flycast/core/hw/naomi/gdcartridge.cpp

648 lines
23 KiB
C++

/*
* gdcartridge.cpp
*
* Created on: Nov 16, 2018
* Author: flyinghead
*
* From mame naomigd.cpp
* // license:BSD-3-Clause
* // copyright-holders:Olivier Galibert
*
*/
#include "gdcartridge.h"
#include "stdclass.h"
#include "emulator.h"
#include "rend/gui.h"
/*
GPIO pins(main board: EEPROM, DIMM SPDs, option board: PIC16, JPs)
|
SH4 <-> 315-6154 <-> PCI bus -> Sega 315-6322 -> Host system interface (NAOMI, Triforce, Chihiro)
| | -> 2x DIMM RAM modules
RAM RAM -> Altera (PCI IDE Bus Master Controller) -> IDE bus -> GD-ROM or CF
16MB 4MB -> PCnet-FAST III -> Ethernet
315-6154 - SH4 CPU to PCI bridge and SDRAM controller, also used in Sega Hikaru (2x)
315-6322 - DIMM SDRAM controller, DES decryption, host system communication
SH4 address space
-------------------
00000000 - 001FFFFF Flash ROM (1st half - stock firmware, 2nd half - updated firmware)
04000000 - 040000FF memory/PCI bridge registers (Sega 315-6154)
0C000000 - 0CFFFFFF SH4 local RAM
10000000 - 103FFFFF memory/PCI controller RAM
14000000 - 1BFFFFFF 8x banked pages
internal / PCI memory space
-------------------
00000000 - 000000FF DIMM controller registers (Sega 315-6322)
10000000 - 4FFFFFFF DIMM memory, upto 1GB (if register 28 bit 1 is 0, otherwise some unknown MMIO)
70000000 - 70FFFFFF SH4 local RAM
78000000 - 783FFFFF 315-6154 PCI bridge RAM
C00001xx IDE registers \
C00003xx IDE registers | software configured in VxWorks, preconfigured or hardcoded in 1.02
C000CCxx IDE Bus Master DMA registers /
C1xxxxxx Network registers
PCI configuration space (enabled using memctl 1C reg)
-------------------
00000000 - 00000FFF unknown, write 142 to reg 04 at very start
00001000 - 00001FFF PCI IDE controller (upper board Altera Flex) Vendor 11db Device 189d
00002000 - 00002FFF AMD AM79C973BVC PCnet-FAST III Network
DIMM controller registers
-------------------
14 5F703C |
18 5F7040 |
1C 5F7044 | 16bit 4x Communication registers
20 5F7048 |
24 5F704C 16bit Interrupt register
-------c ---b---a
a - IRQ to DIMM (SH4 IRL3): 0 set / 1 clear
b - unk, mask of a ???
c - IRQ to NAOMI (HOLLY EXT 3): 0 set / 1 clear (write 0 from NAOMI seems ignored)
28 16bit dddd---c ------ba
a - 0->1 NAOMI reset
b - 1 seems disable DIMM RAM access, followed by write 01010101 to bank 10 offset 000110 or 000190 (some MMIO?)
c - unk, set to 1 in VxWorks, 0 in 1.02
d - unk, checked for == 1 in 1.02
2A 8bit possible DES decryption area size 8 MSB bits (16MB units number)
VxWorks firmwares set this to ((DIMMsize >> 24) - 1), 1.02 set it to FF
2C 32bit SDRAM config
30 32bit DES key low
34 32bit DES key high
SH4 IO port A bits
-------------------
9 select input, 0 - main/lower board, 1 - option/upper board (IDE, Net, PIC)
0 1
0 DIMM SPD clk JP? 0 - enable IDE
1 DIMM SPD data JP? 0 - enable Network
2 93C46 DI PIC16 D0
3 93C46 CS PIC16 D1
4 93C46 CLK PIC16 D2
5 93C46 DO PIC16 CLK
Dimm board communication registers software level usage:
Name: Naomi Dimm Bd.
NAOMI_DIMM_COMMAND = 5f703c 14000014 (16 bit):
if bits all 1 no dimm board present and other registers not used
bit 15: during an interrupt is 1 if the dimm board has a command to be executed
bit 14-9: 6 bit command number (naomi bios understands 0 1 3 4 5 6 8 9 a)
bit 7-0: higher 8 bits of 24 bit offset parameter
NAOMI_DIMM_OFFSETL = 5f7040 14000018 (16 bit):
bit 15-0: lower 16 bits of 24 bit offset parameter
NAOMI_DIMM_PARAMETERL = 5f7044 1400001c (16 bit)
NAOMI_DIMM_PARAMETERH = 5f7048 14000020 (16 bit)
NAOMI_DIMM_STATUS = 5f704c 14000024 (16 bit):
bit 0: when 0 signal interrupt from naomi to dimm board
bit 8: when 0 signal interrupt from dimm board to naomi
*/
const u32 GDCartridge::DES_LEFTSWAP[] = {
0x00000000, 0x00000001, 0x00000100, 0x00000101, 0x00010000, 0x00010001, 0x00010100, 0x00010101,
0x01000000, 0x01000001, 0x01000100, 0x01000101, 0x01010000, 0x01010001, 0x01010100, 0x01010101
};
const u32 GDCartridge::DES_RIGHTSWAP[] = {
0x00000000, 0x01000000, 0x00010000, 0x01010000, 0x00000100, 0x01000100, 0x00010100, 0x01010100,
0x00000001, 0x01000001, 0x00010001, 0x01010001, 0x00000101, 0x01000101, 0x00010101, 0x01010101,
};
const u32 GDCartridge::DES_SBOX1[] = {
0x00808200, 0x00000000, 0x00008000, 0x00808202, 0x00808002, 0x00008202, 0x00000002, 0x00008000,
0x00000200, 0x00808200, 0x00808202, 0x00000200, 0x00800202, 0x00808002, 0x00800000, 0x00000002,
0x00000202, 0x00800200, 0x00800200, 0x00008200, 0x00008200, 0x00808000, 0x00808000, 0x00800202,
0x00008002, 0x00800002, 0x00800002, 0x00008002, 0x00000000, 0x00000202, 0x00008202, 0x00800000,
0x00008000, 0x00808202, 0x00000002, 0x00808000, 0x00808200, 0x00800000, 0x00800000, 0x00000200,
0x00808002, 0x00008000, 0x00008200, 0x00800002, 0x00000200, 0x00000002, 0x00800202, 0x00008202,
0x00808202, 0x00008002, 0x00808000, 0x00800202, 0x00800002, 0x00000202, 0x00008202, 0x00808200,
0x00000202, 0x00800200, 0x00800200, 0x00000000, 0x00008002, 0x00008200, 0x00000000, 0x00808002
};
const u32 GDCartridge::DES_SBOX2[] = {
0x40084010, 0x40004000, 0x00004000, 0x00084010, 0x00080000, 0x00000010, 0x40080010, 0x40004010,
0x40000010, 0x40084010, 0x40084000, 0x40000000, 0x40004000, 0x00080000, 0x00000010, 0x40080010,
0x00084000, 0x00080010, 0x40004010, 0x00000000, 0x40000000, 0x00004000, 0x00084010, 0x40080000,
0x00080010, 0x40000010, 0x00000000, 0x00084000, 0x00004010, 0x40084000, 0x40080000, 0x00004010,
0x00000000, 0x00084010, 0x40080010, 0x00080000, 0x40004010, 0x40080000, 0x40084000, 0x00004000,
0x40080000, 0x40004000, 0x00000010, 0x40084010, 0x00084010, 0x00000010, 0x00004000, 0x40000000,
0x00004010, 0x40084000, 0x00080000, 0x40000010, 0x00080010, 0x40004010, 0x40000010, 0x00080010,
0x00084000, 0x00000000, 0x40004000, 0x00004010, 0x40000000, 0x40080010, 0x40084010, 0x00084000
};
const u32 GDCartridge::DES_SBOX3[] = {
0x00000104, 0x04010100, 0x00000000, 0x04010004, 0x04000100, 0x00000000, 0x00010104, 0x04000100,
0x00010004, 0x04000004, 0x04000004, 0x00010000, 0x04010104, 0x00010004, 0x04010000, 0x00000104,
0x04000000, 0x00000004, 0x04010100, 0x00000100, 0x00010100, 0x04010000, 0x04010004, 0x00010104,
0x04000104, 0x00010100, 0x00010000, 0x04000104, 0x00000004, 0x04010104, 0x00000100, 0x04000000,
0x04010100, 0x04000000, 0x00010004, 0x00000104, 0x00010000, 0x04010100, 0x04000100, 0x00000000,
0x00000100, 0x00010004, 0x04010104, 0x04000100, 0x04000004, 0x00000100, 0x00000000, 0x04010004,
0x04000104, 0x00010000, 0x04000000, 0x04010104, 0x00000004, 0x00010104, 0x00010100, 0x04000004,
0x04010000, 0x04000104, 0x00000104, 0x04010000, 0x00010104, 0x00000004, 0x04010004, 0x00010100
};
const u32 GDCartridge::DES_SBOX4[] = {
0x80401000, 0x80001040, 0x80001040, 0x00000040, 0x00401040, 0x80400040, 0x80400000, 0x80001000,
0x00000000, 0x00401000, 0x00401000, 0x80401040, 0x80000040, 0x00000000, 0x00400040, 0x80400000,
0x80000000, 0x00001000, 0x00400000, 0x80401000, 0x00000040, 0x00400000, 0x80001000, 0x00001040,
0x80400040, 0x80000000, 0x00001040, 0x00400040, 0x00001000, 0x00401040, 0x80401040, 0x80000040,
0x00400040, 0x80400000, 0x00401000, 0x80401040, 0x80000040, 0x00000000, 0x00000000, 0x00401000,
0x00001040, 0x00400040, 0x80400040, 0x80000000, 0x80401000, 0x80001040, 0x80001040, 0x00000040,
0x80401040, 0x80000040, 0x80000000, 0x00001000, 0x80400000, 0x80001000, 0x00401040, 0x80400040,
0x80001000, 0x00001040, 0x00400000, 0x80401000, 0x00000040, 0x00400000, 0x00001000, 0x00401040
};
const u32 GDCartridge::DES_SBOX5[] = {
0x00000080, 0x01040080, 0x01040000, 0x21000080, 0x00040000, 0x00000080, 0x20000000, 0x01040000,
0x20040080, 0x00040000, 0x01000080, 0x20040080, 0x21000080, 0x21040000, 0x00040080, 0x20000000,
0x01000000, 0x20040000, 0x20040000, 0x00000000, 0x20000080, 0x21040080, 0x21040080, 0x01000080,
0x21040000, 0x20000080, 0x00000000, 0x21000000, 0x01040080, 0x01000000, 0x21000000, 0x00040080,
0x00040000, 0x21000080, 0x00000080, 0x01000000, 0x20000000, 0x01040000, 0x21000080, 0x20040080,
0x01000080, 0x20000000, 0x21040000, 0x01040080, 0x20040080, 0x00000080, 0x01000000, 0x21040000,
0x21040080, 0x00040080, 0x21000000, 0x21040080, 0x01040000, 0x00000000, 0x20040000, 0x21000000,
0x00040080, 0x01000080, 0x20000080, 0x00040000, 0x00000000, 0x20040000, 0x01040080, 0x20000080
};
const u32 GDCartridge::DES_SBOX6[] = {
0x10000008, 0x10200000, 0x00002000, 0x10202008, 0x10200000, 0x00000008, 0x10202008, 0x00200000,
0x10002000, 0x00202008, 0x00200000, 0x10000008, 0x00200008, 0x10002000, 0x10000000, 0x00002008,
0x00000000, 0x00200008, 0x10002008, 0x00002000, 0x00202000, 0x10002008, 0x00000008, 0x10200008,
0x10200008, 0x00000000, 0x00202008, 0x10202000, 0x00002008, 0x00202000, 0x10202000, 0x10000000,
0x10002000, 0x00000008, 0x10200008, 0x00202000, 0x10202008, 0x00200000, 0x00002008, 0x10000008,
0x00200000, 0x10002000, 0x10000000, 0x00002008, 0x10000008, 0x10202008, 0x00202000, 0x10200000,
0x00202008, 0x10202000, 0x00000000, 0x10200008, 0x00000008, 0x00002000, 0x10200000, 0x00202008,
0x00002000, 0x00200008, 0x10002008, 0x00000000, 0x10202000, 0x10000000, 0x00200008, 0x10002008
};
const u32 GDCartridge::DES_SBOX7[] = {
0x00100000, 0x02100001, 0x02000401, 0x00000000, 0x00000400, 0x02000401, 0x00100401, 0x02100400,
0x02100401, 0x00100000, 0x00000000, 0x02000001, 0x00000001, 0x02000000, 0x02100001, 0x00000401,
0x02000400, 0x00100401, 0x00100001, 0x02000400, 0x02000001, 0x02100000, 0x02100400, 0x00100001,
0x02100000, 0x00000400, 0x00000401, 0x02100401, 0x00100400, 0x00000001, 0x02000000, 0x00100400,
0x02000000, 0x00100400, 0x00100000, 0x02000401, 0x02000401, 0x02100001, 0x02100001, 0x00000001,
0x00100001, 0x02000000, 0x02000400, 0x00100000, 0x02100400, 0x00000401, 0x00100401, 0x02100400,
0x00000401, 0x02000001, 0x02100401, 0x02100000, 0x00100400, 0x00000000, 0x00000001, 0x02100401,
0x00000000, 0x00100401, 0x02100000, 0x00000400, 0x02000001, 0x02000400, 0x00000400, 0x00100001
};
const u32 GDCartridge::DES_SBOX8[] = {
0x08000820, 0x00000800, 0x00020000, 0x08020820, 0x08000000, 0x08000820, 0x00000020, 0x08000000,
0x00020020, 0x08020000, 0x08020820, 0x00020800, 0x08020800, 0x00020820, 0x00000800, 0x00000020,
0x08020000, 0x08000020, 0x08000800, 0x00000820, 0x00020800, 0x00020020, 0x08020020, 0x08020800,
0x00000820, 0x00000000, 0x00000000, 0x08020020, 0x08000020, 0x08000800, 0x00020820, 0x00020000,
0x00020820, 0x00020000, 0x08020800, 0x00000800, 0x00000020, 0x08020020, 0x00000800, 0x00020820,
0x08000800, 0x00000020, 0x08000020, 0x08020000, 0x08020020, 0x08000000, 0x00020000, 0x08000820,
0x00000000, 0x08020820, 0x00020020, 0x08000020, 0x08020000, 0x08000800, 0x08000820, 0x00000000,
0x08020820, 0x00020800, 0x00020800, 0x00000820, 0x00000820, 0x00020020, 0x08000000, 0x08020800
};
const u32 GDCartridge::DES_MASK_TABLE[] = {
0x24000000, 0x10000000, 0x08000000, 0x02080000, 0x01000000,
0x00200000, 0x00100000, 0x00040000, 0x00020000, 0x00010000,
0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200,
0x00000100, 0x00000020, 0x00000010, 0x00000008, 0x00000004,
0x00000002, 0x00000001, 0x20000000, 0x10000000, 0x08000000,
0x04000000, 0x02000000, 0x01000000, 0x00200000, 0x00100000,
0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00002000,
0x00001000, 0x00000808, 0x00000400, 0x00000200, 0x00000100,
0x00000020, 0x00000011, 0x00000004, 0x00000002
};
const u8 GDCartridge::DES_ROTATE_TABLE[16] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
void GDCartridge::permutate(u32 &a, u32 &b, u32 m, int shift)
{
u32 temp = ((a>>shift) ^ b) & m;
a ^= temp<<shift;
b ^= temp;
}
void GDCartridge::des_generate_subkeys(const u64 key, u32 *subkeys)
{
u32 l = key >> 32;
u32 r = key;
permutate(r, l, 0x0f0f0f0f, 4);
permutate(r, l, 0x10101010, 0);
l = (DES_LEFTSWAP[(l >> 0) & 0xf] << 3) |
(DES_LEFTSWAP[(l >> 8) & 0xf] << 2) |
(DES_LEFTSWAP[(l >> 16) & 0xf] << 1) |
(DES_LEFTSWAP[(l >> 24) & 0xf] << 0) |
(DES_LEFTSWAP[(l >> 5) & 0xf] << 7) |
(DES_LEFTSWAP[(l >> 13) & 0xf] << 6) |
(DES_LEFTSWAP[(l >> 21) & 0xf] << 5) |
(DES_LEFTSWAP[(l >> 29) & 0xf] << 4);
r = (DES_RIGHTSWAP[(r >> 1) & 0xf] << 3) |
(DES_RIGHTSWAP[(r >> 9) & 0xf] << 2) |
(DES_RIGHTSWAP[(r >> 17) & 0xf] << 1) |
(DES_RIGHTSWAP[(r >> 25) & 0xf] << 0) |
(DES_RIGHTSWAP[(r >> 4) & 0xf] << 7) |
(DES_RIGHTSWAP[(r >> 12) & 0xf] << 6) |
(DES_RIGHTSWAP[(r >> 20) & 0xf] << 5) |
(DES_RIGHTSWAP[(r >> 28) & 0xf] << 4);
l &= 0x0fffffff;
r &= 0x0fffffff;
for(int round = 0; round < 16; round++) {
l = ((l << DES_ROTATE_TABLE[round]) | (l >> (28 - DES_ROTATE_TABLE[round]))) & 0x0fffffff;
r = ((r << DES_ROTATE_TABLE[round]) | (r >> (28 - DES_ROTATE_TABLE[round]))) & 0x0fffffff;
subkeys[round*2] =
((l << 4) & DES_MASK_TABLE[0]) |
((l << 28) & DES_MASK_TABLE[1]) |
((l << 14) & DES_MASK_TABLE[2]) |
((l << 18) & DES_MASK_TABLE[3]) |
((l << 6) & DES_MASK_TABLE[4]) |
((l << 9) & DES_MASK_TABLE[5]) |
((l >> 1) & DES_MASK_TABLE[6]) |
((l << 10) & DES_MASK_TABLE[7]) |
((l << 2) & DES_MASK_TABLE[8]) |
((l >> 10) & DES_MASK_TABLE[9]) |
((r >> 13) & DES_MASK_TABLE[10])|
((r >> 4) & DES_MASK_TABLE[11])|
((r << 6) & DES_MASK_TABLE[12])|
((r >> 1) & DES_MASK_TABLE[13])|
((r >> 14) & DES_MASK_TABLE[14])|
((r >> 0) & DES_MASK_TABLE[15])|
((r >> 5) & DES_MASK_TABLE[16])|
((r >> 10) & DES_MASK_TABLE[17])|
((r >> 3) & DES_MASK_TABLE[18])|
((r >> 18) & DES_MASK_TABLE[19])|
((r >> 26) & DES_MASK_TABLE[20])|
((r >> 24) & DES_MASK_TABLE[21]);
subkeys[round*2+1] =
((l << 15) & DES_MASK_TABLE[22])|
((l << 17) & DES_MASK_TABLE[23])|
((l << 10) & DES_MASK_TABLE[24])|
((l << 22) & DES_MASK_TABLE[25])|
((l >> 2) & DES_MASK_TABLE[26])|
((l << 1) & DES_MASK_TABLE[27])|
((l << 16) & DES_MASK_TABLE[28])|
((l << 11) & DES_MASK_TABLE[29])|
((l << 3) & DES_MASK_TABLE[30])|
((l >> 6) & DES_MASK_TABLE[31])|
((l << 15) & DES_MASK_TABLE[32])|
((l >> 4) & DES_MASK_TABLE[33])|
((r >> 2) & DES_MASK_TABLE[34])|
((r << 8) & DES_MASK_TABLE[35])|
((r >> 14) & DES_MASK_TABLE[36])|
((r >> 9) & DES_MASK_TABLE[37])|
((r >> 0) & DES_MASK_TABLE[38])|
((r << 7) & DES_MASK_TABLE[39])|
((r >> 7) & DES_MASK_TABLE[40])|
((r >> 3) & DES_MASK_TABLE[41])|
((r << 2) & DES_MASK_TABLE[42])|
((r >> 21) & DES_MASK_TABLE[43]);
}
}
template<bool decrypt>
u64 GDCartridge::des_encrypt_decrypt(u64 src, const u32 *des_subkeys)
{
u32 r = (src & 0x00000000ffffffffULL) >> 0;
u32 l = (src & 0xffffffff00000000ULL) >> 32;
permutate(l, r, 0x0f0f0f0f, 4);
permutate(l, r, 0x0000ffff, 16);
permutate(r, l, 0x33333333, 2);
permutate(r, l, 0x00ff00ff, 8);
permutate(l, r, 0x55555555, 1);
int subkey;
if(decrypt)
subkey = 30;
else
subkey = 0;
for(int i = 0; i < 32 ; i+=4) {
u32 temp;
temp = ((r<<1) | (r>>31)) ^ des_subkeys[subkey];
l ^= DES_SBOX8[ (temp>>0) & 0x3f ];
l ^= DES_SBOX6[ (temp>>8) & 0x3f ];
l ^= DES_SBOX4[ (temp>>16) & 0x3f ];
l ^= DES_SBOX2[ (temp>>24) & 0x3f ];
subkey++;
temp = ((r>>3) | (r<<29)) ^ des_subkeys[subkey];
l ^= DES_SBOX7[ (temp>>0) & 0x3f ];
l ^= DES_SBOX5[ (temp>>8) & 0x3f ];
l ^= DES_SBOX3[ (temp>>16) & 0x3f ];
l ^= DES_SBOX1[ (temp>>24) & 0x3f ];
subkey++;
if(decrypt)
subkey -= 4;
temp = ((l<<1) | (l>>31)) ^ des_subkeys[subkey];
r ^= DES_SBOX8[ (temp>>0) & 0x3f ];
r ^= DES_SBOX6[ (temp>>8) & 0x3f ];
r ^= DES_SBOX4[ (temp>>16) & 0x3f ];
r ^= DES_SBOX2[ (temp>>24) & 0x3f ];
subkey++;
temp = ((l>>3) | (l<<29)) ^ des_subkeys[subkey];
r ^= DES_SBOX7[ (temp>>0) & 0x3f ];
r ^= DES_SBOX5[ (temp>>8) & 0x3f ];
r ^= DES_SBOX3[ (temp>>16) & 0x3f ];
r ^= DES_SBOX1[ (temp>>24) & 0x3f ];
subkey++;
if(decrypt)
subkey -= 4;
}
permutate(r, l, 0x55555555, 1);
permutate(l, r, 0x00ff00ff, 8);
permutate(l, r, 0x33333333, 2);
permutate(r, l, 0x0000ffff, 16);
permutate(r, l, 0x0f0f0f0f, 4);
return (u64(r) << 32) | u64(l);
}
u64 GDCartridge::rev64(u64 src)
{
u64 ret;
ret = ((src & 0x00000000000000ffULL) << 56)
| ((src & 0x000000000000ff00ULL) << 40)
| ((src & 0x0000000000ff0000ULL) << 24)
| ((src & 0x00000000ff000000ULL) << 8 )
| ((src & 0x000000ff00000000ULL) >> 8 )
| ((src & 0x0000ff0000000000ULL) >> 24)
| ((src & 0x00ff000000000000ULL) >> 40)
| ((src & 0xff00000000000000ULL) >> 56);
return ret;
}
void GDCartridge::find_file(const char *name, const u8 *dir_sector, u32 &file_start, u32 &file_size)
{
file_start = 0;
file_size = 0;
DEBUG_LOG(NAOMI, "Looking for file [%s]", name);
for(u32 pos = 0; pos < 2048; pos += dir_sector[pos]) {
int fnlen = 0;
if(!(dir_sector[pos+25] & 2)) {
int len = dir_sector[pos+32];
// printf("file: [%s]\n", &dir_sector[pos+33+fnlen]);
for(fnlen=0; fnlen < FILENAME_LENGTH; fnlen++) {
if((dir_sector[pos+33+fnlen] == ';') && (name[fnlen] == 0)) {
fnlen = FILENAME_LENGTH+1;
break;
}
if(dir_sector[pos+33+fnlen] != name[fnlen])
break;
if(fnlen == len) {
if(name[fnlen] == 0)
fnlen = FILENAME_LENGTH+1;
else
fnlen = FILENAME_LENGTH;
}
}
}
if(fnlen == FILENAME_LENGTH+1) {
// start sector and size of file
file_start = ((dir_sector[pos+2] << 0) |
(dir_sector[pos+3] << 8) |
(dir_sector[pos+4] << 16) |
(dir_sector[pos+5] << 24));
file_size = ((dir_sector[pos+10] << 0) |
(dir_sector[pos+11] << 8) |
(dir_sector[pos+12] << 16) |
(dir_sector[pos+13] << 24));
DEBUG_LOG(NAOMI, "start %08x size %08x", file_start, file_size);
break;
}
if (dir_sector[pos] == 0)
break;
}
}
void GDCartridge::read_gdrom(Disc *gdrom, u32 sector, u8* dst, u32 count)
{
gdrom->ReadSectors(sector + 150, count, dst, 2048);
}
void GDCartridge::device_start()
{
if (dimm_data != NULL)
{
free(dimm_data);
dimm_data = NULL;
}
dimm_data_size = 0;
char name[128];
memset(name,'\0',128);
u64 key;
u8 netpic = 0;
const u8 *picdata = this->RomPtr;
if (RomSize > 0 && gdrom_name != NULL)
{
if (RomSize >= 0x4000) {
DEBUG_LOG(NAOMI, "Real PIC binary found");
for(int i=0;i<7;i++)
name[i] = picdata[0x7c0+i*2];
for(int i=0;i<7;i++)
name[i+7] = picdata[0x7e0+i*2];
key = 0;
for(int i=0;i<7;i++)
key |= u64(picdata[0x780+i*2]) << (56 - i*8);
key |= picdata[0x7a0];
netpic = picdata[0x6ee];
} else {
// use extracted pic data
//printf("This PIC key hasn't been converted to a proper PIC binary yet!\n");
memcpy(name, picdata+33, 7);
memcpy(name+7, picdata+25, 7);
key =((u64(picdata[0x31]) << 56) |
(u64(picdata[0x32]) << 48) |
(u64(picdata[0x33]) << 40) |
(u64(picdata[0x34]) << 32) |
(u64(picdata[0x35]) << 24) |
(u64(picdata[0x36]) << 16) |
(u64(picdata[0x37]) << 8) |
(u64(picdata[0x29]) << 0));
}
DEBUG_LOG(NAOMI, "key is %08x%08x", (u32)((key & 0xffffffff00000000ULL)>>32), (u32)(key & 0x00000000ffffffffULL));
u8 buffer[2048];
std::string gdrom_path = get_game_basename() + "/" + gdrom_name;
Disc *gdrom = OpenDisc((gdrom_path + ".chd").c_str());
if (gdrom == nullptr)
gdrom = OpenDisc((gdrom_path + ".gdi").c_str());
if (gdrom_parent_name != nullptr && gdrom == nullptr)
{
std::string gdrom_parent_path = get_game_dir() + "/" + gdrom_parent_name + "/" + gdrom_name;
gdrom = OpenDisc((gdrom_parent_path + ".chd").c_str());
if (gdrom == nullptr)
gdrom = OpenDisc((gdrom_parent_path + ".gdi").c_str());
}
if (gdrom == nullptr)
throw NaomiCartException("Naomi GDROM: Cannot open " + gdrom_path + ".chd or " + gdrom_path + ".gdi");
// primary volume descriptor
// read frame 0xb06e (frame=sector+150)
// dimm board firmware starts straight from this frame
read_gdrom(gdrom, (netpic ? 0 : 45000) + 16, buffer);
u32 path_table = ((buffer[0x8c+0] << 0) |
(buffer[0x8c+1] << 8) |
(buffer[0x8c+2] << 16) |
(buffer[0x8c+3] << 24));
// path table
read_gdrom(gdrom, path_table, buffer);
// directory
u8 dir_sector[2048];
// find data of file
u32 file_start, file_size;
if (netpic == 0) {
u32 dir = ((buffer[0x2 + 0] << 0) |
(buffer[0x2 + 1] << 8) |
(buffer[0x2 + 2] << 16) |
(buffer[0x2 + 3] << 24));
read_gdrom(gdrom, dir, dir_sector);
find_file(name, dir_sector, file_start, file_size);
if (file_start && (file_size == 0x100)) {
// read file
read_gdrom(gdrom, file_start, buffer);
// get "rom" file name
memset(name, '\0', 128);
memcpy(name, buffer + 0xc0, FILENAME_LENGTH - 1);
}
} else {
u32 i = 0;
while (i < 2048 && buffer[i] != 0)
{
if (buffer[i] == 3 && buffer[i + 8] == 'R' && buffer[i + 9] == 'O' && buffer[i + 10] == 'M') // find ROM dir
{
u32 dir = ((buffer[i + 2] << 0) |
(buffer[i + 3] << 8) |
(buffer[i + 4] << 16) |
(buffer[i + 5] << 24));
memcpy(name, "ROM.BIN", 7);
read_gdrom(gdrom, dir, dir_sector);
break;
}
i += buffer[i] + 8 + (buffer[i] & 1);
}
}
find_file(name, dir_sector, file_start, file_size);
if (file_start) {
u32 file_rounded_size = (file_size + 2047) & -2048;
for (dimm_data_size = 4096; dimm_data_size < file_rounded_size; dimm_data_size <<= 1)
;
dimm_data = (u8 *)malloc(dimm_data_size);
verify(dimm_data != NULL);
if (dimm_data_size != file_rounded_size)
memset(dimm_data + file_rounded_size, 0, dimm_data_size - file_rounded_size);
// read encrypted data into dimm_data
u32 sectors = file_rounded_size / 2048;
read_gdrom(gdrom, file_start, dimm_data, sectors);
// decrypt loaded data
u32 des_subkeys[32];
des_generate_subkeys(rev64(key), des_subkeys);
u32 progress = ~0;
for (u32 i = 0; i < file_rounded_size; i += 8)
{
const u32 new_progress = (u32)(((u64)i + 8) * 100 / file_rounded_size);
if (progress != new_progress)
{
if (loading_canceled)
break;
progress = new_progress;
char status_str[16];
sprintf(status_str, "Decrypting %d%%", progress);
gui_display_notification(status_str, 2000);
}
*(u64 *)(dimm_data + i) = des_encrypt_decrypt<true>(*(u64 *)(dimm_data + i), des_subkeys);
}
}
delete gdrom;
if (!dimm_data)
throw NaomiCartException("Naomi GDROM: Could not find the file to decrypt.");
}
}
void GDCartridge::device_reset()
{
dimm_cur_address = 0;
}
void *GDCartridge::GetDmaPtr(u32 &size)
{
if (dimm_data == NULL)
{
size = 0;
return NULL;
}
dimm_cur_address = DmaOffset & (dimm_data_size-1);
size = std::min(size, dimm_data_size - dimm_cur_address);
return dimm_data + dimm_cur_address;
}
void GDCartridge::AdvancePtr(u32 size)
{
dimm_cur_address += size;
if(dimm_cur_address >= dimm_data_size)
dimm_cur_address %= dimm_data_size;
}
bool GDCartridge::Read(u32 offset, u32 size, void *dst)
{
if (dimm_data == NULL)
{
*(u32 *)dst = 0;
return true;
}
u32 addr = offset & (dimm_data_size-1);
memcpy(dst, &dimm_data[addr], std::min(size, dimm_data_size - addr));
return true;
}
std::string GDCartridge::GetGameId()
{
if (dimm_data_size < 0x30 + 0x20)
return "(ROM too small)";
std::string game_id((char *)(dimm_data + 0x30), 0x20);
while (!game_id.empty() && game_id.back() == ' ')
game_id.pop_back();
return game_id;
}