/* Copyright 2018 flyinghead This file is part of Flycast. Flycast is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. Flycast is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Flycast. If not, see . */ #include "gl4.h" #include "rend/gles/glcache.h" #include "rend/transform_matrix.h" //Fragment and vertex shaders code static const char* VertexShaderSource = R"(#version 140 #define pp_Gouraud %d #if pp_Gouraud == 0 #define INTERPOLATION flat #else #define INTERPOLATION smooth #endif /* Vertex constants*/ uniform vec4 scale; uniform mat4 normal_matrix; /* Vertex input */ in vec4 in_pos; in vec4 in_base; in vec4 in_offs; in vec2 in_uv; in vec4 in_base1; in vec4 in_offs1; in vec2 in_uv1; /* output */ INTERPOLATION out vec4 vtx_base; INTERPOLATION out vec4 vtx_offs; out vec2 vtx_uv; INTERPOLATION out vec4 vtx_base1; INTERPOLATION out vec4 vtx_offs1; out vec2 vtx_uv1; void main() { vtx_base = in_base; vtx_offs = in_offs; vtx_uv = in_uv; vtx_base1 = in_base1; vtx_offs1 = in_offs1; vtx_uv1 = in_uv1; vec4 vpos = normal_matrix * in_pos; vpos.w = 1.0 / vpos.z; vpos.z = vpos.w; vpos.xy *= vpos.w; gl_Position = vpos; } )"; const char* gl4PixelPipelineShader = SHADER_HEADER R"( #define cp_AlphaTest %d #define pp_ClipInside %d #define pp_UseAlpha %d #define pp_Texture %d #define pp_IgnoreTexA %d #define pp_ShadInstr %d #define pp_Offset %d #define pp_FogCtrl %d #define pp_TwoVolumes %d #define pp_Gouraud %d #define pp_BumpMap %d #define FogClamping %d #define pp_Palette %d #define PASS %d #define PI 3.1415926 #define PASS_DEPTH 0 #define PASS_COLOR 1 #define PASS_OIT 2 #if PASS == PASS_DEPTH || PASS == PASS_COLOR out vec4 FragColor; #endif #if pp_TwoVolumes == 1 #define IF(x) if (x) #else #define IF(x) #endif #if pp_Gouraud == 0 #define INTERPOLATION flat #else #define INTERPOLATION smooth #endif /* Shader program params*/ uniform float cp_AlphaTestValue; uniform vec4 pp_ClipTest; uniform vec3 sp_FOG_COL_RAM,sp_FOG_COL_VERT; uniform float sp_FOG_DENSITY; uniform float shade_scale_factor; uniform sampler2D tex0, tex1; layout(binding = 5) uniform sampler2D fog_table; uniform int pp_Number; uniform usampler2D shadow_stencil; uniform sampler2D DepthTex; uniform float trilinear_alpha; uniform vec4 fog_clamp_min; uniform vec4 fog_clamp_max; #if pp_Palette == 1 uniform sampler2D palette; uniform int palette_index; #endif uniform ivec2 blend_mode[2]; #if pp_TwoVolumes == 1 uniform bool use_alpha[2]; uniform bool ignore_tex_alpha[2]; uniform int shading_instr[2]; uniform int fog_control[2]; #endif /* Vertex input*/ INTERPOLATION in vec4 vtx_base; INTERPOLATION in vec4 vtx_offs; in vec2 vtx_uv; INTERPOLATION in vec4 vtx_base1; INTERPOLATION in vec4 vtx_offs1; in vec2 vtx_uv1; float fog_mode2(float w) { float z = clamp(w * sp_FOG_DENSITY, 1.0, 255.9999); float exp = floor(log2(z)); float m = z * 16.0 / pow(2.0, exp) - 16.0; float idx = floor(m) + exp * 16.0 + 0.5; vec4 fog_coef = texture(fog_table, vec2(idx / 128.0, 0.75 - (m - floor(m)) / 2.0)); return fog_coef.r; } vec4 fog_clamp(vec4 col) { #if FogClamping == 1 return clamp(col, fog_clamp_min, fog_clamp_max); #else return col; #endif } #if pp_Palette == 1 vec4 palettePixel(sampler2D tex, vec2 coords) { int color_idx = int(floor(texture(tex, coords).r * 255.0 + 0.5)) + palette_index; vec2 c = vec2(float(color_idx % 32) / 31.0, float(color_idx / 32) / 31.0); return texture(palette, c); } #endif void main() { setFragDepth(); #if PASS == PASS_OIT // Manual depth testing float frontDepth = texture(DepthTex, gl_FragCoord.xy / textureSize(DepthTex, 0)).r; if (gl_FragDepth < frontDepth) discard; #endif // Clip inside the box #if pp_ClipInside == 1 if (gl_FragCoord.x >= pp_ClipTest.x && gl_FragCoord.x <= pp_ClipTest.z && gl_FragCoord.y >= pp_ClipTest.y && gl_FragCoord.y <= pp_ClipTest.w) discard; #endif vec4 color = vtx_base; vec4 offset = vtx_offs; vec2 uv = vtx_uv; bool area1 = false; ivec2 cur_blend_mode = blend_mode[0]; #if pp_TwoVolumes == 1 bool cur_use_alpha = use_alpha[0]; bool cur_ignore_tex_alpha = ignore_tex_alpha[0]; int cur_shading_instr = shading_instr[0]; int cur_fog_control = fog_control[0]; #if PASS == PASS_COLOR uvec4 stencil = texture(shadow_stencil, gl_FragCoord.xy / textureSize(shadow_stencil, 0)); if (stencil.r == 0x81u) { color = vtx_base1; offset = vtx_offs1; uv = vtx_uv1; area1 = true; cur_blend_mode = blend_mode[1]; cur_use_alpha = use_alpha[1]; cur_ignore_tex_alpha = ignore_tex_alpha[1]; cur_shading_instr = shading_instr[1]; cur_fog_control = fog_control[1]; } #endif #endif #if pp_UseAlpha==0 || pp_TwoVolumes == 1 IF(!cur_use_alpha) color.a=1.0; #endif #if pp_FogCtrl==3 || pp_TwoVolumes == 1 // LUT Mode 2 IF(cur_fog_control == 3) color=vec4(sp_FOG_COL_RAM.rgb,fog_mode2(gl_FragCoord.w)); #endif #if pp_Texture==1 { vec4 texcol; #if pp_Palette == 0 if (area1) texcol = texture(tex1, uv); else texcol = texture(tex0, uv); #else if (area1) texcol = palettePixel(tex1, uv); else texcol = palettePixel(tex0, uv); #endif #if pp_BumpMap == 1 float s = PI / 2.0 * (texcol.a * 15.0 * 16.0 + texcol.r * 15.0) / 255.0; float r = 2.0 * PI * (texcol.g * 15.0 * 16.0 + texcol.b * 15.0) / 255.0; texcol.a = clamp(vtx_offs.a + vtx_offs.r * sin(s) + vtx_offs.g * cos(s) * cos(r - 2.0 * PI * vtx_offs.b), 0.0, 1.0); texcol.rgb = vec3(1.0, 1.0, 1.0); #else #if pp_IgnoreTexA==1 || pp_TwoVolumes == 1 IF(cur_ignore_tex_alpha) texcol.a=1.0; #endif #if cp_AlphaTest == 1 if (cp_AlphaTestValue > texcol.a) discard; texcol.a = 1.0; #endif #endif #if pp_ShadInstr==0 || pp_TwoVolumes == 1 // DECAL IF(cur_shading_instr == 0) { color=texcol; } #endif #if pp_ShadInstr==1 || pp_TwoVolumes == 1 // MODULATE IF(cur_shading_instr == 1) { color.rgb*=texcol.rgb; color.a=texcol.a; } #endif #if pp_ShadInstr==2 || pp_TwoVolumes == 1 // DECAL ALPHA IF(cur_shading_instr == 2) { color.rgb=mix(color.rgb,texcol.rgb,texcol.a); } #endif #if pp_ShadInstr==3 || pp_TwoVolumes == 1 // MODULATE ALPHA IF(cur_shading_instr == 3) { color*=texcol; } #endif #if pp_Offset==1 && pp_BumpMap == 0 { color.rgb += offset.rgb; } #endif } #endif #if PASS == PASS_COLOR && pp_TwoVolumes == 0 uvec4 stencil = texture(shadow_stencil, gl_FragCoord.xy / textureSize(shadow_stencil, 0)); if (stencil.r == 0x81u) color.rgb *= shade_scale_factor; #endif color = fog_clamp(color); #if pp_FogCtrl==0 || pp_TwoVolumes == 1 // LUT IF(cur_fog_control == 0) { color.rgb=mix(color.rgb,sp_FOG_COL_RAM.rgb,fog_mode2(gl_FragCoord.w)); } #endif #if pp_Offset==1 && pp_BumpMap == 0 && (pp_FogCtrl == 1 || pp_TwoVolumes == 1) // Per vertex IF(cur_fog_control == 1) { color.rgb=mix(color.rgb, sp_FOG_COL_VERT.rgb, offset.a); } #endif color *= trilinear_alpha; //color.rgb=vec3(gl_FragCoord.w * sp_FOG_DENSITY / 128.0); #if PASS == PASS_COLOR FragColor = color; #elif PASS == PASS_OIT // Discard as many pixels as possible switch (cur_blend_mode.y) // DST { case ONE: switch (cur_blend_mode.x) // SRC { case ZERO: discard; case ONE: case OTHER_COLOR: case INVERSE_OTHER_COLOR: if (color == vec4(0.0)) discard; break; case SRC_ALPHA: if (color.a == 0.0 || color.rgb == vec3(0.0)) discard; break; case INVERSE_SRC_ALPHA: if (color.a == 1.0 || color.rgb == vec3(0.0)) discard; break; } break; case OTHER_COLOR: if (cur_blend_mode.x == ZERO && color == vec4(1.0)) discard; break; case INVERSE_OTHER_COLOR: if (cur_blend_mode.x <= SRC_ALPHA && color == vec4(0.0)) discard; break; case SRC_ALPHA: if ((cur_blend_mode.x == ZERO || cur_blend_mode.x == INVERSE_SRC_ALPHA) && color.a == 1.0) discard; break; case INVERSE_SRC_ALPHA: switch (cur_blend_mode.x) // SRC { case ZERO: case SRC_ALPHA: if (color.a == 0.0) discard; break; case ONE: case OTHER_COLOR: case INVERSE_OTHER_COLOR: if (color == vec4(0.0)) discard; break; } break; } ivec2 coords = ivec2(gl_FragCoord.xy); uint idx = getNextPixelIndex(); Pixel pixel; pixel.color = packColors(clamp(color, vec4(0.0), vec4(1.0))); pixel.depth = gl_FragDepth; pixel.seq_num = uint(pp_Number); pixel.next = imageAtomicExchange(abufferPointerImg, coords, idx); pixels[idx] = pixel; discard; #endif } )"; static const char* ModifierVolumeShader = SHADER_HEADER R"( void main() { setFragDepth(); } )"; gl4_ctx gl4; struct gl4ShaderUniforms_t gl4ShaderUniforms; int max_image_width; int max_image_height; bool gl4CompilePipelineShader( gl4PipelineShader* s, const char *pixel_source /* = PixelPipelineShader */, const char *vertex_source /* = NULL */) { char vshader[16384]; sprintf(vshader, vertex_source == NULL ? VertexShaderSource : vertex_source, s->pp_Gouraud); char pshader[16384]; sprintf(pshader, pixel_source, s->cp_AlphaTest, s->pp_InsideClipping, s->pp_UseAlpha, s->pp_Texture, s->pp_IgnoreTexA, s->pp_ShadInstr, s->pp_Offset, s->pp_FogCtrl, s->pp_TwoVolumes, s->pp_Gouraud, s->pp_BumpMap, s->fog_clamping, s->palette, (int)s->pass); s->program = gl_CompileAndLink(vshader, pshader); //setup texture 0 as the input for the shader GLint gu = glGetUniformLocation(s->program, "tex0"); if (s->pp_Texture == 1 && gu != -1) glUniform1i(gu, 0); // Setup texture 1 as the input for area 1 in two volume mode gu = glGetUniformLocation(s->program, "tex1"); if (s->pp_Texture == 1 && gu != -1) glUniform1i(gu, 1); //get the uniform locations s->pp_ClipTest = glGetUniformLocation(s->program, "pp_ClipTest"); s->sp_FOG_DENSITY = glGetUniformLocation(s->program, "sp_FOG_DENSITY"); s->cp_AlphaTestValue= glGetUniformLocation(s->program, "cp_AlphaTestValue"); //FOG_COL_RAM,FOG_COL_VERT,FOG_DENSITY; if (s->pp_FogCtrl==1 && s->pp_Texture==1) s->sp_FOG_COL_VERT=glGetUniformLocation(s->program, "sp_FOG_COL_VERT"); else s->sp_FOG_COL_VERT=-1; if (s->pp_FogCtrl==0 || s->pp_FogCtrl==3) { s->sp_FOG_COL_RAM=glGetUniformLocation(s->program, "sp_FOG_COL_RAM"); } else { s->sp_FOG_COL_RAM=-1; } s->shade_scale_factor = glGetUniformLocation(s->program, "shade_scale_factor"); // Use texture 1 for depth texture gu = glGetUniformLocation(s->program, "DepthTex"); if (gu != -1) glUniform1i(gu, 2); // GL_TEXTURE2 s->trilinear_alpha = glGetUniformLocation(s->program, "trilinear_alpha"); if (s->fog_clamping) { s->fog_clamp_min = glGetUniformLocation(s->program, "fog_clamp_min"); s->fog_clamp_max = glGetUniformLocation(s->program, "fog_clamp_max"); } else { s->fog_clamp_min = -1; s->fog_clamp_max = -1; } s->normal_matrix = glGetUniformLocation(s->program, "normal_matrix"); // Shadow stencil for OP/PT rendering pass gu = glGetUniformLocation(s->program, "shadow_stencil"); if (gu != -1) glUniform1i(gu, 3); // GL_TEXTURE3 s->pp_Number = glGetUniformLocation(s->program, "pp_Number"); s->blend_mode = glGetUniformLocation(s->program, "blend_mode"); s->use_alpha = glGetUniformLocation(s->program, "use_alpha"); s->ignore_tex_alpha = glGetUniformLocation(s->program, "ignore_tex_alpha"); s->shading_instr = glGetUniformLocation(s->program, "shading_instr"); s->fog_control = glGetUniformLocation(s->program, "fog_control"); gu = glGetUniformLocation(s->program, "palette"); if (gu != -1) glUniform1i(gu, 6); // GL_TEXTURE6 s->palette_index = glGetUniformLocation(s->program, "palette_index"); return glIsProgram(s->program)==GL_TRUE; } static void gl4_delete_shaders() { for (auto it : gl4.shaders) { if (it.second.program != 0) glcache.DeleteProgram(it.second.program); } gl4.shaders.clear(); glcache.DeleteProgram(gl4.modvol_shader.program); gl4.modvol_shader.program = 0; } static void gl4_term() { glDeleteBuffers(1, &gl4.vbo.geometry); gl4.vbo.geometry = 0; glDeleteBuffers(1, &gl4.vbo.modvols); glDeleteBuffers(1, &gl4.vbo.idxs); glDeleteBuffers(1, &gl4.vbo.idxs2); glDeleteBuffers(1, &gl4.vbo.tr_poly_params); gl4_delete_shaders(); glDeleteVertexArrays(1, &gl4.vbo.main_vao); glDeleteVertexArrays(1, &gl4.vbo.modvol_vao); } static void create_modvol_shader() { if (gl4.modvol_shader.program != 0) return; char vshader[16384]; sprintf(vshader, VertexShaderSource, 1); gl4.modvol_shader.program=gl_CompileAndLink(vshader, ModifierVolumeShader); gl4.modvol_shader.normal_matrix = glGetUniformLocation(gl4.modvol_shader.program, "normal_matrix"); } static bool gl_create_resources() { if (gl4.vbo.geometry != 0) // Assume the resources have already been created return true; //create vao glGenVertexArrays(1, &gl4.vbo.main_vao); glGenVertexArrays(1, &gl4.vbo.modvol_vao); //create vbos glGenBuffers(1, &gl4.vbo.geometry); glGenBuffers(1, &gl4.vbo.modvols); glGenBuffers(1, &gl4.vbo.idxs); glGenBuffers(1, &gl4.vbo.idxs2); gl4SetupMainVBO(); gl4SetupModvolVBO(); create_modvol_shader(); // Create the buffer for Translucent poly params glGenBuffers(1, &gl4.vbo.tr_poly_params); // Bind it glBindBuffer(GL_SHADER_STORAGE_BUFFER, gl4.vbo.tr_poly_params); // Declare storage glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, gl4.vbo.tr_poly_params); initQuad(); glCheck(); return true; } //setup static bool gl4_init() { findGLVersion(); if (gl.gl_major < 4 || (gl.gl_major == 4 && gl.gl_minor < 3)) { WARN_LOG(RENDERER, "Warning: OpenGL version doesn't support per-pixel sorting."); return false; } INFO_LOG(RENDERER, "Per-pixel sorting enabled"); glcache.DisableCache(); if (!gl_create_resources()) return false; // glEnable(GL_DEBUG_OUTPUT); // glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS); // glDebugMessageCallback(gl_DebugOutput, NULL); // glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, NULL, GL_TRUE); initABuffer(); if (config::TextureUpscale > 1) { // Trick to preload the tables used by xBRZ u32 src[] { 0x11111111, 0x22222222, 0x33333333, 0x44444444 }; u32 dst[16]; UpscalexBRZ(2, src, dst, 2, 2, false); } fog_needs_update = true; palette_updated = true; TextureCacheData::SetDirectXColorOrder(false); return true; } static void resize(int w, int h) { if (w > max_image_width || h > max_image_height || stencilTexId == 0) { if (w > max_image_width) max_image_width = w; if (h > max_image_height) max_image_height = h; if (stencilTexId != 0) { glcache.DeleteTextures(1, &stencilTexId); stencilTexId = 0; } if (depthTexId != 0) { glcache.DeleteTextures(1, &depthTexId); depthTexId = 0; } if (opaqueTexId != 0) { glcache.DeleteTextures(1, &opaqueTexId); opaqueTexId = 0; } if (depthSaveTexId != 0) { glcache.DeleteTextures(1, &depthSaveTexId); depthSaveTexId = 0; } gl4CreateTextures(max_image_width, max_image_height); reshapeABuffer(max_image_width, max_image_height); glBindFramebuffer(GL_FRAMEBUFFER, 0); } } static bool RenderFrame(int width, int height) { create_modvol_shader(); const bool is_rtt = pvrrc.isRTT; TransformMatrix matrices(pvrrc, width, height); gl4ShaderUniforms.normal_mat = matrices.GetNormalMatrix(); const glm::mat4& scissor_mat = matrices.GetScissorMatrix(); ViewportMatrix = matrices.GetViewportMatrix(); if (!is_rtt) gcflip = 0; else gcflip = 1; /* Handle Dc to screen scaling */ int rendering_width; int rendering_height; if (is_rtt) { float scaling = config::RenderToTextureBuffer ? 1.f : config::RenderResolution / 480.f; rendering_width = matrices.GetDreamcastViewport().x * scaling; rendering_height = matrices.GetDreamcastViewport().y * scaling; } else { rendering_width = width; rendering_height = height; } resize(rendering_width, rendering_height); //DEBUG_LOG(RENDERER, "scale: %f, %f, %f, %f", gl4ShaderUniforms.scale_coefs[0], gl4ShaderUniforms.scale_coefs[1], gl4ShaderUniforms.scale_coefs[2], gl4ShaderUniforms.scale_coefs[3]); //VERT and RAM fog color constants u8* fog_colvert_bgra=(u8*)&FOG_COL_VERT; u8* fog_colram_bgra=(u8*)&FOG_COL_RAM; gl4ShaderUniforms.ps_FOG_COL_VERT[0]=fog_colvert_bgra[2]/255.0f; gl4ShaderUniforms.ps_FOG_COL_VERT[1]=fog_colvert_bgra[1]/255.0f; gl4ShaderUniforms.ps_FOG_COL_VERT[2]=fog_colvert_bgra[0]/255.0f; gl4ShaderUniforms.ps_FOG_COL_RAM[0]=fog_colram_bgra [2]/255.0f; gl4ShaderUniforms.ps_FOG_COL_RAM[1]=fog_colram_bgra [1]/255.0f; gl4ShaderUniforms.ps_FOG_COL_RAM[2]=fog_colram_bgra [0]/255.0f; //Fog density constant u8* fog_density=(u8*)&FOG_DENSITY; float fog_den_mant=fog_density[1]/128.0f; //bit 7 -> x. bit, so [6:0] -> fraction -> /128 s32 fog_den_exp=(s8)fog_density[0]; gl4ShaderUniforms.fog_den_float = fog_den_mant * powf(2.0f,fog_den_exp) * config::ExtraDepthScale; gl4ShaderUniforms.fog_clamp_min[0] = ((pvrrc.fog_clamp_min >> 16) & 0xFF) / 255.0f; gl4ShaderUniforms.fog_clamp_min[1] = ((pvrrc.fog_clamp_min >> 8) & 0xFF) / 255.0f; gl4ShaderUniforms.fog_clamp_min[2] = ((pvrrc.fog_clamp_min >> 0) & 0xFF) / 255.0f; gl4ShaderUniforms.fog_clamp_min[3] = ((pvrrc.fog_clamp_min >> 24) & 0xFF) / 255.0f; gl4ShaderUniforms.fog_clamp_max[0] = ((pvrrc.fog_clamp_max >> 16) & 0xFF) / 255.0f; gl4ShaderUniforms.fog_clamp_max[1] = ((pvrrc.fog_clamp_max >> 8) & 0xFF) / 255.0f; gl4ShaderUniforms.fog_clamp_max[2] = ((pvrrc.fog_clamp_max >> 0) & 0xFF) / 255.0f; gl4ShaderUniforms.fog_clamp_max[3] = ((pvrrc.fog_clamp_max >> 24) & 0xFF) / 255.0f; if (fog_needs_update && config::Fog) { fog_needs_update = false; UpdateFogTexture((u8 *)FOG_TABLE, GL_TEXTURE5, GL_RED); } if (palette_updated) { UpdatePaletteTexture(GL_TEXTURE6); palette_updated = false; } glcache.UseProgram(gl4.modvol_shader.program); glUniformMatrix4fv(gl4.modvol_shader.normal_matrix, 1, GL_FALSE, &gl4ShaderUniforms.normal_mat[0][0]); gl4ShaderUniforms.PT_ALPHA=(PT_ALPHA_REF&0xFF)/255.0f; GLuint output_fbo; //setup render target first if (is_rtt) output_fbo = BindRTT(false); else output_fbo = init_output_framebuffer(rendering_width, rendering_height); if (output_fbo == 0) return false; glcache.Disable(GL_SCISSOR_TEST); if (!pvrrc.isRenderFramebuffer) { //Main VBO glBindBuffer(GL_ARRAY_BUFFER, gl4.vbo.geometry); glCheck(); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, gl4.vbo.idxs); glCheck(); //move vertex to gpu glBufferData(GL_ARRAY_BUFFER,pvrrc.verts.bytes(),pvrrc.verts.head(),GL_STREAM_DRAW); glCheck(); glBufferData(GL_ELEMENT_ARRAY_BUFFER,pvrrc.idx.bytes(),pvrrc.idx.head(),GL_STREAM_DRAW); //Modvol VBO if (pvrrc.modtrig.used()) { glBindBuffer(GL_ARRAY_BUFFER, gl4.vbo.modvols); glCheck(); glBufferData(GL_ARRAY_BUFFER,pvrrc.modtrig.bytes(),pvrrc.modtrig.head(),GL_STREAM_DRAW); glCheck(); } // TR PolyParam data if (pvrrc.global_param_tr.used() != 0) { glBindBuffer(GL_SHADER_STORAGE_BUFFER, gl4.vbo.tr_poly_params); std::vector trPolyParams(pvrrc.global_param_tr.used() * 2); const PolyParam *pp_end = pvrrc.global_param_tr.LastPtr(0); const PolyParam *pp = pvrrc.global_param_tr.head(); for (int i = 0; pp != pp_end; i += 2, pp++) { trPolyParams[i] = (pp->tsp.full & 0xffff00c0) | ((pp->isp.full >> 16) & 0xe400) | ((pp->pcw.full >> 7) & 1); trPolyParams[i + 1] = pp->tsp1.full; } glBufferData(GL_SHADER_STORAGE_BUFFER, trPolyParams.size() * 4, trPolyParams.data(), GL_STATIC_DRAW); } glCheck(); if (is_rtt || !config::Widescreen || matrices.IsClipped() || config::Rotate90) { float fWidth; float fHeight; float min_x; float min_y; if (!is_rtt) { glm::vec4 clip_min(pvrrc.fb_X_CLIP.min, pvrrc.fb_Y_CLIP.min, 0, 1); glm::vec4 clip_dim(pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1, pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1, 0, 0); clip_min = scissor_mat * clip_min; clip_dim = scissor_mat * clip_dim; min_x = clip_min[0]; min_y = clip_min[1]; fWidth = clip_dim[0]; fHeight = clip_dim[1]; if (fWidth < 0) { min_x += fWidth; fWidth = -fWidth; } if (fHeight < 0) { min_y += fHeight; fHeight = -fHeight; } if (matrices.GetSidebarWidth() > 0) { float scaled_offs_x = matrices.GetSidebarWidth(); glcache.ClearColor(0.f, 0.f, 0.f, 0.f); glcache.Enable(GL_SCISSOR_TEST); glcache.Scissor(0, 0, (GLsizei)lroundf(scaled_offs_x), rendering_height); glClear(GL_COLOR_BUFFER_BIT); glcache.Scissor((GLint)lroundf(rendering_width - scaled_offs_x), 0, (GLsizei)lroundf(scaled_offs_x) + 1, rendering_height); glClear(GL_COLOR_BUFFER_BIT); } } else { fWidth = pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1; fHeight = pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1; min_x = pvrrc.fb_X_CLIP.min; min_y = pvrrc.fb_Y_CLIP.min; if (config::RenderResolution > 480 && !config::RenderToTextureBuffer) { float scale = config::RenderResolution / 480.f; min_x *= scale; min_y *= scale; fWidth *= scale; fHeight *= scale; } } gl4ShaderUniforms.base_clipping.enabled = true; gl4ShaderUniforms.base_clipping.x = (int)lroundf(min_x); gl4ShaderUniforms.base_clipping.y = (int)lroundf(min_y); gl4ShaderUniforms.base_clipping.width = (int)lroundf(fWidth); gl4ShaderUniforms.base_clipping.height = (int)lroundf(fHeight); glcache.Scissor(gl4ShaderUniforms.base_clipping.x, gl4ShaderUniforms.base_clipping.y, gl4ShaderUniforms.base_clipping.width, gl4ShaderUniforms.base_clipping.height); glcache.Enable(GL_SCISSOR_TEST); } else { gl4ShaderUniforms.base_clipping.enabled = false; } gl4DrawStrips(output_fbo, rendering_width, rendering_height); } else { glBindFramebuffer(GL_FRAMEBUFFER, output_fbo); glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); glcache.ClearColor(0.f, 0.f, 0.f, 0.f); glClear(GL_COLOR_BUFFER_BIT); DrawFramebuffer(); } if (is_rtt) ReadRTTBuffer(); else render_output_framebuffer(); return !is_rtt; } struct OpenGL4Renderer : OpenGLRenderer { bool Init() override { return gl4_init(); } void Resize(int w, int h) override { width = w; height = h; resize(w, h); } void Term() override { termQuad(); termABuffer(); if (stencilTexId != 0) { glcache.DeleteTextures(1, &stencilTexId); stencilTexId = 0; } if (depthTexId != 0) { glcache.DeleteTextures(1, &depthTexId); depthTexId = 0; } if (opaqueTexId != 0) { glcache.DeleteTextures(1, &opaqueTexId); opaqueTexId = 0; } if (depthSaveTexId != 0) { glcache.DeleteTextures(1, &depthSaveTexId); depthSaveTexId = 0; } if (geom_fbo != 0) { glDeleteFramebuffers(1, &geom_fbo); geom_fbo = 0; } if (texSamplers[0] != 0) { glDeleteSamplers(2, texSamplers); texSamplers[0] = texSamplers[1] = 0; } if (depth_fbo != 0) { glDeleteFramebuffers(1, &depth_fbo); depth_fbo = 0; } TexCache.Clear(); gl_free_osd_resources(); free_output_framebuffer(); gl4_term(); } bool Render() override { RenderFrame(width, height); if (pvrrc.isRTT) return false; DrawOSD(false); frameRendered = true; return true; } bool RenderLastFrame() override { return render_output_framebuffer(); } }; Renderer* rend_GL4() { return new OpenGL4Renderer(); }