flycast/core/hw/sh4/interpr/sh4_fpu.cpp

773 lines
13 KiB
C++

#include "types.h"
#include <cmath>
#include <cfloat>
#include "sh4_opcodes.h"
#include "../sh4_core.h"
#include "../sh4_rom.h"
#include "hw/sh4/sh4_mem.h"
#define sh4op(str) void DYNACALL str (u32 op)
#define GetN(str) ((str>>8) & 0xf)
#define GetM(str) ((str>>4) & 0xf)
#define GetImm4(str) ((str>>0) & 0xf)
#define GetImm8(str) ((str>>0) & 0xff)
#define GetImm12(str) ((str>>0) & 0xfff)
#define GetDN(opc) ((op&0x0F00)>>9)
#define GetDM(opc) ((op&0x00F0)>>5)
#define pi (3.14159265f)
void iNimp(const char*str);
#define IS_DENORMAL(f) (((*(f))&0x7f800000) == 0)
#define ReadMemU64(to,addr) to=ReadMem64(addr)
#define ReadMemU32(to,addr) to=ReadMem32(addr)
#define ReadMemS32(to,addr) to=(s32)ReadMem32(addr)
#define ReadMemS16(to,addr) to=(u32)(s32)(s16)ReadMem16(addr)
#define ReadMemS8(to,addr) to=(u32)(s32)(s8)ReadMem8(addr)
//Base,offset format
#define ReadMemBOU32(to,addr,offset) ReadMemU32(to,addr+offset)
#define ReadMemBOS16(to,addr,offset) ReadMemS16(to,addr+offset)
#define ReadMemBOS8(to,addr,offset) ReadMemS8(to,addr+offset)
//Write Mem Macros
#define WriteMemU64(addr,data) WriteMem64(addr,(u64)data)
#define WriteMemU32(addr,data) WriteMem32(addr,(u32)data)
#define WriteMemU16(addr,data) WriteMem16(addr,(u16)data)
#define WriteMemU8(addr,data) WriteMem8(addr,(u8)data)
//Base,offset format
#define WriteMemBOU32(addr,offset,data) WriteMemU32(addr+offset,data)
#define WriteMemBOU16(addr,offset,data) WriteMemU16(addr+offset,data)
#define WriteMemBOU8(addr,offset,data) WriteMemU8(addr+offset,data)
INLINE void Denorm32(float &value)
{
if (fpscr.DN)
{
u32* v=(u32*)&value;
if (IS_DENORMAL(v) && (*v&0x7fFFFFFF)!=0)
{
*v&=0x80000000;
//printf("Denormal ..\n");
}
if ((*v<=0x007FFFFF) && *v>0)
{
*v=0;
INFO_LOG(INTERPRETER, "Fixed +denorm");
}
else if ((*v<=0x807FFFFF) && *v>0x80000000)
{
*v=0x80000000;
INFO_LOG(INTERPRETER, "Fixed -denorm");
}
}
}
#define CHECK_FPU_32(v) v = fixNaN(v)
#define CHECK_FPU_64(v)
//fadd <FREG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_0000)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
fr[n] += fr[m];
CHECK_FPU_32(fr[n]);
}
else
{
u32 n = (op >> 9) & 0x07;
u32 m = (op >> 5) & 0x07;
double drn=GetDR(n), drm=GetDR(m);
drn += drm;
CHECK_FPU_64(drn);
SetDR(n,drn);
}
}
//fsub <FREG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_0001)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
fr[n] -= fr[m];
CHECK_FPU_32(fr[n]);
}
else
{
u32 n = (op >> 9) & 0x07;
u32 m = (op >> 5) & 0x07;
double drn=GetDR(n), drm=GetDR(m);
drn-=drm;
//dr[n] -= dr[m];
SetDR(n,drn);
}
}
//fmul <FREG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_0010)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
fr[n] *= fr[m];
CHECK_FPU_32(fr[n]);
}
else
{
u32 n = (op >> 9) & 0x07;
u32 m = (op >> 5) & 0x07;
double drn=GetDR(n), drm=GetDR(m);
drn*=drm;
//dr[n] *= dr[m];
SetDR(n,drn);
}
}
//fdiv <FREG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_0011)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
fr[n] /= fr[m];
CHECK_FPU_32(fr[n]);
}
else
{
u32 n = (op >> 9) & 0x07;
u32 m = (op >> 5) & 0x07;
double drn=GetDR(n), drm=GetDR(m);
drn/=drm;
SetDR(n,drn);
}
}
//fcmp/eq <FREG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_0100)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
sr.T = !!(fr[m] == fr[n]);
}
else
{
u32 n = (op >> 9) & 0x07;
u32 m = (op >> 5) & 0x07;
sr.T = !!(GetDR(m) == GetDR(n));
}
}
//fcmp/gt <FREG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_0101)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
if (fr[n] > fr[m])
sr.T = 1;
else
sr.T = 0;
}
else
{
u32 n = (op >> 9) & 0x07;
u32 m = (op >> 5) & 0x07;
if (GetDR(n) > GetDR(m))
sr.T = 1;
else
sr.T = 0;
}
}
//All memory opcodes are here
//fmov.s @(R0,<REG_M>),<FREG_N>
sh4op(i1111_nnnn_mmmm_0110)
{
if (fpscr.SZ == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
ReadMemU32(fr_hex[n],r[m] + r[0]);
}
else
{
u32 n = GetN(op)>>1;
u32 m = GetM(op);
if (((op >> 8) & 0x1) == 0)
{
ReadMemU64(dr_hex[n],r[m] + r[0]);
}
else
{
ReadMemU64(xd_hex[n],r[m] + r[0]);
}
}
}
//fmov.s <FREG_M>,@(R0,<REG_N>)
sh4op(i1111_nnnn_mmmm_0111)
{
if (fpscr.SZ == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
WriteMem32(r[0] + r[n], fr_hex[m]);
}
else
{
u32 n = GetN(op);
u32 m = GetM(op)>>1;
if (((op >> 4) & 0x1) == 0)
{
WriteMemU64(r[n] + r[0],dr_hex[m]);
}
else
{
WriteMemU64(r[n] + r[0],xd_hex[m]);
}
}
}
//fmov.s @<REG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_1000)
{
if (fpscr.SZ == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
ReadMemU32(fr_hex[n],r[m]);
}
else
{
u32 n = GetN(op)>>1;
u32 m = GetM(op);
if (((op >> 8) & 0x1) == 0)
{
ReadMemU64(dr_hex[n],r[m]);
}
else
{
ReadMemU64(xd_hex[n],r[m]);
}
}
}
//fmov.s @<REG_M>+,<FREG_N>
sh4op(i1111_nnnn_mmmm_1001)
{
if (fpscr.SZ == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
ReadMemU32(fr_hex[n],r[m]);
r[m] += 4;
}
else
{
u32 n = GetN(op)>>1;
u32 m = GetM(op);
if (((op >> 8) & 0x1) == 0)
{
ReadMemU64(dr_hex[n],r[m]);
}
else
{
ReadMemU64(xd_hex[n],r[m] );
}
r[m] += 8;
}
}
//fmov.s <FREG_M>,@<REG_N>
sh4op(i1111_nnnn_mmmm_1010)
{
if (fpscr.SZ == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
WriteMemU32(r[n], fr_hex[m]);
}
else
{
u32 n = GetN(op);
u32 m = GetM(op)>>1;
if (((op >> 4) & 0x1) == 0)
{
WriteMemU64(r[n], dr_hex[m]);
}
else
{
WriteMemU64(r[n], xd_hex[m]);
}
}
}
//fmov.s <FREG_M>,@-<REG_N>
sh4op(i1111_nnnn_mmmm_1011)
{
if (fpscr.SZ == 0)
{
//iNimp("fmov.s <FREG_M>,@-<REG_N>");
u32 n = GetN(op);
u32 m = GetM(op);
u32 addr = r[n] - 4;
WriteMemU32(addr, fr_hex[m]);
r[n] = addr;
}
else
{
u32 n = GetN(op);
u32 m = GetM(op)>>1;
u32 addr = r[n] - 8;
if (((op >> 4) & 0x1) == 0)
{
WriteMemU64(addr, dr_hex[m]);
}
else
{
WriteMemU64(addr, xd_hex[m]);
}
r[n] = addr;
}
}
//end of memory opcodes
//fmov <FREG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_1100)
{
if (fpscr.SZ == 0)
{
u32 n = GetN(op);
u32 m = GetM(op);
fr[n] = fr[m];
}
else
{
u32 n = GetN(op)>>1;
u32 m = GetM(op)>>1;
switch ((op >> 4) & 0x11)
{
case 0x00:
//dr[n] = dr[m];
dr_hex[n] = dr_hex[m];
break;
case 0x01:
//dr[n] = xd[m];
dr_hex[n] = xd_hex[m];
break;
case 0x10:
//xd[n] = dr[m];
xd_hex[n] = dr_hex[m];
break;
case 0x11:
//xd[n] = xd[m];
xd_hex[n] = xd_hex[m];
break;
}
}
}
//fabs <FREG_N>
sh4op(i1111_nnnn_0101_1101)
{
int n=GetN(op);
if (fpscr.PR ==0)
fr_hex[n]&=0x7FFFFFFF;
else
fr_hex[(n&0xE)]&=0x7FFFFFFF;
}
//FSCA FPUL, DRn//F0FD//1111_nnn0_1111_1101
sh4op(i1111_nnn0_1111_1101)
{
int n=GetN(op) & 0xE;
//cosine(x) = sine(pi/2 + x).
if (fpscr.PR==0)
{
u32 pi_index=fpul&0xFFFF;
#ifdef NATIVE_FSCA
float rads=pi_index/(65536.0f/2)*pi;
fr[n + 0] = sinf(rads);
fr[n + 1] = cosf(rads);
CHECK_FPU_32(fr[n]);
CHECK_FPU_32(fr[n+1]);
#else
fr[n + 0] = sin_table[pi_index].u[0];
fr[n + 1] = sin_table[pi_index].u[1];
#endif
}
else
iNimp("FSCA : Double precision mode");
}
//FSRRA //1111_nnnn_0111_1101
sh4op(i1111_nnnn_0111_1101)
{
// What about double precision?
u32 n = GetN(op);
if (fpscr.PR==0)
{
fr[n] = (float)(1/sqrtf(fr[n]));
CHECK_FPU_32(fr[n]);
}
else
iNimp("FSRRA : Double precision mode");
}
//fcnvds <DR_N>,FPUL
sh4op(i1111_nnnn_1011_1101)
{
if (fpscr.PR == 1)
{
u32 n = (op >> 9) & 0x07;
u32*p=&fpul;
*((float*)p) = (float)GetDR(n);
}
else
{
iNimp("fcnvds <DR_N>,FPUL,m=0");
}
}
//fcnvsd FPUL,<DR_N>
sh4op(i1111_nnnn_1010_1101)
{
if (fpscr.PR == 1)
{
u32 n = (op >> 9) & 0x07;
u32* p = &fpul;
SetDR(n,(double)*((float*)p));
}
else
{
iNimp("fcnvsd FPUL,<DR_N>,m=0");
}
}
//fipr <FV_M>,<FV_N>
sh4op(i1111_nnmm_1110_1101)
{
int n=GetN(op)&0xC;
int m=(GetN(op)&0x3)<<2;
if (fpscr.PR == 0)
{
#if HOST_CPU == CPU_X86 || HOST_CPU == CPU_X64
// multiplications are done with 28 bits of precision (53 - 25) and the final sum at 30 bits
double idp = reduce_precision<25>((double)fr[n + 0] * fr[m + 0]);
idp += reduce_precision<25>((double)fr[n + 1] * fr[m + 1]);
idp += reduce_precision<25>((double)fr[n + 2] * fr[m + 2]);
idp += reduce_precision<25>((double)fr[n + 3] * fr[m + 3]);
fr[n + 3] = (float)fixNaN64(idp);
#else
float rv = fr[n + 0] * fr[m + 0];
rv += fr[n + 1] * fr[m + 1];
rv += fr[n + 2] * fr[m + 2];
rv += fr[n + 3] * fr[m + 3];
CHECK_FPU_32(rv);
fr[n + 3] = rv;
#endif
}
else
{
die("FIPR Precision=1");
}
}
//fldi0 <FREG_N>
sh4op(i1111_nnnn_1000_1101)
{
if (fpscr.PR!=0)
return;
u32 n = GetN(op);
fr[n] = 0.0f;
}
//fldi1 <FREG_N>
sh4op(i1111_nnnn_1001_1101)
{
if (fpscr.PR!=0)
return;
u32 n = GetN(op);
fr[n] = 1.0f;
}
//flds <FREG_N>,FPUL
sh4op(i1111_nnnn_0001_1101)
{
u32 n = GetN(op);
fpul = fr_hex[n];
}
//fsts FPUL,<FREG_N>
sh4op(i1111_nnnn_0000_1101)
{
u32 n = GetN(op);
fr_hex[n] = fpul;
}
//float FPUL,<FREG_N>
sh4op(i1111_nnnn_0010_1101)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
fr[n] = (float)(int)fpul;
}
else
{
u32 n = (op >> 9) & 0x07;
SetDR(n, (double)(int)fpul);
}
}
//fneg <FREG_N>
sh4op(i1111_nnnn_0100_1101)
{
u32 n = GetN(op);
if (fpscr.PR ==0)
fr_hex[n]^=0x80000000;
else
fr_hex[(n&0xE)]^=0x80000000;
}
//frchg
sh4op(i1111_1011_1111_1101)
{
fpscr.FR = 1 - fpscr.FR;
UpdateFPSCR();
}
//fschg
sh4op(i1111_0011_1111_1101)
{
//iNimp("fschg");
fpscr.SZ = 1 - fpscr.SZ;
}
//fsqrt <FREG_N>
sh4op(i1111_nnnn_0110_1101)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
fr[n] = sqrtf(fr[n]);
CHECK_FPU_32(fr[n]);
}
else
{
//Operation _can_ be done on sh4
u32 n = GetN(op)>>1;
SetDR(n,sqrt(GetDR(n)));
}
}
//ftrc <FREG_N>, FPUL
sh4op(i1111_nnnn_0011_1101)
{
if (fpscr.PR == 0)
{
u32 n = GetN(op);
fpul = (u32)(s32)min(fr[n], 2147483520.0f); // IEEE 754: 0x4effffff
// Intel CPUs convert out of range float numbers to 0x80000000. Manually set the correct sign
if (fpul == 0x80000000)
{
if (*(int *)&fr[n] > 0) // Using integer math to avoid issues with Inf and NaN
fpul--;
}
}
else
{
u32 n = (op >> 9) & 0x07;
f64 f = GetDR(n);
fpul = (u32)(s32)f;
// Intel CPUs convert out of range float numbers to 0x80000000. Manually set the correct sign
if (fpul == 0x80000000)
{
if (*(s64 *)&f > 0) // Using integer math to avoid issues with Inf and NaN
fpul--;
}
}
}
//fmac <FREG_0>,<FREG_M>,<FREG_N>
sh4op(i1111_nnnn_mmmm_1110)
{
//iNimp("fmac <FREG_0>,<FREG_M>,<FREG_N>");
if (fpscr.PR==0)
{
u32 n = GetN(op);
u32 m = GetM(op);
fr[n] =(f32) ((f64)fr[n]+(f64)fr[0] * (f64)fr[m]);
CHECK_FPU_32(fr[n]);
}
else
{
iNimp("fmac <DREG_0>,<DREG_M>,<DREG_N>");
}
}
//ftrv xmtrx,<FV_N>
sh4op(i1111_nn01_1111_1101)
{
//iNimp("ftrv xmtrx,<FV_N>");
/*
XF[0] XF[4] XF[8] XF[12] FR[n] FR[n]
XF[1] XF[5] XF[9] XF[13] * FR[n+1] -> FR[n+1]
XF[2] XF[6] XF[10] XF[14] FR[n+2] FR[n+2]
XF[3] XF[7] XF[11] XF[15] FR[n+3] FR[n+3]
gota love linear algebra !
*/
u32 n=GetN(op)&0xC;
if (fpscr.PR==0)
{
#if HOST_CPU == CPU_X86 || HOST_CPU == CPU_X64
double v1 = reduce_precision<25>((double)xf[0] * fr[n + 0]) +
reduce_precision<25>((double)xf[4] * fr[n + 1]) +
reduce_precision<25>((double)xf[8] * fr[n + 2]) +
reduce_precision<25>((double)xf[12] * fr[n + 3]);
double v2 = reduce_precision<25>((double)xf[1] * fr[n + 0]) +
reduce_precision<25>((double)xf[5] * fr[n + 1]) +
reduce_precision<25>((double)xf[9] * fr[n + 2]) +
reduce_precision<25>((double)xf[13] * fr[n + 3]);
double v3 = reduce_precision<25>((double)xf[2] * fr[n + 0]) +
reduce_precision<25>((double)xf[6] * fr[n + 1]) +
reduce_precision<25>((double)xf[10] * fr[n + 2]) +
reduce_precision<25>((double)xf[14] * fr[n + 3]);
double v4 = reduce_precision<25>((double)xf[3] * fr[n + 0]) +
reduce_precision<25>((double)xf[7] * fr[n + 1]) +
reduce_precision<25>((double)xf[11] * fr[n + 2]) +
reduce_precision<25>((double)xf[15] * fr[n + 3]);
fr[n + 0] = (float)fixNaN64(v1);
fr[n + 1] = (float)fixNaN64(v2);
fr[n + 2] = (float)fixNaN64(v3);
fr[n + 3] = (float)fixNaN64(v4);
#else
float v1, v2, v3, v4;
v1 = xf[0] * fr[n + 0] +
xf[4] * fr[n + 1] +
xf[8] * fr[n + 2] +
xf[12] * fr[n + 3];
v2 = xf[1] * fr[n + 0] +
xf[5] * fr[n + 1] +
xf[9] * fr[n + 2] +
xf[13] * fr[n + 3];
v3 = xf[2] * fr[n + 0] +
xf[6] * fr[n + 1] +
xf[10] * fr[n + 2] +
xf[14] * fr[n + 3];
v4 = xf[3] * fr[n + 0] +
xf[7] * fr[n + 1] +
xf[11] * fr[n + 2] +
xf[15] * fr[n + 3];
CHECK_FPU_32(v1);
CHECK_FPU_32(v2);
CHECK_FPU_32(v3);
CHECK_FPU_32(v4);
fr[n + 0] = v1;
fr[n + 1] = v2;
fr[n + 2] = v3;
fr[n + 3] = v4;
#endif
}
else
{
iNimp("FTRV in dp mode");
}
}
void iNimp(const char*str)
{
WARN_LOG(INTERPRETER, "Unimplemented sh4 FPU instruction: %s", str);
//Sh4_int_Stop();
}