/* Copyright 2022 flyinghead This file is part of Flycast. Flycast is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. Flycast is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Flycast. If not, see . */ #include "naomi2.h" const char* N2VertexShader = R"( uniform mat4 mvMat; uniform mat4 normalMat; uniform mat4 projMat; uniform mat4 ndcMat; uniform int envMapping[2]; uniform int bumpMapping; uniform int pp_Number; // Vertex input in vec3 in_pos; #if POSITION_ONLY == 0 in vec4 in_base; in vec4 in_offs; in vec2 in_uv; in vec3 in_normal; #if pp_TwoVolumes == 1 in vec4 in_base1; in vec4 in_offs1; in vec2 in_uv1; #endif // output INTERPOLATION out highp vec4 vtx_base; INTERPOLATION out highp vec4 vtx_offs; #if pp_TwoVolumes == 1 INTERPOLATION out vec4 vtx_base1; INTERPOLATION out vec4 vtx_offs1; out vec2 vtx_uv1; #endif #endif out highp vec3 vtx_uv; #ifdef OIT_RENDER flat out uint vtx_index; #endif void wDivide(inout vec4 vpos) { vpos = vec4(vpos.xy / vpos.w, 1.0 / vpos.w, 1.0); vpos = ndcMat * vpos; #if POSITION_ONLY == 1 vtx_uv = vec3(0.0, 0.0, vpos.z); #else #if pp_Gouraud == 1 vtx_base *= vpos.z; vtx_offs *= vpos.z; #if pp_TwoVolumes == 1 vtx_base1 *= vpos.z; vtx_offs1 *= vpos.z; #endif #endif vtx_uv = vec3(vtx_uv.xy * vpos.z, vpos.z); #if pp_TwoVolumes == 1 vtx_uv1 *= vpos.z; #endif #endif vpos.w = 1.0; vpos.z = 0.0; } void main() { vec4 vpos = mvMat * vec4(in_pos, 1.0); #if POSITION_ONLY == 0 vtx_base = in_base; vtx_offs = in_offs; #if LIGHT_ON == 1 vec3 vnorm = normalize(mat3(normalMat) * in_normal); #endif #if pp_TwoVolumes == 1 vtx_base1 = in_base1; vtx_offs1 = in_offs1; vtx_uv1 = in_uv1; #if LIGHT_ON == 1 // FIXME need offset0 and offset1 for bump maps if (bumpMapping == 1) computeBumpMap(vtx_offs, vtx_offs1, vpos.xyz, in_normal, normalMat); else { computeColors(vtx_base1, vtx_offs1, 1, vpos.xyz, vnorm); #if pp_Texture == 0 vtx_base1 += vtx_offs1; #endif } if (envMapping[1] == 1) computeEnvMap(vtx_uv1.xy, vpos.xyz, vnorm); #endif #endif #if LIGHT_ON == 1 if (bumpMapping == 0) { computeColors(vtx_base, vtx_offs, 0, vpos.xyz, vnorm); #if pp_Texture == 0 vtx_base += vtx_offs; #endif } #endif vtx_uv.xy = in_uv; #if LIGHT_ON == 1 if (envMapping[0] == 1) computeEnvMap(vtx_uv.xy, vpos.xyz, vnorm); #endif #endif vpos = projMat * vpos; wDivide(vpos); #ifdef OIT_RENDER vtx_index = uint(pp_Number) + uint(gl_VertexID); #endif gl_Position = vpos; } )"; const char* N2ColorShader = R"( #define PI 3.1415926 #define LMODE_SINGLE_SIDED 0 #define LMODE_DOUBLE_SIDED 1 #define LMODE_DOUBLE_SIDED_WITH_TOLERANCE 2 #define LMODE_SPECIAL_EFFECT 3 #define LMODE_THIN_SURFACE 4 #define LMODE_BUMP_MAP 5 #define ROUTING_SPEC_TO_OFFSET 1 #define ROUTING_DIFF_TO_OFFSET 2 #define ROUTING_ATTENUATION 1 // not handled #define ROUTING_FOG 2 // not handled #define ROUTING_ALPHA 4 #define ROUTING_SUB 8 struct N2Light { vec4 color; vec4 direction; // For parallel/spot vec4 position; // For spot/point int parallel; int diffuse[2]; int specular[2]; int routing; int dmode; int smode; int distAttnMode; // For spot/point float attnDistA; float attnDistB; float attnAngleA; // For spot float attnAngleB; }; uniform N2Light lights[16]; uniform int lightCount; uniform vec4 ambientBase[2]; uniform vec4 ambientOffset[2]; uniform int ambientMaterialBase[2]; uniform int ambientMaterialOffset[2]; uniform int useBaseOver; uniform int bumpId0; uniform int bumpId1; // model attributes uniform float glossCoef[2]; uniform int constantColor[2]; void computeColors(inout vec4 baseCol, inout vec4 offsetCol, int volIdx, vec3 position, vec3 normal) { if (constantColor[volIdx] == 1) return; vec3 diffuse = vec3(0.0); vec3 specular = vec3(0.0); float diffuseAlpha = 0.0; float specularAlpha = 0.0; vec3 reflectDir = reflect(normalize(position), normal); const float BASE_FACTOR = 2.0; for (int i = 0; i < lightCount; i++) { vec3 lightDir; // direction to the light vec3 lightColor = lights[i].color.rgb; if (lights[i].parallel == 1) { lightDir = normalize(lights[i].direction.xyz); } else { lightDir = normalize(lights[i].position.xyz - position); if (lights[i].attnDistA != 1.0 || lights[i].attnDistB != 0.0) { float distance = length(lights[i].position.xyz - position); if (lights[i].distAttnMode == 0) distance = 1.0 / distance; lightColor *= clamp(lights[i].attnDistB * distance + lights[i].attnDistA, 0.0, 1.0); } if (lights[i].attnAngleA != 1.0 || lights[i].attnAngleB != 0.0) { vec3 spotDir = lights[i].direction.xyz; float cosAngle = 1.0 - max(0.0, dot(lightDir, spotDir)); lightColor *= clamp(cosAngle * lights[i].attnAngleB + lights[i].attnAngleA, 0.0, 1.0); } } if (lights[i].diffuse[volIdx] == 1) { float factor = (lights[i].routing & ROUTING_SUB) != 0 ? -BASE_FACTOR : BASE_FACTOR; if (lights[i].dmode == LMODE_SINGLE_SIDED) factor *= max(dot(normal, lightDir), 0.0); else if (lights[i].dmode == LMODE_DOUBLE_SIDED) factor *= abs(dot(normal, lightDir)); if ((lights[i].routing & ROUTING_ALPHA) != 0) diffuseAlpha += lightColor.r * factor; else { if ((lights[i].routing & ROUTING_DIFF_TO_OFFSET) == 0) diffuse += lightColor * factor * baseCol.rgb; else specular += lightColor * factor * baseCol.rgb; } } if (lights[i].specular[volIdx] == 1) { float factor = (lights[i].routing & ROUTING_SUB) != 0 ? -BASE_FACTOR : BASE_FACTOR; if (lights[i].smode == LMODE_SINGLE_SIDED) factor *= clamp(pow(max(dot(lightDir, reflectDir), 0.0), glossCoef[volIdx]), 0.0, 1.0); else if (lights[i].smode == LMODE_DOUBLE_SIDED) factor *= clamp(pow(abs(dot(lightDir, reflectDir)), glossCoef[volIdx]), 0.0, 1.0); if ((lights[i].routing & ROUTING_ALPHA) != 0) specularAlpha += lightColor.r * factor; else { if ((lights[i].routing & ROUTING_SPEC_TO_OFFSET) == 0) diffuse += lightColor * factor * offsetCol.rgb; else specular += lightColor * factor * offsetCol.rgb; } } } // ambient light if (ambientMaterialBase[volIdx] == 1) diffuse += ambientBase[volIdx].rgb * baseCol.rgb; else diffuse += ambientBase[volIdx].rgb; if (ambientMaterialOffset[volIdx] == 1) specular += ambientOffset[volIdx].rgb * offsetCol.rgb; else specular += ambientOffset[volIdx].rgb; baseCol.rgb = diffuse; offsetCol.rgb = specular; baseCol.a += diffuseAlpha; offsetCol.a += specularAlpha; if (useBaseOver == 1) { vec4 overflow = max(baseCol - vec4(1.0), 0.0); offsetCol += overflow; } baseCol = clamp(baseCol, 0.0, 1.0); offsetCol = clamp(offsetCol, 0.0, 1.0); } void computeEnvMap(inout vec2 uv, vec3 position, vec3 normal) { // Spherical mapping //vec3 r = reflect(normalize(position), normal); //float m = 2.0 * sqrt(r.x * r.x + r.y * r.y + (r.z + 1.0) * (r.z + 1.0)); //uv += r.xy / m + 0.5; // Cheap env mapping uv += normal.xy / 2.0 + 0.5; uv = clamp(uv, 0.0, 1.0); } void computeBumpMap(inout vec4 color0, vec4 color1, vec3 position, vec3 normal, mat4 normalMat) { // TODO //if (bumpId0 == -1) return; normal = normalize(normal); vec3 tangent = color0.xyz; if (tangent.x > 0.5) tangent.x -= 1.0; if (tangent.y > 0.5) tangent.y -= 1.0; if (tangent.z > 0.5) tangent.z -= 1.0; tangent = normalize(tangent); vec3 bitangent = color1.xyz; if (bitangent.x > 0.5) bitangent.x -= 1.0; if (bitangent.y > 0.5) bitangent.y -= 1.0; if (bitangent.z > 0.5) bitangent.z -= 1.0; bitangent = normalize(bitangent); float scaleDegree = color0.w; float scaleOffset = color1.w; vec3 lightDir; // direction to the light if (lights[bumpId0].parallel == 1) lightDir = lights[bumpId0].direction.xyz; else lightDir = lights[bumpId0].position.xyz - position; lightDir = normalize(lightDir * mat3(normalMat)); float n = dot(lightDir, normal); float cosQ = dot(lightDir, tangent); float sinQ = dot(lightDir, bitangent); float sinT = clamp(n, 0.0, 1.0); float k1 = 1.0 - scaleDegree; float k2 = scaleDegree * sinT; float k3 = scaleDegree * sqrt(1.0 - sinT * sinT); // cos T float q = acos(cosQ); if (sinQ < 0.0) q = 2.0 * PI - q; color0.r = k2; color0.g = k3; color0.b = q / PI / 2.0; color0.a = k1; color0 = clamp(color0, 0.0, 1.0); } )"; N2VertexSource::N2VertexSource(bool gouraud, bool geometryOnly, bool texture) : OpenGlSource() { addConstant("pp_Gouraud", gouraud); addConstant("POSITION_ONLY", geometryOnly); addConstant("pp_TwoVolumes", 0); addConstant("pp_Texture", (int)texture); addConstant("LIGHT_ON", 1); addSource(VertexCompatShader); addSource(GouraudSource); if (!geometryOnly) addSource(N2ColorShader); addSource(N2VertexShader); }