (UTLB[entry].Data.V == 0)
return true;
if ((UTLB[entry].Address.VPN & (0xFC000000 >> 10)) == (0xE0000000 >> 10))
{
#ifdef NO_MMU
u32 vpn_sq = ((UTLB[entry].Address.VPN & (0x3FFFFFF >> 10)) >> 10) & 0x3F;//upper bits are allways known [0xE0/E1/E2/E3]
sq_remap[vpn_sq] = UTLB[entry].Data.PPN << 10;
log("SQ remap %d : 0x%X to 0x%X\n", entry, UTLB[entry].Address.VPN << 10, UTLB[entry].Data.PPN << 10);
#endif
return true;
}
else
{
#ifdef NO_MMU
if ((UTLB[entry].Address.VPN&(0x1FFFFFFF >> 10)) == (UTLB[entry].Data.PPN&(0x1FFFFFFF >> 10)))
{
log("Static remap %d : 0x%X to 0x%X\n", entry, UTLB[entry].Address.VPN << 10, UTLB[entry].Data.PPN << 10);
return true;
}
log("Dynamic remap %d : 0x%X to 0x%X\n", entry, UTLB[entry].Address.VPN << 10, UTLB[entry].Data.PPN << 10);
#endif
return false;//log("MEM remap %d : 0x%X to 0x%X\n",entry,UTLB[entry].Address.VPN<<10,UTLB[entry].Data.PPN<<10);
}
}
//sync mem mapping to mmu , suspend compiled blocks if needed.entry is a ITLB entry # , -1 is for full sync
void ITLB_Sync(u32 entry)
{
printf_mmu("ITLB MEM remap %d : 0x%X to 0x%X : %d\n", entry, ITLB[entry].Address.VPN << 10, ITLB[entry].Data.PPN << 10, ITLB[entry].Data.V);
}
void RaiseException(u32 expEvnt, u32 callVect) {
#if !defined(NO_MMU)
SH4ThrownException ex = { next_pc - 2, expEvnt, callVect };
throw ex;
#else
msgboxf("Can't raise exceptions yet", MBX_ICONERROR);
#endif
}
u32 mmu_error_TT;
void mmu_raise_exeption(u32 mmu_error, u32 address, u32 am)
{
printf_mmu("mmu_raise_exeption -> pc = 0x%X : ", next_pc);
CCN_TEA = address;
CCN_PTEH.VPN = address >> 10;
//save translation type error :)
mmu_error_TT = am;
switch (mmu_error)
{
//No error
case MMU_ERROR_NONE:
printf("Error : mmu_raise_exeption(MMU_ERROR_NONE)\n");
getc(stdin);
break;
//TLB miss
case MMU_ERROR_TLB_MISS:
printf_mmu("MMU_ERROR_UTLB_MISS 0x%X, handled\n", address);
if (am == MMU_TT_DWRITE) //WTLBMISS - Write Data TLB Miss Exception
RaiseException(0x60, 0x400);
else if (am == MMU_TT_DREAD) //RTLBMISS - Read Data TLB Miss Exception
RaiseException(0x40, 0x400);
else //ITLBMISS - Instruction TLB Miss Exception
RaiseException(0x40, 0x400);
return;
break;
//TLB Multyhit
case MMU_ERROR_TLB_MHIT:
printf("MMU_ERROR_TLB_MHIT @ 0x%X\n", address);
break;
//Mem is read/write protected (depends on translation type)
case MMU_ERROR_PROTECTED:
printf_mmu("MMU_ERROR_PROTECTED 0x%X, handled\n", address);
if (am == MMU_TT_DWRITE) //WRITEPROT - Write Data TLB Protection Violation Exception
RaiseException(0xC0, 0x100);
else if (am == MMU_TT_DREAD) //READPROT - Data TLB Protection Violation Exception
RaiseException(0xA0, 0x100);
else
{
verify(false);
}
return;
break;
//Mem is write protected , firstwrite
case MMU_ERROR_FIRSTWRITE:
printf_mmu("MMU_ERROR_FIRSTWRITE\n");
verify(am == MMU_TT_DWRITE);
//FIRSTWRITE - Initial Page Write Exception
RaiseException(0x80, 0x100);
return;
break;
//data read/write missasligned
case MMU_ERROR_BADADDR:
if (am == MMU_TT_DWRITE) //WADDERR - Write Data Address Error
RaiseException(0x100, 0x100);
else if (am == MMU_TT_DREAD) //RADDERR - Read Data Address Error
RaiseException(0xE0, 0x100);
else //IADDERR - Instruction Address Error
{
printf_mmu("MMU_ERROR_BADADDR(i) 0x%X\n", address);
RaiseException(0xE0, 0x100);
return;
}
printf_mmu("MMU_ERROR_BADADDR(d) 0x%X, handled\n", address);
return;
break;
//Can't Execute
case MMU_ERROR_EXECPROT:
printf("MMU_ERROR_EXECPROT 0x%X\n", address);
//EXECPROT - Instruction TLB Protection Violation Exception
RaiseException(0xA0, 0x100);
return;
break;
}
__debugbreak();
}
bool mmu_match(u32 va, CCN_PTEH_type Address, CCN_PTEL_type Data)
{
if (Data.V == 0)
return false;
u32 sz = Data.SZ1 * 2 + Data.SZ0;
u32 mask = mmu_mask[sz];
if ((((Address.VPN << 10)&mask) == (va&mask)))
{
bool asid_match = (Data.SH == 0) && ((sr.MD == 0) || (CCN_MMUCR.SV == 0));
if ((asid_match == false) || (Address.ASID == CCN_PTEH.ASID))
{
return true;
}
}
return false;
}
//Do a full lookup on the UTLB entry's
u32 mmu_full_lookup(u32 va, u32& idx, u32& rv)
{
CCN_MMUCR.URC++;
if (CCN_MMUCR.URB == CCN_MMUCR.URC)
CCN_MMUCR.URC = 0;
u32 entry = 0;
u32 nom = 0;
for (u32 i = 0; i<64; i++)
{
//verify(sz!=0);
if (mmu_match(va, UTLB[i].Address, UTLB[i].Data))
{
entry = i;
nom++;
u32 sz = UTLB[i].Data.SZ1 * 2 + UTLB[i].Data.SZ0;
u32 mask = mmu_mask[sz];
//VPN->PPN | low bits
rv = ((UTLB[i].Data.PPN << 10)&mask) | (va&(~mask));
}
}
if (nom != 1)
{
if (nom)
{
return MMU_ERROR_TLB_MHIT;
}
else
{
return MMU_ERROR_TLB_MISS;
}
}
idx = entry;
return MMU_ERROR_NONE;
}
//Simple QACR translation for mmu (when AT is off)
u32 mmu_QACR_SQ(u32 va)
{
u32 QACR;
//default to sq 0
QACR = CCN_QACR_TR[0];
//sq1 ? if so use QACR1
if (va & 0x20)
QACR = CCN_QACR_TR[1];
va &= ~0x1f;
return QACR + va;
}
template<u32 translation_type>
u32 mmu_full_SQ(u32 va, u32& rv)
{
if ((va & 3) || (CCN_MMUCR.SQMD == 1 && sr.MD == 0))
{
//here, or after ?
return MMU_ERROR_BADADDR;
}
if (CCN_MMUCR.AT)
{
//Address=Dest&0xFFFFFFE0;
u32 entry;
u32 lookup = mmu_full_lookup(va, entry, rv);
rv &= ~31;//lower 5 bits are forced to 0
if (lookup != MMU_ERROR_NONE)
return lookup;
u32 md = UTLB[entry].Data.PR >> 1;
//Priv mode protection
if ((md == 0) && sr.MD == 0)
{
return MMU_ERROR_PROTECTED;
}
//Write Protection (Lock or FW)
if (translation_type == MMU_TT_DWRITE)
{
if ((UTLB[entry].Data.PR & 1) == 0)
return MMU_ERROR_PROTECTED;
else if (UTLB[entry].Data.D == 0)
return MMU_ERROR_FIRSTWRITE;
}
}
else
{
rv = mmu_QACR_SQ(va);
}
return MMU_ERROR_NONE;
}
template<u32 translation_type>
u32 mmu_data_translation(u32 va, u32& rv)
{
//*opt notice* this could be only checked for writes, as reads are invalid
if ((va & 0xFC000000) == 0xE0000000)
{
u32 lookup = mmu_full_SQ<translation_type>(va, rv);
if (lookup != MMU_ERROR_NONE)
return lookup;
rv = va; //SQ writes are not translated, only write backs are.
return MMU_ERROR_NONE;
}
if ((sr.MD == 0) && (va & 0x80000000) != 0)
{
//if on kernel, and not SQ addr -> error
return MMU_ERROR_BADADDR;
}
if (sr.MD == 1 && ((va & 0xFC000000) == 0x7C000000))
{
rv = va;
return MMU_ERROR_NONE;
}
if ((CCN_MMUCR.AT == 0) || (fast_reg_lut[va >> 29] != 0))
{
rv = va;
return MMU_ERROR_NONE;
}
/*
if ( CCN_CCR.ORA && ((va&0xFC000000)==0x7C000000))
{
verify(false);
return va;
}
*/
u32 entry;
u32 lookup = mmu_full_lookup(va, entry, rv);
if (lookup != MMU_ERROR_NONE)
return lookup;
u32 md = UTLB[entry].Data.PR >> 1;
//0X & User mode-> protection violation
//Priv mode protection
if ((md == 0) && sr.MD == 0)
{
return MMU_ERROR_PROTECTED;
}
//X0 -> read olny
//X1 -> read/write , can be FW
//Write Protection (Lock or FW)
if (translation_type == MMU_TT_DWRITE)
{
if ((UTLB[entry].Data.PR & 1) == 0)
return MMU_ERROR_PROTECTED;
else if (UTLB[entry].Data.D == 0)
return MMU_ERROR_FIRSTWRITE;
}
return MMU_ERROR_NONE;
}
u32 mmu_instruction_translation(u32 va, u32& rv)
{
if ((sr.MD == 0) && (va & 0x80000000) != 0)
{
//if SQ disabled , or if if SQ on but out of SQ mem then BAD ADDR ;)
if (va >= 0xE0000000)
return MMU_ERROR_BADADDR;
}
if ((CCN_MMUCR.AT == 0) || (fast_reg_lut[va >> 29] != 0))
{
rv = va;
return MMU_ERROR_NONE;
}
bool mmach = false;
retry_ITLB_Match:
u32 entry = 4;
u32 nom = 0;
for (u32 i = 0; i<4; i++)
{
if (ITLB[i].Data.V == 0)
continue;
u32 sz = ITLB[i].Data.SZ1 * 2 + ITLB[i].Data.SZ0;
u32 mask = mmu_mask[sz];
if ((((ITLB[i].Address.VPN << 10)&mask) == (va&mask)))
{
bool asid_match = (ITLB[i].Data.SH == 0) && ((sr.MD == 0) || (CCN_MMUCR.SV == 0));
if ((asid_match == false) || (ITLB[i].Address.ASID == CCN_PTEH.ASID))
{
//verify(sz!=0);
entry = i;
nom++;
//VPN->PPN | low bits
rv = ((ITLB[i].Data.PPN << 10)&mask) | (va&(~mask));
}
}
}
if (entry == 4)
{
verify(mmach == false);
u32 lookup = mmu_full_lookup(va, entry, rv);
if (lookup != MMU_ERROR_NONE)
return lookup;
u32 replace_index = ITLB_LRU_USE[CCN_MMUCR.LRUI];
verify(replace_index != 0xFFFFFFFF);
ITLB[replace_index] = UTLB[entry];
entry = replace_index;
ITLB_Sync(entry);
mmach = true;
goto retry_ITLB_Match;
}
else if (nom != 1)
{
if (nom)
{
return MMU_ERROR_TLB_MHIT;
}
else
{
return MMU_ERROR_TLB_MISS;
}
}
CCN_MMUCR.LRUI &= ITLB_LRU_AND[entry];
CCN_MMUCR.LRUI |= ITLB_LRU_OR[entry];
u32 md = ITLB[entry].Data.PR >> 1;
//0X & User mode-> protection violation
//Priv mode protection
if ((md == 0) && sr.MD == 0)
{
return MMU_ERROR_PROTECTED;
}
return MMU_ERROR_NONE;
}
void MMU_init()
{
memset(ITLB_LRU_USE, 0xFF, sizeof(ITLB_LRU_USE));
for (u32 e = 0; e<4; e++)
{
u32 match_key = ((~ITLB_LRU_AND[e]) & 0x3F);
u32 match_mask = match_key | ITLB_LRU_OR[e];
for (u32 i = 0; i<64; i++)
{
if ((i & match_mask) == match_key)
{
verify(ITLB_LRU_USE[i] == 0xFFFFFFFF);
ITLB_LRU_USE[i] = e;
}
}
}
}
void MMU_reset()
{
memset(UTLB, 0, sizeof(UTLB));
memset(ITLB, 0, sizeof(ITLB));
}
void MMU_term()
{
}
u8 DYNACALL mmu_ReadMem8(u32 adr)
{
u32 addr;
u32 tv = mmu_data_translation<MMU_TT_DREAD>(adr, addr);
if (tv == 0)
return _vmem_ReadMem8(addr);
else
mmu_raise_exeption(tv, adr, MMU_TT_DREAD);
return 0;
}
u16 DYNACALL mmu_ReadMem16(u32 adr)
{
if (adr & 1)
{
mmu_raise_exeption(MMU_ERROR_BADADDR, adr, MMU_TT_DREAD);
return 0;
}
u32 addr;
u32 tv = mmu_data_translation<MMU_TT_DREAD>(adr, addr);
if (tv == 0)
return _vmem_ReadMem16(addr);
else
mmu_raise_exeption(tv, adr, MMU_TT_DREAD);
return 0;
}
u16 DYNACALL mmu_IReadMem16(u32 adr)
{
if (adr & 1)
{
mmu_raise_exeption(MMU_ERROR_BADADDR, adr, MMU_TT_IREAD);
return 0;
}
u32 addr;
u32 tv = mmu_instruction_translation(adr, addr);
if (tv == 0)
return _vmem_ReadMem16(addr);
else
mmu_raise_exeption(tv, adr, MMU_TT_IREAD);
return 0;
}
u32 DYNACALL mmu_ReadMem32(u32 adr)
{
if (adr & 3)
{
mmu_raise_exeption(MMU_ERROR_BADADDR, adr, MMU_TT_DREAD);
return 0;
}
u32 addr;
u32 tv = mmu_data_translation<MMU_TT_DREAD>(adr, addr);
if (tv == 0)
return _vmem_ReadMem32(addr);
else
mmu_raise_exeption(tv, adr, MMU_TT_DREAD);
return 0;
}
u64 DYNACALL mmu_ReadMem64(u32 adr)
{
if (adr & 7)
{
mmu_raise_exeption(MMU_ERROR_BADADDR, adr, MMU_TT_DREAD);
return 0;
}
u32 addr;
u32 tv = mmu_data_translation<MMU_TT_DREAD>(adr, addr);
if (tv == 0)
{
return _vmem_ReadMem64(addr);
}
else
mmu_raise_exeption(tv, adr, MMU_TT_DREAD);
return 0;
}
void DYNACALL mmu_WriteMem8(u32 adr, u8 data)
{
u32 addr;
u32 tv = mmu_data_translation<MMU_TT_DWRITE>(adr, addr);
if (tv == 0)
{
_vmem_WriteMem8(addr, data);
return;
}
else
mmu_raise_exeption(tv, adr, MMU_TT_DWRITE);
}
void DYNACALL mmu_WriteMem16(u32 adr, u16 data)
{
if (adr & 1)
{
mmu_raise_exeption(MMU_ERROR_BADADDR, adr, MMU_TT_DWRITE);
return;
}
u32 addr;
u32 tv = mmu_data_translation<MMU_TT_DWRITE>(adr, addr);
if (tv == 0)
{
_vmem_WriteMem16(addr, data);
return;
}
else
mmu_raise_exeption(tv, adr, MMU_TT_DWRITE);
}
void DYNACALL mmu_WriteMem32(u32 adr, u32 data)
{
if (adr & 3)
{
mmu_raise_exeption(MMU_ERROR_BADADDR, adr, MMU_TT_DWRITE);
return;
}
u32 addr;
u32 tv = mmu_data_translation<MMU_TT_DWRITE>(adr, addr);
if (tv == 0)
{
_vmem_WriteMem32(addr, data);
return;
}
else
mmu_raise_exeption(tv, adr, MMU_TT_DWRITE);
}
void DYNACALL mmu_WriteMem64(u32 adr, u64 data)
{
if (adr & 7)
{
mmu_raise_exeption(MMU_ERROR_BADADDR, adr, MMU_TT_DWRITE);
return;
}
u32 addr;
u32 tv = mmu_data_translation<MMU_TT_DWRITE>(adr, addr);
if (tv == 0)
{
_vmem_WriteMem64(addr, data);
return;
}
else
mmu_raise_exeption(tv, adr, MMU_TT_DWRITE);
}
bool mmu_TranslateSQW(u32 adr, u32* out)
{
#ifndef NO_MMU
u32 addr;
u32 tv = mmu_full_SQ<MMU_TT_DREAD>(adr, addr);
if (tv != 0)
{
mmu_raise_exeption(tv, adr, MMU_TT_DREAD);
return false;
}
*out = addr;
#else
//This will olny work for 1 mb pages .. hopefully nothing else is used
//*FIXME* to work for all page sizes ?
if (CCN_MMUCR.AT == 0)
{ //simple translation
*out = mmu_QACR_SQ(adr);
}
else
{ //remap table
*out = sq_remap[(adr >> 20) & 0x3F] | (adr & 0xFFFE0);
}
#endif
return true;
}
#endif