7855 lines
261 KiB
C++
7855 lines
261 KiB
C++
// Copyright 2015, VIXL authors
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of ARM Limited nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
|
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
|
|
|
|
#include <cmath>
|
|
|
|
#include "simulator-aarch64.h"
|
|
|
|
namespace vixl {
|
|
namespace aarch64 {
|
|
|
|
using vixl::internal::SimFloat16;
|
|
|
|
template <typename T>
|
|
bool IsFloat64() {
|
|
return false;
|
|
}
|
|
template <>
|
|
bool IsFloat64<double>() {
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool IsFloat32() {
|
|
return false;
|
|
}
|
|
template <>
|
|
bool IsFloat32<float>() {
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool IsFloat16() {
|
|
return false;
|
|
}
|
|
template <>
|
|
bool IsFloat16<Float16>() {
|
|
return true;
|
|
}
|
|
template <>
|
|
bool IsFloat16<SimFloat16>() {
|
|
return true;
|
|
}
|
|
|
|
template <>
|
|
double Simulator::FPDefaultNaN<double>() {
|
|
return kFP64DefaultNaN;
|
|
}
|
|
|
|
|
|
template <>
|
|
float Simulator::FPDefaultNaN<float>() {
|
|
return kFP32DefaultNaN;
|
|
}
|
|
|
|
|
|
template <>
|
|
SimFloat16 Simulator::FPDefaultNaN<SimFloat16>() {
|
|
return SimFloat16(kFP16DefaultNaN);
|
|
}
|
|
|
|
|
|
double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) {
|
|
if (src >= 0) {
|
|
return UFixedToDouble(src, fbits, round);
|
|
} else if (src == INT64_MIN) {
|
|
return -UFixedToDouble(src, fbits, round);
|
|
} else {
|
|
return -UFixedToDouble(-src, fbits, round);
|
|
}
|
|
}
|
|
|
|
|
|
double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) {
|
|
// An input of 0 is a special case because the result is effectively
|
|
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
|
|
if (src == 0) {
|
|
return 0.0;
|
|
}
|
|
|
|
// Calculate the exponent. The highest significant bit will have the value
|
|
// 2^exponent.
|
|
const int highest_significant_bit = 63 - CountLeadingZeros(src);
|
|
const int64_t exponent = highest_significant_bit - fbits;
|
|
|
|
return FPRoundToDouble(0, exponent, src, round);
|
|
}
|
|
|
|
|
|
float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) {
|
|
if (src >= 0) {
|
|
return UFixedToFloat(src, fbits, round);
|
|
} else if (src == INT64_MIN) {
|
|
return -UFixedToFloat(src, fbits, round);
|
|
} else {
|
|
return -UFixedToFloat(-src, fbits, round);
|
|
}
|
|
}
|
|
|
|
|
|
float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) {
|
|
// An input of 0 is a special case because the result is effectively
|
|
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
|
|
if (src == 0) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// Calculate the exponent. The highest significant bit will have the value
|
|
// 2^exponent.
|
|
const int highest_significant_bit = 63 - CountLeadingZeros(src);
|
|
const int32_t exponent = highest_significant_bit - fbits;
|
|
|
|
return FPRoundToFloat(0, exponent, src, round);
|
|
}
|
|
|
|
|
|
SimFloat16 Simulator::FixedToFloat16(int64_t src, int fbits, FPRounding round) {
|
|
if (src >= 0) {
|
|
return UFixedToFloat16(src, fbits, round);
|
|
} else if (src == INT64_MIN) {
|
|
return -UFixedToFloat16(src, fbits, round);
|
|
} else {
|
|
return -UFixedToFloat16(-src, fbits, round);
|
|
}
|
|
}
|
|
|
|
|
|
SimFloat16 Simulator::UFixedToFloat16(uint64_t src,
|
|
int fbits,
|
|
FPRounding round) {
|
|
// An input of 0 is a special case because the result is effectively
|
|
// subnormal: The exponent is encoded as 0 and there is no implicit 1 bit.
|
|
if (src == 0) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// Calculate the exponent. The highest significant bit will have the value
|
|
// 2^exponent.
|
|
const int highest_significant_bit = 63 - CountLeadingZeros(src);
|
|
const int16_t exponent = highest_significant_bit - fbits;
|
|
|
|
return FPRoundToFloat16(0, exponent, src, round);
|
|
}
|
|
|
|
|
|
uint64_t Simulator::GenerateRandomTag(uint16_t exclude) {
|
|
uint64_t rtag = nrand48(rand_state_) >> 28;
|
|
VIXL_ASSERT(IsUint4(rtag));
|
|
|
|
if (exclude == 0) {
|
|
exclude = nrand48(rand_state_) >> 27;
|
|
}
|
|
|
|
// TODO: implement this to better match the specification, which calls for a
|
|
// true random mode, and a pseudo-random mode with state (EL1.TAG) modified by
|
|
// PRNG.
|
|
return ChooseNonExcludedTag(rtag, 0, exclude);
|
|
}
|
|
|
|
|
|
void Simulator::ld1(VectorFormat vform, LogicVRegister dst, uint64_t addr) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
LoadLane(dst, vform, i, addr);
|
|
addr += LaneSizeInBytesFromFormat(vform);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::ld1(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
int index,
|
|
uint64_t addr) {
|
|
LoadLane(dst, vform, index, addr);
|
|
}
|
|
|
|
|
|
void Simulator::ld1r(VectorFormat vform,
|
|
VectorFormat unpack_vform,
|
|
LogicVRegister dst,
|
|
uint64_t addr,
|
|
bool is_signed) {
|
|
unsigned unpack_size = LaneSizeInBytesFromFormat(unpack_vform);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (is_signed) {
|
|
LoadIntToLane(dst, vform, unpack_size, i, addr);
|
|
} else {
|
|
LoadUintToLane(dst, vform, unpack_size, i, addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::ld1r(VectorFormat vform, LogicVRegister dst, uint64_t addr) {
|
|
ld1r(vform, vform, dst, addr);
|
|
}
|
|
|
|
|
|
void Simulator::ld2(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
uint64_t addr1) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr2 = addr1 + esize;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
LoadLane(dst1, vform, i, addr1);
|
|
LoadLane(dst2, vform, i, addr2);
|
|
addr1 += 2 * esize;
|
|
addr2 += 2 * esize;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::ld2(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
int index,
|
|
uint64_t addr1) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform);
|
|
LoadLane(dst1, vform, index, addr1);
|
|
LoadLane(dst2, vform, index, addr2);
|
|
}
|
|
|
|
|
|
void Simulator::ld2r(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
uint64_t addr) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
LoadLane(dst1, vform, i, addr);
|
|
LoadLane(dst2, vform, i, addr2);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::ld3(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
LogicVRegister dst3,
|
|
uint64_t addr1) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
dst3.ClearForWrite(vform);
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr2 = addr1 + esize;
|
|
uint64_t addr3 = addr2 + esize;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
LoadLane(dst1, vform, i, addr1);
|
|
LoadLane(dst2, vform, i, addr2);
|
|
LoadLane(dst3, vform, i, addr3);
|
|
addr1 += 3 * esize;
|
|
addr2 += 3 * esize;
|
|
addr3 += 3 * esize;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::ld3(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
LogicVRegister dst3,
|
|
int index,
|
|
uint64_t addr1) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
dst3.ClearForWrite(vform);
|
|
uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform);
|
|
LoadLane(dst1, vform, index, addr1);
|
|
LoadLane(dst2, vform, index, addr2);
|
|
LoadLane(dst3, vform, index, addr3);
|
|
}
|
|
|
|
|
|
void Simulator::ld3r(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
LogicVRegister dst3,
|
|
uint64_t addr) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
dst3.ClearForWrite(vform);
|
|
uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
LoadLane(dst1, vform, i, addr);
|
|
LoadLane(dst2, vform, i, addr2);
|
|
LoadLane(dst3, vform, i, addr3);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::ld4(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
LogicVRegister dst3,
|
|
LogicVRegister dst4,
|
|
uint64_t addr1) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
dst3.ClearForWrite(vform);
|
|
dst4.ClearForWrite(vform);
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr2 = addr1 + esize;
|
|
uint64_t addr3 = addr2 + esize;
|
|
uint64_t addr4 = addr3 + esize;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
LoadLane(dst1, vform, i, addr1);
|
|
LoadLane(dst2, vform, i, addr2);
|
|
LoadLane(dst3, vform, i, addr3);
|
|
LoadLane(dst4, vform, i, addr4);
|
|
addr1 += 4 * esize;
|
|
addr2 += 4 * esize;
|
|
addr3 += 4 * esize;
|
|
addr4 += 4 * esize;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::ld4(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
LogicVRegister dst3,
|
|
LogicVRegister dst4,
|
|
int index,
|
|
uint64_t addr1) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
dst3.ClearForWrite(vform);
|
|
dst4.ClearForWrite(vform);
|
|
uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr4 = addr3 + LaneSizeInBytesFromFormat(vform);
|
|
LoadLane(dst1, vform, index, addr1);
|
|
LoadLane(dst2, vform, index, addr2);
|
|
LoadLane(dst3, vform, index, addr3);
|
|
LoadLane(dst4, vform, index, addr4);
|
|
}
|
|
|
|
|
|
void Simulator::ld4r(VectorFormat vform,
|
|
LogicVRegister dst1,
|
|
LogicVRegister dst2,
|
|
LogicVRegister dst3,
|
|
LogicVRegister dst4,
|
|
uint64_t addr) {
|
|
dst1.ClearForWrite(vform);
|
|
dst2.ClearForWrite(vform);
|
|
dst3.ClearForWrite(vform);
|
|
dst4.ClearForWrite(vform);
|
|
uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr4 = addr3 + LaneSizeInBytesFromFormat(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
LoadLane(dst1, vform, i, addr);
|
|
LoadLane(dst2, vform, i, addr2);
|
|
LoadLane(dst3, vform, i, addr3);
|
|
LoadLane(dst4, vform, i, addr4);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::st1(VectorFormat vform, LogicVRegister src, uint64_t addr) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
StoreLane(src, vform, i, addr);
|
|
addr += LaneSizeInBytesFromFormat(vform);
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::st1(VectorFormat vform,
|
|
LogicVRegister src,
|
|
int index,
|
|
uint64_t addr) {
|
|
StoreLane(src, vform, index, addr);
|
|
}
|
|
|
|
|
|
void Simulator::st2(VectorFormat vform,
|
|
LogicVRegister src,
|
|
LogicVRegister src2,
|
|
uint64_t addr) {
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr2 = addr + esize;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
StoreLane(src, vform, i, addr);
|
|
StoreLane(src2, vform, i, addr2);
|
|
addr += 2 * esize;
|
|
addr2 += 2 * esize;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::st2(VectorFormat vform,
|
|
LogicVRegister src,
|
|
LogicVRegister src2,
|
|
int index,
|
|
uint64_t addr) {
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
StoreLane(src, vform, index, addr);
|
|
StoreLane(src2, vform, index, addr + 1 * esize);
|
|
}
|
|
|
|
|
|
void Simulator::st3(VectorFormat vform,
|
|
LogicVRegister src,
|
|
LogicVRegister src2,
|
|
LogicVRegister src3,
|
|
uint64_t addr) {
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr2 = addr + esize;
|
|
uint64_t addr3 = addr2 + esize;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
StoreLane(src, vform, i, addr);
|
|
StoreLane(src2, vform, i, addr2);
|
|
StoreLane(src3, vform, i, addr3);
|
|
addr += 3 * esize;
|
|
addr2 += 3 * esize;
|
|
addr3 += 3 * esize;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::st3(VectorFormat vform,
|
|
LogicVRegister src,
|
|
LogicVRegister src2,
|
|
LogicVRegister src3,
|
|
int index,
|
|
uint64_t addr) {
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
StoreLane(src, vform, index, addr);
|
|
StoreLane(src2, vform, index, addr + 1 * esize);
|
|
StoreLane(src3, vform, index, addr + 2 * esize);
|
|
}
|
|
|
|
|
|
void Simulator::st4(VectorFormat vform,
|
|
LogicVRegister src,
|
|
LogicVRegister src2,
|
|
LogicVRegister src3,
|
|
LogicVRegister src4,
|
|
uint64_t addr) {
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
uint64_t addr2 = addr + esize;
|
|
uint64_t addr3 = addr2 + esize;
|
|
uint64_t addr4 = addr3 + esize;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
StoreLane(src, vform, i, addr);
|
|
StoreLane(src2, vform, i, addr2);
|
|
StoreLane(src3, vform, i, addr3);
|
|
StoreLane(src4, vform, i, addr4);
|
|
addr += 4 * esize;
|
|
addr2 += 4 * esize;
|
|
addr3 += 4 * esize;
|
|
addr4 += 4 * esize;
|
|
}
|
|
}
|
|
|
|
|
|
void Simulator::st4(VectorFormat vform,
|
|
LogicVRegister src,
|
|
LogicVRegister src2,
|
|
LogicVRegister src3,
|
|
LogicVRegister src4,
|
|
int index,
|
|
uint64_t addr) {
|
|
int esize = LaneSizeInBytesFromFormat(vform);
|
|
StoreLane(src, vform, index, addr);
|
|
StoreLane(src2, vform, index, addr + 1 * esize);
|
|
StoreLane(src3, vform, index, addr + 2 * esize);
|
|
StoreLane(src4, vform, index, addr + 3 * esize);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::cmp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
Condition cond) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t sa = src1.Int(vform, i);
|
|
int64_t sb = src2.Int(vform, i);
|
|
uint64_t ua = src1.Uint(vform, i);
|
|
uint64_t ub = src2.Uint(vform, i);
|
|
bool result = false;
|
|
switch (cond) {
|
|
case eq:
|
|
result = (ua == ub);
|
|
break;
|
|
case ge:
|
|
result = (sa >= sb);
|
|
break;
|
|
case gt:
|
|
result = (sa > sb);
|
|
break;
|
|
case hi:
|
|
result = (ua > ub);
|
|
break;
|
|
case hs:
|
|
result = (ua >= ub);
|
|
break;
|
|
case lt:
|
|
result = (sa < sb);
|
|
break;
|
|
case le:
|
|
result = (sa <= sb);
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
break;
|
|
}
|
|
dst.SetUint(vform, i, result ? MaxUintFromFormat(vform) : 0);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::cmp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
int imm,
|
|
Condition cond) {
|
|
SimVRegister temp;
|
|
LogicVRegister imm_reg = dup_immediate(vform, temp, imm);
|
|
return cmp(vform, dst, src1, imm_reg, cond);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::cmptst(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t ua = src1.Uint(vform, i);
|
|
uint64_t ub = src2.Uint(vform, i);
|
|
dst.SetUint(vform, i, ((ua & ub) != 0) ? MaxUintFromFormat(vform) : 0);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::add(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
int lane_size = LaneSizeInBitsFromFormat(vform);
|
|
dst.ClearForWrite(vform);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Test for unsigned saturation.
|
|
uint64_t ua = src1.UintLeftJustified(vform, i);
|
|
uint64_t ub = src2.UintLeftJustified(vform, i);
|
|
uint64_t ur = ua + ub;
|
|
if (ur < ua) {
|
|
dst.SetUnsignedSat(i, true);
|
|
}
|
|
|
|
// Test for signed saturation.
|
|
bool pos_a = (ua >> 63) == 0;
|
|
bool pos_b = (ub >> 63) == 0;
|
|
bool pos_r = (ur >> 63) == 0;
|
|
// If the signs of the operands are the same, but different from the result,
|
|
// there was an overflow.
|
|
if ((pos_a == pos_b) && (pos_a != pos_r)) {
|
|
dst.SetSignedSat(i, pos_a);
|
|
}
|
|
dst.SetInt(vform, i, ur >> (64 - lane_size));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::add_uint(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
uint64_t value) {
|
|
int lane_size = LaneSizeInBitsFromFormat(vform);
|
|
VIXL_ASSERT(IsUintN(lane_size, value));
|
|
dst.ClearForWrite(vform);
|
|
// Left-justify `value`.
|
|
uint64_t ub = value << (64 - lane_size);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Test for unsigned saturation.
|
|
uint64_t ua = src1.UintLeftJustified(vform, i);
|
|
uint64_t ur = ua + ub;
|
|
if (ur < ua) {
|
|
dst.SetUnsignedSat(i, true);
|
|
}
|
|
|
|
// Test for signed saturation.
|
|
// `value` is always positive, so we have an overflow if the (signed) result
|
|
// is smaller than the first operand.
|
|
if (RawbitsToInt64(ur) < RawbitsToInt64(ua)) {
|
|
dst.SetSignedSat(i, true);
|
|
}
|
|
|
|
dst.SetInt(vform, i, ur >> (64 - lane_size));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::addp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uzp1(vform, temp1, src1, src2);
|
|
uzp2(vform, temp2, src1, src2);
|
|
add(vform, dst, temp1, temp2);
|
|
if (IsSVEFormat(vform)) {
|
|
interleave_top_bottom(vform, dst, dst);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::sdiv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
VIXL_ASSERT((vform == kFormatVnS) || (vform == kFormatVnD));
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t val1 = src1.Int(vform, i);
|
|
int64_t val2 = src2.Int(vform, i);
|
|
int64_t min_int = (vform == kFormatVnD) ? kXMinInt : kWMinInt;
|
|
int64_t quotient = 0;
|
|
if ((val1 == min_int) && (val2 == -1)) {
|
|
quotient = min_int;
|
|
} else if (val2 != 0) {
|
|
quotient = val1 / val2;
|
|
}
|
|
dst.SetInt(vform, i, quotient);
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::udiv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
VIXL_ASSERT((vform == kFormatVnS) || (vform == kFormatVnD));
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t val1 = src1.Uint(vform, i);
|
|
uint64_t val2 = src2.Uint(vform, i);
|
|
uint64_t quotient = 0;
|
|
if (val2 != 0) {
|
|
quotient = val1 / val2;
|
|
}
|
|
dst.SetUint(vform, i, quotient);
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
mul(vform, temp, src1, src2);
|
|
add(vform, dst, srca, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mls(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
mul(vform, temp, src1, src2);
|
|
sub(vform, dst, srca, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mul(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform, i, src1.Uint(vform, i) * src2.Uint(vform, i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mul(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform = VectorFormatFillQ(vform);
|
|
return mul(vform, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smulh(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t dst_val = 0xbadbeef;
|
|
int64_t val1 = src1.Int(vform, i);
|
|
int64_t val2 = src2.Int(vform, i);
|
|
switch (LaneSizeInBitsFromFormat(vform)) {
|
|
case 8:
|
|
dst_val = internal::MultiplyHigh<8>(val1, val2);
|
|
break;
|
|
case 16:
|
|
dst_val = internal::MultiplyHigh<16>(val1, val2);
|
|
break;
|
|
case 32:
|
|
dst_val = internal::MultiplyHigh<32>(val1, val2);
|
|
break;
|
|
case 64:
|
|
dst_val = internal::MultiplyHigh<64>(val1, val2);
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
break;
|
|
}
|
|
dst.SetInt(vform, i, dst_val);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umulh(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t dst_val = 0xbadbeef;
|
|
uint64_t val1 = src1.Uint(vform, i);
|
|
uint64_t val2 = src2.Uint(vform, i);
|
|
switch (LaneSizeInBitsFromFormat(vform)) {
|
|
case 8:
|
|
dst_val = internal::MultiplyHigh<8>(val1, val2);
|
|
break;
|
|
case 16:
|
|
dst_val = internal::MultiplyHigh<16>(val1, val2);
|
|
break;
|
|
case 32:
|
|
dst_val = internal::MultiplyHigh<32>(val1, val2);
|
|
break;
|
|
case 64:
|
|
dst_val = internal::MultiplyHigh<64>(val1, val2);
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
break;
|
|
}
|
|
dst.SetUint(vform, i, dst_val);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform = VectorFormatFillQ(vform);
|
|
return mla(vform, dst, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mls(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform = VectorFormatFillQ(vform);
|
|
return mls(vform, dst, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
LogicVRegister Simulator::sqdmull(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform =
|
|
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
|
|
return sqdmull(vform, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
LogicVRegister Simulator::sqdmlal(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform =
|
|
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
|
|
return sqdmlal(vform, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
LogicVRegister Simulator::sqdmlsl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform =
|
|
VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform));
|
|
return sqdmlsl(vform, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
LogicVRegister Simulator::sqdmulh(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform = VectorFormatFillQ(vform);
|
|
return sqdmulh(vform, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrdmulh(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform = VectorFormatFillQ(vform);
|
|
return sqrdmulh(vform, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrdmlah(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform = VectorFormatFillQ(vform);
|
|
return sqrdmlah(vform, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrdmlsh(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
SimVRegister temp;
|
|
VectorFormat indexform = VectorFormatFillQ(vform);
|
|
return sqrdmlsh(vform, dst, src1, dup_element(indexform, temp, src2, index));
|
|
}
|
|
|
|
|
|
uint64_t Simulator::PolynomialMult(uint64_t op1,
|
|
uint64_t op2,
|
|
int lane_size_in_bits) const {
|
|
VIXL_ASSERT(static_cast<unsigned>(lane_size_in_bits) <= kSRegSize);
|
|
VIXL_ASSERT(IsUintN(lane_size_in_bits, op1));
|
|
VIXL_ASSERT(IsUintN(lane_size_in_bits, op2));
|
|
uint64_t result = 0;
|
|
for (int i = 0; i < lane_size_in_bits; ++i) {
|
|
if ((op1 >> i) & 1) {
|
|
result = result ^ (op2 << i);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::pmul(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform,
|
|
i,
|
|
PolynomialMult(src1.Uint(vform, i),
|
|
src2.Uint(vform, i),
|
|
LaneSizeInBitsFromFormat(vform)));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::pmull(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
|
|
VectorFormat vform_src = VectorFormatHalfWidth(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform,
|
|
i,
|
|
PolynomialMult(src1.Uint(vform_src, i),
|
|
src2.Uint(vform_src, i),
|
|
LaneSizeInBitsFromFormat(vform_src)));
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::pmull2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
VectorFormat vform_src = VectorFormatHalfWidthDoubleLanes(vform);
|
|
dst.ClearForWrite(vform);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count; i++) {
|
|
dst.SetUint(vform,
|
|
i,
|
|
PolynomialMult(src1.Uint(vform_src, lane_count + i),
|
|
src2.Uint(vform_src, lane_count + i),
|
|
LaneSizeInBitsFromFormat(vform_src)));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sub(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
int lane_size = LaneSizeInBitsFromFormat(vform);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Test for unsigned saturation.
|
|
uint64_t ua = src1.UintLeftJustified(vform, i);
|
|
uint64_t ub = src2.UintLeftJustified(vform, i);
|
|
uint64_t ur = ua - ub;
|
|
if (ub > ua) {
|
|
dst.SetUnsignedSat(i, false);
|
|
}
|
|
|
|
// Test for signed saturation.
|
|
bool pos_a = (ua >> 63) == 0;
|
|
bool pos_b = (ub >> 63) == 0;
|
|
bool pos_r = (ur >> 63) == 0;
|
|
// If the signs of the operands are different, and the sign of the first
|
|
// operand doesn't match the result, there was an overflow.
|
|
if ((pos_a != pos_b) && (pos_a != pos_r)) {
|
|
dst.SetSignedSat(i, pos_a);
|
|
}
|
|
|
|
dst.SetInt(vform, i, ur >> (64 - lane_size));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::sub_uint(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
uint64_t value) {
|
|
int lane_size = LaneSizeInBitsFromFormat(vform);
|
|
VIXL_ASSERT(IsUintN(lane_size, value));
|
|
dst.ClearForWrite(vform);
|
|
// Left-justify `value`.
|
|
uint64_t ub = value << (64 - lane_size);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Test for unsigned saturation.
|
|
uint64_t ua = src1.UintLeftJustified(vform, i);
|
|
uint64_t ur = ua - ub;
|
|
if (ub > ua) {
|
|
dst.SetUnsignedSat(i, false);
|
|
}
|
|
|
|
// Test for signed saturation.
|
|
// `value` is always positive, so we have an overflow if the (signed) result
|
|
// is greater than the first operand.
|
|
if (RawbitsToInt64(ur) > RawbitsToInt64(ua)) {
|
|
dst.SetSignedSat(i, false);
|
|
}
|
|
|
|
dst.SetInt(vform, i, ur >> (64 - lane_size));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::and_(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform, i, src1.Uint(vform, i) & src2.Uint(vform, i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::orr(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform, i, src1.Uint(vform, i) | src2.Uint(vform, i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::orn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform, i, src1.Uint(vform, i) | ~src2.Uint(vform, i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::eor(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform, i, src1.Uint(vform, i) ^ src2.Uint(vform, i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::bic(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform, i, src1.Uint(vform, i) & ~src2.Uint(vform, i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::bic(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
uint64_t imm) {
|
|
uint64_t result[16];
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
result[i] = src.Uint(vform, i) & ~imm;
|
|
}
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::bif(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t operand1 = dst.Uint(vform, i);
|
|
uint64_t operand2 = ~src2.Uint(vform, i);
|
|
uint64_t operand3 = src1.Uint(vform, i);
|
|
uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2);
|
|
dst.SetUint(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::bit(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t operand1 = dst.Uint(vform, i);
|
|
uint64_t operand2 = src2.Uint(vform, i);
|
|
uint64_t operand3 = src1.Uint(vform, i);
|
|
uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2);
|
|
dst.SetUint(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::bsl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src_mask,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t operand1 = src2.Uint(vform, i);
|
|
uint64_t operand2 = src_mask.Uint(vform, i);
|
|
uint64_t operand3 = src1.Uint(vform, i);
|
|
uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2);
|
|
dst.SetUint(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sminmax(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool max) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t src1_val = src1.Int(vform, i);
|
|
int64_t src2_val = src2.Int(vform, i);
|
|
int64_t dst_val;
|
|
if (max) {
|
|
dst_val = (src1_val > src2_val) ? src1_val : src2_val;
|
|
} else {
|
|
dst_val = (src1_val < src2_val) ? src1_val : src2_val;
|
|
}
|
|
dst.SetInt(vform, i, dst_val);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smax(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return sminmax(vform, dst, src1, src2, true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smin(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return sminmax(vform, dst, src1, src2, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sminmaxp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool max) {
|
|
unsigned lanes = LaneCountFromFormat(vform);
|
|
int64_t result[kZRegMaxSizeInBytes];
|
|
const LogicVRegister* src = &src1;
|
|
for (unsigned j = 0; j < 2; j++) {
|
|
for (unsigned i = 0; i < lanes; i += 2) {
|
|
int64_t first_val = src->Int(vform, i);
|
|
int64_t second_val = src->Int(vform, i + 1);
|
|
int64_t dst_val;
|
|
if (max) {
|
|
dst_val = (first_val > second_val) ? first_val : second_val;
|
|
} else {
|
|
dst_val = (first_val < second_val) ? first_val : second_val;
|
|
}
|
|
VIXL_ASSERT(((i >> 1) + (j * lanes / 2)) < ArrayLength(result));
|
|
result[(i >> 1) + (j * lanes / 2)] = dst_val;
|
|
}
|
|
src = &src2;
|
|
}
|
|
dst.SetIntArray(vform, result);
|
|
if (IsSVEFormat(vform)) {
|
|
interleave_top_bottom(vform, dst, dst);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smaxp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return sminmaxp(vform, dst, src1, src2, true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sminp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return sminmaxp(vform, dst, src1, src2, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::addp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(vform == kFormatD);
|
|
|
|
uint64_t dst_val = src.Uint(kFormat2D, 0) + src.Uint(kFormat2D, 1);
|
|
dst.ClearForWrite(vform);
|
|
dst.SetUint(vform, 0, dst_val);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::addv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
VectorFormat vform_dst =
|
|
ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
|
|
|
|
|
|
int64_t dst_val = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst_val += src.Int(vform, i);
|
|
}
|
|
|
|
dst.ClearForWrite(vform_dst);
|
|
dst.SetInt(vform_dst, 0, dst_val);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::saddlv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
VectorFormat vform_dst =
|
|
ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform) * 2);
|
|
|
|
int64_t dst_val = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst_val += src.Int(vform, i);
|
|
}
|
|
|
|
dst.ClearForWrite(vform_dst);
|
|
dst.SetInt(vform_dst, 0, dst_val);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uaddlv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
VectorFormat vform_dst =
|
|
ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform) * 2);
|
|
|
|
uint64_t dst_val = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst_val += src.Uint(vform, i);
|
|
}
|
|
|
|
dst.ClearForWrite(vform_dst);
|
|
dst.SetUint(vform_dst, 0, dst_val);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sminmaxv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src,
|
|
bool max) {
|
|
int64_t dst_val = max ? INT64_MIN : INT64_MAX;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
int64_t src_val = src.Int(vform, i);
|
|
if (max) {
|
|
dst_val = (src_val > dst_val) ? src_val : dst_val;
|
|
} else {
|
|
dst_val = (src_val < dst_val) ? src_val : dst_val;
|
|
}
|
|
}
|
|
dst.ClearForWrite(ScalarFormatFromFormat(vform));
|
|
dst.SetInt(vform, 0, dst_val);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smaxv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
sminmaxv(vform, dst, GetPTrue(), src, true);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sminv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
sminmaxv(vform, dst, GetPTrue(), src, false);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smaxv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
sminmaxv(vform, dst, pg, src, true);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sminv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
sminmaxv(vform, dst, pg, src, false);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uminmax(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool max) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t src1_val = src1.Uint(vform, i);
|
|
uint64_t src2_val = src2.Uint(vform, i);
|
|
uint64_t dst_val;
|
|
if (max) {
|
|
dst_val = (src1_val > src2_val) ? src1_val : src2_val;
|
|
} else {
|
|
dst_val = (src1_val < src2_val) ? src1_val : src2_val;
|
|
}
|
|
dst.SetUint(vform, i, dst_val);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umax(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return uminmax(vform, dst, src1, src2, true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umin(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return uminmax(vform, dst, src1, src2, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uminmaxp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool max) {
|
|
unsigned lanes = LaneCountFromFormat(vform);
|
|
uint64_t result[kZRegMaxSizeInBytes];
|
|
const LogicVRegister* src = &src1;
|
|
for (unsigned j = 0; j < 2; j++) {
|
|
for (unsigned i = 0; i < lanes; i += 2) {
|
|
uint64_t first_val = src->Uint(vform, i);
|
|
uint64_t second_val = src->Uint(vform, i + 1);
|
|
uint64_t dst_val;
|
|
if (max) {
|
|
dst_val = (first_val > second_val) ? first_val : second_val;
|
|
} else {
|
|
dst_val = (first_val < second_val) ? first_val : second_val;
|
|
}
|
|
VIXL_ASSERT(((i >> 1) + (j * lanes / 2)) < ArrayLength(result));
|
|
result[(i >> 1) + (j * lanes / 2)] = dst_val;
|
|
}
|
|
src = &src2;
|
|
}
|
|
dst.SetUintArray(vform, result);
|
|
if (IsSVEFormat(vform)) {
|
|
interleave_top_bottom(vform, dst, dst);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umaxp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return uminmaxp(vform, dst, src1, src2, true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uminp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return uminmaxp(vform, dst, src1, src2, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uminmaxv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src,
|
|
bool max) {
|
|
uint64_t dst_val = max ? 0 : UINT64_MAX;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
uint64_t src_val = src.Uint(vform, i);
|
|
if (max) {
|
|
dst_val = (src_val > dst_val) ? src_val : dst_val;
|
|
} else {
|
|
dst_val = (src_val < dst_val) ? src_val : dst_val;
|
|
}
|
|
}
|
|
dst.ClearForWrite(ScalarFormatFromFormat(vform));
|
|
dst.SetUint(vform, 0, dst_val);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umaxv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
uminmaxv(vform, dst, GetPTrue(), src, true);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uminv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
uminmaxv(vform, dst, GetPTrue(), src, false);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umaxv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
uminmaxv(vform, dst, pg, src, true);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uminv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
uminmaxv(vform, dst, pg, src, false);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::shl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp, shift);
|
|
return ushl(vform, dst, src, shiftreg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sshll(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp1, temp2;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp1, shift);
|
|
LogicVRegister extendedreg = sxtl(vform, temp2, src);
|
|
return sshl(vform, dst, extendedreg, shiftreg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sshll2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp1, temp2;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp1, shift);
|
|
LogicVRegister extendedreg = sxtl2(vform, temp2, src);
|
|
return sshl(vform, dst, extendedreg, shiftreg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::shll(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int shift = LaneSizeInBitsFromFormat(vform) / 2;
|
|
return sshll(vform, dst, src, shift);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::shll2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int shift = LaneSizeInBitsFromFormat(vform) / 2;
|
|
return sshll2(vform, dst, src, shift);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ushll(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp1, temp2;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp1, shift);
|
|
LogicVRegister extendedreg = uxtl(vform, temp2, src);
|
|
return ushl(vform, dst, extendedreg, shiftreg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ushll2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp1, temp2;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp1, shift);
|
|
LogicVRegister extendedreg = uxtl2(vform, temp2, src);
|
|
return ushl(vform, dst, extendedreg, shiftreg);
|
|
}
|
|
|
|
std::pair<bool, uint64_t> Simulator::clast(VectorFormat vform,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src,
|
|
int offset_from_last_active) {
|
|
// Untested for any other values.
|
|
VIXL_ASSERT((offset_from_last_active == 0) || (offset_from_last_active == 1));
|
|
|
|
int last_active = GetLastActive(vform, pg);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int index =
|
|
((last_active + offset_from_last_active) + lane_count) % lane_count;
|
|
return std::make_pair(last_active >= 0, src.Uint(vform, index));
|
|
}
|
|
|
|
LogicVRegister Simulator::compact(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
int j = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (pg.IsActive(vform, i)) {
|
|
dst.SetUint(vform, j++, src.Uint(vform, i));
|
|
}
|
|
}
|
|
for (; j < LaneCountFromFormat(vform); j++) {
|
|
dst.SetUint(vform, j, 0);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::splice(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int first_active = GetFirstActive(vform, pg);
|
|
int last_active = GetLastActive(vform, pg);
|
|
int dst_idx = 0;
|
|
uint64_t result[kZRegMaxSizeInBytes];
|
|
|
|
if (first_active >= 0) {
|
|
VIXL_ASSERT(last_active >= first_active);
|
|
VIXL_ASSERT(last_active < lane_count);
|
|
for (int i = first_active; i <= last_active; i++) {
|
|
result[dst_idx++] = src1.Uint(vform, i);
|
|
}
|
|
}
|
|
|
|
VIXL_ASSERT(dst_idx <= lane_count);
|
|
for (int i = dst_idx; i < lane_count; i++) {
|
|
result[i] = src2.Uint(vform, i - dst_idx);
|
|
}
|
|
|
|
dst.SetUintArray(vform, result);
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::sel(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const SimPRegister& pg,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
int p_reg_bits_per_lane =
|
|
LaneSizeInBitsFromFormat(vform) / kZRegBitsPerPRegBit;
|
|
for (int lane = 0; lane < LaneCountFromFormat(vform); lane++) {
|
|
uint64_t lane_value = pg.GetBit(lane * p_reg_bits_per_lane)
|
|
? src1.Uint(vform, lane)
|
|
: src2.Uint(vform, lane);
|
|
dst.SetUint(vform, lane, lane_value);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicPRegister Simulator::sel(LogicPRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& src1,
|
|
const LogicPRegister& src2) {
|
|
for (int i = 0; i < dst.GetChunkCount(); i++) {
|
|
LogicPRegister::ChunkType mask = pg.GetChunk(i);
|
|
LogicPRegister::ChunkType result =
|
|
(mask & src1.GetChunk(i)) | (~mask & src2.GetChunk(i));
|
|
dst.SetChunk(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sli(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
dst.ClearForWrite(vform);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count; i++) {
|
|
uint64_t src_lane = src.Uint(vform, i);
|
|
uint64_t dst_lane = dst.Uint(vform, i);
|
|
uint64_t shifted = src_lane << shift;
|
|
uint64_t mask = MaxUintFromFormat(vform) << shift;
|
|
dst.SetUint(vform, i, (dst_lane & ~mask) | shifted);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqshl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp, shift);
|
|
return sshl(vform, dst, src, shiftreg).SignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uqshl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp, shift);
|
|
return ushl(vform, dst, src, shiftreg).UnsignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqshlu(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp, shift);
|
|
return sshl(vform, dst, src, shiftreg).UnsignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sri(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
dst.ClearForWrite(vform);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
VIXL_ASSERT((shift > 0) &&
|
|
(shift <= static_cast<int>(LaneSizeInBitsFromFormat(vform))));
|
|
for (int i = 0; i < lane_count; i++) {
|
|
uint64_t src_lane = src.Uint(vform, i);
|
|
uint64_t dst_lane = dst.Uint(vform, i);
|
|
uint64_t shifted;
|
|
uint64_t mask;
|
|
if (shift == 64) {
|
|
shifted = 0;
|
|
mask = 0;
|
|
} else {
|
|
shifted = src_lane >> shift;
|
|
mask = MaxUintFromFormat(vform) >> shift;
|
|
}
|
|
dst.SetUint(vform, i, (dst_lane & ~mask) | shifted);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ushr(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp, -shift);
|
|
return ushl(vform, dst, src, shiftreg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sshr(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
VIXL_ASSERT(shift >= 0);
|
|
SimVRegister temp;
|
|
LogicVRegister shiftreg = dup_immediate(vform, temp, -shift);
|
|
return sshl(vform, dst, src, shiftreg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ssra(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
LogicVRegister shifted_reg = sshr(vform, temp, src, shift);
|
|
return add(vform, dst, dst, shifted_reg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::usra(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
LogicVRegister shifted_reg = ushr(vform, temp, src, shift);
|
|
return add(vform, dst, dst, shifted_reg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::srsra(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
LogicVRegister shifted_reg = sshr(vform, temp, src, shift).Round(vform);
|
|
return add(vform, dst, dst, shifted_reg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ursra(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
LogicVRegister shifted_reg = ushr(vform, temp, src, shift).Round(vform);
|
|
return add(vform, dst, dst, shifted_reg);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::cls(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_size_in_bits = LaneSizeInBitsFromFormat(vform);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
|
|
// Ensure that we can store one result per lane.
|
|
int result[kZRegMaxSizeInBytes];
|
|
|
|
for (int i = 0; i < lane_count; i++) {
|
|
result[i] = CountLeadingSignBits(src.Int(vform, i), lane_size_in_bits);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::clz(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_size_in_bits = LaneSizeInBitsFromFormat(vform);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
|
|
// Ensure that we can store one result per lane.
|
|
int result[kZRegMaxSizeInBytes];
|
|
|
|
for (int i = 0; i < lane_count; i++) {
|
|
result[i] = CountLeadingZeros(src.Uint(vform, i), lane_size_in_bits);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::cnot(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t value = (src.Uint(vform, i) == 0) ? 1 : 0;
|
|
dst.SetUint(vform, i, value);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::cnt(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_size_in_bits = LaneSizeInBitsFromFormat(vform);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
|
|
// Ensure that we can store one result per lane.
|
|
int result[kZRegMaxSizeInBytes];
|
|
|
|
for (int i = 0; i < lane_count; i++) {
|
|
result[i] = CountSetBits(src.Uint(vform, i), lane_size_in_bits);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
static int64_t CalculateSignedShiftDistance(int64_t shift_val,
|
|
int esize,
|
|
bool shift_in_ls_byte) {
|
|
if (shift_in_ls_byte) {
|
|
// Neon uses the least-significant byte of the lane as the shift distance.
|
|
shift_val = ExtractSignedBitfield64(7, 0, shift_val);
|
|
} else {
|
|
// SVE uses a saturated shift distance in the range
|
|
// -(esize + 1) ... (esize + 1).
|
|
if (shift_val > (esize + 1)) shift_val = esize + 1;
|
|
if (shift_val < -(esize + 1)) shift_val = -(esize + 1);
|
|
}
|
|
return shift_val;
|
|
}
|
|
|
|
LogicVRegister Simulator::sshl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool shift_in_ls_byte) {
|
|
dst.ClearForWrite(vform);
|
|
int esize = LaneSizeInBitsFromFormat(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t shift_val = CalculateSignedShiftDistance(src2.Int(vform, i),
|
|
esize,
|
|
shift_in_ls_byte);
|
|
|
|
int64_t lj_src_val = src1.IntLeftJustified(vform, i);
|
|
|
|
// Set signed saturation state.
|
|
if ((shift_val > CountLeadingSignBits(lj_src_val)) && (lj_src_val != 0)) {
|
|
dst.SetSignedSat(i, lj_src_val >= 0);
|
|
}
|
|
|
|
// Set unsigned saturation state.
|
|
if (lj_src_val < 0) {
|
|
dst.SetUnsignedSat(i, false);
|
|
} else if ((shift_val > CountLeadingZeros(lj_src_val)) &&
|
|
(lj_src_val != 0)) {
|
|
dst.SetUnsignedSat(i, true);
|
|
}
|
|
|
|
int64_t src_val = src1.Int(vform, i);
|
|
bool src_is_negative = src_val < 0;
|
|
if (shift_val > 63) {
|
|
dst.SetInt(vform, i, 0);
|
|
} else if (shift_val < -63) {
|
|
dst.SetRounding(i, src_is_negative);
|
|
dst.SetInt(vform, i, src_is_negative ? -1 : 0);
|
|
} else {
|
|
// Use unsigned types for shifts, as behaviour is undefined for signed
|
|
// lhs.
|
|
uint64_t usrc_val = static_cast<uint64_t>(src_val);
|
|
|
|
if (shift_val < 0) {
|
|
// Convert to right shift.
|
|
shift_val = -shift_val;
|
|
|
|
// Set rounding state by testing most-significant bit shifted out.
|
|
// Rounding only needed on right shifts.
|
|
if (((usrc_val >> (shift_val - 1)) & 1) == 1) {
|
|
dst.SetRounding(i, true);
|
|
}
|
|
|
|
usrc_val >>= shift_val;
|
|
|
|
if (src_is_negative) {
|
|
// Simulate sign-extension.
|
|
usrc_val |= (~UINT64_C(0) << (64 - shift_val));
|
|
}
|
|
} else {
|
|
usrc_val <<= shift_val;
|
|
}
|
|
dst.SetUint(vform, i, usrc_val);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ushl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool shift_in_ls_byte) {
|
|
dst.ClearForWrite(vform);
|
|
int esize = LaneSizeInBitsFromFormat(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t shift_val = CalculateSignedShiftDistance(src2.Int(vform, i),
|
|
esize,
|
|
shift_in_ls_byte);
|
|
|
|
uint64_t lj_src_val = src1.UintLeftJustified(vform, i);
|
|
|
|
// Set saturation state.
|
|
if ((shift_val > CountLeadingZeros(lj_src_val)) && (lj_src_val != 0)) {
|
|
dst.SetUnsignedSat(i, true);
|
|
}
|
|
|
|
uint64_t src_val = src1.Uint(vform, i);
|
|
if ((shift_val > 63) || (shift_val < -64)) {
|
|
dst.SetUint(vform, i, 0);
|
|
} else {
|
|
if (shift_val < 0) {
|
|
// Set rounding state. Rounding only needed on right shifts.
|
|
if (((src_val >> (-shift_val - 1)) & 1) == 1) {
|
|
dst.SetRounding(i, true);
|
|
}
|
|
|
|
if (shift_val == -64) {
|
|
src_val = 0;
|
|
} else {
|
|
src_val >>= -shift_val;
|
|
}
|
|
} else {
|
|
src_val <<= shift_val;
|
|
}
|
|
dst.SetUint(vform, i, src_val);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::sshr(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
// Saturate to sidestep the min-int problem.
|
|
neg(vform, temp, src2).SignedSaturate(vform);
|
|
sshl(vform, dst, src1, temp, false);
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::ushr(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
// Saturate to sidestep the min-int problem.
|
|
neg(vform, temp, src2).SignedSaturate(vform);
|
|
ushl(vform, dst, src1, temp, false);
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::neg(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Test for signed saturation.
|
|
int64_t sa = src.Int(vform, i);
|
|
if (sa == MinIntFromFormat(vform)) {
|
|
dst.SetSignedSat(i, true);
|
|
}
|
|
dst.SetInt(vform, i, (sa == INT64_MIN) ? sa : -sa);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::suqadd(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t sa = src1.IntLeftJustified(vform, i);
|
|
uint64_t ub = src2.UintLeftJustified(vform, i);
|
|
uint64_t ur = sa + ub;
|
|
|
|
int64_t sr;
|
|
memcpy(&sr, &ur, sizeof(sr));
|
|
if (sr < sa) { // Test for signed positive saturation.
|
|
dst.SetInt(vform, i, MaxIntFromFormat(vform));
|
|
} else {
|
|
dst.SetUint(vform, i, src1.Int(vform, i) + src2.Uint(vform, i));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::usqadd(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t ua = src1.UintLeftJustified(vform, i);
|
|
int64_t sb = src2.IntLeftJustified(vform, i);
|
|
uint64_t ur = ua + sb;
|
|
|
|
if ((sb > 0) && (ur <= ua)) {
|
|
dst.SetUint(vform, i, MaxUintFromFormat(vform)); // Positive saturation.
|
|
} else if ((sb < 0) && (ur >= ua)) {
|
|
dst.SetUint(vform, i, 0); // Negative saturation.
|
|
} else {
|
|
dst.SetUint(vform, i, src1.Uint(vform, i) + src2.Int(vform, i));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::abs(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Test for signed saturation.
|
|
int64_t sa = src.Int(vform, i);
|
|
if (sa == MinIntFromFormat(vform)) {
|
|
dst.SetSignedSat(i, true);
|
|
}
|
|
if (sa < 0) {
|
|
dst.SetInt(vform, i, (sa == INT64_MIN) ? sa : -sa);
|
|
} else {
|
|
dst.SetInt(vform, i, sa);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::andv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
uint64_t result = GetUintMask(LaneSizeInBitsFromFormat(vform));
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
result &= src.Uint(vform, i);
|
|
}
|
|
VectorFormat vform_dst =
|
|
ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
|
|
dst.ClearForWrite(vform_dst);
|
|
dst.SetUint(vform_dst, 0, result);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::eorv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
uint64_t result = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
result ^= src.Uint(vform, i);
|
|
}
|
|
VectorFormat vform_dst =
|
|
ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
|
|
dst.ClearForWrite(vform_dst);
|
|
dst.SetUint(vform_dst, 0, result);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::orv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
uint64_t result = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
result |= src.Uint(vform, i);
|
|
}
|
|
VectorFormat vform_dst =
|
|
ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
|
|
dst.ClearForWrite(vform_dst);
|
|
dst.SetUint(vform_dst, 0, result);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::saddv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) <= kSRegSize);
|
|
int64_t result = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
// The destination register always has D-lane sizes and the source register
|
|
// always has S-lanes or smaller, so signed integer overflow -- undefined
|
|
// behaviour -- can't occur.
|
|
result += src.Int(vform, i);
|
|
}
|
|
|
|
dst.ClearForWrite(kFormatD);
|
|
dst.SetInt(kFormatD, 0, result);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uaddv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
uint64_t result = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
result += src.Uint(vform, i);
|
|
}
|
|
|
|
dst.ClearForWrite(kFormatD);
|
|
dst.SetUint(kFormatD, 0, result);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::extractnarrow(VectorFormat dstform,
|
|
LogicVRegister dst,
|
|
bool dst_is_signed,
|
|
const LogicVRegister& src,
|
|
bool src_is_signed) {
|
|
bool upperhalf = false;
|
|
VectorFormat srcform = dstform;
|
|
if ((dstform == kFormat16B) || (dstform == kFormat8H) ||
|
|
(dstform == kFormat4S)) {
|
|
upperhalf = true;
|
|
srcform = VectorFormatHalfLanes(srcform);
|
|
}
|
|
srcform = VectorFormatDoubleWidth(srcform);
|
|
|
|
LogicVRegister src_copy = src;
|
|
|
|
int offset;
|
|
if (upperhalf) {
|
|
offset = LaneCountFromFormat(dstform) / 2;
|
|
} else {
|
|
offset = 0;
|
|
}
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(srcform); i++) {
|
|
int64_t ssrc = src_copy.Int(srcform, i);
|
|
uint64_t usrc = src_copy.Uint(srcform, i);
|
|
|
|
// Test for signed saturation
|
|
if (ssrc > MaxIntFromFormat(dstform)) {
|
|
dst.SetSignedSat(offset + i, true);
|
|
} else if (ssrc < MinIntFromFormat(dstform)) {
|
|
dst.SetSignedSat(offset + i, false);
|
|
}
|
|
|
|
// Test for unsigned saturation
|
|
if (src_is_signed) {
|
|
if (ssrc > static_cast<int64_t>(MaxUintFromFormat(dstform))) {
|
|
dst.SetUnsignedSat(offset + i, true);
|
|
} else if (ssrc < 0) {
|
|
dst.SetUnsignedSat(offset + i, false);
|
|
}
|
|
} else {
|
|
if (usrc > MaxUintFromFormat(dstform)) {
|
|
dst.SetUnsignedSat(offset + i, true);
|
|
}
|
|
}
|
|
|
|
int64_t result;
|
|
if (src_is_signed) {
|
|
result = ssrc & MaxUintFromFormat(dstform);
|
|
} else {
|
|
result = usrc & MaxUintFromFormat(dstform);
|
|
}
|
|
|
|
if (dst_is_signed) {
|
|
dst.SetInt(dstform, offset + i, result);
|
|
} else {
|
|
dst.SetUint(dstform, offset + i, result);
|
|
}
|
|
}
|
|
|
|
if (!upperhalf) {
|
|
dst.ClearForWrite(dstform);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::xtn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return extractnarrow(vform, dst, true, src, true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqxtn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return extractnarrow(vform, dst, true, src, true).SignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqxtun(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return extractnarrow(vform, dst, false, src, true).UnsignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uqxtn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return extractnarrow(vform, dst, false, src, false).UnsignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::absdiff(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_signed) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
bool src1_gt_src2 = is_signed ? (src1.Int(vform, i) > src2.Int(vform, i))
|
|
: (src1.Uint(vform, i) > src2.Uint(vform, i));
|
|
// Always calculate the answer using unsigned arithmetic, to avoid
|
|
// implementation-defined signed overflow.
|
|
if (src1_gt_src2) {
|
|
dst.SetUint(vform, i, src1.Uint(vform, i) - src2.Uint(vform, i));
|
|
} else {
|
|
dst.SetUint(vform, i, src2.Uint(vform, i) - src1.Uint(vform, i));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::saba(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
dst.ClearForWrite(vform);
|
|
absdiff(vform, temp, src1, src2, true);
|
|
add(vform, dst, dst, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uaba(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
dst.ClearForWrite(vform);
|
|
absdiff(vform, temp, src1, src2, false);
|
|
add(vform, dst, dst, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::not_(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform, i, ~src.Uint(vform, i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rbit(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
uint64_t result[kZRegMaxSizeInBytes];
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int lane_size_in_bits = LaneSizeInBitsFromFormat(vform);
|
|
uint64_t reversed_value;
|
|
uint64_t value;
|
|
for (int i = 0; i < lane_count; i++) {
|
|
value = src.Uint(vform, i);
|
|
reversed_value = 0;
|
|
for (int j = 0; j < lane_size_in_bits; j++) {
|
|
reversed_value = (reversed_value << 1) | (value & 1);
|
|
value >>= 1;
|
|
}
|
|
result[i] = reversed_value;
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rev(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count / 2; i++) {
|
|
uint64_t t = src.Uint(vform, i);
|
|
dst.SetUint(vform, i, src.Uint(vform, lane_count - i - 1));
|
|
dst.SetUint(vform, lane_count - i - 1, t);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rev_byte(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int rev_size) {
|
|
uint64_t result[kZRegMaxSizeInBytes] = {};
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int lane_size = LaneSizeInBytesFromFormat(vform);
|
|
int lanes_per_loop = rev_size / lane_size;
|
|
for (int i = 0; i < lane_count; i += lanes_per_loop) {
|
|
for (int j = 0; j < lanes_per_loop; j++) {
|
|
result[i + lanes_per_loop - 1 - j] = src.Uint(vform, i + j);
|
|
}
|
|
}
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rev16(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return rev_byte(vform, dst, src, 2);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rev32(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return rev_byte(vform, dst, src, 4);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rev64(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return rev_byte(vform, dst, src, 8);
|
|
}
|
|
|
|
LogicVRegister Simulator::addlp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
bool is_signed,
|
|
bool do_accumulate) {
|
|
VectorFormat vformsrc = VectorFormatHalfWidthDoubleLanes(vform);
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vformsrc) <= kSRegSize);
|
|
|
|
uint64_t result[kZRegMaxSizeInBytes];
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count; i++) {
|
|
if (is_signed) {
|
|
result[i] = static_cast<uint64_t>(src.Int(vformsrc, 2 * i) +
|
|
src.Int(vformsrc, 2 * i + 1));
|
|
} else {
|
|
result[i] = src.Uint(vformsrc, 2 * i) + src.Uint(vformsrc, 2 * i + 1);
|
|
}
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
if (do_accumulate) {
|
|
result[i] += dst.Uint(vform, i);
|
|
}
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::saddlp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return addlp(vform, dst, src, true, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uaddlp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return addlp(vform, dst, src, false, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sadalp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return addlp(vform, dst, src, true, true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uadalp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return addlp(vform, dst, src, false, true);
|
|
}
|
|
|
|
LogicVRegister Simulator::ror(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int rotation) {
|
|
int width = LaneSizeInBitsFromFormat(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t value = src.Uint(vform, i);
|
|
dst.SetUint(vform, i, RotateRight(value, rotation, width));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::ext(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
uint8_t result[kZRegMaxSizeInBytes] = {};
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count - index; ++i) {
|
|
result[i] = src1.Uint(vform, i + index);
|
|
}
|
|
for (int i = 0; i < index; ++i) {
|
|
result[lane_count - index + i] = src2.Uint(vform, i);
|
|
}
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::rotate_elements_right(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int index) {
|
|
if (index < 0) index += LaneCountFromFormat(vform);
|
|
VIXL_ASSERT((index >= 0) && (index < LaneCountFromFormat(vform)));
|
|
index *= LaneSizeInBytesFromFormat(vform);
|
|
return ext(kFormatVnB, dst, src, src, index);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fadda(VectorFormat vform,
|
|
LogicVRegister acc,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
T result = acc.Float<T>(0);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
result = FPAdd(result, src.Float<T>(i));
|
|
}
|
|
VectorFormat vform_dst =
|
|
ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
|
|
acc.ClearForWrite(vform_dst);
|
|
acc.SetFloat(0, result);
|
|
return acc;
|
|
}
|
|
|
|
LogicVRegister Simulator::fadda(VectorFormat vform,
|
|
LogicVRegister acc,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
switch (LaneSizeInBitsFromFormat(vform)) {
|
|
case kHRegSize:
|
|
fadda<SimFloat16>(vform, acc, pg, src);
|
|
break;
|
|
case kSRegSize:
|
|
fadda<float>(vform, acc, pg, src);
|
|
break;
|
|
case kDRegSize:
|
|
fadda<double>(vform, acc, pg, src);
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
}
|
|
return acc;
|
|
}
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fcadd(VectorFormat vform,
|
|
LogicVRegister dst, // d
|
|
const LogicVRegister& src1, // n
|
|
const LogicVRegister& src2, // m
|
|
int rot) {
|
|
int elements = LaneCountFromFormat(vform);
|
|
|
|
T element1, element3;
|
|
rot = (rot == 1) ? 270 : 90;
|
|
|
|
// Loop example:
|
|
// 2S --> (2/2 = 1 - 1 = 0) --> 1 x Complex Number (2x components: r+i)
|
|
// 4S --> (4/2 = 2) - 1 = 1) --> 2 x Complex Number (2x2 components: r+i)
|
|
|
|
for (int e = 0; e <= (elements / 2) - 1; e++) {
|
|
switch (rot) {
|
|
case 90:
|
|
element1 = FPNeg(src2.Float<T>(e * 2 + 1));
|
|
element3 = src2.Float<T>(e * 2);
|
|
break;
|
|
case 270:
|
|
element1 = src2.Float<T>(e * 2 + 1);
|
|
element3 = FPNeg(src2.Float<T>(e * 2));
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
return dst; // prevents "element(n) may be unintialized" errors
|
|
}
|
|
dst.ClearForWrite(vform);
|
|
dst.SetFloat<T>(e * 2, FPAdd(src1.Float<T>(e * 2), element1));
|
|
dst.SetFloat<T>(e * 2 + 1, FPAdd(src1.Float<T>(e * 2 + 1), element3));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcadd(VectorFormat vform,
|
|
LogicVRegister dst, // d
|
|
const LogicVRegister& src1, // n
|
|
const LogicVRegister& src2, // m
|
|
int rot) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
fcadd<SimFloat16>(vform, dst, src1, src2, rot);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fcadd<float>(vform, dst, src1, src2, rot);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
fcadd<double>(vform, dst, src1, src2, rot);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fcmla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
const LogicVRegister& acc,
|
|
int index,
|
|
int rot) {
|
|
int elements = LaneCountFromFormat(vform);
|
|
|
|
T element1, element2, element3, element4;
|
|
rot *= 90;
|
|
|
|
// Loop example:
|
|
// 2S --> (2/2 = 1 - 1 = 0) --> 1 x Complex Number (2x components: r+i)
|
|
// 4S --> (4/2 = 2) - 1 = 1) --> 2 x Complex Number (2x2 components: r+i)
|
|
|
|
for (int e = 0; e <= (elements / 2) - 1; e++) {
|
|
// Index == -1 indicates a vector/vector rather than vector/indexed-element
|
|
// operation.
|
|
int f = (index < 0) ? e : index;
|
|
|
|
switch (rot) {
|
|
case 0:
|
|
element1 = src2.Float<T>(f * 2);
|
|
element2 = src1.Float<T>(e * 2);
|
|
element3 = src2.Float<T>(f * 2 + 1);
|
|
element4 = src1.Float<T>(e * 2);
|
|
break;
|
|
case 90:
|
|
element1 = FPNeg(src2.Float<T>(f * 2 + 1));
|
|
element2 = src1.Float<T>(e * 2 + 1);
|
|
element3 = src2.Float<T>(f * 2);
|
|
element4 = src1.Float<T>(e * 2 + 1);
|
|
break;
|
|
case 180:
|
|
element1 = FPNeg(src2.Float<T>(f * 2));
|
|
element2 = src1.Float<T>(e * 2);
|
|
element3 = FPNeg(src2.Float<T>(f * 2 + 1));
|
|
element4 = src1.Float<T>(e * 2);
|
|
break;
|
|
case 270:
|
|
element1 = src2.Float<T>(f * 2 + 1);
|
|
element2 = src1.Float<T>(e * 2 + 1);
|
|
element3 = FPNeg(src2.Float<T>(f * 2));
|
|
element4 = src1.Float<T>(e * 2 + 1);
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
return dst; // prevents "element(n) may be unintialized" errors
|
|
}
|
|
dst.ClearForWrite(vform);
|
|
dst.SetFloat<T>(vform,
|
|
e * 2,
|
|
FPMulAdd(acc.Float<T>(e * 2), element2, element1));
|
|
dst.SetFloat<T>(vform,
|
|
e * 2 + 1,
|
|
FPMulAdd(acc.Float<T>(e * 2 + 1), element4, element3));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::fcmla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
const LogicVRegister& acc,
|
|
int rot) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
fcmla<SimFloat16>(vform, dst, src1, src2, acc, -1, rot);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fcmla<float>(vform, dst, src1, src2, acc, -1, rot);
|
|
} else {
|
|
fcmla<double>(vform, dst, src1, src2, acc, -1, rot);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcmla(VectorFormat vform,
|
|
LogicVRegister dst, // d
|
|
const LogicVRegister& src1, // n
|
|
const LogicVRegister& src2, // m
|
|
int index,
|
|
int rot) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
VIXL_UNIMPLEMENTED();
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fcmla<float>(vform, dst, src1, src2, dst, index, rot);
|
|
} else {
|
|
fcmla<double>(vform, dst, src1, src2, dst, index, rot);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::cadd(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int rot,
|
|
bool saturate) {
|
|
SimVRegister src1_r, src1_i;
|
|
SimVRegister src2_r, src2_i;
|
|
SimVRegister zero;
|
|
zero.Clear();
|
|
uzp1(vform, src1_r, src1, zero);
|
|
uzp2(vform, src1_i, src1, zero);
|
|
uzp1(vform, src2_r, src2, zero);
|
|
uzp2(vform, src2_i, src2, zero);
|
|
|
|
if (rot == 90) {
|
|
if (saturate) {
|
|
sub(vform, src1_r, src1_r, src2_i).SignedSaturate(vform);
|
|
add(vform, src1_i, src1_i, src2_r).SignedSaturate(vform);
|
|
} else {
|
|
sub(vform, src1_r, src1_r, src2_i);
|
|
add(vform, src1_i, src1_i, src2_r);
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(rot == 270);
|
|
if (saturate) {
|
|
add(vform, src1_r, src1_r, src2_i).SignedSaturate(vform);
|
|
sub(vform, src1_i, src1_i, src2_r).SignedSaturate(vform);
|
|
} else {
|
|
add(vform, src1_r, src1_r, src2_i);
|
|
sub(vform, src1_i, src1_i, src2_r);
|
|
}
|
|
}
|
|
|
|
zip1(vform, dst, src1_r, src1_i);
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::cmla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int rot) {
|
|
SimVRegister src1_a;
|
|
SimVRegister src2_a, src2_b;
|
|
SimVRegister srca_i, srca_r;
|
|
SimVRegister zero, temp;
|
|
zero.Clear();
|
|
|
|
if ((rot == 0) || (rot == 180)) {
|
|
uzp1(vform, src1_a, src1, zero);
|
|
uzp1(vform, src2_a, src2, zero);
|
|
uzp2(vform, src2_b, src2, zero);
|
|
} else {
|
|
uzp2(vform, src1_a, src1, zero);
|
|
uzp2(vform, src2_a, src2, zero);
|
|
uzp1(vform, src2_b, src2, zero);
|
|
}
|
|
|
|
uzp1(vform, srca_r, srca, zero);
|
|
uzp2(vform, srca_i, srca, zero);
|
|
|
|
bool sub_r = (rot == 90) || (rot == 180);
|
|
bool sub_i = (rot == 180) || (rot == 270);
|
|
|
|
mul(vform, temp, src1_a, src2_a);
|
|
if (sub_r) {
|
|
sub(vform, srca_r, srca_r, temp);
|
|
} else {
|
|
add(vform, srca_r, srca_r, temp);
|
|
}
|
|
|
|
mul(vform, temp, src1_a, src2_b);
|
|
if (sub_i) {
|
|
sub(vform, srca_i, srca_i, temp);
|
|
} else {
|
|
add(vform, srca_i, srca_i, temp);
|
|
}
|
|
|
|
zip1(vform, dst, srca_r, srca_i);
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::cmla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index,
|
|
int rot) {
|
|
SimVRegister temp;
|
|
dup_elements_to_segments(VectorFormatDoubleWidth(vform), temp, src2, index);
|
|
return cmla(vform, dst, srca, src1, temp, rot);
|
|
}
|
|
|
|
LogicVRegister Simulator::bgrp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool do_bext) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t value = src1.Uint(vform, i);
|
|
uint64_t mask = src2.Uint(vform, i);
|
|
int high_pos = 0;
|
|
int low_pos = 0;
|
|
uint64_t result_high = 0;
|
|
uint64_t result_low = 0;
|
|
for (unsigned j = 0; j < LaneSizeInBitsFromFormat(vform); j++) {
|
|
if ((mask & 1) == 0) {
|
|
result_high |= (value & 1) << high_pos;
|
|
high_pos++;
|
|
} else {
|
|
result_low |= (value & 1) << low_pos;
|
|
low_pos++;
|
|
}
|
|
mask >>= 1;
|
|
value >>= 1;
|
|
}
|
|
|
|
if (!do_bext) {
|
|
result_low |= result_high << low_pos;
|
|
}
|
|
|
|
dst.SetUint(vform, i, result_low);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::bdep(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t value = src1.Uint(vform, i);
|
|
uint64_t mask = src2.Uint(vform, i);
|
|
uint64_t result = 0;
|
|
for (unsigned j = 0; j < LaneSizeInBitsFromFormat(vform); j++) {
|
|
if ((mask & 1) == 1) {
|
|
result |= (value & 1) << j;
|
|
value >>= 1;
|
|
}
|
|
mask >>= 1;
|
|
}
|
|
dst.SetUint(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::histogram(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool do_segmented) {
|
|
int elements_per_segment = kQRegSize / LaneSizeInBitsFromFormat(vform);
|
|
uint64_t result[kZRegMaxSizeInBytes];
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t count = 0;
|
|
uint64_t value = src1.Uint(vform, i);
|
|
|
|
int segment = do_segmented ? (i / elements_per_segment) : 0;
|
|
int segment_offset = segment * elements_per_segment;
|
|
int hist_limit = do_segmented ? elements_per_segment : (i + 1);
|
|
for (int j = 0; j < hist_limit; j++) {
|
|
if (pg.IsActive(vform, j) &&
|
|
(value == src2.Uint(vform, j + segment_offset))) {
|
|
count++;
|
|
}
|
|
}
|
|
result[i] = count;
|
|
}
|
|
dst.SetUintArray(vform, result);
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::dup_element(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int src_index) {
|
|
if ((vform == kFormatVnQ) || (vform == kFormatVnO)) {
|
|
// When duplicating an element larger than 64 bits, split the element into
|
|
// 64-bit parts, and duplicate the parts across the destination.
|
|
uint64_t d[4];
|
|
int count = (vform == kFormatVnQ) ? 2 : 4;
|
|
for (int i = 0; i < count; i++) {
|
|
d[i] = src.Uint(kFormatVnD, (src_index * count) + i);
|
|
}
|
|
dst.Clear();
|
|
for (int i = 0; i < LaneCountFromFormat(vform) * count; i++) {
|
|
dst.SetUint(kFormatVnD, i, d[i % count]);
|
|
}
|
|
} else {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
uint64_t value = src.Uint(vform, src_index);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, value);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::dup_elements_to_segments(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int src_index) {
|
|
// In SVE, a segment is a 128-bit portion of a vector, like a Q register,
|
|
// whereas in NEON, the size of segment is equal to the size of register
|
|
// itself.
|
|
int segment_size = std::min(kQRegSize, RegisterSizeInBitsFromFormat(vform));
|
|
VIXL_ASSERT(IsMultiple(segment_size, LaneSizeInBitsFromFormat(vform)));
|
|
int lanes_per_segment = segment_size / LaneSizeInBitsFromFormat(vform);
|
|
|
|
VIXL_ASSERT(src_index >= 0);
|
|
VIXL_ASSERT(src_index < lanes_per_segment);
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int j = 0; j < LaneCountFromFormat(vform); j += lanes_per_segment) {
|
|
uint64_t value = src.Uint(vform, j + src_index);
|
|
for (int i = 0; i < lanes_per_segment; i++) {
|
|
dst.SetUint(vform, j + i, value);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::dup_elements_to_segments(
|
|
VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const std::pair<int, int>& src_and_index) {
|
|
return dup_elements_to_segments(vform,
|
|
dst,
|
|
ReadVRegister(src_and_index.first),
|
|
src_and_index.second);
|
|
}
|
|
|
|
LogicVRegister Simulator::dup_immediate(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
uint64_t imm) {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
uint64_t value = imm & MaxUintFromFormat(vform);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, value);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ins_element(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
int dst_index,
|
|
const LogicVRegister& src,
|
|
int src_index) {
|
|
dst.SetUint(vform, dst_index, src.Uint(vform, src_index));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ins_immediate(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
int dst_index,
|
|
uint64_t imm) {
|
|
uint64_t value = imm & MaxUintFromFormat(vform);
|
|
dst.SetUint(vform, dst_index, value);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::index(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
uint64_t start,
|
|
uint64_t step) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
uint64_t value = start;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetUint(vform, i, value);
|
|
value += step;
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::insr(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
uint64_t imm) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
for (int i = LaneCountFromFormat(vform) - 1; i > 0; i--) {
|
|
dst.SetUint(vform, i, dst.Uint(vform, i - 1));
|
|
}
|
|
dst.SetUint(vform, 0, imm);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mov(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
for (int lane = 0; lane < LaneCountFromFormat(vform); lane++) {
|
|
dst.SetUint(vform, lane, src.Uint(vform, lane));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicPRegister Simulator::mov(LogicPRegister dst, const LogicPRegister& src) {
|
|
// Avoid a copy if the registers already alias.
|
|
if (dst.Aliases(src)) return dst;
|
|
|
|
for (int i = 0; i < dst.GetChunkCount(); i++) {
|
|
dst.SetChunk(i, src.GetChunk(i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mov_merging(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const SimPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
return sel(vform, dst, pg, src, dst);
|
|
}
|
|
|
|
LogicVRegister Simulator::mov_zeroing(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const SimPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
SimVRegister zero;
|
|
dup_immediate(vform, zero, 0);
|
|
return sel(vform, dst, pg, src, zero);
|
|
}
|
|
|
|
LogicVRegister Simulator::mov_alternating(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int start_at) {
|
|
VIXL_ASSERT((start_at == 0) || (start_at == 1));
|
|
for (int i = start_at; i < LaneCountFromFormat(vform); i += 2) {
|
|
dst.SetUint(vform, i, src.Uint(vform, i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicPRegister Simulator::mov_merging(LogicPRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& src) {
|
|
return sel(dst, pg, src, dst);
|
|
}
|
|
|
|
LogicPRegister Simulator::mov_zeroing(LogicPRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& src) {
|
|
SimPRegister all_false;
|
|
return sel(dst, pg, src, pfalse(all_false));
|
|
}
|
|
|
|
LogicVRegister Simulator::movi(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
uint64_t imm) {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, imm);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::mvni(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
uint64_t imm) {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, ~imm);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::orr(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
uint64_t imm) {
|
|
uint64_t result[16];
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
result[i] = src.Uint(vform, i) | imm;
|
|
}
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uxtl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
bool is_2) {
|
|
VectorFormat vform_half = VectorFormatHalfWidth(vform);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int src_offset = is_2 ? lane_count : 0;
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; i++) {
|
|
dst.SetUint(vform, i, src.Uint(vform_half, src_offset + i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sxtl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
bool is_2) {
|
|
VectorFormat vform_half = VectorFormatHalfWidth(vform);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int src_offset = is_2 ? lane_count : 0;
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetInt(vform, i, src.Int(vform_half, src_offset + i));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uxtl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return uxtl(vform, dst, src, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sxtl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return sxtl(vform, dst, src, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uxt(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
unsigned from_size_in_bits) {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
uint64_t mask = GetUintMask(from_size_in_bits);
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; i++) {
|
|
dst.SetInt(vform, i, src.Uint(vform, i) & mask);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sxt(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
unsigned from_size_in_bits) {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; i++) {
|
|
uint64_t value =
|
|
ExtractSignedBitfield64(from_size_in_bits - 1, 0, src.Uint(vform, i));
|
|
dst.SetInt(vform, i, value);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::shrn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vform_src = VectorFormatDoubleWidth(vform);
|
|
VectorFormat vform_dst = vform;
|
|
LogicVRegister shifted_src = ushr(vform_src, temp, src, shift);
|
|
return extractnarrow(vform_dst, dst, false, shifted_src, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::shrn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform));
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift);
|
|
return extractnarrow(vformdst, dst, false, shifted_src, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rshrn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(vform);
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift).Round(vformsrc);
|
|
return extractnarrow(vformdst, dst, false, shifted_src, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rshrn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform));
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift).Round(vformsrc);
|
|
return extractnarrow(vformdst, dst, false, shifted_src, false);
|
|
}
|
|
|
|
LogicVRegister Simulator::Table(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& ind,
|
|
bool zero_out_of_bounds,
|
|
const LogicVRegister* tab1,
|
|
const LogicVRegister* tab2,
|
|
const LogicVRegister* tab3,
|
|
const LogicVRegister* tab4) {
|
|
VIXL_ASSERT(tab1 != NULL);
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
VIXL_ASSERT((tab3 == NULL) || (lane_count <= 16));
|
|
uint64_t table[kZRegMaxSizeInBytes * 2];
|
|
uint64_t result[kZRegMaxSizeInBytes];
|
|
|
|
// For Neon, the table source registers are always 16B, and Neon allows only
|
|
// 8B or 16B vform for the destination, so infer the table format from the
|
|
// destination.
|
|
VectorFormat vform_tab = (vform == kFormat8B) ? kFormat16B : vform;
|
|
|
|
uint64_t tab_size = tab1->UintArray(vform_tab, &table[0]);
|
|
if (tab2 != NULL) tab_size += tab2->UintArray(vform_tab, &table[tab_size]);
|
|
if (tab3 != NULL) tab_size += tab3->UintArray(vform_tab, &table[tab_size]);
|
|
if (tab4 != NULL) tab_size += tab4->UintArray(vform_tab, &table[tab_size]);
|
|
|
|
for (int i = 0; i < lane_count; i++) {
|
|
uint64_t index = ind.Uint(vform, i);
|
|
result[i] = zero_out_of_bounds ? 0 : dst.Uint(vform, i);
|
|
if (index < tab_size) result[i] = table[index];
|
|
}
|
|
dst.SetUintArray(vform, result);
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::tbl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& tab,
|
|
const LogicVRegister& ind) {
|
|
return Table(vform, dst, ind, true, &tab);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::tbl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& tab,
|
|
const LogicVRegister& tab2,
|
|
const LogicVRegister& ind) {
|
|
return Table(vform, dst, ind, true, &tab, &tab2);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::tbl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& tab,
|
|
const LogicVRegister& tab2,
|
|
const LogicVRegister& tab3,
|
|
const LogicVRegister& ind) {
|
|
return Table(vform, dst, ind, true, &tab, &tab2, &tab3);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::tbl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& tab,
|
|
const LogicVRegister& tab2,
|
|
const LogicVRegister& tab3,
|
|
const LogicVRegister& tab4,
|
|
const LogicVRegister& ind) {
|
|
return Table(vform, dst, ind, true, &tab, &tab2, &tab3, &tab4);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::tbx(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& tab,
|
|
const LogicVRegister& ind) {
|
|
return Table(vform, dst, ind, false, &tab);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::tbx(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& tab,
|
|
const LogicVRegister& tab2,
|
|
const LogicVRegister& ind) {
|
|
return Table(vform, dst, ind, false, &tab, &tab2);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::tbx(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& tab,
|
|
const LogicVRegister& tab2,
|
|
const LogicVRegister& tab3,
|
|
const LogicVRegister& ind) {
|
|
return Table(vform, dst, ind, false, &tab, &tab2, &tab3);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::tbx(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& tab,
|
|
const LogicVRegister& tab2,
|
|
const LogicVRegister& tab3,
|
|
const LogicVRegister& tab4,
|
|
const LogicVRegister& ind) {
|
|
return Table(vform, dst, ind, false, &tab, &tab2, &tab3, &tab4);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uqshrn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
return shrn(vform, dst, src, shift).UnsignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uqshrn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
return shrn2(vform, dst, src, shift).UnsignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uqrshrn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
return rshrn(vform, dst, src, shift).UnsignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uqrshrn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
return rshrn2(vform, dst, src, shift).UnsignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqshrn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(vform);
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift);
|
|
return sqxtn(vformdst, dst, shifted_src);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqshrn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform));
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift);
|
|
return sqxtn(vformdst, dst, shifted_src);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrshrn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(vform);
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc);
|
|
return sqxtn(vformdst, dst, shifted_src);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrshrn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform));
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc);
|
|
return sqxtn(vformdst, dst, shifted_src);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqshrun(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(vform);
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift);
|
|
return sqxtun(vformdst, dst, shifted_src);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqshrun2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform));
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift);
|
|
return sqxtun(vformdst, dst, shifted_src);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrshrun(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(vform);
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc);
|
|
return sqxtun(vformdst, dst, shifted_src);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrshrun2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int shift) {
|
|
SimVRegister temp;
|
|
VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform));
|
|
VectorFormat vformdst = vform;
|
|
LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc);
|
|
return sqxtun(vformdst, dst, shifted_src);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uaddl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl(vform, temp1, src1);
|
|
uxtl(vform, temp2, src2);
|
|
add(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uaddl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl2(vform, temp1, src1);
|
|
uxtl2(vform, temp2, src2);
|
|
add(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uaddw(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
uxtl(vform, temp, src2);
|
|
add(vform, dst, src1, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uaddw2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
uxtl2(vform, temp, src2);
|
|
add(vform, dst, src1, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::saddl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl(vform, temp1, src1);
|
|
sxtl(vform, temp2, src2);
|
|
add(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::saddl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl2(vform, temp1, src1);
|
|
sxtl2(vform, temp2, src2);
|
|
add(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::saddw(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
sxtl(vform, temp, src2);
|
|
add(vform, dst, src1, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::saddw2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
sxtl2(vform, temp, src2);
|
|
add(vform, dst, src1, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::usubl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl(vform, temp1, src1);
|
|
uxtl(vform, temp2, src2);
|
|
sub(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::usubl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl2(vform, temp1, src1);
|
|
uxtl2(vform, temp2, src2);
|
|
sub(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::usubw(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
uxtl(vform, temp, src2);
|
|
sub(vform, dst, src1, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::usubw2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
uxtl2(vform, temp, src2);
|
|
sub(vform, dst, src1, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ssubl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl(vform, temp1, src1);
|
|
sxtl(vform, temp2, src2);
|
|
sub(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ssubl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl2(vform, temp1, src1);
|
|
sxtl2(vform, temp2, src2);
|
|
sub(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ssubw(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
sxtl(vform, temp, src2);
|
|
sub(vform, dst, src1, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ssubw2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
sxtl2(vform, temp, src2);
|
|
sub(vform, dst, src1, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uabal(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl(vform, temp1, src1);
|
|
uxtl(vform, temp2, src2);
|
|
uaba(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uabal2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl2(vform, temp1, src1);
|
|
uxtl2(vform, temp2, src2);
|
|
uaba(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sabal(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl(vform, temp1, src1);
|
|
sxtl(vform, temp2, src2);
|
|
saba(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sabal2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl2(vform, temp1, src1);
|
|
sxtl2(vform, temp2, src2);
|
|
saba(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uabdl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl(vform, temp1, src1);
|
|
uxtl(vform, temp2, src2);
|
|
absdiff(vform, dst, temp1, temp2, false);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uabdl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl2(vform, temp1, src1);
|
|
uxtl2(vform, temp2, src2);
|
|
absdiff(vform, dst, temp1, temp2, false);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sabdl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl(vform, temp1, src1);
|
|
sxtl(vform, temp2, src2);
|
|
absdiff(vform, dst, temp1, temp2, true);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sabdl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl2(vform, temp1, src1);
|
|
sxtl2(vform, temp2, src2);
|
|
absdiff(vform, dst, temp1, temp2, true);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umull(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl(vform, temp1, src1, is_2);
|
|
uxtl(vform, temp2, src2, is_2);
|
|
mul(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umull2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return umull(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smull(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl(vform, temp1, src1, is_2);
|
|
sxtl(vform, temp2, src2, is_2);
|
|
mul(vform, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smull2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return smull(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umlsl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl(vform, temp1, src1, is_2);
|
|
uxtl(vform, temp2, src2, is_2);
|
|
mls(vform, dst, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umlsl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return umlsl(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smlsl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl(vform, temp1, src1, is_2);
|
|
sxtl(vform, temp2, src2, is_2);
|
|
mls(vform, dst, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smlsl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return smlsl(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umlal(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp1, temp2;
|
|
uxtl(vform, temp1, src1, is_2);
|
|
uxtl(vform, temp2, src2, is_2);
|
|
mla(vform, dst, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::umlal2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return umlal(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smlal(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp1, temp2;
|
|
sxtl(vform, temp1, src1, is_2);
|
|
sxtl(vform, temp2, src2, is_2);
|
|
mla(vform, dst, dst, temp1, temp2);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::smlal2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return smlal(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqdmlal(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp;
|
|
LogicVRegister product = sqdmull(vform, temp, src1, src2, is_2);
|
|
return add(vform, dst, dst, product).SignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqdmlal2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return sqdmlal(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqdmlsl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp;
|
|
LogicVRegister product = sqdmull(vform, temp, src1, src2, is_2);
|
|
return sub(vform, dst, dst, product).SignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqdmlsl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return sqdmlsl(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqdmull(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_2) {
|
|
SimVRegister temp;
|
|
LogicVRegister product = smull(vform, temp, src1, src2, is_2);
|
|
return add(vform, dst, product, product).SignedSaturate(vform);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqdmull2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return sqdmull(vform, dst, src1, src2, /* is_2 = */ true);
|
|
}
|
|
|
|
LogicVRegister Simulator::sqrdmulh(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool round) {
|
|
int esize = LaneSizeInBitsFromFormat(vform);
|
|
|
|
SimVRegister temp_lo, temp_hi;
|
|
|
|
// Compute low and high multiplication results.
|
|
mul(vform, temp_lo, src1, src2);
|
|
smulh(vform, temp_hi, src1, src2);
|
|
|
|
// Double by shifting high half, and adding in most-significant bit of low
|
|
// half.
|
|
shl(vform, temp_hi, temp_hi, 1);
|
|
usra(vform, temp_hi, temp_lo, esize - 1);
|
|
|
|
if (round) {
|
|
// Add the second (due to doubling) most-significant bit of the low half
|
|
// into the result.
|
|
shl(vform, temp_lo, temp_lo, 1);
|
|
usra(vform, temp_hi, temp_lo, esize - 1);
|
|
}
|
|
|
|
SimPRegister not_sat;
|
|
LogicPRegister ptemp(not_sat);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Saturation only occurs when src1 = src2 = minimum representable value.
|
|
// Check this as a special case.
|
|
ptemp.SetActive(vform, i, true);
|
|
if ((src1.Int(vform, i) == MinIntFromFormat(vform)) &&
|
|
(src2.Int(vform, i) == MinIntFromFormat(vform))) {
|
|
ptemp.SetActive(vform, i, false);
|
|
}
|
|
dst.SetInt(vform, i, MaxIntFromFormat(vform));
|
|
}
|
|
|
|
mov_merging(vform, dst, not_sat, temp_hi);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::dot(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_src1_signed,
|
|
bool is_src2_signed) {
|
|
VectorFormat quarter_vform =
|
|
VectorFormatHalfWidthDoubleLanes(VectorFormatHalfWidthDoubleLanes(vform));
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int e = 0; e < LaneCountFromFormat(vform); e++) {
|
|
uint64_t result = 0;
|
|
int64_t element1, element2;
|
|
for (int i = 0; i < 4; i++) {
|
|
int index = 4 * e + i;
|
|
if (is_src1_signed) {
|
|
element1 = src1.Int(quarter_vform, index);
|
|
} else {
|
|
element1 = src1.Uint(quarter_vform, index);
|
|
}
|
|
if (is_src2_signed) {
|
|
element2 = src2.Int(quarter_vform, index);
|
|
} else {
|
|
element2 = src2.Uint(quarter_vform, index);
|
|
}
|
|
result += element1 * element2;
|
|
}
|
|
dst.SetUint(vform, e, result + dst.Uint(vform, e));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sdot(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return dot(vform, dst, src1, src2, true, true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::udot(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return dot(vform, dst, src1, src2, false, false);
|
|
}
|
|
|
|
LogicVRegister Simulator::usdot(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return dot(vform, dst, src1, src2, false, true);
|
|
}
|
|
|
|
LogicVRegister Simulator::cdot(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& acc,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int rot) {
|
|
VIXL_ASSERT((rot == 0) || (rot == 90) || (rot == 180) || (rot == 270));
|
|
VectorFormat quarter_vform =
|
|
VectorFormatHalfWidthDoubleLanes(VectorFormatHalfWidthDoubleLanes(vform));
|
|
|
|
int sel_a = ((rot == 0) || (rot == 180)) ? 0 : 1;
|
|
int sel_b = 1 - sel_a;
|
|
int sub_i = ((rot == 90) || (rot == 180)) ? 1 : -1;
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t result = acc.Int(vform, i);
|
|
for (int j = 0; j < 2; j++) {
|
|
int64_t r1 = src1.Int(quarter_vform, (4 * i) + (2 * j) + 0);
|
|
int64_t i1 = src1.Int(quarter_vform, (4 * i) + (2 * j) + 1);
|
|
int64_t r2 = src2.Int(quarter_vform, (4 * i) + (2 * j) + sel_a);
|
|
int64_t i2 = src2.Int(quarter_vform, (4 * i) + (2 * j) + sel_b);
|
|
result += (r1 * r2) + (sub_i * i1 * i2);
|
|
}
|
|
dst.SetInt(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::sqrdcmlah(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int rot) {
|
|
SimVRegister src1_a, src1_b;
|
|
SimVRegister src2_a, src2_b;
|
|
SimVRegister srca_i, srca_r;
|
|
SimVRegister zero, temp;
|
|
zero.Clear();
|
|
|
|
if ((rot == 0) || (rot == 180)) {
|
|
uzp1(vform, src1_a, src1, zero);
|
|
uzp1(vform, src2_a, src2, zero);
|
|
uzp2(vform, src2_b, src2, zero);
|
|
} else {
|
|
uzp2(vform, src1_a, src1, zero);
|
|
uzp2(vform, src2_a, src2, zero);
|
|
uzp1(vform, src2_b, src2, zero);
|
|
}
|
|
|
|
uzp1(vform, srca_r, srca, zero);
|
|
uzp2(vform, srca_i, srca, zero);
|
|
|
|
bool sub_r = (rot == 90) || (rot == 180);
|
|
bool sub_i = (rot == 180) || (rot == 270);
|
|
|
|
const bool round = true;
|
|
sqrdmlash(vform, srca_r, src1_a, src2_a, round, sub_r);
|
|
sqrdmlash(vform, srca_i, src1_a, src2_b, round, sub_i);
|
|
zip1(vform, dst, srca_r, srca_i);
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::sqrdcmlah(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index,
|
|
int rot) {
|
|
SimVRegister temp;
|
|
dup_elements_to_segments(VectorFormatDoubleWidth(vform), temp, src2, index);
|
|
return sqrdcmlah(vform, dst, srca, src1, temp, rot);
|
|
}
|
|
|
|
LogicVRegister Simulator::sqrdmlash_d(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool round,
|
|
bool sub_op) {
|
|
// 2 * INT_64_MIN * INT_64_MIN causes INT_128 to overflow.
|
|
// To avoid this, we use:
|
|
// (dst << (esize - 1) + src1 * src2 + 1 << (esize - 2)) >> (esize - 1)
|
|
// which is same as:
|
|
// (dst << esize + 2 * src1 * src2 + 1 << (esize - 1)) >> esize.
|
|
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
int esize = kDRegSize;
|
|
vixl_uint128_t round_const, accum;
|
|
round_const.first = 0;
|
|
if (round) {
|
|
round_const.second = UINT64_C(1) << (esize - 2);
|
|
} else {
|
|
round_const.second = 0;
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Shift the whole value left by `esize - 1` bits.
|
|
accum.first = dst.Int(vform, i) >> 1;
|
|
accum.second = dst.Int(vform, i) << (esize - 1);
|
|
|
|
vixl_uint128_t product = Mul64(src1.Int(vform, i), src2.Int(vform, i));
|
|
|
|
if (sub_op) {
|
|
product = Neg128(product);
|
|
}
|
|
accum = Add128(accum, product);
|
|
|
|
// Perform rounding.
|
|
accum = Add128(accum, round_const);
|
|
|
|
// Arithmetic shift the whole value right by `esize - 1` bits.
|
|
accum.second = (accum.first << 1) | (accum.second >> (esize - 1));
|
|
accum.first = -(accum.first >> (esize - 1));
|
|
|
|
// Perform saturation.
|
|
bool is_pos = (accum.first == 0) ? true : false;
|
|
if (is_pos &&
|
|
(accum.second > static_cast<uint64_t>(MaxIntFromFormat(vform)))) {
|
|
accum.second = MaxIntFromFormat(vform);
|
|
} else if (!is_pos && (accum.second <
|
|
static_cast<uint64_t>(MinIntFromFormat(vform)))) {
|
|
accum.second = MinIntFromFormat(vform);
|
|
}
|
|
|
|
dst.SetInt(vform, i, accum.second);
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::sqrdmlash(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool round,
|
|
bool sub_op) {
|
|
// 2 * INT_32_MIN * INT_32_MIN causes int64_t to overflow.
|
|
// To avoid this, we use:
|
|
// (dst << (esize - 1) + src1 * src2 + 1 << (esize - 2)) >> (esize - 1)
|
|
// which is same as:
|
|
// (dst << esize + 2 * src1 * src2 + 1 << (esize - 1)) >> esize.
|
|
|
|
if (vform == kFormatVnD) {
|
|
return sqrdmlash_d(vform, dst, src1, src2, round, sub_op);
|
|
}
|
|
|
|
int esize = LaneSizeInBitsFromFormat(vform);
|
|
int round_const = round ? (1 << (esize - 2)) : 0;
|
|
int64_t accum;
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
accum = dst.Int(vform, i) << (esize - 1);
|
|
if (sub_op) {
|
|
accum -= src1.Int(vform, i) * src2.Int(vform, i);
|
|
} else {
|
|
accum += src1.Int(vform, i) * src2.Int(vform, i);
|
|
}
|
|
accum += round_const;
|
|
accum = accum >> (esize - 1);
|
|
|
|
if (accum > MaxIntFromFormat(vform)) {
|
|
accum = MaxIntFromFormat(vform);
|
|
} else if (accum < MinIntFromFormat(vform)) {
|
|
accum = MinIntFromFormat(vform);
|
|
}
|
|
dst.SetInt(vform, i, accum);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrdmlah(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool round) {
|
|
return sqrdmlash(vform, dst, src1, src2, round, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqrdmlsh(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool round) {
|
|
return sqrdmlash(vform, dst, src1, src2, round, true);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::sqdmulh(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
return sqrdmulh(vform, dst, src1, src2, false);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::addhn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
add(VectorFormatDoubleWidth(vform), temp, src1, src2);
|
|
shrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::addhn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
add(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2);
|
|
shrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::raddhn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
add(VectorFormatDoubleWidth(vform), temp, src1, src2);
|
|
rshrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::raddhn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
add(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2);
|
|
rshrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::subhn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
sub(VectorFormatDoubleWidth(vform), temp, src1, src2);
|
|
shrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::subhn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
sub(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2);
|
|
shrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rsubhn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
sub(VectorFormatDoubleWidth(vform), temp, src1, src2);
|
|
rshrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::rsubhn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
sub(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2);
|
|
rshrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform));
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::trn1(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
uint64_t result[kZRegMaxSizeInBytes] = {};
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int pairs = lane_count / 2;
|
|
for (int i = 0; i < pairs; ++i) {
|
|
result[2 * i] = src1.Uint(vform, 2 * i);
|
|
result[(2 * i) + 1] = src2.Uint(vform, 2 * i);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::trn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
uint64_t result[kZRegMaxSizeInBytes] = {};
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int pairs = lane_count / 2;
|
|
for (int i = 0; i < pairs; ++i) {
|
|
result[2 * i] = src1.Uint(vform, (2 * i) + 1);
|
|
result[(2 * i) + 1] = src2.Uint(vform, (2 * i) + 1);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::zip1(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
uint64_t result[kZRegMaxSizeInBytes] = {};
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int pairs = lane_count / 2;
|
|
for (int i = 0; i < pairs; ++i) {
|
|
result[2 * i] = src1.Uint(vform, i);
|
|
result[(2 * i) + 1] = src2.Uint(vform, i);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::zip2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
uint64_t result[kZRegMaxSizeInBytes] = {};
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
int pairs = lane_count / 2;
|
|
for (int i = 0; i < pairs; ++i) {
|
|
result[2 * i] = src1.Uint(vform, pairs + i);
|
|
result[(2 * i) + 1] = src2.Uint(vform, pairs + i);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uzp1(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
uint64_t result[kZRegMaxSizeInBytes * 2];
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
result[i] = src1.Uint(vform, i);
|
|
result[lane_count + i] = src2.Uint(vform, i);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[2 * i]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::uzp2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
uint64_t result[kZRegMaxSizeInBytes * 2];
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
result[i] = src1.Uint(vform, i);
|
|
result[lane_count + i] = src2.Uint(vform, i);
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[(2 * i) + 1]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::interleave_top_bottom(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
// Interleave the top and bottom half of a vector, ie. for a vector:
|
|
//
|
|
// [ ... | F | D | B | ... | E | C | A ]
|
|
//
|
|
// where B is the first element in the top half of the vector, produce a
|
|
// result vector:
|
|
//
|
|
// [ ... | ... | F | E | D | C | B | A ]
|
|
|
|
uint64_t result[kZRegMaxSizeInBytes] = {};
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
for (int i = 0; i < lane_count; i += 2) {
|
|
result[i] = src.Uint(vform, i / 2);
|
|
result[i + 1] = src.Uint(vform, (lane_count / 2) + (i / 2));
|
|
}
|
|
dst.SetUintArray(vform, result);
|
|
return dst;
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::FPNeg(T op) {
|
|
return -op;
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::FPAdd(T op1, T op2) {
|
|
T result = FPProcessNaNs(op1, op2);
|
|
if (IsNaN(result)) {
|
|
return result;
|
|
}
|
|
|
|
if (IsInf(op1) && IsInf(op2) && (op1 != op2)) {
|
|
// inf + -inf returns the default NaN.
|
|
FPProcessException();
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
// Other cases should be handled by standard arithmetic.
|
|
return op1 + op2;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPSub(T op1, T op2) {
|
|
// NaNs should be handled elsewhere.
|
|
VIXL_ASSERT(!IsNaN(op1) && !IsNaN(op2));
|
|
|
|
if (IsInf(op1) && IsInf(op2) && (op1 == op2)) {
|
|
// inf - inf returns the default NaN.
|
|
FPProcessException();
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
// Other cases should be handled by standard arithmetic.
|
|
return op1 - op2;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::FPMulNaNs(T op1, T op2) {
|
|
T result = FPProcessNaNs(op1, op2);
|
|
return IsNaN(result) ? result : FPMul(op1, op2);
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::FPMul(T op1, T op2) {
|
|
// NaNs should be handled elsewhere.
|
|
VIXL_ASSERT(!IsNaN(op1) && !IsNaN(op2));
|
|
|
|
if ((IsInf(op1) && (op2 == 0.0)) || (IsInf(op2) && (op1 == 0.0))) {
|
|
// inf * 0.0 returns the default NaN.
|
|
FPProcessException();
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
// Other cases should be handled by standard arithmetic.
|
|
return op1 * op2;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMulx(T op1, T op2) {
|
|
if ((IsInf(op1) && (op2 == 0.0)) || (IsInf(op2) && (op1 == 0.0))) {
|
|
// inf * 0.0 returns +/-2.0.
|
|
T two = 2.0;
|
|
return copysign(1.0, op1) * copysign(1.0, op2) * two;
|
|
}
|
|
return FPMul(op1, op2);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMulAdd(T a, T op1, T op2) {
|
|
T result = FPProcessNaNs3(a, op1, op2);
|
|
|
|
T sign_a = copysign(1.0, a);
|
|
T sign_prod = copysign(1.0, op1) * copysign(1.0, op2);
|
|
bool isinf_prod = IsInf(op1) || IsInf(op2);
|
|
bool operation_generates_nan =
|
|
(IsInf(op1) && (op2 == 0.0)) || // inf * 0.0
|
|
(IsInf(op2) && (op1 == 0.0)) || // 0.0 * inf
|
|
(IsInf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf
|
|
|
|
if (IsNaN(result)) {
|
|
// Generated NaNs override quiet NaNs propagated from a.
|
|
if (operation_generates_nan && IsQuietNaN(a)) {
|
|
FPProcessException();
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// If the operation would produce a NaN, return the default NaN.
|
|
if (operation_generates_nan) {
|
|
FPProcessException();
|
|
return FPDefaultNaN<T>();
|
|
}
|
|
|
|
// Work around broken fma implementations for exact zero results: The sign of
|
|
// exact 0.0 results is positive unless both a and op1 * op2 are negative.
|
|
if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) {
|
|
return ((sign_a < T(0.0)) && (sign_prod < T(0.0))) ? -0.0 : 0.0;
|
|
}
|
|
|
|
result = FusedMultiplyAdd(op1, op2, a);
|
|
VIXL_ASSERT(!IsNaN(result));
|
|
|
|
// Work around broken fma implementations for rounded zero results: If a is
|
|
// 0.0, the sign of the result is the sign of op1 * op2 before rounding.
|
|
if ((a == 0.0) && (result == 0.0)) {
|
|
return copysign(0.0, sign_prod);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPDiv(T op1, T op2) {
|
|
// NaNs should be handled elsewhere.
|
|
VIXL_ASSERT(!IsNaN(op1) && !IsNaN(op2));
|
|
|
|
if ((IsInf(op1) && IsInf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) {
|
|
// inf / inf and 0.0 / 0.0 return the default NaN.
|
|
FPProcessException();
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
if (op2 == 0.0) {
|
|
FPProcessException();
|
|
if (!IsNaN(op1)) {
|
|
double op1_sign = copysign(1.0, op1);
|
|
double op2_sign = copysign(1.0, op2);
|
|
return static_cast<T>(op1_sign * op2_sign * kFP64PositiveInfinity);
|
|
}
|
|
}
|
|
|
|
// Other cases should be handled by standard arithmetic.
|
|
return op1 / op2;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPSqrt(T op) {
|
|
if (IsNaN(op)) {
|
|
return FPProcessNaN(op);
|
|
} else if (op < T(0.0)) {
|
|
FPProcessException();
|
|
return FPDefaultNaN<T>();
|
|
} else {
|
|
return sqrt(op);
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMax(T a, T b) {
|
|
T result = FPProcessNaNs(a, b);
|
|
if (IsNaN(result)) return result;
|
|
|
|
if ((a == 0.0) && (b == 0.0) && (copysign(1.0, a) != copysign(1.0, b))) {
|
|
// a and b are zero, and the sign differs: return +0.0.
|
|
return 0.0;
|
|
} else {
|
|
return (a > b) ? a : b;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMaxNM(T a, T b) {
|
|
if (IsQuietNaN(a) && !IsQuietNaN(b)) {
|
|
a = kFP64NegativeInfinity;
|
|
} else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
|
|
b = kFP64NegativeInfinity;
|
|
}
|
|
|
|
T result = FPProcessNaNs(a, b);
|
|
return IsNaN(result) ? result : FPMax(a, b);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMin(T a, T b) {
|
|
T result = FPProcessNaNs(a, b);
|
|
if (IsNaN(result)) return result;
|
|
|
|
if ((a == 0.0) && (b == 0.0) && (copysign(1.0, a) != copysign(1.0, b))) {
|
|
// a and b are zero, and the sign differs: return -0.0.
|
|
return -0.0;
|
|
} else {
|
|
return (a < b) ? a : b;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPMinNM(T a, T b) {
|
|
if (IsQuietNaN(a) && !IsQuietNaN(b)) {
|
|
a = kFP64PositiveInfinity;
|
|
} else if (!IsQuietNaN(a) && IsQuietNaN(b)) {
|
|
b = kFP64PositiveInfinity;
|
|
}
|
|
|
|
T result = FPProcessNaNs(a, b);
|
|
return IsNaN(result) ? result : FPMin(a, b);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPRecipStepFused(T op1, T op2) {
|
|
const T two = 2.0;
|
|
if ((IsInf(op1) && (op2 == 0.0)) || ((op1 == 0.0) && (IsInf(op2)))) {
|
|
return two;
|
|
} else if (IsInf(op1) || IsInf(op2)) {
|
|
// Return +inf if signs match, otherwise -inf.
|
|
return ((op1 >= 0.0) == (op2 >= 0.0)) ? kFP64PositiveInfinity
|
|
: kFP64NegativeInfinity;
|
|
} else {
|
|
return FusedMultiplyAdd(op1, op2, two);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
bool IsNormal(T value) {
|
|
return std::isnormal(value);
|
|
}
|
|
|
|
template <>
|
|
bool IsNormal(SimFloat16 value) {
|
|
uint16_t rawbits = Float16ToRawbits(value);
|
|
uint16_t exp_mask = 0x7c00;
|
|
// Check that the exponent is neither all zeroes or all ones.
|
|
return ((rawbits & exp_mask) != 0) && ((~rawbits & exp_mask) != 0);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPRSqrtStepFused(T op1, T op2) {
|
|
const T one_point_five = 1.5;
|
|
const T two = 2.0;
|
|
|
|
if ((IsInf(op1) && (op2 == 0.0)) || ((op1 == 0.0) && (IsInf(op2)))) {
|
|
return one_point_five;
|
|
} else if (IsInf(op1) || IsInf(op2)) {
|
|
// Return +inf if signs match, otherwise -inf.
|
|
return ((op1 >= 0.0) == (op2 >= 0.0)) ? kFP64PositiveInfinity
|
|
: kFP64NegativeInfinity;
|
|
} else {
|
|
// The multiply-add-halve operation must be fully fused, so avoid interim
|
|
// rounding by checking which operand can be losslessly divided by two
|
|
// before doing the multiply-add.
|
|
if (IsNormal(op1 / two)) {
|
|
return FusedMultiplyAdd(op1 / two, op2, one_point_five);
|
|
} else if (IsNormal(op2 / two)) {
|
|
return FusedMultiplyAdd(op1, op2 / two, one_point_five);
|
|
} else {
|
|
// Neither operand is normal after halving: the result is dominated by
|
|
// the addition term, so just return that.
|
|
return one_point_five;
|
|
}
|
|
}
|
|
}
|
|
|
|
int32_t Simulator::FPToFixedJS(double value) {
|
|
// The Z-flag is set when the conversion from double precision floating-point
|
|
// to 32-bit integer is exact. If the source value is +/-Infinity, -0.0, NaN,
|
|
// outside the bounds of a 32-bit integer, or isn't an exact integer then the
|
|
// Z-flag is unset.
|
|
int Z = 1;
|
|
int32_t result;
|
|
|
|
if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
|
|
(value == kFP64NegativeInfinity)) {
|
|
// +/- zero and infinity all return zero, however -0 and +/- Infinity also
|
|
// unset the Z-flag.
|
|
result = 0.0;
|
|
if ((value != 0.0) || std::signbit(value)) {
|
|
Z = 0;
|
|
}
|
|
} else if (std::isnan(value)) {
|
|
// NaN values unset the Z-flag and set the result to 0.
|
|
FPProcessNaN(value);
|
|
result = 0;
|
|
Z = 0;
|
|
} else {
|
|
// All other values are converted to an integer representation, rounded
|
|
// toward zero.
|
|
double int_result = std::floor(value);
|
|
double error = value - int_result;
|
|
|
|
if ((error != 0.0) && (int_result < 0.0)) {
|
|
int_result++;
|
|
}
|
|
|
|
// Constrain the value into the range [INT32_MIN, INT32_MAX]. We can almost
|
|
// write a one-liner with std::round, but the behaviour on ties is incorrect
|
|
// for our purposes.
|
|
double mod_const = static_cast<double>(UINT64_C(1) << 32);
|
|
double mod_error =
|
|
(int_result / mod_const) - std::floor(int_result / mod_const);
|
|
double constrained;
|
|
if (mod_error == 0.5) {
|
|
constrained = INT32_MIN;
|
|
} else {
|
|
constrained = int_result - mod_const * round(int_result / mod_const);
|
|
}
|
|
|
|
VIXL_ASSERT(std::floor(constrained) == constrained);
|
|
VIXL_ASSERT(constrained >= INT32_MIN);
|
|
VIXL_ASSERT(constrained <= INT32_MAX);
|
|
|
|
// Take the bottom 32 bits of the result as a 32-bit integer.
|
|
result = static_cast<int32_t>(constrained);
|
|
|
|
if ((int_result < INT32_MIN) || (int_result > INT32_MAX) ||
|
|
(error != 0.0)) {
|
|
// If the integer result is out of range or the conversion isn't exact,
|
|
// take exception and unset the Z-flag.
|
|
FPProcessException();
|
|
Z = 0;
|
|
}
|
|
}
|
|
|
|
ReadNzcv().SetN(0);
|
|
ReadNzcv().SetZ(Z);
|
|
ReadNzcv().SetC(0);
|
|
ReadNzcv().SetV(0);
|
|
|
|
return result;
|
|
}
|
|
|
|
double Simulator::FPRoundIntCommon(double value, FPRounding round_mode) {
|
|
VIXL_ASSERT((value != kFP64PositiveInfinity) &&
|
|
(value != kFP64NegativeInfinity));
|
|
VIXL_ASSERT(!IsNaN(value));
|
|
|
|
double int_result = std::floor(value);
|
|
double error = value - int_result;
|
|
switch (round_mode) {
|
|
case FPTieAway: {
|
|
// Take care of correctly handling the range ]-0.5, -0.0], which must
|
|
// yield -0.0.
|
|
if ((-0.5 < value) && (value < 0.0)) {
|
|
int_result = -0.0;
|
|
|
|
} else if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) {
|
|
// If the error is greater than 0.5, or is equal to 0.5 and the integer
|
|
// result is positive, round up.
|
|
int_result++;
|
|
}
|
|
break;
|
|
}
|
|
case FPTieEven: {
|
|
// Take care of correctly handling the range [-0.5, -0.0], which must
|
|
// yield -0.0.
|
|
if ((-0.5 <= value) && (value < 0.0)) {
|
|
int_result = -0.0;
|
|
|
|
// If the error is greater than 0.5, or is equal to 0.5 and the integer
|
|
// result is odd, round up.
|
|
} else if ((error > 0.5) ||
|
|
((error == 0.5) && (std::fmod(int_result, 2) != 0))) {
|
|
int_result++;
|
|
}
|
|
break;
|
|
}
|
|
case FPZero: {
|
|
// If value>0 then we take floor(value)
|
|
// otherwise, ceil(value).
|
|
if (value < 0) {
|
|
int_result = ceil(value);
|
|
}
|
|
break;
|
|
}
|
|
case FPNegativeInfinity: {
|
|
// We always use floor(value).
|
|
break;
|
|
}
|
|
case FPPositiveInfinity: {
|
|
// Take care of correctly handling the range ]-1.0, -0.0], which must
|
|
// yield -0.0.
|
|
if ((-1.0 < value) && (value < 0.0)) {
|
|
int_result = -0.0;
|
|
|
|
// If the error is non-zero, round up.
|
|
} else if (error > 0.0) {
|
|
int_result++;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
}
|
|
return int_result;
|
|
}
|
|
|
|
double Simulator::FPRoundInt(double value, FPRounding round_mode) {
|
|
if ((value == 0.0) || (value == kFP64PositiveInfinity) ||
|
|
(value == kFP64NegativeInfinity)) {
|
|
return value;
|
|
} else if (IsNaN(value)) {
|
|
return FPProcessNaN(value);
|
|
}
|
|
return FPRoundIntCommon(value, round_mode);
|
|
}
|
|
|
|
double Simulator::FPRoundInt(double value,
|
|
FPRounding round_mode,
|
|
FrintMode frint_mode) {
|
|
if (frint_mode == kFrintToInteger) {
|
|
return FPRoundInt(value, round_mode);
|
|
}
|
|
|
|
VIXL_ASSERT((frint_mode == kFrintToInt32) || (frint_mode == kFrintToInt64));
|
|
|
|
if (value == 0.0) {
|
|
return value;
|
|
}
|
|
|
|
if ((value == kFP64PositiveInfinity) || (value == kFP64NegativeInfinity) ||
|
|
IsNaN(value)) {
|
|
if (frint_mode == kFrintToInt32) {
|
|
return INT32_MIN;
|
|
} else {
|
|
return INT64_MIN;
|
|
}
|
|
}
|
|
|
|
double result = FPRoundIntCommon(value, round_mode);
|
|
|
|
// We want to compare `result > INT64_MAX` below, but INT64_MAX isn't exactly
|
|
// representable as a double, and is rounded to (INT64_MAX + 1) when
|
|
// converted. To avoid this, we compare `result >= int64_max_plus_one`
|
|
// instead; this is safe because `result` is known to be integral, and
|
|
// `int64_max_plus_one` is exactly representable as a double.
|
|
constexpr uint64_t int64_max_plus_one = static_cast<uint64_t>(INT64_MAX) + 1;
|
|
VIXL_STATIC_ASSERT(static_cast<uint64_t>(static_cast<double>(
|
|
int64_max_plus_one)) == int64_max_plus_one);
|
|
|
|
if (frint_mode == kFrintToInt32) {
|
|
if ((result > INT32_MAX) || (result < INT32_MIN)) {
|
|
return INT32_MIN;
|
|
}
|
|
} else if ((result >= int64_max_plus_one) || (result < INT64_MIN)) {
|
|
return INT64_MIN;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int16_t Simulator::FPToInt16(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
if (value >= kHMaxInt) {
|
|
return kHMaxInt;
|
|
} else if (value < kHMinInt) {
|
|
return kHMinInt;
|
|
}
|
|
return IsNaN(value) ? 0 : static_cast<int16_t>(value);
|
|
}
|
|
|
|
|
|
int32_t Simulator::FPToInt32(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
if (value >= kWMaxInt) {
|
|
return kWMaxInt;
|
|
} else if (value < kWMinInt) {
|
|
return kWMinInt;
|
|
}
|
|
return IsNaN(value) ? 0 : static_cast<int32_t>(value);
|
|
}
|
|
|
|
|
|
int64_t Simulator::FPToInt64(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
// This is equivalent to "if (value >= kXMaxInt)" but avoids rounding issues
|
|
// as a result of kMaxInt not being representable as a double.
|
|
if (value >= 9223372036854775808.) {
|
|
return kXMaxInt;
|
|
} else if (value < kXMinInt) {
|
|
return kXMinInt;
|
|
}
|
|
return IsNaN(value) ? 0 : static_cast<int64_t>(value);
|
|
}
|
|
|
|
|
|
uint16_t Simulator::FPToUInt16(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
if (value >= kHMaxUInt) {
|
|
return kHMaxUInt;
|
|
} else if (value < 0.0) {
|
|
return 0;
|
|
}
|
|
return IsNaN(value) ? 0 : static_cast<uint16_t>(value);
|
|
}
|
|
|
|
|
|
uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
if (value >= kWMaxUInt) {
|
|
return kWMaxUInt;
|
|
} else if (value < 0.0) {
|
|
return 0;
|
|
}
|
|
return IsNaN(value) ? 0 : static_cast<uint32_t>(value);
|
|
}
|
|
|
|
|
|
uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) {
|
|
value = FPRoundInt(value, rmode);
|
|
// This is equivalent to "if (value >= kXMaxUInt)" but avoids rounding issues
|
|
// as a result of kMaxUInt not being representable as a double.
|
|
if (value >= 18446744073709551616.) {
|
|
return kXMaxUInt;
|
|
} else if (value < 0.0) {
|
|
return 0;
|
|
}
|
|
return IsNaN(value) ? 0 : static_cast<uint64_t>(value);
|
|
}
|
|
|
|
|
|
#define DEFINE_NEON_FP_VECTOR_OP(FN, OP, PROCNAN) \
|
|
template <typename T> \
|
|
LogicVRegister Simulator::FN(VectorFormat vform, \
|
|
LogicVRegister dst, \
|
|
const LogicVRegister& src1, \
|
|
const LogicVRegister& src2) { \
|
|
dst.ClearForWrite(vform); \
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) { \
|
|
T op1 = src1.Float<T>(i); \
|
|
T op2 = src2.Float<T>(i); \
|
|
T result; \
|
|
if (PROCNAN) { \
|
|
result = FPProcessNaNs(op1, op2); \
|
|
if (!IsNaN(result)) { \
|
|
result = OP(op1, op2); \
|
|
} \
|
|
} else { \
|
|
result = OP(op1, op2); \
|
|
} \
|
|
dst.SetFloat(vform, i, result); \
|
|
} \
|
|
return dst; \
|
|
} \
|
|
\
|
|
LogicVRegister Simulator::FN(VectorFormat vform, \
|
|
LogicVRegister dst, \
|
|
const LogicVRegister& src1, \
|
|
const LogicVRegister& src2) { \
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) { \
|
|
FN<SimFloat16>(vform, dst, src1, src2); \
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) { \
|
|
FN<float>(vform, dst, src1, src2); \
|
|
} else { \
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize); \
|
|
FN<double>(vform, dst, src1, src2); \
|
|
} \
|
|
return dst; \
|
|
}
|
|
NEON_FP3SAME_LIST(DEFINE_NEON_FP_VECTOR_OP)
|
|
#undef DEFINE_NEON_FP_VECTOR_OP
|
|
|
|
|
|
LogicVRegister Simulator::fnmul(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
LogicVRegister product = fmul(vform, temp, src1, src2);
|
|
return fneg(vform, dst, product);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::frecps(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
T op1 = -src1.Float<T>(i);
|
|
T op2 = src2.Float<T>(i);
|
|
T result = FPProcessNaNs(op1, op2);
|
|
dst.SetFloat(vform, i, IsNaN(result) ? result : FPRecipStepFused(op1, op2));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::frecps(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
frecps<SimFloat16>(vform, dst, src1, src2);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
frecps<float>(vform, dst, src1, src2);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
frecps<double>(vform, dst, src1, src2);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::frsqrts(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
T op1 = -src1.Float<T>(i);
|
|
T op2 = src2.Float<T>(i);
|
|
T result = FPProcessNaNs(op1, op2);
|
|
dst.SetFloat(vform, i, IsNaN(result) ? result : FPRSqrtStepFused(op1, op2));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::frsqrts(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
frsqrts<SimFloat16>(vform, dst, src1, src2);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
frsqrts<float>(vform, dst, src1, src2);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
frsqrts<double>(vform, dst, src1, src2);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fcmp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
Condition cond) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
bool result = false;
|
|
T op1 = src1.Float<T>(i);
|
|
T op2 = src2.Float<T>(i);
|
|
bool unordered = IsNaN(FPProcessNaNs(op1, op2));
|
|
|
|
switch (cond) {
|
|
case eq:
|
|
result = (op1 == op2);
|
|
break;
|
|
case ge:
|
|
result = (op1 >= op2);
|
|
break;
|
|
case gt:
|
|
result = (op1 > op2);
|
|
break;
|
|
case le:
|
|
result = (op1 <= op2);
|
|
break;
|
|
case lt:
|
|
result = (op1 < op2);
|
|
break;
|
|
case ne:
|
|
result = (op1 != op2);
|
|
break;
|
|
case uo:
|
|
result = unordered;
|
|
break;
|
|
default:
|
|
// Other conditions are defined in terms of those above.
|
|
VIXL_UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
if (result && unordered) {
|
|
// Only `uo` and `ne` can be true for unordered comparisons.
|
|
VIXL_ASSERT((cond == uo) || (cond == ne));
|
|
}
|
|
|
|
dst.SetUint(vform, i, result ? MaxUintFromFormat(vform) : 0);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcmp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
Condition cond) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
fcmp<SimFloat16>(vform, dst, src1, src2, cond);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fcmp<float>(vform, dst, src1, src2, cond);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
fcmp<double>(vform, dst, src1, src2, cond);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcmp_zero(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
Condition cond) {
|
|
SimVRegister temp;
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
LogicVRegister zero_reg =
|
|
dup_immediate(vform, temp, Float16ToRawbits(SimFloat16(0.0)));
|
|
fcmp<SimFloat16>(vform, dst, src, zero_reg, cond);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
LogicVRegister zero_reg = dup_immediate(vform, temp, FloatToRawbits(0.0));
|
|
fcmp<float>(vform, dst, src, zero_reg, cond);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
LogicVRegister zero_reg = dup_immediate(vform, temp, DoubleToRawbits(0.0));
|
|
fcmp<double>(vform, dst, src, zero_reg, cond);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fabscmp(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
Condition cond) {
|
|
SimVRegister temp1, temp2;
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
LogicVRegister abs_src1 = fabs_<SimFloat16>(vform, temp1, src1);
|
|
LogicVRegister abs_src2 = fabs_<SimFloat16>(vform, temp2, src2);
|
|
fcmp<SimFloat16>(vform, dst, abs_src1, abs_src2, cond);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
LogicVRegister abs_src1 = fabs_<float>(vform, temp1, src1);
|
|
LogicVRegister abs_src2 = fabs_<float>(vform, temp2, src2);
|
|
fcmp<float>(vform, dst, abs_src1, abs_src2, cond);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
LogicVRegister abs_src1 = fabs_<double>(vform, temp1, src1);
|
|
LogicVRegister abs_src2 = fabs_<double>(vform, temp2, src2);
|
|
fcmp<double>(vform, dst, abs_src1, abs_src2, cond);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fmla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
T op1 = src1.Float<T>(i);
|
|
T op2 = src2.Float<T>(i);
|
|
T acc = srca.Float<T>(i);
|
|
T result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
fmla<SimFloat16>(vform, dst, srca, src1, src2);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fmla<float>(vform, dst, srca, src1, src2);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
fmla<double>(vform, dst, srca, src1, src2);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fmls(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
T op1 = -src1.Float<T>(i);
|
|
T op2 = src2.Float<T>(i);
|
|
T acc = srca.Float<T>(i);
|
|
T result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmls(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& srca,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
fmls<SimFloat16>(vform, dst, srca, src1, src2);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fmls<float>(vform, dst, srca, src1, src2);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
fmls<double>(vform, dst, srca, src1, src2);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmlal(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
float op1 = FPToFloat(src1.Float<SimFloat16>(i), kIgnoreDefaultNaN);
|
|
float op2 = FPToFloat(src2.Float<SimFloat16>(i), kIgnoreDefaultNaN);
|
|
float acc = dst.Float<float>(i);
|
|
float result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmlal2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int src = i + LaneCountFromFormat(vform);
|
|
float op1 = FPToFloat(src1.Float<SimFloat16>(src), kIgnoreDefaultNaN);
|
|
float op2 = FPToFloat(src2.Float<SimFloat16>(src), kIgnoreDefaultNaN);
|
|
float acc = dst.Float<float>(i);
|
|
float result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmlsl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
float op1 = -FPToFloat(src1.Float<SimFloat16>(i), kIgnoreDefaultNaN);
|
|
float op2 = FPToFloat(src2.Float<SimFloat16>(i), kIgnoreDefaultNaN);
|
|
float acc = dst.Float<float>(i);
|
|
float result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmlsl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int src = i + LaneCountFromFormat(vform);
|
|
float op1 = -FPToFloat(src1.Float<SimFloat16>(src), kIgnoreDefaultNaN);
|
|
float op2 = FPToFloat(src2.Float<SimFloat16>(src), kIgnoreDefaultNaN);
|
|
float acc = dst.Float<float>(i);
|
|
float result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmlal(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
dst.ClearForWrite(vform);
|
|
float op2 = FPToFloat(src2.Float<SimFloat16>(index), kIgnoreDefaultNaN);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
float op1 = FPToFloat(src1.Float<SimFloat16>(i), kIgnoreDefaultNaN);
|
|
float acc = dst.Float<float>(i);
|
|
float result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmlal2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
dst.ClearForWrite(vform);
|
|
float op2 = FPToFloat(src2.Float<SimFloat16>(index), kIgnoreDefaultNaN);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int src = i + LaneCountFromFormat(vform);
|
|
float op1 = FPToFloat(src1.Float<SimFloat16>(src), kIgnoreDefaultNaN);
|
|
float acc = dst.Float<float>(i);
|
|
float result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmlsl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
dst.ClearForWrite(vform);
|
|
float op2 = FPToFloat(src2.Float<SimFloat16>(index), kIgnoreDefaultNaN);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
float op1 = -FPToFloat(src1.Float<SimFloat16>(i), kIgnoreDefaultNaN);
|
|
float acc = dst.Float<float>(i);
|
|
float result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmlsl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
dst.ClearForWrite(vform);
|
|
float op2 = FPToFloat(src2.Float<SimFloat16>(index), kIgnoreDefaultNaN);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int src = i + LaneCountFromFormat(vform);
|
|
float op1 = -FPToFloat(src1.Float<SimFloat16>(src), kIgnoreDefaultNaN);
|
|
float acc = dst.Float<float>(i);
|
|
float result = FPMulAdd(acc, op1, op2);
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fneg(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
T op = src.Float<T>(i);
|
|
op = -op;
|
|
dst.SetFloat(i, op);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fneg(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
fneg<SimFloat16>(vform, dst, src);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fneg<float>(vform, dst, src);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
fneg<double>(vform, dst, src);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fabs_(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
T op = src.Float<T>(i);
|
|
if (copysign(1.0, op) < 0.0) {
|
|
op = -op;
|
|
}
|
|
dst.SetFloat(i, op);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fabs_(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
fabs_<SimFloat16>(vform, dst, src);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fabs_<float>(vform, dst, src);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
fabs_<double>(vform, dst, src);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fabd(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister temp;
|
|
fsub(vform, temp, src1, src2);
|
|
fabs_(vform, dst, temp);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fsqrt(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
SimFloat16 result = FPSqrt(src.Float<SimFloat16>(i));
|
|
dst.SetFloat(i, result);
|
|
}
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
float result = FPSqrt(src.Float<float>(i));
|
|
dst.SetFloat(i, result);
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
double result = FPSqrt(src.Float<double>(i));
|
|
dst.SetFloat(i, result);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
#define DEFINE_NEON_FP_PAIR_OP(FNP, FN, OP) \
|
|
LogicVRegister Simulator::FNP(VectorFormat vform, \
|
|
LogicVRegister dst, \
|
|
const LogicVRegister& src1, \
|
|
const LogicVRegister& src2) { \
|
|
SimVRegister temp1, temp2; \
|
|
uzp1(vform, temp1, src1, src2); \
|
|
uzp2(vform, temp2, src1, src2); \
|
|
FN(vform, dst, temp1, temp2); \
|
|
if (IsSVEFormat(vform)) { \
|
|
interleave_top_bottom(vform, dst, dst); \
|
|
} \
|
|
return dst; \
|
|
} \
|
|
\
|
|
LogicVRegister Simulator::FNP(VectorFormat vform, \
|
|
LogicVRegister dst, \
|
|
const LogicVRegister& src) { \
|
|
if (vform == kFormatH) { \
|
|
SimFloat16 result(OP(SimFloat16(RawbitsToFloat16(src.Uint(vform, 0))), \
|
|
SimFloat16(RawbitsToFloat16(src.Uint(vform, 1))))); \
|
|
dst.SetUint(vform, 0, Float16ToRawbits(result)); \
|
|
} else if (vform == kFormatS) { \
|
|
float result = OP(src.Float<float>(0), src.Float<float>(1)); \
|
|
dst.SetFloat(0, result); \
|
|
} else { \
|
|
VIXL_ASSERT(vform == kFormatD); \
|
|
double result = OP(src.Float<double>(0), src.Float<double>(1)); \
|
|
dst.SetFloat(0, result); \
|
|
} \
|
|
dst.ClearForWrite(vform); \
|
|
return dst; \
|
|
}
|
|
NEON_FPPAIRWISE_LIST(DEFINE_NEON_FP_PAIR_OP)
|
|
#undef DEFINE_NEON_FP_PAIR_OP
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::FPPairedAcrossHelper(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
typename TFPPairOp<T>::type fn,
|
|
uint64_t inactive_value) {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
T result[kZRegMaxSizeInBytes / sizeof(T)];
|
|
// Copy the source vector into a working array. Initialise the unused elements
|
|
// at the end of the array to the same value that a false predicate would set.
|
|
for (int i = 0; i < static_cast<int>(ArrayLength(result)); i++) {
|
|
result[i] = (i < lane_count)
|
|
? src.Float<T>(i)
|
|
: RawbitsWithSizeToFP<T>(sizeof(T) * 8, inactive_value);
|
|
}
|
|
|
|
// Pairwise reduce the elements to a single value, using the pair op function
|
|
// argument.
|
|
for (int step = 1; step < lane_count; step *= 2) {
|
|
for (int i = 0; i < lane_count; i += step * 2) {
|
|
result[i] = (this->*fn)(result[i], result[i + step]);
|
|
}
|
|
}
|
|
dst.ClearForWrite(ScalarFormatFromFormat(vform));
|
|
dst.SetFloat<T>(0, result[0]);
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::FPPairedAcrossHelper(
|
|
VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
typename TFPPairOp<SimFloat16>::type fn16,
|
|
typename TFPPairOp<float>::type fn32,
|
|
typename TFPPairOp<double>::type fn64,
|
|
uint64_t inactive_value) {
|
|
switch (LaneSizeInBitsFromFormat(vform)) {
|
|
case kHRegSize:
|
|
return FPPairedAcrossHelper<SimFloat16>(vform,
|
|
dst,
|
|
src,
|
|
fn16,
|
|
inactive_value);
|
|
case kSRegSize:
|
|
return FPPairedAcrossHelper<float>(vform, dst, src, fn32, inactive_value);
|
|
default:
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
return FPPairedAcrossHelper<double>(vform,
|
|
dst,
|
|
src,
|
|
fn64,
|
|
inactive_value);
|
|
}
|
|
}
|
|
|
|
LogicVRegister Simulator::faddv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
return FPPairedAcrossHelper(vform,
|
|
dst,
|
|
src,
|
|
&Simulator::FPAdd<SimFloat16>,
|
|
&Simulator::FPAdd<float>,
|
|
&Simulator::FPAdd<double>,
|
|
0);
|
|
}
|
|
|
|
LogicVRegister Simulator::fmaxv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_size = LaneSizeInBitsFromFormat(vform);
|
|
uint64_t inactive_value =
|
|
FPToRawbitsWithSize(lane_size, kFP64NegativeInfinity);
|
|
return FPPairedAcrossHelper(vform,
|
|
dst,
|
|
src,
|
|
&Simulator::FPMax<SimFloat16>,
|
|
&Simulator::FPMax<float>,
|
|
&Simulator::FPMax<double>,
|
|
inactive_value);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fminv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_size = LaneSizeInBitsFromFormat(vform);
|
|
uint64_t inactive_value =
|
|
FPToRawbitsWithSize(lane_size, kFP64PositiveInfinity);
|
|
return FPPairedAcrossHelper(vform,
|
|
dst,
|
|
src,
|
|
&Simulator::FPMin<SimFloat16>,
|
|
&Simulator::FPMin<float>,
|
|
&Simulator::FPMin<double>,
|
|
inactive_value);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmaxnmv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_size = LaneSizeInBitsFromFormat(vform);
|
|
uint64_t inactive_value = FPToRawbitsWithSize(lane_size, kFP64DefaultNaN);
|
|
return FPPairedAcrossHelper(vform,
|
|
dst,
|
|
src,
|
|
&Simulator::FPMaxNM<SimFloat16>,
|
|
&Simulator::FPMaxNM<float>,
|
|
&Simulator::FPMaxNM<double>,
|
|
inactive_value);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fminnmv(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_size = LaneSizeInBitsFromFormat(vform);
|
|
uint64_t inactive_value = FPToRawbitsWithSize(lane_size, kFP64DefaultNaN);
|
|
return FPPairedAcrossHelper(vform,
|
|
dst,
|
|
src,
|
|
&Simulator::FPMinNM<SimFloat16>,
|
|
&Simulator::FPMinNM<float>,
|
|
&Simulator::FPMinNM<double>,
|
|
inactive_value);
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmul(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
dst.ClearForWrite(vform);
|
|
SimVRegister temp;
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
LogicVRegister index_reg = dup_element(kFormat8H, temp, src2, index);
|
|
fmul<SimFloat16>(vform, dst, src1, index_reg);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index);
|
|
fmul<float>(vform, dst, src1, index_reg);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index);
|
|
fmul<double>(vform, dst, src1, index_reg);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmla(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
dst.ClearForWrite(vform);
|
|
SimVRegister temp;
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
LogicVRegister index_reg = dup_element(kFormat8H, temp, src2, index);
|
|
fmla<SimFloat16>(vform, dst, dst, src1, index_reg);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index);
|
|
fmla<float>(vform, dst, dst, src1, index_reg);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index);
|
|
fmla<double>(vform, dst, dst, src1, index_reg);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmls(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
dst.ClearForWrite(vform);
|
|
SimVRegister temp;
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
LogicVRegister index_reg = dup_element(kFormat8H, temp, src2, index);
|
|
fmls<SimFloat16>(vform, dst, dst, src1, index_reg);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index);
|
|
fmls<float>(vform, dst, dst, src1, index_reg);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index);
|
|
fmls<double>(vform, dst, dst, src1, index_reg);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fmulx(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
int index) {
|
|
dst.ClearForWrite(vform);
|
|
SimVRegister temp;
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
LogicVRegister index_reg = dup_element(kFormat8H, temp, src2, index);
|
|
fmulx<SimFloat16>(vform, dst, src1, index_reg);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index);
|
|
fmulx<float>(vform, dst, src1, index_reg);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index);
|
|
fmulx<double>(vform, dst, src1, index_reg);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::frint(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
FPRounding rounding_mode,
|
|
bool inexact_exception,
|
|
FrintMode frint_mode) {
|
|
dst.ClearForWrite(vform);
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
VIXL_ASSERT(frint_mode == kFrintToInteger);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
SimFloat16 input = src.Float<SimFloat16>(i);
|
|
SimFloat16 rounded = FPRoundInt(input, rounding_mode);
|
|
if (inexact_exception && !IsNaN(input) && (input != rounded)) {
|
|
FPProcessException();
|
|
}
|
|
dst.SetFloat<SimFloat16>(i, rounded);
|
|
}
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
float input = src.Float<float>(i);
|
|
float rounded = FPRoundInt(input, rounding_mode, frint_mode);
|
|
|
|
if (inexact_exception && !IsNaN(input) && (input != rounded)) {
|
|
FPProcessException();
|
|
}
|
|
dst.SetFloat<float>(i, rounded);
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
double input = src.Float<double>(i);
|
|
double rounded = FPRoundInt(input, rounding_mode, frint_mode);
|
|
if (inexact_exception && !IsNaN(input) && (input != rounded)) {
|
|
FPProcessException();
|
|
}
|
|
dst.SetFloat<double>(i, rounded);
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::fcvt(VectorFormat dst_vform,
|
|
VectorFormat src_vform,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src) {
|
|
unsigned dst_data_size_in_bits = LaneSizeInBitsFromFormat(dst_vform);
|
|
unsigned src_data_size_in_bits = LaneSizeInBitsFromFormat(src_vform);
|
|
VectorFormat vform = SVEFormatFromLaneSizeInBits(
|
|
std::max(dst_data_size_in_bits, src_data_size_in_bits));
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
uint64_t src_raw_bits = ExtractUnsignedBitfield64(src_data_size_in_bits - 1,
|
|
0,
|
|
src.Uint(vform, i));
|
|
double dst_value =
|
|
RawbitsWithSizeToFP<double>(src_data_size_in_bits, src_raw_bits);
|
|
|
|
uint64_t dst_raw_bits =
|
|
FPToRawbitsWithSize(dst_data_size_in_bits, dst_value);
|
|
|
|
dst.SetUint(vform, i, dst_raw_bits);
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::fcvts(VectorFormat vform,
|
|
unsigned dst_data_size_in_bits,
|
|
unsigned src_data_size_in_bits,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src,
|
|
FPRounding round,
|
|
int fbits) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) >= dst_data_size_in_bits);
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) >= src_data_size_in_bits);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
uint64_t value = ExtractUnsignedBitfield64(src_data_size_in_bits - 1,
|
|
0,
|
|
src.Uint(vform, i));
|
|
double result = RawbitsWithSizeToFP<double>(src_data_size_in_bits, value) *
|
|
std::pow(2.0, fbits);
|
|
|
|
switch (dst_data_size_in_bits) {
|
|
case kHRegSize:
|
|
dst.SetInt(vform, i, FPToInt16(result, round));
|
|
break;
|
|
case kSRegSize:
|
|
dst.SetInt(vform, i, FPToInt32(result, round));
|
|
break;
|
|
case kDRegSize:
|
|
dst.SetInt(vform, i, FPToInt64(result, round));
|
|
break;
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::fcvts(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
FPRounding round,
|
|
int fbits) {
|
|
dst.ClearForWrite(vform);
|
|
return fcvts(vform,
|
|
LaneSizeInBitsFromFormat(vform),
|
|
LaneSizeInBitsFromFormat(vform),
|
|
dst,
|
|
GetPTrue(),
|
|
src,
|
|
round,
|
|
fbits);
|
|
}
|
|
|
|
LogicVRegister Simulator::fcvtu(VectorFormat vform,
|
|
unsigned dst_data_size_in_bits,
|
|
unsigned src_data_size_in_bits,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src,
|
|
FPRounding round,
|
|
int fbits) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) >= dst_data_size_in_bits);
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) >= src_data_size_in_bits);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
uint64_t value = ExtractUnsignedBitfield64(src_data_size_in_bits - 1,
|
|
0,
|
|
src.Uint(vform, i));
|
|
double result = RawbitsWithSizeToFP<double>(src_data_size_in_bits, value) *
|
|
std::pow(2.0, fbits);
|
|
|
|
switch (dst_data_size_in_bits) {
|
|
case kHRegSize:
|
|
dst.SetUint(vform, i, FPToUInt16(result, round));
|
|
break;
|
|
case kSRegSize:
|
|
dst.SetUint(vform, i, FPToUInt32(result, round));
|
|
break;
|
|
case kDRegSize:
|
|
dst.SetUint(vform, i, FPToUInt64(result, round));
|
|
break;
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::fcvtu(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
FPRounding round,
|
|
int fbits) {
|
|
dst.ClearForWrite(vform);
|
|
return fcvtu(vform,
|
|
LaneSizeInBitsFromFormat(vform),
|
|
LaneSizeInBitsFromFormat(vform),
|
|
dst,
|
|
GetPTrue(),
|
|
src,
|
|
round,
|
|
fbits);
|
|
}
|
|
|
|
LogicVRegister Simulator::fcvtl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
for (int i = LaneCountFromFormat(vform) - 1; i >= 0; i--) {
|
|
// TODO: Full support for SimFloat16 in SimRegister(s).
|
|
dst.SetFloat(i,
|
|
FPToFloat(RawbitsToFloat16(src.Float<uint16_t>(i)),
|
|
ReadDN()));
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
for (int i = LaneCountFromFormat(vform) - 1; i >= 0; i--) {
|
|
dst.SetFloat(i, FPToDouble(src.Float<float>(i), ReadDN()));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcvtl2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_count = LaneCountFromFormat(vform);
|
|
if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
for (int i = 0; i < lane_count; i++) {
|
|
// TODO: Full support for SimFloat16 in SimRegister(s).
|
|
dst.SetFloat(i,
|
|
FPToFloat(RawbitsToFloat16(
|
|
src.Float<uint16_t>(i + lane_count)),
|
|
ReadDN()));
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
for (int i = 0; i < lane_count; i++) {
|
|
dst.SetFloat(i, FPToDouble(src.Float<float>(i + lane_count), ReadDN()));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcvtn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
SimVRegister tmp;
|
|
LogicVRegister srctmp = mov(kFormat2D, tmp, src);
|
|
dst.ClearForWrite(vform);
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetFloat(i,
|
|
Float16ToRawbits(FPToFloat16(srctmp.Float<float>(i),
|
|
FPTieEven,
|
|
ReadDN())));
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetFloat(i, FPToFloat(srctmp.Float<double>(i), FPTieEven, ReadDN()));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcvtn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
int lane_count = LaneCountFromFormat(vform) / 2;
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
for (int i = lane_count - 1; i >= 0; i--) {
|
|
dst.SetFloat(i + lane_count,
|
|
Float16ToRawbits(
|
|
FPToFloat16(src.Float<float>(i), FPTieEven, ReadDN())));
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
for (int i = lane_count - 1; i >= 0; i--) {
|
|
dst.SetFloat(i + lane_count,
|
|
FPToFloat(src.Float<double>(i), FPTieEven, ReadDN()));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcvtxn(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
SimVRegister tmp;
|
|
LogicVRegister srctmp = mov(kFormat2D, tmp, src);
|
|
int input_lane_count = LaneCountFromFormat(vform);
|
|
if (IsSVEFormat(vform)) {
|
|
mov(kFormatVnB, tmp, src);
|
|
input_lane_count /= 2;
|
|
}
|
|
|
|
dst.ClearForWrite(vform);
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
|
|
for (int i = 0; i < input_lane_count; i++) {
|
|
dst.SetFloat(i, FPToFloat(srctmp.Float<double>(i), FPRoundOdd, ReadDN()));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::fcvtxn2(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kSRegSize);
|
|
int lane_count = LaneCountFromFormat(vform) / 2;
|
|
for (int i = lane_count - 1; i >= 0; i--) {
|
|
dst.SetFloat(i + lane_count,
|
|
FPToFloat(src.Float<double>(i), FPRoundOdd, ReadDN()));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
// Based on reference C function recip_sqrt_estimate from ARM ARM.
|
|
double Simulator::recip_sqrt_estimate(double a) {
|
|
int quot0, quot1, s;
|
|
double r;
|
|
if (a < 0.5) {
|
|
quot0 = static_cast<int>(a * 512.0);
|
|
r = 1.0 / sqrt((static_cast<double>(quot0) + 0.5) / 512.0);
|
|
} else {
|
|
quot1 = static_cast<int>(a * 256.0);
|
|
r = 1.0 / sqrt((static_cast<double>(quot1) + 0.5) / 256.0);
|
|
}
|
|
s = static_cast<int>(256.0 * r + 0.5);
|
|
return static_cast<double>(s) / 256.0;
|
|
}
|
|
|
|
|
|
static inline uint64_t Bits(uint64_t val, int start_bit, int end_bit) {
|
|
return ExtractUnsignedBitfield64(start_bit, end_bit, val);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T Simulator::FPRecipSqrtEstimate(T op) {
|
|
if (IsNaN(op)) {
|
|
return FPProcessNaN(op);
|
|
} else if (op == 0.0) {
|
|
if (copysign(1.0, op) < 0.0) {
|
|
return kFP64NegativeInfinity;
|
|
} else {
|
|
return kFP64PositiveInfinity;
|
|
}
|
|
} else if (copysign(1.0, op) < 0.0) {
|
|
FPProcessException();
|
|
return FPDefaultNaN<T>();
|
|
} else if (IsInf(op)) {
|
|
return 0.0;
|
|
} else {
|
|
uint64_t fraction;
|
|
int exp, result_exp;
|
|
|
|
if (IsFloat16<T>()) {
|
|
exp = Float16Exp(op);
|
|
fraction = Float16Mantissa(op);
|
|
fraction <<= 42;
|
|
} else if (IsFloat32<T>()) {
|
|
exp = FloatExp(op);
|
|
fraction = FloatMantissa(op);
|
|
fraction <<= 29;
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
exp = DoubleExp(op);
|
|
fraction = DoubleMantissa(op);
|
|
}
|
|
|
|
if (exp == 0) {
|
|
while (Bits(fraction, 51, 51) == 0) {
|
|
fraction = Bits(fraction, 50, 0) << 1;
|
|
exp -= 1;
|
|
}
|
|
fraction = Bits(fraction, 50, 0) << 1;
|
|
}
|
|
|
|
double scaled;
|
|
if (Bits(exp, 0, 0) == 0) {
|
|
scaled = DoublePack(0, 1022, Bits(fraction, 51, 44) << 44);
|
|
} else {
|
|
scaled = DoublePack(0, 1021, Bits(fraction, 51, 44) << 44);
|
|
}
|
|
|
|
if (IsFloat16<T>()) {
|
|
result_exp = (44 - exp) / 2;
|
|
} else if (IsFloat32<T>()) {
|
|
result_exp = (380 - exp) / 2;
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
result_exp = (3068 - exp) / 2;
|
|
}
|
|
|
|
uint64_t estimate = DoubleToRawbits(recip_sqrt_estimate(scaled));
|
|
|
|
if (IsFloat16<T>()) {
|
|
uint16_t exp_bits = static_cast<uint16_t>(Bits(result_exp, 4, 0));
|
|
uint16_t est_bits = static_cast<uint16_t>(Bits(estimate, 51, 42));
|
|
return Float16Pack(0, exp_bits, est_bits);
|
|
} else if (IsFloat32<T>()) {
|
|
uint32_t exp_bits = static_cast<uint32_t>(Bits(result_exp, 7, 0));
|
|
uint32_t est_bits = static_cast<uint32_t>(Bits(estimate, 51, 29));
|
|
return FloatPack(0, exp_bits, est_bits);
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
return DoublePack(0, Bits(result_exp, 10, 0), Bits(estimate, 51, 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::frsqrte(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
SimFloat16 input = src.Float<SimFloat16>(i);
|
|
dst.SetFloat(vform, i, FPRecipSqrtEstimate<SimFloat16>(input));
|
|
}
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
float input = src.Float<float>(i);
|
|
dst.SetFloat(vform, i, FPRecipSqrtEstimate<float>(input));
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
double input = src.Float<double>(i);
|
|
dst.SetFloat(vform, i, FPRecipSqrtEstimate<double>(input));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::FPRecipEstimate(T op, FPRounding rounding) {
|
|
uint32_t sign;
|
|
|
|
if (IsFloat16<T>()) {
|
|
sign = Float16Sign(op);
|
|
} else if (IsFloat32<T>()) {
|
|
sign = FloatSign(op);
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
sign = DoubleSign(op);
|
|
}
|
|
|
|
if (IsNaN(op)) {
|
|
return FPProcessNaN(op);
|
|
} else if (IsInf(op)) {
|
|
return (sign == 1) ? -0.0 : 0.0;
|
|
} else if (op == 0.0) {
|
|
FPProcessException(); // FPExc_DivideByZero exception.
|
|
return (sign == 1) ? kFP64NegativeInfinity : kFP64PositiveInfinity;
|
|
} else if ((IsFloat16<T>() && (std::fabs(op) < std::pow(2.0, -16.0))) ||
|
|
(IsFloat32<T>() && (std::fabs(op) < std::pow(2.0, -128.0))) ||
|
|
(IsFloat64<T>() && (std::fabs(op) < std::pow(2.0, -1024.0)))) {
|
|
bool overflow_to_inf = false;
|
|
switch (rounding) {
|
|
case FPTieEven:
|
|
overflow_to_inf = true;
|
|
break;
|
|
case FPPositiveInfinity:
|
|
overflow_to_inf = (sign == 0);
|
|
break;
|
|
case FPNegativeInfinity:
|
|
overflow_to_inf = (sign == 1);
|
|
break;
|
|
case FPZero:
|
|
overflow_to_inf = false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
FPProcessException(); // FPExc_Overflow and FPExc_Inexact.
|
|
if (overflow_to_inf) {
|
|
return (sign == 1) ? kFP64NegativeInfinity : kFP64PositiveInfinity;
|
|
} else {
|
|
// Return FPMaxNormal(sign).
|
|
if (IsFloat16<T>()) {
|
|
return Float16Pack(sign, 0x1f, 0x3ff);
|
|
} else if (IsFloat32<T>()) {
|
|
return FloatPack(sign, 0xfe, 0x07fffff);
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
return DoublePack(sign, 0x7fe, 0x0fffffffffffffl);
|
|
}
|
|
}
|
|
} else {
|
|
uint64_t fraction;
|
|
int exp, result_exp;
|
|
|
|
if (IsFloat16<T>()) {
|
|
sign = Float16Sign(op);
|
|
exp = Float16Exp(op);
|
|
fraction = Float16Mantissa(op);
|
|
fraction <<= 42;
|
|
} else if (IsFloat32<T>()) {
|
|
sign = FloatSign(op);
|
|
exp = FloatExp(op);
|
|
fraction = FloatMantissa(op);
|
|
fraction <<= 29;
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
sign = DoubleSign(op);
|
|
exp = DoubleExp(op);
|
|
fraction = DoubleMantissa(op);
|
|
}
|
|
|
|
if (exp == 0) {
|
|
if (Bits(fraction, 51, 51) == 0) {
|
|
exp -= 1;
|
|
fraction = Bits(fraction, 49, 0) << 2;
|
|
} else {
|
|
fraction = Bits(fraction, 50, 0) << 1;
|
|
}
|
|
}
|
|
|
|
double scaled = DoublePack(0, 1022, Bits(fraction, 51, 44) << 44);
|
|
|
|
if (IsFloat16<T>()) {
|
|
result_exp = (29 - exp); // In range 29-30 = -1 to 29+1 = 30.
|
|
} else if (IsFloat32<T>()) {
|
|
result_exp = (253 - exp); // In range 253-254 = -1 to 253+1 = 254.
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
result_exp = (2045 - exp); // In range 2045-2046 = -1 to 2045+1 = 2046.
|
|
}
|
|
|
|
double estimate = recip_estimate(scaled);
|
|
|
|
fraction = DoubleMantissa(estimate);
|
|
if (result_exp == 0) {
|
|
fraction = (UINT64_C(1) << 51) | Bits(fraction, 51, 1);
|
|
} else if (result_exp == -1) {
|
|
fraction = (UINT64_C(1) << 50) | Bits(fraction, 51, 2);
|
|
result_exp = 0;
|
|
}
|
|
if (IsFloat16<T>()) {
|
|
uint16_t exp_bits = static_cast<uint16_t>(Bits(result_exp, 4, 0));
|
|
uint16_t frac_bits = static_cast<uint16_t>(Bits(fraction, 51, 42));
|
|
return Float16Pack(sign, exp_bits, frac_bits);
|
|
} else if (IsFloat32<T>()) {
|
|
uint32_t exp_bits = static_cast<uint32_t>(Bits(result_exp, 7, 0));
|
|
uint32_t frac_bits = static_cast<uint32_t>(Bits(fraction, 51, 29));
|
|
return FloatPack(sign, exp_bits, frac_bits);
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
return DoublePack(sign, Bits(result_exp, 10, 0), Bits(fraction, 51, 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::frecpe(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
FPRounding round) {
|
|
dst.ClearForWrite(vform);
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
SimFloat16 input = src.Float<SimFloat16>(i);
|
|
dst.SetFloat(vform, i, FPRecipEstimate<SimFloat16>(input, round));
|
|
}
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
float input = src.Float<float>(i);
|
|
dst.SetFloat(vform, i, FPRecipEstimate<float>(input, round));
|
|
}
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
double input = src.Float<double>(i);
|
|
dst.SetFloat(vform, i, FPRecipEstimate<double>(input, round));
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ursqrte(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
uint64_t operand;
|
|
uint32_t result;
|
|
double dp_operand, dp_result;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
operand = src.Uint(vform, i);
|
|
if (operand <= 0x3FFFFFFF) {
|
|
result = 0xFFFFFFFF;
|
|
} else {
|
|
dp_operand = operand * std::pow(2.0, -32);
|
|
dp_result = recip_sqrt_estimate(dp_operand) * std::pow(2.0, 31);
|
|
result = static_cast<uint32_t>(dp_result);
|
|
}
|
|
dst.SetUint(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
// Based on reference C function recip_estimate from ARM ARM.
|
|
double Simulator::recip_estimate(double a) {
|
|
int q, s;
|
|
double r;
|
|
q = static_cast<int>(a * 512.0);
|
|
r = 1.0 / ((static_cast<double>(q) + 0.5) / 512.0);
|
|
s = static_cast<int>(256.0 * r + 0.5);
|
|
return static_cast<double>(s) / 256.0;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::urecpe(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
uint64_t operand;
|
|
uint32_t result;
|
|
double dp_operand, dp_result;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
operand = src.Uint(vform, i);
|
|
if (operand <= 0x7FFFFFFF) {
|
|
result = 0xFFFFFFFF;
|
|
} else {
|
|
dp_operand = operand * std::pow(2.0, -32);
|
|
dp_result = recip_estimate(dp_operand) * std::pow(2.0, 31);
|
|
result = static_cast<uint32_t>(dp_result);
|
|
}
|
|
dst.SetUint(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicPRegister Simulator::pfalse(LogicPRegister dst) {
|
|
dst.Clear();
|
|
return dst;
|
|
}
|
|
|
|
LogicPRegister Simulator::pfirst(LogicPRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& src) {
|
|
int first_pg = GetFirstActive(kFormatVnB, pg);
|
|
VIXL_ASSERT(first_pg < LaneCountFromFormat(kFormatVnB));
|
|
mov(dst, src);
|
|
if (first_pg >= 0) dst.SetActive(kFormatVnB, first_pg, true);
|
|
return dst;
|
|
}
|
|
|
|
LogicPRegister Simulator::ptrue(VectorFormat vform,
|
|
LogicPRegister dst,
|
|
int pattern) {
|
|
int count = GetPredicateConstraintLaneCount(vform, pattern);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetActive(vform, i, i < count);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicPRegister Simulator::pnext(VectorFormat vform,
|
|
LogicPRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& src) {
|
|
int next = GetLastActive(vform, src) + 1;
|
|
while (next < LaneCountFromFormat(vform)) {
|
|
if (pg.IsActive(vform, next)) break;
|
|
next++;
|
|
}
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
dst.SetActive(vform, i, (i == next));
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::frecpx(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
dst.ClearForWrite(vform);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
T op = src.Float<T>(i);
|
|
T result;
|
|
if (IsNaN(op)) {
|
|
result = FPProcessNaN(op);
|
|
} else {
|
|
int exp;
|
|
uint32_t sign;
|
|
if (IsFloat16<T>()) {
|
|
sign = Float16Sign(op);
|
|
exp = Float16Exp(op);
|
|
exp = (exp == 0) ? (0x1F - 1) : static_cast<int>(Bits(~exp, 4, 0));
|
|
result = Float16Pack(sign, exp, 0);
|
|
} else if (IsFloat32<T>()) {
|
|
sign = FloatSign(op);
|
|
exp = FloatExp(op);
|
|
exp = (exp == 0) ? (0xFF - 1) : static_cast<int>(Bits(~exp, 7, 0));
|
|
result = FloatPack(sign, exp, 0);
|
|
} else {
|
|
VIXL_ASSERT(IsFloat64<T>());
|
|
sign = DoubleSign(op);
|
|
exp = DoubleExp(op);
|
|
exp = (exp == 0) ? (0x7FF - 1) : static_cast<int>(Bits(~exp, 10, 0));
|
|
result = DoublePack(sign, exp, 0);
|
|
}
|
|
}
|
|
dst.SetFloat(i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::frecpx(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
frecpx<SimFloat16>(vform, dst, src);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
frecpx<float>(vform, dst, src);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
frecpx<double>(vform, dst, src);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::flogb(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
double op = 0.0;
|
|
switch (vform) {
|
|
case kFormatVnH:
|
|
op = FPToDouble(src.Float<SimFloat16>(i), kIgnoreDefaultNaN);
|
|
break;
|
|
case kFormatVnS:
|
|
op = src.Float<float>(i);
|
|
break;
|
|
case kFormatVnD:
|
|
op = src.Float<double>(i);
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
}
|
|
|
|
switch (std::fpclassify(op)) {
|
|
case FP_INFINITE:
|
|
dst.SetInt(vform, i, MaxIntFromFormat(vform));
|
|
break;
|
|
case FP_NAN:
|
|
case FP_ZERO:
|
|
dst.SetInt(vform, i, MinIntFromFormat(vform));
|
|
break;
|
|
case FP_SUBNORMAL: {
|
|
// DoubleMantissa returns the mantissa of its input, leaving 12 zero
|
|
// bits where the sign and exponent would be. We subtract 12 to
|
|
// find the number of leading zero bits in the mantissa itself.
|
|
int64_t mant_zero_count = CountLeadingZeros(DoubleMantissa(op)) - 12;
|
|
// Log2 of a subnormal is the lowest exponent a normal number can
|
|
// represent, together with the zeros in the mantissa.
|
|
dst.SetInt(vform, i, -1023 - mant_zero_count);
|
|
break;
|
|
}
|
|
case FP_NORMAL:
|
|
// Log2 of a normal number is the exponent minus the bias.
|
|
dst.SetInt(vform, i, static_cast<int64_t>(DoubleExp(op)) - 1023);
|
|
break;
|
|
}
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::ftsmul(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
SimVRegister maybe_neg_src1;
|
|
|
|
// The bottom bit of src2 controls the sign of the result. Use it to
|
|
// conditionally invert the sign of one `fmul` operand.
|
|
shl(vform, maybe_neg_src1, src2, LaneSizeInBitsFromFormat(vform) - 1);
|
|
eor(vform, maybe_neg_src1, maybe_neg_src1, src1);
|
|
|
|
// Multiply src1 by the modified neg_src1, which is potentially its negation.
|
|
// In the case of NaNs, NaN * -NaN will return the first NaN intact, so src1,
|
|
// rather than neg_src1, must be the first source argument.
|
|
fmul(vform, dst, src1, maybe_neg_src1);
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::ftssel(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
unsigned lane_bits = LaneSizeInBitsFromFormat(vform);
|
|
uint64_t sign_bit = UINT64_C(1) << (lane_bits - 1);
|
|
uint64_t one;
|
|
|
|
if (lane_bits == kHRegSize) {
|
|
one = Float16ToRawbits(Float16(1.0));
|
|
} else if (lane_bits == kSRegSize) {
|
|
one = FloatToRawbits(1.0);
|
|
} else {
|
|
VIXL_ASSERT(lane_bits == kDRegSize);
|
|
one = DoubleToRawbits(1.0);
|
|
}
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Use integer accessors for this operation, as this is a data manipulation
|
|
// task requiring no calculation.
|
|
uint64_t op = src1.Uint(vform, i);
|
|
|
|
// Only the bottom two bits of the src2 register are significant, indicating
|
|
// the quadrant. Bit 0 controls whether src1 or 1.0 is written to dst. Bit 1
|
|
// determines the sign of the value written to dst.
|
|
uint64_t q = src2.Uint(vform, i);
|
|
if ((q & 1) == 1) op = one;
|
|
if ((q & 2) == 2) op ^= sign_bit;
|
|
|
|
dst.SetUint(vform, i, op);
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::FTMaddHelper(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
uint64_t coeff_pos,
|
|
uint64_t coeff_neg) {
|
|
SimVRegister zero;
|
|
dup_immediate(kFormatVnB, zero, 0);
|
|
|
|
SimVRegister cf;
|
|
SimVRegister cfn;
|
|
dup_immediate(vform, cf, coeff_pos);
|
|
dup_immediate(vform, cfn, coeff_neg);
|
|
|
|
// The specification requires testing the top bit of the raw value, rather
|
|
// than the sign of the floating point number, so use an integer comparison
|
|
// here.
|
|
SimPRegister is_neg;
|
|
SVEIntCompareVectorsHelper(lt,
|
|
vform,
|
|
is_neg,
|
|
GetPTrue(),
|
|
src2,
|
|
zero,
|
|
false,
|
|
LeaveFlags);
|
|
mov_merging(vform, cf, is_neg, cfn);
|
|
|
|
SimVRegister temp;
|
|
fabs_<T>(vform, temp, src2);
|
|
fmla<T>(vform, cf, cf, src1, temp);
|
|
mov(vform, dst, cf);
|
|
return dst;
|
|
}
|
|
|
|
|
|
LogicVRegister Simulator::ftmad(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
unsigned index) {
|
|
static const uint64_t ftmad_coeff16[] = {0x3c00,
|
|
0xb155,
|
|
0x2030,
|
|
0x0000,
|
|
0x0000,
|
|
0x0000,
|
|
0x0000,
|
|
0x0000,
|
|
0x3c00,
|
|
0xb800,
|
|
0x293a,
|
|
0x0000,
|
|
0x0000,
|
|
0x0000,
|
|
0x0000,
|
|
0x0000};
|
|
|
|
static const uint64_t ftmad_coeff32[] = {0x3f800000,
|
|
0xbe2aaaab,
|
|
0x3c088886,
|
|
0xb95008b9,
|
|
0x36369d6d,
|
|
0x00000000,
|
|
0x00000000,
|
|
0x00000000,
|
|
0x3f800000,
|
|
0xbf000000,
|
|
0x3d2aaaa6,
|
|
0xbab60705,
|
|
0x37cd37cc,
|
|
0x00000000,
|
|
0x00000000,
|
|
0x00000000};
|
|
|
|
static const uint64_t ftmad_coeff64[] = {0x3ff0000000000000,
|
|
0xbfc5555555555543,
|
|
0x3f8111111110f30c,
|
|
0xbf2a01a019b92fc6,
|
|
0x3ec71de351f3d22b,
|
|
0xbe5ae5e2b60f7b91,
|
|
0x3de5d8408868552f,
|
|
0x0000000000000000,
|
|
0x3ff0000000000000,
|
|
0xbfe0000000000000,
|
|
0x3fa5555555555536,
|
|
0xbf56c16c16c13a0b,
|
|
0x3efa01a019b1e8d8,
|
|
0xbe927e4f7282f468,
|
|
0x3e21ee96d2641b13,
|
|
0xbda8f76380fbb401};
|
|
VIXL_ASSERT((index + 8) < ArrayLength(ftmad_coeff64));
|
|
VIXL_ASSERT(ArrayLength(ftmad_coeff16) == ArrayLength(ftmad_coeff64));
|
|
VIXL_ASSERT(ArrayLength(ftmad_coeff32) == ArrayLength(ftmad_coeff64));
|
|
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
FTMaddHelper<SimFloat16>(vform,
|
|
dst,
|
|
src1,
|
|
src2,
|
|
ftmad_coeff16[index],
|
|
ftmad_coeff16[index + 8]);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
FTMaddHelper<float>(vform,
|
|
dst,
|
|
src1,
|
|
src2,
|
|
ftmad_coeff32[index],
|
|
ftmad_coeff32[index + 8]);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
FTMaddHelper<double>(vform,
|
|
dst,
|
|
src1,
|
|
src2,
|
|
ftmad_coeff64[index],
|
|
ftmad_coeff64[index + 8]);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::fexpa(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
static const uint64_t fexpa_coeff16[] = {0x0000, 0x0016, 0x002d, 0x0045,
|
|
0x005d, 0x0075, 0x008e, 0x00a8,
|
|
0x00c2, 0x00dc, 0x00f8, 0x0114,
|
|
0x0130, 0x014d, 0x016b, 0x0189,
|
|
0x01a8, 0x01c8, 0x01e8, 0x0209,
|
|
0x022b, 0x024e, 0x0271, 0x0295,
|
|
0x02ba, 0x02e0, 0x0306, 0x032e,
|
|
0x0356, 0x037f, 0x03a9, 0x03d4};
|
|
|
|
static const uint64_t fexpa_coeff32[] =
|
|
{0x000000, 0x0164d2, 0x02cd87, 0x043a29, 0x05aac3, 0x071f62, 0x08980f,
|
|
0x0a14d5, 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc, 0x11c3d3, 0x135a2b,
|
|
0x14f4f0, 0x16942d, 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda, 0x1ef532,
|
|
0x20b051, 0x227043, 0x243516, 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
|
|
0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4, 0x3504f3, 0x36fd92, 0x38fbaf,
|
|
0x3aff5b, 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd, 0x45672a, 0x478d75,
|
|
0x49b9be, 0x4bec15, 0x4e248c, 0x506334, 0x52a81e, 0x54f35b, 0x5744fd,
|
|
0x599d16, 0x5bfbb8, 0x5e60f5, 0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
|
|
0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177, 0x75257d, 0x77d0df, 0x7a83b3,
|
|
0x7d3e0c};
|
|
|
|
static const uint64_t fexpa_coeff64[] =
|
|
{0X0000000000000, 0X02c9a3e778061, 0X059b0d3158574, 0X0874518759bc8,
|
|
0X0b5586cf9890f, 0X0e3ec32d3d1a2, 0X11301d0125b51, 0X1429aaea92de0,
|
|
0X172b83c7d517b, 0X1a35beb6fcb75, 0X1d4873168b9aa, 0X2063b88628cd6,
|
|
0X2387a6e756238, 0X26b4565e27cdd, 0X29e9df51fdee1, 0X2d285a6e4030b,
|
|
0X306fe0a31b715, 0X33c08b26416ff, 0X371a7373aa9cb, 0X3a7db34e59ff7,
|
|
0X3dea64c123422, 0X4160a21f72e2a, 0X44e086061892d, 0X486a2b5c13cd0,
|
|
0X4bfdad5362a27, 0X4f9b2769d2ca7, 0X5342b569d4f82, 0X56f4736b527da,
|
|
0X5ab07dd485429, 0X5e76f15ad2148, 0X6247eb03a5585, 0X6623882552225,
|
|
0X6a09e667f3bcd, 0X6dfb23c651a2f, 0X71f75e8ec5f74, 0X75feb564267c9,
|
|
0X7a11473eb0187, 0X7e2f336cf4e62, 0X82589994cce13, 0X868d99b4492ed,
|
|
0X8ace5422aa0db, 0X8f1ae99157736, 0X93737b0cdc5e5, 0X97d829fde4e50,
|
|
0X9c49182a3f090, 0Xa0c667b5de565, 0Xa5503b23e255d, 0Xa9e6b5579fdbf,
|
|
0Xae89f995ad3ad, 0Xb33a2b84f15fb, 0Xb7f76f2fb5e47, 0Xbcc1e904bc1d2,
|
|
0Xc199bdd85529c, 0Xc67f12e57d14b, 0Xcb720dcef9069, 0Xd072d4a07897c,
|
|
0Xd5818dcfba487, 0Xda9e603db3285, 0Xdfc97337b9b5f, 0Xe502ee78b3ff6,
|
|
0Xea4afa2a490da, 0Xefa1bee615a27, 0Xf50765b6e4540, 0Xfa7c1819e90d8};
|
|
|
|
unsigned lane_size = LaneSizeInBitsFromFormat(vform);
|
|
int index_highbit = 5;
|
|
int op_highbit, op_shift;
|
|
const uint64_t* fexpa_coeff;
|
|
|
|
if (lane_size == kHRegSize) {
|
|
index_highbit = 4;
|
|
VIXL_ASSERT(ArrayLength(fexpa_coeff16) == (1U << (index_highbit + 1)));
|
|
fexpa_coeff = fexpa_coeff16;
|
|
op_highbit = 9;
|
|
op_shift = 10;
|
|
} else if (lane_size == kSRegSize) {
|
|
VIXL_ASSERT(ArrayLength(fexpa_coeff32) == (1U << (index_highbit + 1)));
|
|
fexpa_coeff = fexpa_coeff32;
|
|
op_highbit = 13;
|
|
op_shift = 23;
|
|
} else {
|
|
VIXL_ASSERT(lane_size == kDRegSize);
|
|
VIXL_ASSERT(ArrayLength(fexpa_coeff64) == (1U << (index_highbit + 1)));
|
|
fexpa_coeff = fexpa_coeff64;
|
|
op_highbit = 16;
|
|
op_shift = 52;
|
|
}
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t op = src.Uint(vform, i);
|
|
uint64_t result = fexpa_coeff[Bits(op, index_highbit, 0)];
|
|
result |= (Bits(op, op_highbit, index_highbit + 1) << op_shift);
|
|
dst.SetUint(vform, i, result);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
template <typename T>
|
|
LogicVRegister Simulator::fscale(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
T two = T(2.0);
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
T src1_val = src1.Float<T>(i);
|
|
if (!IsNaN(src1_val)) {
|
|
int64_t scale = src2.Int(vform, i);
|
|
// TODO: this is a low-performance implementation, but it's simple and
|
|
// less likely to be buggy. Consider replacing it with something faster.
|
|
|
|
// Scales outside of these bounds become infinity or zero, so there's no
|
|
// point iterating further.
|
|
scale = std::min<int64_t>(std::max<int64_t>(scale, -2048), 2048);
|
|
|
|
// Compute src1_val * 2 ^ scale. If scale is positive, multiply by two and
|
|
// decrement scale until it's zero.
|
|
while (scale-- > 0) {
|
|
src1_val = FPMul(src1_val, two);
|
|
}
|
|
|
|
// If scale is negative, divide by two and increment scale until it's
|
|
// zero. Initially, scale is (src2 - 1), so we pre-increment.
|
|
while (++scale < 0) {
|
|
src1_val = FPDiv(src1_val, two);
|
|
}
|
|
}
|
|
dst.SetFloat<T>(i, src1_val);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::fscale(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kHRegSize) {
|
|
fscale<SimFloat16>(vform, dst, src1, src2);
|
|
} else if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fscale<float>(vform, dst, src1, src2);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
fscale<double>(vform, dst, src1, src2);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::scvtf(VectorFormat vform,
|
|
unsigned dst_data_size_in_bits,
|
|
unsigned src_data_size_in_bits,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src,
|
|
FPRounding round,
|
|
int fbits) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) >= dst_data_size_in_bits);
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) >= src_data_size_in_bits);
|
|
dst.ClearForWrite(vform);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
int64_t value = ExtractSignedBitfield64(src_data_size_in_bits - 1,
|
|
0,
|
|
src.Uint(vform, i));
|
|
|
|
switch (dst_data_size_in_bits) {
|
|
case kHRegSize: {
|
|
SimFloat16 result = FixedToFloat16(value, fbits, round);
|
|
dst.SetUint(vform, i, Float16ToRawbits(result));
|
|
break;
|
|
}
|
|
case kSRegSize: {
|
|
float result = FixedToFloat(value, fbits, round);
|
|
dst.SetUint(vform, i, FloatToRawbits(result));
|
|
break;
|
|
}
|
|
case kDRegSize: {
|
|
double result = FixedToDouble(value, fbits, round);
|
|
dst.SetUint(vform, i, DoubleToRawbits(result));
|
|
break;
|
|
}
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::scvtf(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int fbits,
|
|
FPRounding round) {
|
|
return scvtf(vform,
|
|
LaneSizeInBitsFromFormat(vform),
|
|
LaneSizeInBitsFromFormat(vform),
|
|
dst,
|
|
GetPTrue(),
|
|
src,
|
|
round,
|
|
fbits);
|
|
}
|
|
|
|
LogicVRegister Simulator::ucvtf(VectorFormat vform,
|
|
unsigned dst_data_size_in_bits,
|
|
unsigned src_data_size_in_bits,
|
|
LogicVRegister dst,
|
|
const LogicPRegister& pg,
|
|
const LogicVRegister& src,
|
|
FPRounding round,
|
|
int fbits) {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) >= dst_data_size_in_bits);
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) >= src_data_size_in_bits);
|
|
dst.ClearForWrite(vform);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
uint64_t value = ExtractUnsignedBitfield64(src_data_size_in_bits - 1,
|
|
0,
|
|
src.Uint(vform, i));
|
|
|
|
switch (dst_data_size_in_bits) {
|
|
case kHRegSize: {
|
|
SimFloat16 result = UFixedToFloat16(value, fbits, round);
|
|
dst.SetUint(vform, i, Float16ToRawbits(result));
|
|
break;
|
|
}
|
|
case kSRegSize: {
|
|
float result = UFixedToFloat(value, fbits, round);
|
|
dst.SetUint(vform, i, FloatToRawbits(result));
|
|
break;
|
|
}
|
|
case kDRegSize: {
|
|
double result = UFixedToDouble(value, fbits, round);
|
|
dst.SetUint(vform, i, DoubleToRawbits(result));
|
|
break;
|
|
}
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::ucvtf(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
int fbits,
|
|
FPRounding round) {
|
|
return ucvtf(vform,
|
|
LaneSizeInBitsFromFormat(vform),
|
|
LaneSizeInBitsFromFormat(vform),
|
|
dst,
|
|
GetPTrue(),
|
|
src,
|
|
round,
|
|
fbits);
|
|
}
|
|
|
|
LogicVRegister Simulator::unpk(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src,
|
|
UnpackType unpack_type,
|
|
ExtendType extend_type) {
|
|
VectorFormat vform_half = VectorFormatHalfWidth(vform);
|
|
const int lane_count = LaneCountFromFormat(vform);
|
|
const int src_start_lane = (unpack_type == kLoHalf) ? 0 : lane_count;
|
|
|
|
switch (extend_type) {
|
|
case kSignedExtend: {
|
|
int64_t result[kZRegMaxSizeInBytes];
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
result[i] = src.Int(vform_half, i + src_start_lane);
|
|
}
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetInt(vform, i, result[i]);
|
|
}
|
|
break;
|
|
}
|
|
case kUnsignedExtend: {
|
|
uint64_t result[kZRegMaxSizeInBytes];
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
result[i] = src.Uint(vform_half, i + src_start_lane);
|
|
}
|
|
for (int i = 0; i < lane_count; ++i) {
|
|
dst.SetUint(vform, i, result[i]);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicPRegister Simulator::SVEIntCompareVectorsHelper(Condition cond,
|
|
VectorFormat vform,
|
|
LogicPRegister dst,
|
|
const LogicPRegister& mask,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_wide_elements,
|
|
FlagsUpdate flags) {
|
|
for (int lane = 0; lane < LaneCountFromFormat(vform); lane++) {
|
|
bool result = false;
|
|
if (mask.IsActive(vform, lane)) {
|
|
int64_t op1 = 0xbadbeef;
|
|
int64_t op2 = 0xbadbeef;
|
|
int d_lane = (lane * LaneSizeInBitsFromFormat(vform)) / kDRegSize;
|
|
switch (cond) {
|
|
case eq:
|
|
case ge:
|
|
case gt:
|
|
case lt:
|
|
case le:
|
|
case ne:
|
|
op1 = src1.Int(vform, lane);
|
|
op2 = is_wide_elements ? src2.Int(kFormatVnD, d_lane)
|
|
: src2.Int(vform, lane);
|
|
break;
|
|
case hi:
|
|
case hs:
|
|
case ls:
|
|
case lo:
|
|
op1 = src1.Uint(vform, lane);
|
|
op2 = is_wide_elements ? src2.Uint(kFormatVnD, d_lane)
|
|
: src2.Uint(vform, lane);
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
}
|
|
|
|
switch (cond) {
|
|
case eq:
|
|
result = (op1 == op2);
|
|
break;
|
|
case ne:
|
|
result = (op1 != op2);
|
|
break;
|
|
case ge:
|
|
result = (op1 >= op2);
|
|
break;
|
|
case gt:
|
|
result = (op1 > op2);
|
|
break;
|
|
case le:
|
|
result = (op1 <= op2);
|
|
break;
|
|
case lt:
|
|
result = (op1 < op2);
|
|
break;
|
|
case hs:
|
|
result = (static_cast<uint64_t>(op1) >= static_cast<uint64_t>(op2));
|
|
break;
|
|
case hi:
|
|
result = (static_cast<uint64_t>(op1) > static_cast<uint64_t>(op2));
|
|
break;
|
|
case ls:
|
|
result = (static_cast<uint64_t>(op1) <= static_cast<uint64_t>(op2));
|
|
break;
|
|
case lo:
|
|
result = (static_cast<uint64_t>(op1) < static_cast<uint64_t>(op2));
|
|
break;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
}
|
|
}
|
|
dst.SetActive(vform, lane, result);
|
|
}
|
|
|
|
if (flags == SetFlags) PredTest(vform, mask, dst);
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::SVEBitwiseShiftHelper(Shift shift_op,
|
|
VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool is_wide_elements) {
|
|
unsigned lane_size = LaneSizeInBitsFromFormat(vform);
|
|
VectorFormat shift_vform = is_wide_elements ? kFormatVnD : vform;
|
|
|
|
for (int lane = 0; lane < LaneCountFromFormat(vform); lane++) {
|
|
int shift_src_lane = lane;
|
|
if (is_wide_elements) {
|
|
// If the shift amount comes from wide elements, select the D-sized lane
|
|
// which occupies the corresponding lanes of the value to be shifted.
|
|
shift_src_lane = (lane * lane_size) / kDRegSize;
|
|
}
|
|
uint64_t shift_amount = src2.Uint(shift_vform, shift_src_lane);
|
|
|
|
// Saturate shift_amount to the size of the lane that will be shifted.
|
|
if (shift_amount > lane_size) shift_amount = lane_size;
|
|
|
|
uint64_t value = src1.Uint(vform, lane);
|
|
int64_t result = ShiftOperand(lane_size,
|
|
value,
|
|
shift_op,
|
|
static_cast<unsigned>(shift_amount));
|
|
dst.SetUint(vform, lane, result);
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::asrd(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
int shift) {
|
|
VIXL_ASSERT((shift > 0) && (static_cast<unsigned>(shift) <=
|
|
LaneSizeInBitsFromFormat(vform)));
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
int64_t value = src1.Int(vform, i);
|
|
if (shift <= 63) {
|
|
if (value < 0) {
|
|
// The max possible mask is 0x7fff'ffff'ffff'ffff, which can be safely
|
|
// cast to int64_t, and cannot cause signed overflow in the result.
|
|
value = value + GetUintMask(shift);
|
|
}
|
|
value = ShiftOperand(kDRegSize, value, ASR, shift);
|
|
} else {
|
|
value = 0;
|
|
}
|
|
dst.SetInt(vform, i, value);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
LogicVRegister Simulator::SVEBitwiseLogicalUnpredicatedHelper(
|
|
LogicalOp logical_op,
|
|
VectorFormat vform,
|
|
LogicVRegister zd,
|
|
const LogicVRegister& zn,
|
|
const LogicVRegister& zm) {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t op1 = zn.Uint(vform, i);
|
|
uint64_t op2 = zm.Uint(vform, i);
|
|
uint64_t result = 0;
|
|
switch (logical_op) {
|
|
case AND:
|
|
result = op1 & op2;
|
|
break;
|
|
case BIC:
|
|
result = op1 & ~op2;
|
|
break;
|
|
case EOR:
|
|
result = op1 ^ op2;
|
|
break;
|
|
case ORR:
|
|
result = op1 | op2;
|
|
break;
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
}
|
|
zd.SetUint(vform, i, result);
|
|
}
|
|
|
|
return zd;
|
|
}
|
|
|
|
LogicPRegister Simulator::SVEPredicateLogicalHelper(SVEPredicateLogicalOp op,
|
|
LogicPRegister pd,
|
|
const LogicPRegister& pn,
|
|
const LogicPRegister& pm) {
|
|
for (int i = 0; i < pn.GetChunkCount(); i++) {
|
|
LogicPRegister::ChunkType op1 = pn.GetChunk(i);
|
|
LogicPRegister::ChunkType op2 = pm.GetChunk(i);
|
|
LogicPRegister::ChunkType result = 0;
|
|
switch (op) {
|
|
case ANDS_p_p_pp_z:
|
|
case AND_p_p_pp_z:
|
|
result = op1 & op2;
|
|
break;
|
|
case BICS_p_p_pp_z:
|
|
case BIC_p_p_pp_z:
|
|
result = op1 & ~op2;
|
|
break;
|
|
case EORS_p_p_pp_z:
|
|
case EOR_p_p_pp_z:
|
|
result = op1 ^ op2;
|
|
break;
|
|
case NANDS_p_p_pp_z:
|
|
case NAND_p_p_pp_z:
|
|
result = ~(op1 & op2);
|
|
break;
|
|
case NORS_p_p_pp_z:
|
|
case NOR_p_p_pp_z:
|
|
result = ~(op1 | op2);
|
|
break;
|
|
case ORNS_p_p_pp_z:
|
|
case ORN_p_p_pp_z:
|
|
result = op1 | ~op2;
|
|
break;
|
|
case ORRS_p_p_pp_z:
|
|
case ORR_p_p_pp_z:
|
|
result = op1 | op2;
|
|
break;
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
}
|
|
pd.SetChunk(i, result);
|
|
}
|
|
return pd;
|
|
}
|
|
|
|
LogicVRegister Simulator::SVEBitwiseImmHelper(
|
|
SVEBitwiseLogicalWithImm_UnpredicatedOp op,
|
|
VectorFormat vform,
|
|
LogicVRegister zd,
|
|
uint64_t imm) {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t op1 = zd.Uint(vform, i);
|
|
uint64_t result = 0;
|
|
switch (op) {
|
|
case AND_z_zi:
|
|
result = op1 & imm;
|
|
break;
|
|
case EOR_z_zi:
|
|
result = op1 ^ imm;
|
|
break;
|
|
case ORR_z_zi:
|
|
result = op1 | imm;
|
|
break;
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
}
|
|
zd.SetUint(vform, i, result);
|
|
}
|
|
|
|
return zd;
|
|
}
|
|
|
|
void Simulator::SVEStructuredStoreHelper(VectorFormat vform,
|
|
const LogicPRegister& pg,
|
|
unsigned zt_code,
|
|
const LogicSVEAddressVector& addr) {
|
|
VIXL_ASSERT(zt_code < kNumberOfZRegisters);
|
|
|
|
int esize_in_bytes_log2 = LaneSizeInBytesLog2FromFormat(vform);
|
|
int msize_in_bytes_log2 = addr.GetMsizeInBytesLog2();
|
|
int msize_in_bytes = addr.GetMsizeInBytes();
|
|
int reg_count = addr.GetRegCount();
|
|
|
|
VIXL_ASSERT(esize_in_bytes_log2 >= msize_in_bytes_log2);
|
|
VIXL_ASSERT((reg_count >= 1) && (reg_count <= 4));
|
|
|
|
unsigned zt_codes[4] = {zt_code,
|
|
(zt_code + 1) % kNumberOfZRegisters,
|
|
(zt_code + 2) % kNumberOfZRegisters,
|
|
(zt_code + 3) % kNumberOfZRegisters};
|
|
|
|
LogicVRegister zt[4] = {
|
|
ReadVRegister(zt_codes[0]),
|
|
ReadVRegister(zt_codes[1]),
|
|
ReadVRegister(zt_codes[2]),
|
|
ReadVRegister(zt_codes[3]),
|
|
};
|
|
|
|
// For unpacked forms (e.g. `st1b { z0.h }, ...`, the upper parts of the lanes
|
|
// are ignored, so read the source register using the VectorFormat that
|
|
// corresponds with the storage format, and multiply the index accordingly.
|
|
VectorFormat unpack_vform =
|
|
SVEFormatFromLaneSizeInBytesLog2(msize_in_bytes_log2);
|
|
int unpack_shift = esize_in_bytes_log2 - msize_in_bytes_log2;
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (!pg.IsActive(vform, i)) continue;
|
|
|
|
for (int r = 0; r < reg_count; r++) {
|
|
uint64_t element_address = addr.GetElementAddress(i, r);
|
|
StoreLane(zt[r], unpack_vform, i << unpack_shift, element_address);
|
|
}
|
|
}
|
|
|
|
if (ShouldTraceWrites()) {
|
|
PrintRegisterFormat format = GetPrintRegisterFormat(vform);
|
|
if (esize_in_bytes_log2 == msize_in_bytes_log2) {
|
|
// Use an FP format where it's likely that we're accessing FP data.
|
|
format = GetPrintRegisterFormatTryFP(format);
|
|
}
|
|
// Stores don't represent a change to the source register's value, so only
|
|
// print the relevant part of the value.
|
|
format = GetPrintRegPartial(format);
|
|
|
|
PrintZStructAccess(zt_code,
|
|
reg_count,
|
|
pg,
|
|
format,
|
|
msize_in_bytes,
|
|
"->",
|
|
addr);
|
|
}
|
|
}
|
|
|
|
void Simulator::SVEStructuredLoadHelper(VectorFormat vform,
|
|
const LogicPRegister& pg,
|
|
unsigned zt_code,
|
|
const LogicSVEAddressVector& addr,
|
|
bool is_signed) {
|
|
int esize_in_bytes_log2 = LaneSizeInBytesLog2FromFormat(vform);
|
|
int msize_in_bytes_log2 = addr.GetMsizeInBytesLog2();
|
|
int msize_in_bytes = addr.GetMsizeInBytes();
|
|
int reg_count = addr.GetRegCount();
|
|
|
|
VIXL_ASSERT(zt_code < kNumberOfZRegisters);
|
|
VIXL_ASSERT(esize_in_bytes_log2 >= msize_in_bytes_log2);
|
|
VIXL_ASSERT((reg_count >= 1) && (reg_count <= 4));
|
|
|
|
unsigned zt_codes[4] = {zt_code,
|
|
(zt_code + 1) % kNumberOfZRegisters,
|
|
(zt_code + 2) % kNumberOfZRegisters,
|
|
(zt_code + 3) % kNumberOfZRegisters};
|
|
LogicVRegister zt[4] = {
|
|
ReadVRegister(zt_codes[0]),
|
|
ReadVRegister(zt_codes[1]),
|
|
ReadVRegister(zt_codes[2]),
|
|
ReadVRegister(zt_codes[3]),
|
|
};
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
for (int r = 0; r < reg_count; r++) {
|
|
uint64_t element_address = addr.GetElementAddress(i, r);
|
|
|
|
if (!pg.IsActive(vform, i)) {
|
|
zt[r].SetUint(vform, i, 0);
|
|
continue;
|
|
}
|
|
|
|
if (is_signed) {
|
|
LoadIntToLane(zt[r], vform, msize_in_bytes, i, element_address);
|
|
} else {
|
|
LoadUintToLane(zt[r], vform, msize_in_bytes, i, element_address);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ShouldTraceVRegs()) {
|
|
PrintRegisterFormat format = GetPrintRegisterFormat(vform);
|
|
if ((esize_in_bytes_log2 == msize_in_bytes_log2) && !is_signed) {
|
|
// Use an FP format where it's likely that we're accessing FP data.
|
|
format = GetPrintRegisterFormatTryFP(format);
|
|
}
|
|
PrintZStructAccess(zt_code,
|
|
reg_count,
|
|
pg,
|
|
format,
|
|
msize_in_bytes,
|
|
"<-",
|
|
addr);
|
|
}
|
|
}
|
|
|
|
LogicPRegister Simulator::brka(LogicPRegister pd,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& pn) {
|
|
bool break_ = false;
|
|
for (int i = 0; i < LaneCountFromFormat(kFormatVnB); i++) {
|
|
if (pg.IsActive(kFormatVnB, i)) {
|
|
pd.SetActive(kFormatVnB, i, !break_);
|
|
break_ |= pn.IsActive(kFormatVnB, i);
|
|
}
|
|
}
|
|
|
|
return pd;
|
|
}
|
|
|
|
LogicPRegister Simulator::brkb(LogicPRegister pd,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& pn) {
|
|
bool break_ = false;
|
|
for (int i = 0; i < LaneCountFromFormat(kFormatVnB); i++) {
|
|
if (pg.IsActive(kFormatVnB, i)) {
|
|
break_ |= pn.IsActive(kFormatVnB, i);
|
|
pd.SetActive(kFormatVnB, i, !break_);
|
|
}
|
|
}
|
|
|
|
return pd;
|
|
}
|
|
|
|
LogicPRegister Simulator::brkn(LogicPRegister pdm,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& pn) {
|
|
if (!IsLastActive(kFormatVnB, pg, pn)) {
|
|
pfalse(pdm);
|
|
}
|
|
return pdm;
|
|
}
|
|
|
|
LogicPRegister Simulator::brkpa(LogicPRegister pd,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& pn,
|
|
const LogicPRegister& pm) {
|
|
bool last_active = IsLastActive(kFormatVnB, pg, pn);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(kFormatVnB); i++) {
|
|
bool active = false;
|
|
if (pg.IsActive(kFormatVnB, i)) {
|
|
active = last_active;
|
|
last_active = last_active && !pm.IsActive(kFormatVnB, i);
|
|
}
|
|
pd.SetActive(kFormatVnB, i, active);
|
|
}
|
|
|
|
return pd;
|
|
}
|
|
|
|
LogicPRegister Simulator::brkpb(LogicPRegister pd,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& pn,
|
|
const LogicPRegister& pm) {
|
|
bool last_active = IsLastActive(kFormatVnB, pg, pn);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(kFormatVnB); i++) {
|
|
bool active = false;
|
|
if (pg.IsActive(kFormatVnB, i)) {
|
|
last_active = last_active && !pm.IsActive(kFormatVnB, i);
|
|
active = last_active;
|
|
}
|
|
pd.SetActive(kFormatVnB, i, active);
|
|
}
|
|
|
|
return pd;
|
|
}
|
|
|
|
void Simulator::SVEFaultTolerantLoadHelper(VectorFormat vform,
|
|
const LogicPRegister& pg,
|
|
unsigned zt_code,
|
|
const LogicSVEAddressVector& addr,
|
|
SVEFaultTolerantLoadType type,
|
|
bool is_signed) {
|
|
int esize_in_bytes = LaneSizeInBytesFromFormat(vform);
|
|
int msize_in_bits = addr.GetMsizeInBits();
|
|
int msize_in_bytes = addr.GetMsizeInBytes();
|
|
|
|
VIXL_ASSERT(zt_code < kNumberOfZRegisters);
|
|
VIXL_ASSERT(esize_in_bytes >= msize_in_bytes);
|
|
VIXL_ASSERT(addr.GetRegCount() == 1);
|
|
|
|
LogicVRegister zt = ReadVRegister(zt_code);
|
|
LogicPRegister ffr = ReadFFR();
|
|
|
|
// Non-faulting loads are allowed to fail arbitrarily. To stress user
|
|
// code, fail a random element in roughly one in eight full-vector loads.
|
|
uint32_t rnd = static_cast<uint32_t>(jrand48(rand_state_));
|
|
int fake_fault_at_lane = rnd % (LaneCountFromFormat(vform) * 8);
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
uint64_t value = 0;
|
|
|
|
if (pg.IsActive(vform, i)) {
|
|
uint64_t element_address = addr.GetElementAddress(i, 0);
|
|
|
|
if (type == kSVEFirstFaultLoad) {
|
|
// First-faulting loads always load the first active element, regardless
|
|
// of FFR. The result will be discarded if its FFR lane is inactive, but
|
|
// it could still generate a fault.
|
|
value = MemReadUint(msize_in_bytes, element_address);
|
|
// All subsequent elements have non-fault semantics.
|
|
type = kSVENonFaultLoad;
|
|
|
|
} else if (ffr.IsActive(vform, i)) {
|
|
// Simulation of fault-tolerant loads relies on system calls, and is
|
|
// likely to be relatively slow, so we only actually perform the load if
|
|
// its FFR lane is active.
|
|
|
|
bool can_read = (i < fake_fault_at_lane) &&
|
|
CanReadMemory(element_address, msize_in_bytes);
|
|
if (can_read) {
|
|
value = MemReadUint(msize_in_bytes, element_address);
|
|
} else {
|
|
// Propagate the fault to the end of FFR.
|
|
for (int j = i; j < LaneCountFromFormat(vform); j++) {
|
|
ffr.SetActive(vform, j, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// The architecture permits a few possible results for inactive FFR lanes
|
|
// (including those caused by a fault in this instruction). We choose to
|
|
// leave the register value unchanged (like merging predication) because
|
|
// no other input to this instruction can have the same behaviour.
|
|
//
|
|
// Note that this behaviour takes precedence over pg's zeroing predication.
|
|
|
|
if (ffr.IsActive(vform, i)) {
|
|
int msb = msize_in_bits - 1;
|
|
if (is_signed) {
|
|
zt.SetInt(vform, i, ExtractSignedBitfield64(msb, 0, value));
|
|
} else {
|
|
zt.SetUint(vform, i, ExtractUnsignedBitfield64(msb, 0, value));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ShouldTraceVRegs()) {
|
|
PrintRegisterFormat format = GetPrintRegisterFormat(vform);
|
|
if ((esize_in_bytes == msize_in_bytes) && !is_signed) {
|
|
// Use an FP format where it's likely that we're accessing FP data.
|
|
format = GetPrintRegisterFormatTryFP(format);
|
|
}
|
|
// Log accessed lanes that are active in both pg and ffr. PrintZStructAccess
|
|
// expects a single mask, so combine the two predicates.
|
|
SimPRegister mask;
|
|
SVEPredicateLogicalHelper(AND_p_p_pp_z, mask, pg, ffr);
|
|
PrintZStructAccess(zt_code, 1, mask, format, msize_in_bytes, "<-", addr);
|
|
}
|
|
}
|
|
|
|
void Simulator::SVEGatherLoadScalarPlusVectorHelper(const Instruction* instr,
|
|
VectorFormat vform,
|
|
SVEOffsetModifier mod) {
|
|
bool is_signed = instr->ExtractBit(14) == 0;
|
|
bool is_ff = instr->ExtractBit(13) == 1;
|
|
// Note that these instructions don't use the Dtype encoding.
|
|
int msize_in_bytes_log2 = instr->ExtractBits(24, 23);
|
|
int scale = instr->ExtractBit(21) * msize_in_bytes_log2;
|
|
uint64_t base = ReadXRegister(instr->GetRn(), Reg31IsStackPointer);
|
|
LogicSVEAddressVector addr(base,
|
|
&ReadVRegister(instr->GetRm()),
|
|
vform,
|
|
mod,
|
|
scale);
|
|
addr.SetMsizeInBytesLog2(msize_in_bytes_log2);
|
|
if (is_ff) {
|
|
SVEFaultTolerantLoadHelper(vform,
|
|
ReadPRegister(instr->GetPgLow8()),
|
|
instr->GetRt(),
|
|
addr,
|
|
kSVEFirstFaultLoad,
|
|
is_signed);
|
|
} else {
|
|
SVEStructuredLoadHelper(vform,
|
|
ReadPRegister(instr->GetPgLow8()),
|
|
instr->GetRt(),
|
|
addr,
|
|
is_signed);
|
|
}
|
|
}
|
|
|
|
int Simulator::GetFirstActive(VectorFormat vform,
|
|
const LogicPRegister& pg) const {
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
if (pg.IsActive(vform, i)) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int Simulator::GetLastActive(VectorFormat vform,
|
|
const LogicPRegister& pg) const {
|
|
for (int i = LaneCountFromFormat(vform) - 1; i >= 0; i--) {
|
|
if (pg.IsActive(vform, i)) return i;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int Simulator::CountActiveLanes(VectorFormat vform,
|
|
const LogicPRegister& pg) const {
|
|
int count = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
count += pg.IsActive(vform, i) ? 1 : 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
int Simulator::CountActiveAndTrueLanes(VectorFormat vform,
|
|
const LogicPRegister& pg,
|
|
const LogicPRegister& pn) const {
|
|
int count = 0;
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
count += (pg.IsActive(vform, i) && pn.IsActive(vform, i)) ? 1 : 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
int Simulator::GetPredicateConstraintLaneCount(VectorFormat vform,
|
|
int pattern) const {
|
|
VIXL_ASSERT(IsSVEFormat(vform));
|
|
int all = LaneCountFromFormat(vform);
|
|
VIXL_ASSERT(all > 0);
|
|
|
|
switch (pattern) {
|
|
case SVE_VL1:
|
|
case SVE_VL2:
|
|
case SVE_VL3:
|
|
case SVE_VL4:
|
|
case SVE_VL5:
|
|
case SVE_VL6:
|
|
case SVE_VL7:
|
|
case SVE_VL8:
|
|
// VL1-VL8 are encoded directly.
|
|
VIXL_STATIC_ASSERT(SVE_VL1 == 1);
|
|
VIXL_STATIC_ASSERT(SVE_VL8 == 8);
|
|
return (pattern <= all) ? pattern : 0;
|
|
case SVE_VL16:
|
|
case SVE_VL32:
|
|
case SVE_VL64:
|
|
case SVE_VL128:
|
|
case SVE_VL256: {
|
|
// VL16-VL256 are encoded as log2(N) + c.
|
|
int min = 16 << (pattern - SVE_VL16);
|
|
return (min <= all) ? min : 0;
|
|
}
|
|
// Special cases.
|
|
case SVE_POW2:
|
|
return 1 << HighestSetBitPosition(all);
|
|
case SVE_MUL4:
|
|
return all - (all % 4);
|
|
case SVE_MUL3:
|
|
return all - (all % 3);
|
|
case SVE_ALL:
|
|
return all;
|
|
}
|
|
// Unnamed cases architecturally return 0.
|
|
return 0;
|
|
}
|
|
|
|
LogicPRegister Simulator::match(VectorFormat vform,
|
|
LogicPRegister dst,
|
|
const LogicVRegister& haystack,
|
|
const LogicVRegister& needles,
|
|
bool negate_match) {
|
|
SimVRegister ztemp;
|
|
SimPRegister ptemp;
|
|
|
|
pfalse(dst);
|
|
int lanes_per_segment = kQRegSize / LaneSizeInBitsFromFormat(vform);
|
|
for (int i = 0; i < lanes_per_segment; i++) {
|
|
dup_elements_to_segments(vform, ztemp, needles, i);
|
|
SVEIntCompareVectorsHelper(eq,
|
|
vform,
|
|
ptemp,
|
|
GetPTrue(),
|
|
haystack,
|
|
ztemp,
|
|
false,
|
|
LeaveFlags);
|
|
SVEPredicateLogicalHelper(ORR_p_p_pp_z, dst, dst, ptemp);
|
|
}
|
|
if (negate_match) {
|
|
ptrue(vform, ptemp, SVE_ALL);
|
|
SVEPredicateLogicalHelper(EOR_p_p_pp_z, dst, dst, ptemp);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
uint64_t LogicSVEAddressVector::GetStructAddress(int lane) const {
|
|
if (IsContiguous()) {
|
|
return base_ + (lane * GetRegCount()) * GetMsizeInBytes();
|
|
}
|
|
|
|
VIXL_ASSERT(IsScatterGather());
|
|
VIXL_ASSERT(vector_ != NULL);
|
|
|
|
// For scatter-gather accesses, we need to extract the offset from vector_,
|
|
// and apply modifiers.
|
|
|
|
uint64_t offset = 0;
|
|
switch (vector_form_) {
|
|
case kFormatVnS:
|
|
offset = vector_->GetLane<uint32_t>(lane);
|
|
break;
|
|
case kFormatVnD:
|
|
offset = vector_->GetLane<uint64_t>(lane);
|
|
break;
|
|
default:
|
|
VIXL_UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
|
|
switch (vector_mod_) {
|
|
case SVE_MUL_VL:
|
|
VIXL_UNIMPLEMENTED();
|
|
break;
|
|
case SVE_LSL:
|
|
// We apply the shift below. There's nothing to do here.
|
|
break;
|
|
case NO_SVE_OFFSET_MODIFIER:
|
|
VIXL_ASSERT(vector_shift_ == 0);
|
|
break;
|
|
case SVE_UXTW:
|
|
offset = ExtractUnsignedBitfield64(kWRegSize - 1, 0, offset);
|
|
break;
|
|
case SVE_SXTW:
|
|
offset = ExtractSignedBitfield64(kWRegSize - 1, 0, offset);
|
|
break;
|
|
}
|
|
|
|
return base_ + (offset << vector_shift_);
|
|
}
|
|
|
|
LogicVRegister Simulator::pack_odd_elements(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
SimVRegister zero;
|
|
zero.Clear();
|
|
return uzp2(vform, dst, src, zero);
|
|
}
|
|
|
|
LogicVRegister Simulator::pack_even_elements(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src) {
|
|
SimVRegister zero;
|
|
zero.Clear();
|
|
return uzp1(vform, dst, src, zero);
|
|
}
|
|
|
|
LogicVRegister Simulator::adcl(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool top) {
|
|
unsigned reg_size = LaneSizeInBitsFromFormat(vform);
|
|
VIXL_ASSERT((reg_size == kSRegSize) || (reg_size == kDRegSize));
|
|
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i += 2) {
|
|
uint64_t left = src1.Uint(vform, i + (top ? 1 : 0));
|
|
uint64_t right = dst.Uint(vform, i);
|
|
unsigned carry_in = src2.Uint(vform, i + 1) & 1;
|
|
std::pair<uint64_t, uint8_t> val_and_flags =
|
|
AddWithCarry(reg_size, left, right, carry_in);
|
|
|
|
// Set even lanes to the result of the addition.
|
|
dst.SetUint(vform, i, val_and_flags.first);
|
|
|
|
// Set odd lanes to the carry flag from the addition.
|
|
uint64_t carry_out = (val_and_flags.second >> 1) & 1;
|
|
dst.SetUint(vform, i + 1, carry_out);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
// Multiply the 2x8 8-bit matrix in src1 by the 8x2 8-bit matrix in src2, add
|
|
// the 2x2 32-bit result to the matrix in srcdst, and write back to srcdst.
|
|
//
|
|
// Matrices of the form:
|
|
//
|
|
// src1 = ( a b c d e f g h ) src2 = ( A B )
|
|
// ( i j k l m n o p ) ( C D )
|
|
// ( E F )
|
|
// ( G H )
|
|
// ( I J )
|
|
// ( K L )
|
|
// ( M N )
|
|
// ( O P )
|
|
//
|
|
// Are stored in the input vector registers as:
|
|
//
|
|
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|
|
// src1 = [ p | o | n | m | l | k | j | i | h | g | f | e | d | c | b | a ]
|
|
// src2 = [ P | N | L | J | H | F | D | B | O | M | K | I | G | E | C | A ]
|
|
//
|
|
LogicVRegister Simulator::matmul(VectorFormat vform_dst,
|
|
LogicVRegister srcdst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2,
|
|
bool src1_signed,
|
|
bool src2_signed) {
|
|
// Two destination forms are supported: Q register containing four S-sized
|
|
// elements (4S) and Z register containing n S-sized elements (VnS).
|
|
VIXL_ASSERT((vform_dst == kFormat4S) || (vform_dst == kFormatVnS));
|
|
VectorFormat vform_src = kFormatVnB;
|
|
int b_per_segment = kQRegSize / kBRegSize;
|
|
int s_per_segment = kQRegSize / kSRegSize;
|
|
int64_t result[kZRegMaxSizeInBytes / kSRegSizeInBytes] = {};
|
|
int segment_count = LaneCountFromFormat(vform_dst) / 4;
|
|
for (int seg = 0; seg < segment_count; seg++) {
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
int dstidx = (2 * i) + j + (seg * s_per_segment);
|
|
int64_t sum = srcdst.Int(vform_dst, dstidx);
|
|
for (int k = 0; k < 8; k++) {
|
|
int idx1 = (8 * i) + k + (seg * b_per_segment);
|
|
int idx2 = (8 * j) + k + (seg * b_per_segment);
|
|
int64_t e1 = src1_signed ? src1.Int(vform_src, idx1)
|
|
: src1.Uint(vform_src, idx1);
|
|
int64_t e2 = src2_signed ? src2.Int(vform_src, idx2)
|
|
: src2.Uint(vform_src, idx2);
|
|
sum += e1 * e2;
|
|
}
|
|
result[dstidx] = sum;
|
|
}
|
|
}
|
|
}
|
|
srcdst.SetIntArray(vform_dst, result);
|
|
return srcdst;
|
|
}
|
|
|
|
// Multiply the 2x2 FP matrix in src1 by the 2x2 FP matrix in src2, add the 2x2
|
|
// result to the matrix in srcdst, and write back to srcdst.
|
|
//
|
|
// Matrices of the form:
|
|
//
|
|
// src1 = ( a b ) src2 = ( A B )
|
|
// ( c d ) ( C D )
|
|
//
|
|
// Are stored in the input vector registers as:
|
|
//
|
|
// 3 2 1 0
|
|
// src1 = [ d | c | b | a ]
|
|
// src2 = [ D | B | C | A ]
|
|
//
|
|
template <typename T>
|
|
LogicVRegister Simulator::fmatmul(VectorFormat vform,
|
|
LogicVRegister srcdst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
T result[kZRegMaxSizeInBytes / sizeof(T)];
|
|
int T_per_segment = 4;
|
|
int segment_count = GetVectorLengthInBytes() / (T_per_segment * sizeof(T));
|
|
for (int seg = 0; seg < segment_count; seg++) {
|
|
int segoff = seg * T_per_segment;
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 0; j < 2; j++) {
|
|
T prod0 = FPMulNaNs(src1.Float<T>(2 * i + 0 + segoff),
|
|
src2.Float<T>(2 * j + 0 + segoff));
|
|
T prod1 = FPMulNaNs(src1.Float<T>(2 * i + 1 + segoff),
|
|
src2.Float<T>(2 * j + 1 + segoff));
|
|
T sum = FPAdd(srcdst.Float<T>(2 * i + j + segoff), prod0);
|
|
result[2 * i + j + segoff] = FPAdd(sum, prod1);
|
|
}
|
|
}
|
|
}
|
|
for (int i = 0; i < LaneCountFromFormat(vform); i++) {
|
|
// Elements outside a multiple of 4T are set to zero. This happens only
|
|
// for double precision operations, when the VL is a multiple of 128 bits,
|
|
// but not a multiple of 256 bits.
|
|
T value = (i < (T_per_segment * segment_count)) ? result[i] : 0;
|
|
srcdst.SetFloat<T>(vform, i, value);
|
|
}
|
|
return srcdst;
|
|
}
|
|
|
|
LogicVRegister Simulator::fmatmul(VectorFormat vform,
|
|
LogicVRegister dst,
|
|
const LogicVRegister& src1,
|
|
const LogicVRegister& src2) {
|
|
if (LaneSizeInBitsFromFormat(vform) == kSRegSize) {
|
|
fmatmul<float>(vform, dst, src1, src2);
|
|
} else {
|
|
VIXL_ASSERT(LaneSizeInBitsFromFormat(vform) == kDRegSize);
|
|
fmatmul<double>(vform, dst, src1, src2);
|
|
}
|
|
return dst;
|
|
}
|
|
|
|
} // namespace aarch64
|
|
} // namespace vixl
|
|
|
|
#endif // VIXL_INCLUDE_SIMULATOR_AARCH64
|