/* Ugly, hacky, bad code It decodes sh4 opcodes too */ #include "types.h" #if FEAT_SHREC != DYNAREC_NONE #include "decoder.h" #include "shil.h" #include "ngen.h" #include "hw/sh4/sh4_opcode_list.h" #include "hw/sh4/sh4_core.h" #include "hw/sh4/sh4_mem.h" #include "hw/sh4/modules/mmu.h" #include "decoder_opcodes.h" #include "cfg/option.h" #define BLOCK_MAX_SH_OPS_SOFT 500 #define BLOCK_MAX_SH_OPS_HARD 511 static RuntimeBlockInfo* blk; static const char idle_hash[] = //BIOS ">:1:05:13B23363" ">:1:04:2E23A33B" ">:1:04:FB498832" ">:1:0A:50A249F9" //SC ">:1:0A:B4E90338" ">:1:04:11578A16" ">:1:04:C281CC52" //HH ">:1:07:0757DC10" ">:1:04:1476CC5E" //these look very suspicious, but I'm not sure about any of them //cross testing w/ IKA makes them more suspects than not ">:1:0D:8C2921FF" ">:1:04:B806EEE4" // Dead or Alive 2 ">:1:08:0A37187A"; static inline shil_param mk_imm(u32 immv) { return shil_param(FMT_IMM,immv); } static inline shil_param mk_reg(Sh4RegType reg) { return shil_param(reg); } static inline shil_param mk_regi(int reg) { return mk_reg((Sh4RegType)reg); } static state_t state; static void Emit(shilop op,shil_param rd=shil_param(),shil_param rs1=shil_param(),shil_param rs2=shil_param(),u32 flags=0,shil_param rs3=shil_param(),shil_param rd2=shil_param()) { shil_opcode sp; sp.flags=flags; sp.op=op; sp.rd=(rd); sp.rd2=(rd2); sp.rs1=(rs1); sp.rs2=(rs2); sp.rs3=(rs3); sp.guest_offs = state.cpu.rpc - blk->vaddr; sp.delay_slot = state.cpu.is_delayslot; blk->oplist.push_back(sp); } static void dec_fallback(u32 op) { shil_opcode opcd; opcd.op=shop_ifb; opcd.rs1=shil_param(FMT_IMM,OpDesc[op]->NeedPC()); opcd.rs2=shil_param(FMT_IMM,state.cpu.rpc+2); opcd.rs3=shil_param(FMT_IMM,op); opcd.guest_offs = state.cpu.rpc - blk->vaddr; opcd.delay_slot = state.cpu.is_delayslot; blk->oplist.push_back(opcd); } static void dec_DynamicSet(u32 regbase,u32 offs=0) { if (offs==0) Emit(shop_jdyn,reg_pc_dyn,mk_reg((Sh4RegType)regbase)); else Emit(shop_jdyn,reg_pc_dyn,mk_reg((Sh4RegType)regbase),mk_imm(offs)); } static void dec_End(u32 dst, BlockEndType flags, bool delaySlot) { state.BlockType = flags; state.NextOp = delaySlot ? NDO_Delayslot : NDO_End; state.DelayOp = NDO_End; state.JumpAddr = dst; if (flags != BET_StaticCall && flags != BET_StaticJump) state.NextAddr = state.cpu.rpc + 2 + (delaySlot ? 2 : 0); else verify(state.JumpAddr != NullAddress); } #define SR_STATUS_MASK 0x700083F2 #define SR_T_MASK 1 static u32 dec_jump_simm8(u32 op) { return state.cpu.rpc + GetSImm8(op)*2 + 4; } static u32 dec_jump_simm12(u32 op) { return state.cpu.rpc + GetSImm12(op)*2 + 4; } static u32 dec_set_pr() { u32 retaddr=state.cpu.rpc + 4; Emit(shop_mov32,reg_pr,mk_imm(retaddr)); return retaddr; } static void dec_write_sr(shil_param src) { Emit(shop_and,mk_reg(reg_sr_status),src,mk_imm(SR_STATUS_MASK)); Emit(shop_and,mk_reg(reg_sr_T),src,mk_imm(SR_T_MASK)); } //bf sh4dec(i1000_1011_iiii_iiii) { dec_End(dec_jump_simm8(op),BET_Cond_0,false); } //bf.s sh4dec(i1000_1111_iiii_iiii) { blk->has_jcond=true; Emit(shop_jcond,reg_pc_dyn,reg_sr_T); dec_End(dec_jump_simm8(op),BET_Cond_0,true); } //bt sh4dec(i1000_1001_iiii_iiii) { dec_End(dec_jump_simm8(op),BET_Cond_1,false); } //bt.s sh4dec(i1000_1101_iiii_iiii) { blk->has_jcond=true; Emit(shop_jcond,reg_pc_dyn,reg_sr_T); dec_End(dec_jump_simm8(op),BET_Cond_1,true); } //bra sh4dec(i1010_iiii_iiii_iiii) { dec_End(dec_jump_simm12(op),BET_StaticJump,true); } //braf sh4dec(i0000_nnnn_0010_0011) { u32 n = GetN(op); dec_DynamicSet(reg_r0+n,state.cpu.rpc + 4); dec_End(NullAddress, BET_DynamicJump, true); } //jmp @ sh4dec(i0100_nnnn_0010_1011) { u32 n = GetN(op); dec_DynamicSet(reg_r0+n); dec_End(NullAddress, BET_DynamicJump, true); } //bsr sh4dec(i1011_iiii_iiii_iiii) { dec_set_pr(); dec_End(dec_jump_simm12(op), BET_StaticCall, true); } //bsrf sh4dec(i0000_nnnn_0000_0011) { u32 n = GetN(op); u32 retaddr=dec_set_pr(); dec_DynamicSet(reg_r0+n,retaddr); dec_End(NullAddress, BET_DynamicCall, true); } //jsr @ sh4dec(i0100_nnnn_0000_1011) { u32 n = GetN(op); dec_set_pr(); dec_DynamicSet(reg_r0+n); dec_End(NullAddress, BET_DynamicCall, true); } //rts sh4dec(i0000_0000_0000_1011) { dec_DynamicSet(reg_pr); dec_End(NullAddress, BET_DynamicRet, true); } //rte sh4dec(i0000_0000_0010_1011) { //TODO: Write SR, Check intr dec_write_sr(reg_ssr); Emit(shop_sync_sr); dec_DynamicSet(reg_spc); dec_End(NullAddress, BET_DynamicIntr, true); } //trapa # sh4dec(i1100_0011_iiii_iiii) { //TODO: ifb dec_fallback(op); dec_DynamicSet(reg_nextpc); dec_End(NullAddress, BET_DynamicJump, false); } //sleep sh4dec(i0000_0000_0001_1011) { //TODO: ifb dec_fallback(op); dec_DynamicSet(reg_nextpc); dec_End(NullAddress, BET_DynamicJump, false); } //ldc.l @+,SR /* sh4dec(i0100_nnnn_0000_0111) { u32 sr_t; ReadMemU32(sr_t,r[n]); if (sh4_exept_raised) return; sr.SetFull(sr_t); r[n] += 4; if (UpdateSR()) { //FIXME only if interrupts got on .. :P UpdateINTC(); } dec_End(NullAddress,BET_StaticIntr,false); } */ //ldc ,SR sh4dec(i0100_nnnn_0000_1110) { u32 n = GetN(op); dec_write_sr((Sh4RegType)(reg_r0+n)); Emit(shop_sync_sr); dec_End(NullAddress, BET_StaticIntr, false); } //nop ! sh4dec(i0000_0000_0000_1001) { } //fschg sh4dec(i1111_0011_1111_1101) { //fpscr.SZ is bit 20 Emit(shop_xor,reg_fpscr,reg_fpscr,mk_imm(1<<20)); state.cpu.FSZ64=!state.cpu.FSZ64; } //frchg sh4dec(i1111_1011_1111_1101) { Emit(shop_xor,reg_fpscr,reg_fpscr,mk_imm(1<<21)); Emit(shop_mov32,reg_old_fpscr,reg_fpscr); shil_param rmn;//null param Emit(shop_frswap,regv_xmtrx,regv_fmtrx,regv_xmtrx,0,rmn,regv_fmtrx); } //rotcl sh4dec(i0100_nnnn_0010_0100) { u32 n = GetN(op); Sh4RegType rn=(Sh4RegType)(reg_r0+n); Emit(shop_rocl,rn,rn,reg_sr_T,0,shil_param(),reg_sr_T); } //rotcr sh4dec(i0100_nnnn_0010_0101) { u32 n = GetN(op); Sh4RegType rn=(Sh4RegType)(reg_r0+n); Emit(shop_rocr,rn,rn,reg_sr_T,0,shil_param(),reg_sr_T); } static const Sh4RegType SREGS[] = { reg_mach, reg_macl, reg_pr, reg_sgr, NoReg, reg_fpul, reg_fpscr, NoReg, NoReg, NoReg, NoReg, NoReg, NoReg, NoReg, NoReg, reg_dbr, }; static const Sh4RegType CREGS[] = { reg_sr, reg_gbr, reg_vbr, reg_ssr, reg_spc, NoReg, NoReg, NoReg, reg_r0_Bank, reg_r1_Bank, reg_r2_Bank, reg_r3_Bank, reg_r4_Bank, reg_r5_Bank, reg_r6_Bank, reg_r7_Bank, }; static void dec_param(DecParam p,shil_param& r1,shil_param& r2, u32 op) { switch(p) { //constants case PRM_PC_D8_x2: r1=mk_imm((state.cpu.rpc+4)+(GetImm8(op)<<1)); break; case PRM_PC_D8_x4: r1=mk_imm(((state.cpu.rpc+4)&0xFFFFFFFC)+(GetImm8(op)<<2)); break; case PRM_ZERO: r1= mk_imm(0); break; case PRM_ONE: r1= mk_imm(1); break; case PRM_TWO: r1= mk_imm(2); break; case PRM_TWO_INV: r1= mk_imm(~2); break; case PRM_ONE_F32: r1= mk_imm(0x3f800000); break; //imms case PRM_SIMM8: r1=mk_imm(GetSImm8(op)); break; case PRM_UIMM8: r1=mk_imm(GetImm8(op)); break; //direct registers case PRM_R0: r1=mk_reg(reg_r0); break; case PRM_RN: r1=mk_regi(reg_r0+GetN(op)); break; case PRM_RM: r1=mk_regi(reg_r0+GetM(op)); break; case PRM_FRN_SZ: if (state.cpu.FSZ64) { int rx=GetN(op)/2; if (GetN(op)&1) rx+=regv_xd_0; else rx+=regv_dr_0; r1=mk_regi(rx); break; } case PRM_FRN: r1=mk_regi(reg_fr_0+GetN(op)); break; case PRM_FRM_SZ: if (state.cpu.FSZ64) { int rx=GetM(op)/2; if (GetM(op)&1) rx+=regv_xd_0; else rx+=regv_dr_0; r1=mk_regi(rx); break; } case PRM_FRM: r1=mk_regi(reg_fr_0+GetM(op)); break; case PRM_FPUL: r1=mk_regi(reg_fpul); break; case PRM_FPN: //float pair, 3 bits r1=mk_regi(regv_dr_0+GetN(op)/2); break; case PRM_FVN: //float quad, 2 bits r1=mk_regi(regv_fv_0+GetN(op)/4); break; case PRM_FVM: //float quad, 2 bits r1=mk_regi(regv_fv_0+(GetN(op)&0x3)); break; case PRM_XMTRX: //float matrix, 0 bits r1=mk_regi(regv_xmtrx); break; case PRM_FRM_FR0: r1=mk_regi(reg_fr_0+GetM(op)); r2=mk_regi(reg_fr_0); break; case PRM_SR_T: r1=mk_regi(reg_sr_T); break; case PRM_SR_STATUS: r1=mk_regi(reg_sr_status); break; case PRM_SREG: //FPUL/FPSCR/MACH/MACL/PR/DBR/SGR r1=mk_regi(SREGS[GetM(op)]); break; case PRM_CREG: //SR/GBR/VBR/SSR/SPC/ r1=mk_regi(CREGS[GetM(op)]); break; //reg/imm reg/reg case PRM_RN_D4_x1: case PRM_RN_D4_x2: case PRM_RN_D4_x4: { u32 shft=p-PRM_RN_D4_x1; r1=mk_regi(reg_r0+GetN(op)); r2=mk_imm(GetImm4(op)<diss); break; } opcode=IReadMem16(v_pc); v_pc+=2; if ((opcode&MASK_N_M)==DIV1_KEY) { if (reg2==NoReg) reg2=(Sh4RegType)GetM(opcode); else if (reg2!=(Sh4RegType)GetM(opcode)) break; if (reg2==reg1) break; if (reg3==NoReg) reg3=(Sh4RegType)GetN(opcode); else if (reg3!=(Sh4RegType)GetN(opcode)) break; if (reg3==reg1) break; match++; } else break; } return match; } static bool MatchDiv32u(u32 op,u32 pc) { if (config::DynarecSafeMode) return false; div_som_reg1 = NoReg; div_som_reg2 = NoReg; div_som_reg3 = NoReg; u32 match = MatchDiv32(pc + 2, div_som_reg1, div_som_reg2, div_som_reg3); return match == 65; } static bool MatchDiv32s(u32 op,u32 pc) { if (config::DynarecSafeMode) return false; u32 n = GetN(op); u32 m = GetM(op); div_som_reg1 = NoReg; div_som_reg2 = (Sh4RegType)m; div_som_reg3 = (Sh4RegType)n; u32 match = MatchDiv32(pc + 2, div_som_reg1, div_som_reg2, div_som_reg3); return match == 65; } /* //This ended up too rare (and too hard to match) bool MatchDiv0S_0(u32 pc) { if (IReadMem16(pc+0)==0x233A && //XOR r3,r3 IReadMem16(pc+2)==0x2137 && //DIV0S r3,r1 IReadMem16(pc+4)==0x322A && //SUBC r2,r2 IReadMem16(pc+6)==0x313A && //SUBC r3,r1 (IReadMem16(pc+8)&0xF00F)==0x2007) //DIV0S x,x return true; else return false; } */ static bool dec_generic(u32 op) { DecMode mode;DecParam d;DecParam s;shilop natop;u32 e; if (OpDesc[op]->decode==0) return false; u64 inf=OpDesc[op]->decode; e=(u32)(inf>>32); mode=(DecMode)((inf>>24)&0xFF); d=(DecParam)((inf>>16)&0xFF); s=(DecParam)((inf>>8)&0xFF); natop=(shilop)((inf>>0)&0xFF); bool transfer_64=false; if (op>=0xF000) { state.info.has_fpu=true; //return false;//FPU off for now if (state.cpu.FPR64 /*|| state.cpu.FSZ64*/) return false; if (state.cpu.FSZ64 && (d==PRM_FRN_SZ || d==PRM_FRM_SZ || s==PRM_FRN_SZ || s==PRM_FRM_SZ)) transfer_64 = true; } shil_param rs1,rs2,rs3,rd; dec_param(s,rs2,rs3,op); dec_param(d,rs1,rs3,op); switch(mode) { case DM_ReadSRF: Emit(shop_mov32,rs1,reg_sr_status); Emit(shop_or,rs1,rs1,reg_sr_T); break; case DM_WriteTOp: Emit(natop,reg_sr_T,rs1,rs2); break; case DM_DT: verify(natop==shop_sub); Emit(natop,rs1,rs1,rs2); Emit(shop_seteq,mk_reg(reg_sr_T),rs1,mk_imm(0)); break; case DM_Shift: if (natop==shop_shl && e==1) Emit(shop_shr,mk_reg(reg_sr_T),rs1,mk_imm(31)); else if (e==1) Emit(shop_and,mk_reg(reg_sr_T),rs1,mk_imm(1)); Emit(natop,rs1,rs1,mk_imm(e)); break; case DM_Rot: if (!(((s32)e>=0?e:-e)&0x1000)) { if ((s32)e<0) { //left rotate Emit(shop_shr,mk_reg(reg_sr_T),rs2,mk_imm(31)); e=-e; } else { //right rotate Emit(shop_and,mk_reg(reg_sr_T),rs2,mk_imm(1)); } } e&=31; Emit(natop,rs1,rs2,mk_imm(e)); break; case DM_BinaryOp://d=d op s if (e&1) Emit(natop,rs1,rs1,rs2,0,rs3); else Emit(natop,shil_param(),rs1,rs2,0,rs3); break; case DM_UnaryOp: //d= op s if (transfer_64 && natop==shop_mov32) natop=shop_mov64; if (natop==shop_cvt_i2f_n && state.cpu.RoundToZero) natop=shop_cvt_i2f_z; if (e&1) Emit(natop,shil_param(),rs1); else Emit(natop,rs1,rs2); break; case DM_WriteM: //write(d,s) { //0 has no effect, so get rid of it if (rs3.is_imm() && rs3._imm==0) rs3=shil_param(); state.info.has_writem=true; if (transfer_64) e=(s32)e*2; bool update_after=false; if ((s32)e<0) { if (rs1._reg!=rs2._reg && !mmu_enabled()) //reg shouldn't be updated if its written { Emit(shop_sub,rs1,rs1,mk_imm(-e)); } else { verify(rs3.is_null()); rs3=mk_imm(e); update_after=true; } } Emit(shop_writem,shil_param(),rs1,rs2,(s32)e<0?-e:e,rs3); if (update_after) { Emit(shop_sub,rs1,rs1,mk_imm(-e)); } } break; case DM_ReadM: //0 has no effect, so get rid of it if (rs3.is_imm() && rs3._imm==0) rs3=shil_param(); state.info.has_readm=true; if (transfer_64) e=(s32)e*2; Emit(shop_readm,rs1,rs2,shil_param(),(s32)e<0?-e:e,rs3); if ((s32)e<0) { if (rs1._reg!=rs2._reg)//the reg shouldn't be updated if it was just read. Emit(shop_add,rs2,rs2,mk_imm(-e)); } break; case DM_fiprOp: { shil_param rdd=mk_regi(rs1._reg+3); Emit(natop,rdd,rs1,rs2); } break; case DM_EXTOP: { Emit(natop,rs1,rs2,mk_imm(e==1?0xFF:0xFFFF)); } break; case DM_MUL: { shilop op; shil_param rd=mk_reg(reg_macl); shil_param rd2=shil_param(); switch((s32)e) { case 16: op=shop_mul_u16; break; case -16: op=shop_mul_s16; break; case -32: op=shop_mul_i32; break; case 64: op=shop_mul_u64; rd2 = mk_reg(reg_mach); break; case -64: op=shop_mul_s64; rd2 = mk_reg(reg_mach); break; default: die("DM_MUL: Failed to classify opcode"); return false; } Emit(op,rd,rs1,rs2,0,shil_param(),rd2); } break; case DM_DIV0: { if (e==1) { if (MatchDiv32u(op,state.cpu.rpc)) { verify(!state.cpu.is_delayslot); //div32u Emit(shop_div32u, mk_reg(div_som_reg1), mk_reg(div_som_reg1), mk_reg(div_som_reg2), 0, mk_reg(div_som_reg3), mk_reg(div_som_reg3)); Emit(shop_and, mk_reg(reg_sr_T), mk_reg(div_som_reg1), mk_imm(1)); Emit(shop_shr, mk_reg(div_som_reg1), mk_reg(div_som_reg1), mk_imm(1)); Emit(shop_div32p2, mk_reg(div_som_reg3), mk_reg(div_som_reg3), mk_reg(div_som_reg2), 0, mk_reg(reg_sr_T)); //skip the aggregated opcodes state.cpu.rpc += 128; blk->guest_cycles += 64; } else { //clear QM (bits 8,9) u32 qm=(1<<8)|(1<<9); Emit(shop_and,mk_reg(reg_sr_status),mk_reg(reg_sr_status),mk_imm(~qm)); //clear T ! Emit(shop_mov32,mk_reg(reg_sr_T),mk_imm(0)); } } else { if (MatchDiv32s(op,state.cpu.rpc)) { verify(!state.cpu.is_delayslot); //div32s Emit(shop_xor, mk_reg(reg_sr_T), mk_reg(div_som_reg3), mk_reg(div_som_reg2)); // get quotient sign Emit(shop_and, mk_reg(reg_sr_T), mk_reg(reg_sr_T), mk_imm(1 << 31)); // isolate sign bit Emit(shop_div32s, mk_reg(div_som_reg1), mk_reg(div_som_reg1), mk_reg(div_som_reg2), 0, mk_reg(div_som_reg3), mk_reg(div_som_reg3)); Emit(shop_and, mk_reg(reg_temp), mk_reg(div_som_reg1), mk_imm(1)); // set quotient lsb in temp reg Emit(shop_sar, mk_reg(div_som_reg1), mk_reg(div_som_reg1), mk_imm(1)); // shift quotient right Emit(shop_or, mk_reg(reg_sr_T), mk_reg(reg_sr_T), mk_reg(reg_temp)); // store quotient lsb in T Emit(shop_div32p2, mk_reg(div_som_reg3), mk_reg(div_som_reg3), mk_reg(div_som_reg2), 0, mk_reg(reg_sr_T)); Emit(shop_and, mk_reg(reg_sr_T), mk_reg(reg_sr_T), mk_imm(1)); // clean up T //skip the aggregated opcodes state.cpu.rpc+=128; blk->guest_cycles += 64; } else { //Clear Q & M Emit(shop_and, mk_reg(reg_sr_status), mk_reg(reg_sr_status), mk_imm(~((1 << 8) | (1 << 9)))); //sr.Q=r[n]>>31; Emit(shop_sar, mk_reg(reg_sr_T),rs1,mk_imm(31)); Emit(shop_and, mk_reg(reg_sr_T), mk_reg(reg_sr_T), mk_imm(1 << 8)); Emit(shop_or, mk_reg(reg_sr_status), mk_reg(reg_sr_status), mk_reg(reg_sr_T)); //sr.M=r[m]>>31; Emit(shop_sar, mk_reg(reg_sr_T), rs2, mk_imm(31)); Emit(shop_and, mk_reg(reg_sr_T), mk_reg(reg_sr_T), mk_imm(1 << 9)); Emit(shop_or, mk_reg(reg_sr_status), mk_reg(reg_sr_status), mk_reg(reg_sr_T)); //sr.T=sr.M^sr.Q; Emit(shop_xor, mk_reg(reg_sr_T), rs1, rs2); Emit(shop_shr, mk_reg(reg_sr_T), mk_reg(reg_sr_T), mk_imm(31)); } } } break; case DM_ADC: { Emit(natop,rs1,rs1,rs2,0,mk_reg(reg_sr_T),mk_reg(reg_sr_T)); } break; case DM_NEGC: Emit(natop, rs1, rs2, mk_reg(reg_sr_T), 0, shil_param(), mk_reg(reg_sr_T)); break; default: verify(false); } return true; } static void state_Setup(u32 rpc,fpscr_t fpu_cfg) { state.cpu.rpc=rpc; state.cpu.is_delayslot=false; state.cpu.FPR64=fpu_cfg.PR; state.cpu.FSZ64=fpu_cfg.SZ; state.cpu.RoundToZero=fpu_cfg.RM==1; //verify(fpu_cfg.RM<2); // Happens with many wince games (set to 3) //what about fp/fs ? state.NextOp = NDO_NextOp; state.BlockType = BET_SCL_Intr; state.JumpAddr = NullAddress; state.NextAddr = NullAddress; state.info.has_readm=false; state.info.has_writem=false; state.info.has_fpu=false; } void dec_updateBlockCycles(RuntimeBlockInfo *block, u16 op) { if (!mmu_enabled()) { if (op < 0xF000) block->guest_cycles++; } else { block->guest_cycles += std::max((int)OpDesc[op]->LatencyCycles, 1); } } bool dec_DecodeBlock(RuntimeBlockInfo* rbi,u32 max_cycles) { blk=rbi; state_Setup(blk->vaddr, blk->fpu_cfg); blk->guest_opcodes=0; // If full MMU, don't allow the block to extend past the end of the current 4K page u32 max_pc = mmu_enabled() ? ((state.cpu.rpc >> 12) + 1) << 12 : 0xFFFFFFFF; for(;;) { switch(state.NextOp) { case NDO_Delayslot: state.NextOp=state.DelayOp; state.cpu.is_delayslot=true; //there is no break here by design case NDO_NextOp: { if ((blk->oplist.size() >= BLOCK_MAX_SH_OPS_SOFT || blk->guest_cycles >= max_cycles || state.cpu.rpc >= max_pc) && !state.cpu.is_delayslot) { dec_End(state.cpu.rpc,BET_StaticJump,false); } else { u32 op = IReadMem16(state.cpu.rpc); blk->guest_opcodes++; dec_updateBlockCycles(blk, op); if (OpDesc[op]->IsFloatingPoint()) { if (sr.FD == 1) { // We need to know FPSCR to compile the block, so let the exception handler run first // as it may change the fp registers Do_Exception(next_pc, 0x800, 0x100); return false; } blk->has_fpu_op = true; } if (state.cpu.is_delayslot && OpDesc[op]->SetPC()) throw FlycastException("Fatal: SH4 branch instruction in delay slot"); if (!OpDesc[op]->rec_oph) { if (!dec_generic(op)) { dec_fallback(op); if (OpDesc[op]->SetPC()) { dec_DynamicSet(reg_nextpc); dec_End(NullAddress, BET_DynamicJump, false); } else if (OpDesc[op]->SetFPSCR() && !state.cpu.is_delayslot) { dec_End(state.cpu.rpc + 2, BET_StaticJump, false); } } } else { OpDesc[op]->rec_oph(op); } state.cpu.rpc+=2; } } break; case NDO_End: // Disabled for now since we need to know if the block is read-only, // which isn't determined until after the decoding. // This is a relatively rare optimization anyway #if 0 // detect if calling an empty subroutine and skip it if (state.BlockType == BET_StaticCall && blk->read_only) { if ((state.JumpAddr >> 12) == (blk->vaddr >> 12) || (state.JumpAddr >> 12) == ((blk->vaddr + (blk->guest_opcodes - 1) * 2) >> 12)) { u32 op = IReadMem16(state.JumpAddr); if (op == 0x000B) // rts { u16 delayOp = IReadMem16(state.JumpAddr + 2); if (delayOp == 0x0000 || delayOp == 0x0009) // nop { state.NextOp = NDO_NextOp; state.cpu.is_delayslot = false; dec_updateBlockCycles(blk, op); dec_updateBlockCycles(blk, delayOp); continue; } } } } #endif goto _end; } } _end: blk->sh4_code_size=state.cpu.rpc-blk->vaddr; blk->NextBlock=state.NextAddr; blk->BranchBlock=state.JumpAddr; blk->BlockType=state.BlockType; verify(blk->oplist.size() <= BLOCK_MAX_SH_OPS_HARD); #if 0 switch(rbi->addr) { case 0x8C09ED16: case 0x8C0BA50E: case 0x8C0BA506: case 0x8C0BA526: case 0x8C224800: INFO_LOG(DYNAREC, "HASH: %08X reloc %s", blk->addr, blk->hash()); break; } #endif //cycle tricks if (config::DynarecIdleSkip) { //Experimental hash-id based idle skip if (!mmu_enabled() && strstr(idle_hash, blk->hash())) { DEBUG_LOG(DYNAREC, "IDLESKIP: %08X reloc match %s", blk->addr, blk->hash()); blk->guest_cycles = max_cycles; } else { //Small-n-simple idle loop detector :p if (state.info.has_readm && !state.info.has_writem && !state.info.has_fpu && blk->guest_opcodes<6) { if (blk->BlockType==BET_Cond_0 || (blk->BlockType==BET_Cond_1 && blk->BranchBlock<=blk->vaddr)) { blk->guest_cycles*=3; } if (blk->BranchBlock==blk->vaddr) { blk->guest_cycles*=10; } } //if in syscalls area (ip.bin etc) skip fast :p if ((blk->addr&0x1FFF0000)==0x0C000000) { if (blk->addr&0x8000) { //ip.bin (boot loader/img etc) blk->guest_cycles*=15; } else { //syscalls blk->guest_cycles*=5; } } //blk->guest_cycles=5; } } else { blk->guest_cycles*=1.5; } // Win CE boost if (mmu_enabled()) blk->guest_cycles *= 1.5f; //make sure we don't use wayy-too-many cycles blk->guest_cycles = std::min(blk->guest_cycles, max_cycles); //make sure we don't use wayy-too-few cycles blk->guest_cycles = std::max(1U, blk->guest_cycles); blk=0; return true; } #endif