/* Sh4 internal register routing (P4 & 'area 7') */ #include "types.h" #include "sh4_mmr.h" #include "hw/mem/_vmem.h" #include "modules/mmu.h" #include "modules/ccn.h" #include "modules/modules.h" #include "sh4_cache.h" #include #include //64bytes of sq // now on context ~ std::array OnChipRAM; //All registers are 4 byte aligned RegisterStruct CCN[18]; RegisterStruct UBC[9]; RegisterStruct BSC[19]; RegisterStruct DMAC[17]; RegisterStruct CPG[5]; RegisterStruct RTC[16]; RegisterStruct INTC[5]; RegisterStruct TMU[12]; RegisterStruct SCI[8]; RegisterStruct SCIF[10]; static u32 sh4io_read_noacc(u32 addr) { INFO_LOG(SH4, "sh4io: Invalid read access @ %08X", addr); return 0; } static void sh4io_write_noacc(u32 addr, u32 data) { INFO_LOG(SH4, "sh4io: Invalid write access @ %08X %08X", addr, data); } static void sh4io_write_const(u32 addr, u32 data) { INFO_LOG(SH4, "sh4io: Const write ignored @ %08X <- %08X", addr, data); } void sh4_rio_reg(RegisterStruct *arr, u32 addr, RegIO flags, RegReadAddrFP* rf, RegWriteAddrFP* wf) { u32 idx = (addr & 255) / 4; arr[idx].flags = flags; if (flags == RIO_NO_ACCESS) { arr[idx].readFunctionAddr = sh4io_read_noacc; arr[idx].writeFunctionAddr = sh4io_write_noacc; } else if (flags == RIO_RO) { arr[idx].writeFunctionAddr = sh4io_write_const; arr[idx].data32 = 0; } else { verify(!(flags & REG_WO)); // not supported here if (flags & REG_RF) arr[idx].readFunctionAddr = rf; else arr[idx].data32 = 0; if (flags & REG_WF) arr[idx].writeFunctionAddr = wf == nullptr ? &sh4io_write_noacc : wf; } } template T sh4_rio_read(RegisterStruct *regs, u32 addr) { u32 offset = addr & 255; #ifdef TRACE if (offset & 3) //4 is min align size { WARN_LOG(SH4, "Unaligned System Bus register read @ %x", addr); } #endif offset >>= 2; if (!(regs[offset].flags & REG_RF)) return (T)regs[offset].data32; else return (T)regs[offset].readFunctionAddr(addr); } template void sh4_rio_write(RegisterStruct *regs, u32 addr, T data) { u32 offset = addr & 255; #ifdef TRACE if (offset & 3) //4 is min align size { WARN_LOG(SH4, "Unaligned System bus register write @ %x", addr); } #endif offset >>= 2; if (!(regs[offset].flags & REG_WF)) regs[offset].data32 = data; else regs[offset].writeFunctionAddr(addr, data); } #define SH4_REG_NAME(r) { r##_addr, #r }, const std::map sh4_reg_names = { SH4_REG_NAME(CCN_PTEH) SH4_REG_NAME(CCN_PTEL) SH4_REG_NAME(CCN_TTB) SH4_REG_NAME(CCN_TEA) SH4_REG_NAME(CCN_CCR) SH4_REG_NAME(CCN_TRA) SH4_REG_NAME(CCN_EXPEVT) SH4_REG_NAME(CCN_INTEVT) SH4_REG_NAME(CPU_VERSION) SH4_REG_NAME(CCN_PTEA) SH4_REG_NAME(CCN_QACR0) SH4_REG_NAME(CCN_QACR1) SH4_REG_NAME(CCN_PRR) SH4_REG_NAME(UBC_BARA) SH4_REG_NAME(UBC_BAMRA) SH4_REG_NAME(UBC_BBRA) SH4_REG_NAME(UBC_BARB) SH4_REG_NAME(UBC_BAMRB) SH4_REG_NAME(UBC_BBRB) SH4_REG_NAME(UBC_BDRB) SH4_REG_NAME(UBC_BDMRB) SH4_REG_NAME(UBC_BRCR) SH4_REG_NAME(BSC_BCR1) SH4_REG_NAME(BSC_BCR2) SH4_REG_NAME(BSC_WCR1) SH4_REG_NAME(BSC_WCR2) SH4_REG_NAME(BSC_WCR3) SH4_REG_NAME(BSC_MCR) SH4_REG_NAME(BSC_PCR) SH4_REG_NAME(BSC_RTCSR) SH4_REG_NAME(BSC_RTCNT) SH4_REG_NAME(BSC_RTCOR) SH4_REG_NAME(BSC_RFCR) SH4_REG_NAME(BSC_PCTRA) SH4_REG_NAME(BSC_PDTRA) SH4_REG_NAME(BSC_PCTRB) SH4_REG_NAME(BSC_PDTRB) SH4_REG_NAME(BSC_GPIOIC) SH4_REG_NAME(BSC_SDMR2) SH4_REG_NAME(BSC_SDMR3) SH4_REG_NAME(DMAC_SAR0) SH4_REG_NAME(DMAC_DAR0) SH4_REG_NAME(DMAC_DMATCR0) SH4_REG_NAME(DMAC_CHCR0) SH4_REG_NAME(DMAC_SAR1) SH4_REG_NAME(DMAC_DAR1) SH4_REG_NAME(DMAC_DMATCR1) SH4_REG_NAME(DMAC_CHCR1) SH4_REG_NAME(DMAC_SAR2) SH4_REG_NAME(DMAC_DAR2) SH4_REG_NAME(DMAC_DMATCR2) SH4_REG_NAME(DMAC_CHCR2) SH4_REG_NAME(DMAC_SAR3) SH4_REG_NAME(DMAC_DAR3) SH4_REG_NAME(DMAC_DMATCR3) SH4_REG_NAME(DMAC_CHCR3) SH4_REG_NAME(DMAC_DMAOR) SH4_REG_NAME(CPG_FRQCR) SH4_REG_NAME(CPG_STBCR) SH4_REG_NAME(CPG_WTCNT) SH4_REG_NAME(CPG_WTCSR) SH4_REG_NAME(CPG_STBCR2) SH4_REG_NAME(RTC_R64CNT) SH4_REG_NAME(RTC_RSECCNT) SH4_REG_NAME(RTC_RMINCNT) SH4_REG_NAME(RTC_RHRCNT) SH4_REG_NAME(RTC_RWKCNT) SH4_REG_NAME(RTC_RDAYCNT) SH4_REG_NAME(RTC_RMONCNT) SH4_REG_NAME(RTC_RYRCNT) SH4_REG_NAME(RTC_RSECAR) SH4_REG_NAME(RTC_RMINAR) SH4_REG_NAME(RTC_RHRAR) SH4_REG_NAME(RTC_RWKAR) SH4_REG_NAME(RTC_RDAYAR) SH4_REG_NAME(RTC_RMONAR) SH4_REG_NAME(RTC_RCR1) SH4_REG_NAME(RTC_RCR2) SH4_REG_NAME(INTC_ICR) SH4_REG_NAME(INTC_IPRA) SH4_REG_NAME(INTC_IPRB) SH4_REG_NAME(INTC_IPRC) SH4_REG_NAME(INTC_IPRD) SH4_REG_NAME(TMU_TOCR) SH4_REG_NAME(TMU_TSTR) SH4_REG_NAME(TMU_TCOR0) SH4_REG_NAME(TMU_TCNT0) SH4_REG_NAME(TMU_TCR0) SH4_REG_NAME(TMU_TCOR1) SH4_REG_NAME(TMU_TCNT1) SH4_REG_NAME(TMU_TCR1) SH4_REG_NAME(TMU_TCOR2) SH4_REG_NAME(TMU_TCNT2) SH4_REG_NAME(TMU_TCR2) SH4_REG_NAME(TMU_TCPR2) SH4_REG_NAME(SCI_SCSMR1) SH4_REG_NAME(SCI_SCBRR1) SH4_REG_NAME(SCI_SCSCR1) SH4_REG_NAME(SCI_SCTDR1) SH4_REG_NAME(SCI_SCSSR1) SH4_REG_NAME(SCI_SCRDR1) SH4_REG_NAME(SCI_SCSCMR1) SH4_REG_NAME(SCI_SCSPTR1) SH4_REG_NAME(SCIF_SCSMR2) SH4_REG_NAME(SCIF_SCBRR2) SH4_REG_NAME(SCIF_SCSCR2) SH4_REG_NAME(SCIF_SCFTDR2) SH4_REG_NAME(SCIF_SCFSR2) SH4_REG_NAME(SCIF_SCFRDR2) SH4_REG_NAME(SCIF_SCFCR2) SH4_REG_NAME(SCIF_SCFDR2) SH4_REG_NAME(SCIF_SCSPTR2) SH4_REG_NAME(SCIF_SCLSR2) SH4_REG_NAME(UDI_SDIR) SH4_REG_NAME(UDI_SDDR) }; #undef SH4_REG_NAME static const char *regName(u32 paddr) { u32 addr = paddr & 0x1fffffff; static char regName[32]; auto it = sh4_reg_names.find(addr); if (it == sh4_reg_names.end()) { sprintf(regName, "?%08x", paddr); return regName; } else return it->second; } //Region P4 //Read P4 template T DYNACALL ReadMem_P4(u32 addr) { constexpr size_t sz = sizeof(T); switch ((addr >> 24) & 0xFF) { case 0xE0: case 0xE1: case 0xE2: case 0xE3: INFO_LOG(SH4, "Unhandled p4 read [Store queue] 0x%x", addr); return 0; case 0xF0: DEBUG_LOG(SH4, "IC Address read %08x", addr); if (sz == 4) return icache.ReadAddressArray(addr); else return 0; case 0xF1: DEBUG_LOG(SH4, "IC Data read %08x", addr); if (sz == 4) return icache.ReadDataArray(addr); else return 0; case 0xF2: { u32 entry = (addr >> 8) & 3; return ITLB[entry].Address.reg_data | (ITLB[entry].Data.V << 8); } case 0xF3: { u32 entry = (addr >> 8) & 3; return ITLB[entry].Data.reg_data; } case 0xF4: DEBUG_LOG(SH4, "OC Address read %08x", addr); if (sz == 4) return ocache.ReadAddressArray(addr); else return 0; case 0xF5: DEBUG_LOG(SH4, "OC Data read %08x", addr); if (sz == 4) return ocache.ReadDataArray(addr); else return 0; case 0xF6: { u32 entry = (addr >> 8) & 63; u32 rv = UTLB[entry].Address.reg_data; rv |= UTLB[entry].Data.D << 9; rv |= UTLB[entry].Data.V << 8; return rv; } case 0xF7: { u32 entry = (addr >> 8) & 63; return UTLB[entry].Data.reg_data; } case 0xFF: INFO_LOG(SH4, "Unhandled p4 read [area7] 0x%x", addr); break; default: INFO_LOG(SH4, "Unhandled p4 read [Reserved] 0x%x", addr); break; } return 0; } //Write P4 template void DYNACALL WriteMem_P4(u32 addr,T data) { constexpr size_t sz = sizeof(T); switch ((addr >> 24) & 0xFF) { case 0xE0: case 0xE1: case 0xE2: case 0xE3: INFO_LOG(SH4, "Unhandled p4 Write [Store queue] 0x%x", addr); break; case 0xF0: DEBUG_LOG(SH4, "IC Address write %08x = %x", addr, data); if (sz == 4) icache.WriteAddressArray(addr, data); return; case 0xF1: DEBUG_LOG(SH4, "IC Data write %08x = %x", addr, data); if (sz == 4) icache.WriteDataArray(addr, data); return; case 0xF2: { u32 entry = (addr >> 8) & 3; ITLB[entry].Address.reg_data = data & 0xFFFFFCFF; ITLB[entry].Data.V = (data >> 8) & 1; ITLB_Sync(entry); } return; case 0xF3: { u32 entry = (addr >> 8) & 3; if (addr & 0x800000) ITLB[entry].Assistance.reg_data = data & 0xf; else ITLB[entry].Data.reg_data=data; ITLB_Sync(entry); } return; case 0xF4: // DEBUG_LOG(SH4, "OC Address write %08x = %x", addr, data); if (sz == 4) ocache.WriteAddressArray(addr, data); return; case 0xF5: DEBUG_LOG(SH4, "OC Data write %08x = %x", addr, data); if (sz == 4) ocache.WriteDataArray(addr, data); return; case 0xF6: if (addr & 0x80) { CCN_PTEH_type t; t.reg_data = data; u32 va = t.VPN << 10; for (int i = 0; i < 64; i++) { if (mmu_match(va, UTLB[i].Address, UTLB[i].Data)) { UTLB[i].Data.V = ((u32)data >> 8) & 1; UTLB[i].Data.D = ((u32)data >> 9) & 1; UTLB_Sync(i); } } for (int i = 0; i < 4; i++) { if (mmu_match(va, ITLB[i].Address, ITLB[i].Data)) { ITLB[i].Data.V = ((u32)data >> 8) & 1; ITLB[i].Data.D = ((u32)data >> 9) & 1; ITLB_Sync(i); } } } else { u32 entry = (addr >> 8) & 63; UTLB[entry].Address.reg_data = data & 0xFFFFFCFF; UTLB[entry].Data.D = (data >> 9) & 1; UTLB[entry].Data.V = (data >> 8) & 1; UTLB_Sync(entry); } return; case 0xF7: { u32 entry = (addr >> 8) & 63; if (addr & 0x800000) UTLB[entry].Assistance.reg_data = data & 0xf; else UTLB[entry].Data.reg_data = data; UTLB_Sync(entry); } return; case 0xFF: INFO_LOG(SH4, "Unhandled p4 Write [area7] 0x%x = %x", addr, data); break; default: INFO_LOG(SH4, "Unhandled p4 Write [Reserved] 0x%x", addr); break; } } //*********** //**Area 7** //*********** #define OUT_OF_RANGE(reg) INFO_LOG(SH4, "Out of range on register %s index %x", reg, addr) #define A7_REG_HASH(addr) (((addr) >> 16) & 0x1FFF) //Read P4 memory-mapped registers template T DYNACALL ReadMem_p4mmr(u32 addr) { DEBUG_LOG(SH4, "read %s", regName(addr)); /* if (likely(addr == 0xffd80024)) return TMU_TCNT(2); if (likely(addr == 0xFFD8000C)) return TMU_TCNT(0); */ if (likely(addr == 0xFF000028)) return (T)CCN_INTEVT; if (likely(addr == 0xFFA0002C)) return (T)DMAC_CHCR(2).full; addr &= 0x1FFFFFFF; u32 map_base = addr >> 16; switch (expected(map_base, A7_REG_HASH(TMU_BASE_addr))) { case A7_REG_HASH(CCN_BASE_addr): if (addr <= 0x1F000044) { return sh4_rio_read(CCN, addr); } else { OUT_OF_RANGE("CCN"); return 0; } break; case A7_REG_HASH(UBC_BASE_addr): if (addr <= 0x1F200020) { return sh4_rio_read(UBC, addr); } else { OUT_OF_RANGE("UBC"); return 0; } break; case A7_REG_HASH(BSC_BASE_addr): if (addr <= 0x1F800048) { return sh4_rio_read(BSC, addr); } else { OUT_OF_RANGE("BSC"); return 0; } break; case A7_REG_HASH(BSC_SDMR2_addr): //dram settings 2 / write only INFO_LOG(SH4, "Read from write-only registers [dram settings 2]"); return 0; case A7_REG_HASH(BSC_SDMR3_addr): //dram settings 3 / write only INFO_LOG(SH4, "Read from write-only registers [dram settings 3]"); return 0; case A7_REG_HASH(DMAC_BASE_addr): if (addr <= 0x1FA00040) { return sh4_rio_read(DMAC, addr); } else { OUT_OF_RANGE("DMAC"); return 0; } break; case A7_REG_HASH(CPG_BASE_addr): if (addr <= 0x1FC00010) { return sh4_rio_read(CPG, addr); } else { OUT_OF_RANGE("CPG"); return 0; } break; case A7_REG_HASH(RTC_BASE_addr): if (addr <= 0x1FC8003C) { return sh4_rio_read(RTC, addr); } else { OUT_OF_RANGE("RTC"); return 0; } break; case A7_REG_HASH(INTC_BASE_addr): if (addr <= 0x1FD00010) { return sh4_rio_read(INTC, addr); } else { OUT_OF_RANGE("INTC"); return 0; } break; case A7_REG_HASH(TMU_BASE_addr): if (addr <= 0x1FD8002C) { return sh4_rio_read(TMU, addr); } else { OUT_OF_RANGE("TMU"); return 0; } break; case A7_REG_HASH(SCI_BASE_addr): if (addr <= 0x1FE0001C) { return sh4_rio_read(SCI, addr); } else { OUT_OF_RANGE("SCI"); return 0; } break; case A7_REG_HASH(SCIF_BASE_addr): if (addr <= 0x1FE80024) { return sh4_rio_read(SCIF, addr); } else { OUT_OF_RANGE("SCIF"); return 0; } break; // Who really cares about ht-UDI? it's not existent on the Dreamcast IIRC case A7_REG_HASH(UDI_BASE_addr): switch(addr) { //UDI SDIR 0x1FF00000 0x1FF00000 16 0xFFFF Held Held Held Pclk case UDI_SDIR_addr : break; //UDI SDDR 0x1FF00008 0x1FF00008 32 Held Held Held Held Pclk case UDI_SDDR_addr : break; } break; } INFO_LOG(SH4, "Unknown Read from P4 mmr - addr=%x", addr); return 0; } //Write P4 memory-mapped registers template void DYNACALL WriteMem_p4mmr(u32 addr, T data) { DEBUG_LOG(SH4, "write %s = %x", regName(addr), (int)data); if (likely(addr == 0xFF000038)) { CCN_QACR_write<0>(addr, data); return; } if (likely(addr == 0xFF00003C)) { CCN_QACR_write<1>(addr, data); return; } addr &= 0x1FFFFFFF; u32 map_base = addr >> 16; switch (map_base) { case A7_REG_HASH(CCN_BASE_addr): if (addr <= 0x1F00003C) sh4_rio_write(CCN, addr, data); else OUT_OF_RANGE("CCN"); return; case A7_REG_HASH(UBC_BASE_addr): if (addr <= 0x1F200020) sh4_rio_write(UBC, addr, data); else OUT_OF_RANGE("UBC"); return; case A7_REG_HASH(BSC_BASE_addr): if (addr <= 0x1F800048) sh4_rio_write(BSC, addr, data); else OUT_OF_RANGE("BSC"); return; case A7_REG_HASH(BSC_SDMR2_addr): //dram settings 2 / write only return; case A7_REG_HASH(BSC_SDMR3_addr): //dram settings 3 / write only return; case A7_REG_HASH(DMAC_BASE_addr): if (addr <= 0x1FA00040) sh4_rio_write(DMAC, addr, data); else OUT_OF_RANGE("DMAC"); return; case A7_REG_HASH(CPG_BASE_addr): if (addr <= 0x1FC00010) sh4_rio_write(CPG, addr, data); else OUT_OF_RANGE("CPG"); return; case A7_REG_HASH(RTC_BASE_addr): if (addr <= 0x1FC8003C) sh4_rio_write(RTC, addr, data); else OUT_OF_RANGE("RTC"); return; case A7_REG_HASH(INTC_BASE_addr): if (addr <= 0x1FD00010) sh4_rio_write(INTC, addr, data); else OUT_OF_RANGE("INTC"); return; case A7_REG_HASH(TMU_BASE_addr): if (addr <= 0x1FD8002C) sh4_rio_write(TMU, addr, data); else OUT_OF_RANGE("TMU"); return; case A7_REG_HASH(SCI_BASE_addr): if (addr <= 0x1FE0001C) sh4_rio_write(SCI, addr, data); else OUT_OF_RANGE("SCI"); return; case A7_REG_HASH(SCIF_BASE_addr): if (addr <= 0x1FE80024) sh4_rio_write(SCIF, addr, data); else OUT_OF_RANGE("SCIF"); return; //who really cares about ht-udi ? it's not existent on dc iirc .. case A7_REG_HASH(UDI_BASE_addr): switch(addr) { //UDI SDIR 0xFFF00000 0x1FF00000 16 0xFFFF Held Held Held Pclk case UDI_SDIR_addr : break; //UDI SDDR 0xFFF00008 0x1FF00008 32 Held Held Held Held Pclk case UDI_SDDR_addr : break; } break; } INFO_LOG(SH4, "Write to P4 mmr not implemented, addr=%x, data=%x", addr, data); } //*********** //On Chip Ram //*********** template T DYNACALL ReadMem_area7_OCR(u32 addr) { if (CCN_CCR.ORA == 1) return *(T *)&OnChipRAM[addr & OnChipRAM_MASK]; INFO_LOG(SH4, "On Chip Ram Read, but OCR is disabled. addr %x", addr); return 0; } template void DYNACALL WriteMem_area7_OCR(u32 addr, T data) { if (CCN_CCR.ORA == 1) *(T *)&OnChipRAM[addr & OnChipRAM_MASK] = data; else INFO_LOG(SH4, "On Chip Ram Write, but OCR is disabled. addr %x", addr); } template static void init_regs(T& regs) { for (auto& reg : regs) { reg.flags = RIO_NO_ACCESS; reg.readFunctionAddr = &sh4io_read_noacc; reg.writeFunctionAddr = &sh4io_write_noacc; } } //Init/Res/Term void sh4_mmr_init() { init_regs(CCN); init_regs(UBC); init_regs(BSC); init_regs(DMAC); init_regs(CPG); init_regs(RTC); init_regs(INTC); init_regs(TMU); init_regs(SCI); init_regs(SCIF); //initialise Register structs bsc_init(); ccn_init(); cpg_init(); dmac_init(); intc_init(); rtc_init(); serial_init(); tmu_init(); ubc_init(); MMU_init(); } void sh4_mmr_reset(bool hard) { for (auto& reg : CCN) reg.reset(); for (auto& reg : UBC) reg.reset(); for (auto& reg : BSC) reg.reset(); for (auto& reg : DMAC) reg.reset(); for (auto& reg : CPG) reg.reset(); for (auto& reg : RTC) reg.reset(); for (auto& reg : INTC) reg.reset(); for (auto& reg : TMU) reg.reset(); for (auto& reg : SCI) reg.reset(); for (auto& reg : SCIF) reg.reset(); OnChipRAM = {}; //Reset register values bsc_reset(true); ccn_reset(true); cpg_reset(); dmac_reset(); intc_reset(); rtc_reset(); serial_reset(hard); tmu_reset(true); ubc_reset(); MMU_reset(); } void sh4_mmr_term() { MMU_term(); ubc_term(); tmu_term(); serial_term(); rtc_term(); intc_term(); dmac_term(); cpg_term(); ccn_term(); bsc_term(); } // AREA 7--Sh4 Regs static _vmem_handler p4mmr_handler; static _vmem_handler area7_ocr_handler; void map_area7_init() { p4mmr_handler = _vmem_register_handler_Template(ReadMem_p4mmr, WriteMem_p4mmr); area7_ocr_handler = _vmem_register_handler_Template(ReadMem_area7_OCR, WriteMem_area7_OCR); } void map_area7(u32 base) { // on-chip RAM: 7C000000-7FFFFFFF if (base == 0x60) _vmem_map_handler(area7_ocr_handler, 0x7C, 0x7F); } //P4 void map_p4() { //P4 Region : _vmem_handler p4_handler = _vmem_register_handler_Template(ReadMem_P4, WriteMem_P4); //register this before mmr and SQ so they overwrite it and handle em //default P4 handler //0xE0000000-0xFFFFFFFF _vmem_map_handler(p4_handler, 0xE0, 0xFF); //Store Queues -- Write only 32bit _vmem_map_block(sq_both, 0xE0, 0xE0, 63); _vmem_map_block(sq_both, 0xE1, 0xE1, 63); _vmem_map_block(sq_both, 0xE2, 0xE2, 63); _vmem_map_block(sq_both, 0xE3, 0xE3, 63); _vmem_map_handler(p4mmr_handler, 0xFF, 0xFF); }