flycast/core/rend/TexCache.cpp

979 lines
24 KiB
C++

#include <memory>
#include <unordered_map>
#ifndef TARGET_NO_OPENMP
#include <omp.h>
#endif
#include "TexCache.h"
#include "hw/pvr/pvr_regs.h"
#include "hw/pvr/pvr_mem.h"
#include "hw/pvr/Renderer_if.h"
#include "hw/mem/_vmem.h"
#include "hw/mem/vmem32.h"
#include "hw/sh4/modules/mmu.h"
#include "deps/xbrz/xbrz.h"
#include <xxhash.h>
#include "CustomTexture.h"
u8* vq_codebook;
u32 palette_index;
bool KillTex=false;
u32 palette16_ram[1024];
u32 palette32_ram[1024];
u32 pal_hash_256[4];
u32 pal_hash_16[64];
u32 detwiddle[2][8][1024];
//input : address in the yyyyyxxxxx format
//output : address in the xyxyxyxy format
//U : x resolution , V : y resolution
//twiddle works on 64b words
static u32 twiddle_slow(u32 x,u32 y,u32 x_sz,u32 y_sz)
{
u32 rv=0;//low 2 bits are directly passed -> needs some misc stuff to work.However
//Pvr internally maps the 64b banks "as if" they were twiddled :p
u32 sh=0;
x_sz>>=1;
y_sz>>=1;
while(x_sz!=0 || y_sz!=0)
{
if (y_sz)
{
u32 temp=y&1;
rv|=temp<<sh;
y_sz>>=1;
y>>=1;
sh++;
}
if (x_sz)
{
u32 temp=x&1;
rv|=temp<<sh;
x_sz>>=1;
x>>=1;
sh++;
}
}
return rv;
}
static void BuildTwiddleTables()
{
for (u32 s=0;s<8;s++)
{
u32 x_sz=1024;
u32 y_sz=8<<s;
for (u32 i=0;i<x_sz;i++)
{
detwiddle[0][s][i]=twiddle_slow(i,0,x_sz,y_sz);
detwiddle[1][s][i]=twiddle_slow(0,i,y_sz,x_sz);
}
}
}
static OnLoad btt(&BuildTwiddleTables);
void palette_update()
{
if (!pal_needs_update)
return;
pal_needs_update=false;
switch(PAL_RAM_CTRL&3)
{
case 0:
for (int i=0;i<1024;i++)
{
palette16_ram[i] = ARGB1555(PALETTE_RAM[i]);
palette32_ram[i] = ARGB1555_32(PALETTE_RAM[i]);
}
break;
case 1:
for (int i=0;i<1024;i++)
{
palette16_ram[i] = ARGB565(PALETTE_RAM[i]);
palette32_ram[i] = ARGB565_32(PALETTE_RAM[i]);
}
break;
case 2:
for (int i=0;i<1024;i++)
{
palette16_ram[i] = ARGB4444(PALETTE_RAM[i]);
palette32_ram[i] = ARGB4444_32(PALETTE_RAM[i]);
}
break;
case 3:
for (int i=0;i<1024;i++)
{
palette16_ram[i] = ARGB8888(PALETTE_RAM[i]);
palette32_ram[i] = ARGB8888_32(PALETTE_RAM[i]);
}
break;
}
for (int i = 0; i < 64; i++)
pal_hash_16[i] = XXH32(&palette32_ram[i << 4], 16 * 4, 7);
for (int i = 0; i < 4; i++)
pal_hash_256[i] = XXH32(&palette32_ram[i << 8], 256 * 4, 7);
}
using namespace std;
vector<vram_block*> VramLocks[VRAM_SIZE_MAX / PAGE_SIZE];
VArray2 vram; // vram 32-64b
//List functions
//
void vramlock_list_remove(vram_block* block)
{
u32 base = block->start / PAGE_SIZE;
u32 end = block->end / PAGE_SIZE;
for (u32 i = base; i <= end; i++)
{
vector<vram_block*>& list = VramLocks[i];
for (size_t j = 0; j < list.size(); j++)
{
if (list[j] == block)
{
list[j] = nullptr;
}
}
}
}
void vramlock_list_add(vram_block* block)
{
u32 base = block->start / PAGE_SIZE;
u32 end = block->end / PAGE_SIZE;
for (u32 i = base; i <= end; i++)
{
vector<vram_block*>& list = VramLocks[i];
// If the list is empty then we need to protect vram, otherwise it's already been done
if (list.empty())
{
_vmem_protect_vram(i * PAGE_SIZE, PAGE_SIZE);
}
else
{
for (u32 j = 0; j < list.size(); j++)
{
if (list[j] == nullptr)
{
list[j] = block;
goto added_it;
}
}
}
list.push_back(block);
added_it:
i=i;
}
}
cMutex vramlist_lock;
vram_block* libCore_vramlock_Lock(u32 start_offset64,u32 end_offset64,void* userdata)
{
vram_block* block=(vram_block* )malloc(sizeof(vram_block));
if (end_offset64>(VRAM_SIZE-1))
{
WARN_LOG(PVR, "vramlock_Lock_64: end_offset64>(VRAM_SIZE-1) \n Tried to lock area out of vram , possibly bug on the pvr plugin");
end_offset64=(VRAM_SIZE-1);
}
if (start_offset64>end_offset64)
{
WARN_LOG(PVR, "vramlock_Lock_64: start_offset64>end_offset64 \n Tried to lock negative block , possibly bug on the pvr plugin");
start_offset64=0;
}
block->end=end_offset64;
block->start=start_offset64;
block->len=end_offset64-start_offset64+1;
block->userdata=userdata;
block->type=64;
{
vramlist_lock.Lock();
// This also protects vram if needed
vramlock_list_add(block);
vramlist_lock.Unlock();
}
return block;
}
bool VramLockedWriteOffset(size_t offset)
{
if (offset >= VRAM_SIZE)
return false;
size_t addr_hash = offset / PAGE_SIZE;
vector<vram_block *>& list = VramLocks[addr_hash];
{
vramlist_lock.Lock();
for (size_t i = 0; i < list.size(); i++)
{
if (list[i] != nullptr)
{
libPvr_LockedBlockWrite(list[i], (u32)offset);
if (list[i] != nullptr)
{
ERROR_LOG(PVR, "Error : pvr is supposed to remove lock");
die("Invalid state");
}
}
}
list.clear();
_vmem_unprotect_vram((u32)(offset & ~PAGE_MASK), PAGE_SIZE);
vramlist_lock.Unlock();
}
return true;
}
bool VramLockedWrite(u8* address)
{
u32 offset = _vmem_get_vram_offset(address);
if (offset == -1)
return false;
return VramLockedWriteOffset(offset);
}
//unlocks mem
//also frees the handle
void libCore_vramlock_Unlock_block(vram_block* block)
{
vramlist_lock.Lock();
libCore_vramlock_Unlock_block_wb(block);
vramlist_lock.Unlock();
}
void libCore_vramlock_Unlock_block_wb(vram_block* block)
{
if (mmu_enabled())
vmem32_unprotect_vram(block->start, block->len);
vramlock_list_remove(block);
free(block);
}
//
// deposterization: smoothes posterized gradients from low-color-depth (e.g. 444, 565, compressed) sources
// Shamelessly stolen from ppsspp
// Copyright (c) 2012- PPSSPP Project.
//
#define BLOCK_SIZE 32
static void deposterizeH(u32* data, u32* out, int w, int l, int u) {
static const int T = 8;
for (int y = l; y < u; ++y) {
for (int x = 0; x < w; ++x) {
int inpos = y*w + x;
u32 center = data[inpos];
if (x == 0 || x == w - 1) {
out[y*w + x] = center;
continue;
}
u32 left = data[inpos - 1];
u32 right = data[inpos + 1];
out[y*w + x] = 0;
for (int c = 0; c < 4; ++c) {
u8 lc = ((left >> c * 8) & 0xFF);
u8 cc = ((center >> c * 8) & 0xFF);
u8 rc = ((right >> c * 8) & 0xFF);
if ((lc != rc) && ((lc == cc && abs((int)((int)rc) - cc) <= T) || (rc == cc && abs((int)((int)lc) - cc) <= T))) {
// blend this component
out[y*w + x] |= ((rc + lc) / 2) << (c * 8);
} else {
// no change for this component
out[y*w + x] |= cc << (c * 8);
}
}
}
}
}
static void deposterizeV(u32* data, u32* out, int w, int h, int l, int u) {
static const int T = 8;
for (int xb = 0; xb < w / BLOCK_SIZE + 1; ++xb) {
for (int y = l; y < u; ++y) {
for (int x = xb*BLOCK_SIZE; x < (xb + 1)*BLOCK_SIZE && x < w; ++x) {
u32 center = data[y * w + x];
if (y == 0 || y == h - 1) {
out[y*w + x] = center;
continue;
}
u32 upper = data[(y - 1) * w + x];
u32 lower = data[(y + 1) * w + x];
out[y*w + x] = 0;
for (int c = 0; c < 4; ++c) {
u8 uc = ((upper >> c * 8) & 0xFF);
u8 cc = ((center >> c * 8) & 0xFF);
u8 lc = ((lower >> c * 8) & 0xFF);
if ((uc != lc) && ((uc == cc && abs((int)((int)lc) - cc) <= T) || (lc == cc && abs((int)((int)uc) - cc) <= T))) {
// blend this component
out[y*w + x] |= ((lc + uc) / 2) << (c * 8);
} else {
// no change for this component
out[y*w + x] |= cc << (c * 8);
}
}
}
}
}
}
#ifndef TARGET_NO_OPENMP
static inline int getThreadCount()
{
int tcount = omp_get_num_procs() - 1;
if (tcount < 1)
tcount = 1;
return min(tcount, (int)settings.pvr.MaxThreads);
}
template<typename Func>
void parallelize(Func func, int start, int end)
{
int tcount = getThreadCount();
#pragma omp parallel num_threads(tcount)
{
int num_threads = omp_get_num_threads();
int thread = omp_get_thread_num();
int chunk = (end - start) / num_threads;
func(start + chunk * thread,
num_threads == thread + 1 ? end
: (start + chunk * (thread + 1)));
}
}
void DePosterize(u32* source, u32* dest, int width, int height) {
u32 *tmpbuf = (u32 *)malloc(width * height * sizeof(u32));
parallelize([source, tmpbuf, width](int start, int end) { deposterizeH(source, tmpbuf, width, start, end); }, 0, height);
parallelize([tmpbuf, dest, width, height](int start, int end) { deposterizeV(tmpbuf, dest, width, height, start, end); }, 0, height);
parallelize([dest, tmpbuf, width](int start, int end) { deposterizeH(dest, tmpbuf, width, start, end); }, 0, height);
parallelize([tmpbuf, dest, width, height](int start, int end) { deposterizeV(tmpbuf, dest, width, height, start, end); }, 0, height);
free(tmpbuf);
}
#endif
static struct xbrz::ScalerCfg xbrz_cfg;
void UpscalexBRZ(int factor, u32* source, u32* dest, int width, int height, bool has_alpha)
{
#ifndef TARGET_NO_OPENMP
parallelize([=](int start, int end) {
xbrz::scale(factor, source, dest, width, height, has_alpha ? xbrz::ColorFormat::ARGB : xbrz::ColorFormat::RGB,
xbrz_cfg, start, end);
}, 0, height);
#else
xbrz::scale(factor, source, dest, width, height, has_alpha ? xbrz::ColorFormat::ARGB : xbrz::ColorFormat::RGB, xbrz_cfg);
#endif
}
struct PvrTexInfo
{
const char* name;
int bpp; //4/8 for pal. 16 for yuv, rgb, argb
TextureType type;
// Conversion to 16 bpp
TexConvFP *PL;
TexConvFP *TW;
TexConvFP *VQ;
// Conversion to 32 bpp
TexConvFP32 *PL32;
TexConvFP32 *TW32;
TexConvFP32 *VQ32;
};
static const PvrTexInfo format[8] =
{ // name bpp Final format Planar Twiddled VQ Planar(32b) Twiddled(32b) VQ (32b)
{"1555", 16, TextureType::_5551, tex1555_PL, tex1555_TW, tex1555_VQ, tex1555_PL32, tex1555_TW32, tex1555_VQ32 }, //1555
{"565", 16, TextureType::_565, tex565_PL, tex565_TW, tex565_VQ, tex565_PL32, tex565_TW32, tex565_VQ32 }, //565
{"4444", 16, TextureType::_4444, tex4444_PL, tex4444_TW, tex4444_VQ, tex4444_PL32, tex4444_TW32, tex4444_VQ32 }, //4444
{"yuv", 16, TextureType::_8888, NULL, NULL, NULL, texYUV422_PL, texYUV422_TW, texYUV422_VQ }, //yuv
{"bumpmap", 16, TextureType::_4444, texBMP_PL, texBMP_TW, texBMP_VQ, NULL}, //bump map
{"pal4", 4, TextureType::_5551, 0, texPAL4_TW, texPAL4_VQ, NULL, texPAL4_TW32, texPAL4_VQ32 }, //pal4
{"pal8", 8, TextureType::_5551, 0, texPAL8_TW, texPAL8_VQ, NULL, texPAL8_TW32, texPAL8_VQ32 }, //pal8
{"ns/1555", 0}, // Not supported (1555)
};
static const u32 MipPoint[8] =
{
0x00006,//8
0x00016,//16
0x00056,//32
0x00156,//64
0x00556,//128
0x01556,//256
0x05556,//512
0x15556//1024
};
static const TextureType PAL_TYPE[4] = {
TextureType::_5551, TextureType::_565, TextureType::_4444, TextureType::_8888
};
static CustomTexture custom_texture;
void BaseTextureCacheData::PrintTextureName()
{
char str[512];
sprintf(str, "Texture: %s ", GetPixelFormatName());
if (tcw.VQ_Comp)
strcat(str, " VQ");
if (tcw.ScanOrder==0)
strcat(str, " TW");
if (tcw.MipMapped)
strcat(str, " MM");
if (tcw.StrideSel)
strcat(str, " Stride");
sprintf(str + strlen(str), " %dx%d @ 0x%X", 8 << tsp.TexU, 8 << tsp.TexV, tcw.TexAddr << 3);
std::string id = GetId();
sprintf(str + strlen(str), " id=%s", id.c_str());
DEBUG_LOG(RENDERER, "%s", str);
}
//true if : dirty or paletted texture and hashes don't match
bool BaseTextureCacheData::NeedsUpdate() {
bool rc = dirty
|| (tcw.PixelFmt == PixelPal4 && palette_hash != pal_hash_16[tcw.PalSelect])
|| (tcw.PixelFmt == PixelPal8 && palette_hash != pal_hash_256[tcw.PalSelect >> 4]);
return rc;
}
bool BaseTextureCacheData::Delete()
{
if (custom_load_in_progress > 0)
return false;
if (lock_block)
libCore_vramlock_Unlock_block(lock_block);
lock_block=0;
delete[] custom_image_data;
return true;
}
void BaseTextureCacheData::Create()
{
//Reset state info ..
Lookups=0;
Updates=0;
dirty=FrameCount;
lock_block = nullptr;
custom_image_data = nullptr;
//decode info from tsp/tcw into the texture struct
tex=&format[tcw.PixelFmt == PixelReserved ? Pixel1555 : tcw.PixelFmt]; //texture format table entry
sa_tex = (tcw.TexAddr<<3) & VRAM_MASK; //texture start address
sa = sa_tex; //data texture start address (modified for MIPs, as needed)
w=8<<tsp.TexU; //tex width
h=8<<tsp.TexV; //tex height
//PAL texture
if (tex->bpp == 4)
palette_index = tcw.PalSelect << 4;
else if (tex->bpp == 8)
palette_index = (tcw.PalSelect >> 4) << 8;
//VQ table (if VQ tex)
if (tcw.VQ_Comp)
vq_codebook = sa;
//Convert a pvr texture into OpenGL
switch (tcw.PixelFmt)
{
case Pixel1555: //0 1555 value: 1 bit; RGB values: 5 bits each
case PixelReserved: //7 Reserved Regarded as 1555
case Pixel565: //1 565 R value: 5 bits; G value: 6 bits; B value: 5 bits
case Pixel4444: //2 4444 value: 4 bits; RGB values: 4 bits each
case PixelYUV: //3 YUV422 32 bits per 2 pixels; YUYV values: 8 bits each
case PixelBumpMap: //4 Bump Map 16 bits/pixel; S value: 8 bits; R value: 8 bits
case PixelPal4: //5 4 BPP Palette Palette texture with 4 bits/pixel
case PixelPal8: //6 8 BPP Palette Palette texture with 8 bits/pixel
if (tcw.ScanOrder && (tex->PL || tex->PL32))
{
//Texture is stored 'planar' in memory, no deswizzle is needed
//verify(tcw.VQ_Comp==0);
if (tcw.VQ_Comp != 0)
WARN_LOG(RENDERER, "Warning: planar texture with VQ set (invalid)");
//Planar textures support stride selection, mostly used for non power of 2 textures (videos)
int stride = w;
if (tcw.StrideSel)
stride = (TEXT_CONTROL & 31) * 32;
//Call the format specific conversion code
texconv = tex->PL;
texconv32 = tex->PL32;
//calculate the size, in bytes, for the locking
size=stride*h*tex->bpp/8;
}
else
{
// Quake 3 Arena uses one. Not sure if valid but no need to crash
//verify(w==h || !tcw.MipMapped); // are non square mipmaps supported ? i can't recall right now *WARN*
if (tcw.VQ_Comp)
{
verify(tex->VQ != NULL || tex->VQ32 != NULL);
vq_codebook = sa;
if (tcw.MipMapped)
sa+=MipPoint[tsp.TexU];
texconv = tex->VQ;
texconv32 = tex->VQ32;
size=w*h/8;
}
else
{
verify(tex->TW != NULL || tex->TW32 != NULL);
if (tcw.MipMapped)
sa+=MipPoint[tsp.TexU]*tex->bpp/2;
texconv = tex->TW;
texconv32 = tex->TW32;
size=w*h*tex->bpp/8;
}
}
break;
default:
WARN_LOG(RENDERER, "Unhandled texture format %d", tcw.PixelFmt);
size=w*h*2;
texconv = NULL;
texconv32 = NULL;
}
}
void BaseTextureCacheData::ComputeHash()
{
texture_hash = XXH32(&vram[sa], size, 7);
if (IsPaletted())
texture_hash ^= palette_hash;
old_texture_hash = texture_hash;
texture_hash ^= tcw.full;
}
void BaseTextureCacheData::Update()
{
//texture state tracking stuff
Updates++;
dirty=0;
tex_type = tex->type;
bool has_alpha = false;
if (IsPaletted())
{
tex_type = PAL_TYPE[PAL_RAM_CTRL&3];
if (tex_type == TextureType::_8888)
has_alpha = true;
// Get the palette hash to check for future updates
if (tcw.PixelFmt == PixelPal4)
palette_hash = pal_hash_16[tcw.PalSelect];
else
palette_hash = pal_hash_256[tcw.PalSelect >> 4];
}
::palette_index = this->palette_index; // might be used if pal. tex
::vq_codebook = &vram[vq_codebook]; // might be used if VQ tex
//texture conversion work
u32 stride = w;
if (tcw.StrideSel && tcw.ScanOrder && (tex->PL || tex->PL32))
stride = (TEXT_CONTROL & 31) * 32;
u32 original_h = h;
if (sa_tex > VRAM_SIZE || size == 0 || sa + size > VRAM_SIZE)
{
if (sa + size > VRAM_SIZE)
{
// Shenmue Space Harrier mini-arcade loads a texture that goes beyond the end of VRAM
// but only uses the top portion of it
h = (VRAM_SIZE - sa) * 8 / stride / tex->bpp;
size = stride * h * tex->bpp/8;
}
else
{
WARN_LOG(RENDERER, "Warning: invalid texture. Address %08X %08X size %d", sa_tex, sa, size);
return;
}
}
if (settings.rend.CustomTextures)
custom_texture.LoadCustomTextureAsync(this);
void *temp_tex_buffer = NULL;
u32 upscaled_w = w;
u32 upscaled_h = h;
PixelBuffer<u16> pb16;
PixelBuffer<u32> pb32;
// Figure out if we really need to use a 32-bit pixel buffer
bool need_32bit_buffer = true;
if ((settings.rend.TextureUpscale <= 1
|| w * h > settings.rend.MaxFilteredTextureSize
* settings.rend.MaxFilteredTextureSize // Don't process textures that are too big
|| tcw.PixelFmt == PixelYUV) // Don't process YUV textures
&& (!IsPaletted() || tex_type != TextureType::_8888)
&& texconv != NULL)
need_32bit_buffer = false;
// TODO avoid upscaling/depost. textures that change too often
if (texconv32 != NULL && need_32bit_buffer)
{
// Force the texture type since that's the only 32-bit one we know
tex_type = TextureType::_8888;
pb32.init(w, h);
texconv32(&pb32, (u8*)&vram[sa], stride, h);
#ifdef DEPOSTERIZE
{
// Deposterization
PixelBuffer<u32> tmp_buf;
tmp_buf.init(w, h);
DePosterize(pb32.data(), tmp_buf.data(), w, h);
pb32.steal_data(tmp_buf);
}
#endif
// xBRZ scaling
if (settings.rend.TextureUpscale > 1)
{
PixelBuffer<u32> tmp_buf;
tmp_buf.init(w * settings.rend.TextureUpscale, h * settings.rend.TextureUpscale);
if (tcw.PixelFmt == Pixel1555 || tcw.PixelFmt == Pixel4444)
// Alpha channel formats. Palettes with alpha are already handled
has_alpha = true;
UpscalexBRZ(settings.rend.TextureUpscale, pb32.data(), tmp_buf.data(), w, h, has_alpha);
pb32.steal_data(tmp_buf);
upscaled_w *= settings.rend.TextureUpscale;
upscaled_h *= settings.rend.TextureUpscale;
}
temp_tex_buffer = pb32.data();
}
else if (texconv != NULL)
{
pb16.init(w, h);
texconv(&pb16,(u8*)&vram[sa],stride,h);
temp_tex_buffer = pb16.data();
}
else
{
//fill it in with a temp color
WARN_LOG(RENDERER, "UNHANDLED TEXTURE");
pb16.init(w, h);
memset(pb16.data(), 0x80, w * h * 2);
temp_tex_buffer = pb16.data();
}
// Restore the original texture height if it was constrained to VRAM limits above
h = original_h;
//lock the texture to detect changes in it
lock_block = libCore_vramlock_Lock(sa_tex,sa+size-1,this);
UploadToGPU(upscaled_w, upscaled_h, (u8*)temp_tex_buffer);
if (settings.rend.DumpTextures)
{
ComputeHash();
custom_texture.DumpTexture(texture_hash, upscaled_w, upscaled_h, tex_type, temp_tex_buffer);
}
PrintTextureName();
}
void BaseTextureCacheData::CheckCustomTexture()
{
if (custom_load_in_progress == 0 && custom_image_data != NULL)
{
tex_type = TextureType::_8888;
UploadToGPU(custom_width, custom_height, custom_image_data);
delete [] custom_image_data;
custom_image_data = NULL;
}
}
static std::unordered_map<u64, std::unique_ptr<BaseTextureCacheData>> TexCache;
typedef std::unordered_map<u64, std::unique_ptr<BaseTextureCacheData>>::iterator TexCacheIter;
// Only use TexU and TexV from TSP in the cache key
// TexV : 7, TexU : 7
static const TSP TSPTextureCacheMask = { { 7, 7 } };
// TexAddr : 0x1FFFFF, Reserved : 0, StrideSel : 0, ScanOrder : 1, PixelFmt : 7, VQ_Comp : 1, MipMapped : 1
static const TCW TCWTextureCacheMask = { { 0x1FFFFF, 0, 0, 1, 7, 1, 1 } };
BaseTextureCacheData *getTextureCacheData(TSP tsp, TCW tcw, BaseTextureCacheData *(*factory)())
{
u64 key = tsp.full & TSPTextureCacheMask.full;
if (tcw.PixelFmt == PixelPal4 || tcw.PixelFmt == PixelPal8)
// Paletted textures have a palette selection that must be part of the key
// We also add the palette type to the key to avoid thrashing the cache
// when the palette type is changed. If the palette type is changed back in the future,
// this texture will stil be available.
key |= ((u64)tcw.full << 32) | ((PAL_RAM_CTRL & 3) << 6);
else
key |= (u64)(tcw.full & TCWTextureCacheMask.full) << 32;
TexCacheIter tx = TexCache.find(key);
BaseTextureCacheData* tf;
if (tx != TexCache.end())
{
tf = tx->second.get();
// Needed if the texture is updated
tf->tcw.StrideSel = tcw.StrideSel;
}
else //create if not existing
{
tf = factory();
TexCache[key] = std::unique_ptr<BaseTextureCacheData>(tf);
tf->tsp = tsp;
tf->tcw = tcw;
}
return tf;
}
void CollectCleanup()
{
vector<u64> list;
u32 TargetFrame = max((u32)120,FrameCount) - 120;
for (const auto& pair : TexCache)
{
if (pair.second->dirty && pair.second->dirty < TargetFrame)
list.push_back(pair.first);
if (list.size() > 5)
break;
}
for (u64 id : list) {
if (TexCache[id]->Delete())
{
//printf("Deleting %d\n", TexCache[list[i]].texID);
TexCache.erase(id);
}
}
}
void killtex()
{
for (auto& pair : TexCache)
pair.second->Delete();
TexCache.clear();
KillTex = false;
INFO_LOG(RENDERER, "Texture cache cleared");
}
void ReadFramebuffer(PixelBuffer<u32>& pb, int& width, int& height)
{
width = (FB_R_SIZE.fb_x_size + 1) << 1; // in 16-bit words
height = FB_R_SIZE.fb_y_size + 1;
int modulus = (FB_R_SIZE.fb_modulus - 1) << 1;
int bpp;
switch (FB_R_CTRL.fb_depth)
{
case fbde_0555:
case fbde_565:
bpp = 2;
break;
case fbde_888:
bpp = 3;
width = (width * 2) / 3; // in pixels
modulus = (modulus * 2) / 3; // in pixels
break;
case fbde_C888:
bpp = 4;
width /= 2; // in pixels
modulus /= 2; // in pixels
break;
default:
die("Invalid framebuffer format\n");
bpp = 4;
break;
}
u32 addr = SPG_CONTROL.interlace && !SPG_STATUS.fieldnum ? FB_R_SOF2 : FB_R_SOF1;
pb.init(width, height);
u8 *dst = (u8*)pb.data();
switch (FB_R_CTRL.fb_depth)
{
case fbde_0555: // 555 RGB
for (int y = 0; y < height; y++)
{
for (int i = 0; i < width; i++)
{
u16 src = pvr_read_area1_16(addr);
*dst++ = (((src >> 10) & 0x1F) << 3) + FB_R_CTRL.fb_concat;
*dst++ = (((src >> 5) & 0x1F) << 3) + FB_R_CTRL.fb_concat;
*dst++ = (((src >> 0) & 0x1F) << 3) + FB_R_CTRL.fb_concat;
*dst++ = 0xFF;
addr += bpp;
}
addr += modulus * bpp;
}
break;
case fbde_565: // 565 RGB
for (int y = 0; y < height; y++)
{
for (int i = 0; i < width; i++)
{
u16 src = pvr_read_area1_16(addr);
*dst++ = (((src >> 11) & 0x1F) << 3) + FB_R_CTRL.fb_concat;
*dst++ = (((src >> 5) & 0x3F) << 2) + (FB_R_CTRL.fb_concat >> 1);
*dst++ = (((src >> 0) & 0x1F) << 3) + FB_R_CTRL.fb_concat;
*dst++ = 0xFF;
addr += bpp;
}
addr += modulus * bpp;
}
break;
case fbde_888: // 888 RGB
for (int y = 0; y < height; y++)
{
for (int i = 0; i < width; i += 4)
{
u32 src = pvr_read_area1_32(addr);
*dst++ = src >> 16;
*dst++ = src >> 8;
*dst++ = src;
*dst++ = 0xFF;
addr += 4;
if (i + 1 >= width)
break;
u32 src2 = pvr_read_area1_32(addr);
*dst++ = src2 >> 8;
*dst++ = src2;
*dst++ = src >> 24;
*dst++ = 0xFF;
addr += 4;
if (i + 2 >= width)
break;
u32 src3 = pvr_read_area1_32(addr);
*dst++ = src3;
*dst++ = src2 >> 24;
*dst++ = src2 >> 16;
*dst++ = 0xFF;
addr += 4;
if (i + 3 >= width)
break;
*dst++ = src3 >> 24;
*dst++ = src3 >> 16;
*dst++ = src3 >> 8;
*dst++ = 0xFF;
}
addr += modulus * bpp;
}
break;
case fbde_C888: // 0888 RGB
for (int y = 0; y < height; y++)
{
for (int i = 0; i < width; i++)
{
u32 src = pvr_read_area1_32(addr);
*dst++ = src >> 16;
*dst++ = src >> 8;
*dst++ = src;
*dst++ = 0xFF;
addr += bpp;
}
addr += modulus * bpp;
}
break;
}
}
void WriteTextureToVRam(u32 width, u32 height, u8 *data, u16 *dst)
{
u32 stride = FB_W_LINESTRIDE.stride * 8;
if (stride == 0)
stride = width * 2;
else if (width * 2 > stride) {
// Happens for Virtua Tennis
width = stride / 2;
}
const u16 kval_bit = (FB_W_CTRL.fb_kval & 0x80) << 8;
const u8 fb_alpha_threshold = FB_W_CTRL.fb_alpha_threshold;
u8 *p = data;
for (u32 l = 0; l < height; l++) {
switch(FB_W_CTRL.fb_packmode)
{
case 0: //0x0 0555 KRGB 16 bit (default) Bit 15 is the value of fb_kval[7].
for (u32 c = 0; c < width; c++) {
*dst++ = (((p[0] >> 3) & 0x1F) << 10) | (((p[1] >> 3) & 0x1F) << 5) | ((p[2] >> 3) & 0x1F) | kval_bit;
p += 4;
}
break;
case 1: //0x1 565 RGB 16 bit
for (u32 c = 0; c < width; c++) {
*dst++ = (((p[0] >> 3) & 0x1F) << 11) | (((p[1] >> 2) & 0x3F) << 5) | ((p[2] >> 3) & 0x1F);
p += 4;
}
break;
case 2: //0x2 4444 ARGB 16 bit
for (u32 c = 0; c < width; c++) {
*dst++ = (((p[0] >> 4) & 0xF) << 8) | (((p[1] >> 4) & 0xF) << 4) | ((p[2] >> 4) & 0xF) | (((p[3] >> 4) & 0xF) << 12);
p += 4;
}
break;
case 3://0x3 1555 ARGB 16 bit The alpha value is determined by comparison with the value of fb_alpha_threshold.
for (u32 c = 0; c < width; c++) {
*dst++ = (((p[0] >> 3) & 0x1F) << 10) | (((p[1] >> 3) & 0x1F) << 5) | ((p[2] >> 3) & 0x1F) | (p[3] > fb_alpha_threshold ? 0x8000 : 0);
p += 4;
}
break;
}
dst += (stride - width * 2) / 2;
}
}