/* Created on: Mar 15, 2020 Copyright 2020 flyinghead This file is part of flycast. flycast is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. flycast is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with flycast. If not, see . */ #include "naomi_m3comm.h" #include "naomi_regs.h" #include "hw/holly/sb.h" #include "hw/sh4/sh4_mem.h" #include static inline u16 swap16(u16 w) { return (w >> 8) | (w << 8); } void NaomiM3Comm::closeNetwork() { network_stopping = true; network.shutdown(); if (thread && thread->joinable()) thread->join(); } void NaomiM3Comm::connectNetwork() { if (network.startNetwork()) { slot_count = network.slotCount(); slot_id = network.slotId(); connectedState(true); } else { connectedState(false); network_stopping = true; network.shutdown(); } } void NaomiM3Comm::receiveNetwork() { const u32 slot_size = swap16(*(u16*)&m68k_ram[0x204]); const u32 packet_size = slot_size * slot_count; u8 buf[packet_size]; if (network.receive(buf, packet_size)) { *(u16*)&comm_ram[6] = swap16(network.packetNumber()); std::unique_lock lock(mem_mutex); memcpy(&comm_ram[0x100 + slot_size], buf, packet_size); } } void NaomiM3Comm::sendNetwork() { if (network.hasToken()) { const u32 packet_size = swap16(*(u16*)&m68k_ram[0x204]) * slot_count; std::unique_lock lock(mem_mutex); network.send(&comm_ram[0x100], packet_size); *(u16*)&comm_ram[6] = swap16(network.packetNumber()); } } NaomiM3Comm::~NaomiM3Comm() { closeNetwork(); network.terminate(); } u32 NaomiM3Comm::ReadMem(u32 address, u32 size) { switch (address & 255) { case NAOMI_COMM2_CTRL_addr & 255: //DEBUG_LOG(NAOMI, "NAOMI_COMM2_CTRL read"); return comm_ctrl; case NAOMI_COMM2_OFFSET_addr & 255: //DEBUG_LOG(NAOMI, "NAOMI_COMM2_OFFSET read"); return comm_offset; case NAOMI_COMM2_DATA_addr & 255: { u16 value; if (comm_ctrl & 1) value = *(u16*)&m68k_ram[comm_offset]; else // TODO u16 *commram = (u16*)membank("comm_ram")->base(); value = *(u16*)&comm_ram[comm_offset]; value = swap16(value); DEBUG_LOG(NAOMI, "NAOMI_COMM2_DATA %s read @ %04x: %x", (comm_ctrl & 1) ? "m68k ram" : "comm ram", comm_offset, value); comm_offset += 2; return value; } case NAOMI_COMM2_STATUS0_addr & 255: DEBUG_LOG(NAOMI, "NAOMI_COMM2_STATUS0 read %x", comm_status0); return comm_status0; case NAOMI_COMM2_STATUS1_addr & 255: DEBUG_LOG(NAOMI, "NAOMI_COMM2_STATUS1 read %x", comm_status1); return comm_status1; default: DEBUG_LOG(NAOMI, "NaomiM3Comm::ReadMem unmapped: %08x sz %d", address, size); return 0xffffffff; } } void NaomiM3Comm::connectedState(bool success) { if (!success) return; memset(&comm_ram[0xf000], 0, 16); comm_ram[0xf000] = 1; comm_ram[0xf001] = 1; comm_ram[0xf002] = m68k_ram[0x204]; comm_ram[0xf003] = m68k_ram[0x205]; u32 slot_size = swap16(*(u16*)&m68k_ram[0x204]); memset(&comm_ram[0], 0, 32); // 80000 comm_ram[0] = 0; comm_ram[1] = slot_id == 0 ? 0 : 1; // 80002 comm_ram[2] = 0x01; comm_ram[3] = 0x01; // 80004 if (slot_id == 0) { comm_ram[4] = 0; comm_ram[5] = 0; } else { comm_ram[4] = 1; comm_ram[5] = 1; } // 80006: packet number comm_ram[6] = 0; comm_ram[7] = 0; // 80008 comm_ram[8] = slot_id == 0 ? 0x78 : 0x73; comm_ram[9] = slot_id == 0 ? 0x30 : 0xa2; // 8000A *(u16 *)(comm_ram + 10) = 0x100 + slot_size; // offset of recvd data // 8000C *(u16 *)(comm_ram + 12) = slot_size * slot_count; // recvd data size // 8000E *(u16 *)(comm_ram + 14) = 0x100; // offset of sent data // 80010 *(u16 *)(comm_ram + 16) = 0x80 + slot_size * slot_count; // sent data size // FIXME wrungp uses 100, others 80 comm_status0 = 0xff01; // But 1 at connect time before f000 is read comm_status1 = (slot_count << 8) | slot_id; } void NaomiM3Comm::WriteMem(u32 address, u32 data, u32 size) { switch (address & 255) { case NAOMI_COMM2_CTRL_addr & 255: // bit 0: access RAM is 0 - communication RAM / 1 - M68K RAM // bit 1: comm RAM bank (seems R/O for SH4) // bit 5: M68K Reset // bit 6: ??? // bit 7: might be M68K IRQ 5 or 2 // bit 14: G1 DMA bus master 0 - active / 1 - disabled // bit 15: 0 - enable / 1 - disable this device ??? if (data & (1 << 5)) { DEBUG_LOG(NAOMI, "NAOMI_COMM2_CTRL m68k reset"); closeNetwork(); memset(&comm_ram[0], 0, 32); comm_status0 = 0; // varies... comm_status1 = 0; startThread(); } comm_ctrl = (u16)(data & ~(1 << 5)); //DEBUG_LOG(NAOMI, "NAOMI_COMM2_CTRL set to %x", comm_ctrl); return; case NAOMI_COMM2_OFFSET_addr & 255: comm_offset = (u16)data; //DEBUG_LOG(NAOMI, "NAOMI_COMM2_OFFSET set to %x", comm_offset); return; case NAOMI_COMM2_DATA_addr & 255: DEBUG_LOG(NAOMI, "NAOMI_COMM2_DATA written @ %04x %04x", comm_offset, (u16)data); data = swap16(data); if (comm_ctrl & 1) *(u16*)&m68k_ram[comm_offset] = (u16)data; else *(u16*)&comm_ram[comm_offset] = (u16)data; comm_offset += 2; return; case NAOMI_COMM2_STATUS0_addr & 255: comm_status0 = (u16)data; //DEBUG_LOG(NAOMI, "NAOMI_COMM2_STATUS0 set to %x", comm_status0); return; case NAOMI_COMM2_STATUS1_addr & 255: comm_status1 = (u16)data; //DEBUG_LOG(NAOMI, "NAOMI_COMM2_STATUS1 set to %x", comm_status1); return; default: break; } DEBUG_LOG(NAOMI, "NaomiM3Comm::WriteMem: %x <= %x sz %d", address, data, size); } bool NaomiM3Comm::DmaStart(u32 addr, u32 data) { if (comm_ctrl & 0x4000) return false; DEBUG_LOG(NAOMI, "NaomiM3Comm: DMA addr %08X <-> %04x len %d %s", SB_GDSTAR, comm_offset, SB_GDLEN, SB_GDDIR == 0 ? "OUT" : "IN"); std::unique_lock lock(mem_mutex); if (SB_GDDIR == 0) { // Network write for (u32 i = 0; i < SB_GDLEN; i++) comm_ram[comm_offset++] = ReadMem8_nommu(SB_GDSTAR + i); } else { // Network read if (SB_GDLEN == 32 && (comm_ctrl & 1) == 0) { char buf[32 * 5 + 1]; buf[0] = 0; for (u32 i = 0; i < SB_GDLEN; i++) { u8 value = comm_ram[comm_offset + i]; sprintf(buf + strlen(buf), "%02x ", value); } DEBUG_LOG(NAOMI, "Comm RAM read @%x: %s", comm_offset, buf); } for (u32 i = 0; i < SB_GDLEN; i++) WriteMem8_nommu(SB_GDSTAR + i, comm_ram[comm_offset++]); } return true; } void NaomiM3Comm::startThread() { network_stopping = false; thread = std::unique_ptr(new std::thread([this]() { using the_clock = std::chrono::high_resolution_clock; connectNetwork(); the_clock::time_point token_time = the_clock::now(); while (!network_stopping) { network.pipeSlaves(); receiveNetwork(); if (slot_id == 0 && network.hasToken()) { const auto target_duration = std::chrono::milliseconds(10); auto duration = the_clock::now() - token_time; if (duration < target_duration) { DEBUG_LOG(NAOMI, "Sleeping for %ld ms", std::chrono::duration_cast(target_duration - duration).count()); std::this_thread::sleep_for(target_duration - duration); } token_time = the_clock::now(); } sendNetwork(); } DEBUG_LOG(NAOMI, "Network thread exiting"); })); }