/* Sh4 internal register routing (P4 & 'area 7') */ #include #include "types.h" #include "sh4_mmr.h" #include "hw/mem/_vmem.h" #include "modules/mmu.h" #include "modules/ccn.h" #include "modules/modules.h" //64bytes of sq // now on context ~ std::array OnChipRAM; //All registers are 4 byte aligned std::array CCN; std::array UBC; std::array BSC; std::array DMAC; std::array CPG; std::array RTC; std::array INTC; std::array TMU; std::array SCI; std::array SCIF; static u32 sh4io_read_noacc(u32 addr) { INFO_LOG(SH4, "sh4io: Invalid read access @@ %08X", addr); return 0; } static void sh4io_write_noacc(u32 addr, u32 data) { INFO_LOG(SH4, "sh4io: Invalid write access @@ %08X %08X", addr, data); //verify(false); } static void sh4io_write_const(u32 addr, u32 data) { INFO_LOG(SH4, "sh4io: Const write ignored @@ %08X <- %08X", addr, data); } template void sh4_rio_reg(T& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf) { u32 idx=(addr&255)/4; verify(idx < arr.size()); arr[idx].flags = flags; if (flags == RIO_NO_ACCESS) { arr[idx].readFunctionAddr=&sh4io_read_noacc; arr[idx].writeFunctionAddr=&sh4io_write_noacc; } else if (flags == RIO_CONST) { arr[idx].writeFunctionAddr=&sh4io_write_const; } else { arr[idx].data32=0; if (flags & REG_RF) arr[idx].readFunctionAddr=rf; if (flags & REG_WF) arr[idx].writeFunctionAddr=wf==0?&sh4io_write_noacc:wf; } } template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template void sh4_rio_reg(std::array& arr, u32 addr, RegIO flags, u32 sz, RegReadAddrFP* rf, RegWriteAddrFP* wf); template u32 sh4_rio_read(T& regs, u32 addr) { u32 offset = addr&255; #ifdef TRACE if (offset & 3/*(size-1)*/) //4 is min align size { INFO_LOG(SH4, "Unaligned System Bus register read"); } #endif offset>>=2; #ifdef TRACE if (regs[offset].flags & sz) { #endif if (!(regs[offset].flags & REG_RF) ) { if (sz==4) return regs[offset].data32; else if (sz==2) return regs[offset].data16; else return regs[offset].data8; } else { return regs[offset].readFunctionAddr(addr); } #ifdef TRACE } else { INFO_LOG(SH4, "ERROR [wrong size read on register]"); } #endif return 0; } template void sh4_rio_write(T& regs, u32 addr, u32 data) { u32 offset = addr&255; #ifdef TRACE if (offset & 3/*(size-1)*/) //4 is min align size { INFO_LOG(SH4, "Unaligned System bus register write"); } #endif offset>>=2; #ifdef TRACE if (regs[offset].flags & sz) { #endif if (!(regs[offset].flags & REG_WF) ) { if (sz==4) regs[offset].data32=data; else if (sz==2) regs[offset].data16=(u16)data; else regs[offset].data8=(u8)data; return; } else { //printf("RSW: %08X\n",addr); regs[offset].writeFunctionAddr(addr,data); return; } #ifdef TRACE } else { INFO_LOG(SH4, "ERROR: Wrong size write on register - offset=%x, data=%x, size=%d",offset,data,sz); } #endif } //Region P4 //Read P4 template T DYNACALL ReadMem_P4(u32 addr) { switch((addr>>24)&0xFF) { case 0xE0: case 0xE1: case 0xE2: case 0xE3: INFO_LOG(SH4, "Unhandled p4 read [Store queue] 0x%x", addr); return 0; case 0xF0: return 0; case 0xF1: return 0; case 0xF2: { u32 entry=(addr>>8)&3; return ITLB[entry].Address.reg_data | (ITLB[entry].Data.V<<8); } case 0xF3: { u32 entry=(addr>>8)&3; return ITLB[entry].Data.reg_data; } case 0xF4: { //int W,Set,A; //W=(addr>>14)&1; //A=(addr>>3)&1; //Set=(addr>>5)&0xFF; //printf("Unhandled p4 read [Operand cache address array] %d:%d,%d 0x%x\n",Set,W,A,addr); return 0; } case 0xF5: return 0; case 0xF6: { u32 entry=(addr>>8)&63; u32 rv=UTLB[entry].Address.reg_data; rv|=UTLB[entry].Data.D<<9; rv|=UTLB[entry].Data.V<<8; return rv; } case 0xF7: { u32 entry=(addr>>8)&63; return UTLB[entry].Data.reg_data; } case 0xFF: INFO_LOG(SH4, "Unhandled p4 read [area7] 0x%x", addr); break; default: INFO_LOG(SH4, "Unhandled p4 read [Reserved] 0x%x", addr); break; } return 0; } //Write P4 template void DYNACALL WriteMem_P4(u32 addr,T data) { /*if (((addr>>26)&0x7)==7) { WriteMem_area7(addr,data,sz); return; }*/ switch((addr>>24)&0xFF) { case 0xE0: case 0xE1: case 0xE2: case 0xE3: INFO_LOG(SH4, "Unhandled p4 Write [Store queue] 0x%x", addr); break; case 0xF0: return; case 0xF1: return; case 0xF2: { u32 entry=(addr>>8)&3; ITLB[entry].Address.reg_data=data & 0xFFFFFCFF; ITLB[entry].Data.V=(data>>8) & 1; ITLB_Sync(entry); return; } case 0xF3: { u32 entry=(addr>>8)&3; if (addr&0x800000) { ITLB[entry].Assistance.reg_data = data & 0xf; } else { ITLB[entry].Data.reg_data=data; } ITLB_Sync(entry); return; } case 0xF4: { //int W,Set,A; //W=(addr>>14)&1; //A=(addr>>3)&1; //Set=(addr>>5)&0xFF; //printf("Unhandled p4 Write [Operand cache address array] %d:%d,%d 0x%x = %x\n",Set,W,A,addr,data); return; } case 0xF5: //printf("Unhandled p4 Write [Operand cache data array] 0x%x = %x\n",addr,data); return; case 0xF6: { if (addr&0x80) { #ifdef NO_MMU INFO_LOG(SH4, "Unhandled p4 Write [Unified TLB address array, Associative Write] 0x%x = %x", addr, data); #endif CCN_PTEH_type t; t.reg_data=data; u32 va=t.VPN<<10; #ifndef NO_MMU for (int i=0;i<64;i++) { if (mmu_match(va,UTLB[i].Address,UTLB[i].Data)) { UTLB[i].Data.V=((u32)data>>8)&1; UTLB[i].Data.D=((u32)data>>9)&1; UTLB_Sync(i); } } for (int i=0;i<4;i++) { if (mmu_match(va,ITLB[i].Address,ITLB[i].Data)) { ITLB[i].Data.V=((u32)data>>8)&1; ITLB[i].Data.D=((u32)data>>9)&1; ITLB_Sync(i); } } #endif } else { u32 entry=(addr>>8)&63; UTLB[entry].Address.reg_data=data & 0xFFFFFCFF; UTLB[entry].Data.D=(data>>9)&1; UTLB[entry].Data.V=(data>>8)&1; UTLB_Sync(entry); } return; } break; case 0xF7: { u32 entry=(addr>>8)&63; if (addr&0x800000) { UTLB[entry].Assistance.reg_data = data & 0xf; } else { UTLB[entry].Data.reg_data=data; } UTLB_Sync(entry); return; } case 0xFF: INFO_LOG(SH4, "Unhandled p4 Write [area7] 0x%x = %x", addr, data); break; default: INFO_LOG(SH4, "Unhandled p4 Write [Reserved] 0x%x", addr); break; } } //*********** //Store Queue //*********** //TODO : replace w/ mem mapped array //Read SQ template T DYNACALL ReadMem_sq(u32 addr) { if (sz!=4) { INFO_LOG(SH4, "Store Queue Error - only 4 byte read are possible[x%X]", addr); return 0xDE; } u32 united_offset=addr & 0x3C; return (T)*(u32*)&sq_both[united_offset]; } //Write SQ template void DYNACALL WriteMem_sq(u32 addr,T data) { if (sz!=4) INFO_LOG(SH4, "Store Queue Error - only 4 byte writes are possible[x%X=0x%X]", addr, data); u32 united_offset=addr & 0x3C; *(u32*)&sq_both[united_offset]=data; } //*********** //**Area 7** //*********** #define OUT_OF_RANGE(reg) INFO_LOG(SH4, "Out of range on register %s index %x", reg, addr) //Read Area7 template T DYNACALL ReadMem_area7(u32 addr) { /* if (likely(addr==0xffd80024)) { return TMU_TCNT(2); } else if (likely(addr==0xFFD8000C)) { return TMU_TCNT(0); } else */if (likely(addr==0xFF000028)) { return CCN_INTEVT; } else if (likely(addr==0xFFA0002C)) { return DMAC_CHCR(2).full; } //else if (addr==) //printf("%08X\n",addr); addr&=0x1FFFFFFF; u32 map_base=addr>>16; switch (map_base & 0x1FFF) { case A7_REG_HASH(CCN_BASE_addr): if (addr<=0x1F000044) { return (T)sh4_rio_read(CCN,addr & 0xFF); } else { OUT_OF_RANGE("CCN"); return 0; } break; case A7_REG_HASH(UBC_BASE_addr): if (addr<=0x1F200020) { return (T)sh4_rio_read(UBC,addr & 0xFF); } else { OUT_OF_RANGE("UBC"); return 0; } break; case A7_REG_HASH(BSC_BASE_addr): if (addr<=0x1F800048) { return (T)sh4_rio_read(BSC,addr & 0xFF); } else { OUT_OF_RANGE("BSC"); return 0; } break; case A7_REG_HASH(BSC_SDMR2_addr): //dram settings 2 / write only INFO_LOG(SH4, "Read from write-only registers [dram settings 2]"); return 0; case A7_REG_HASH(BSC_SDMR3_addr): //dram settings 3 / write only INFO_LOG(SH4, "Read from write-only registers [dram settings 3]"); return 0; case A7_REG_HASH(DMAC_BASE_addr): if (addr<=0x1FA00040) { return (T)sh4_rio_read(DMAC,addr & 0xFF); } else { OUT_OF_RANGE("DMAC"); return 0; } break; case A7_REG_HASH(CPG_BASE_addr): if (addr<=0x1FC00010) { return (T)sh4_rio_read(CPG,addr & 0xFF); } else { OUT_OF_RANGE("CPG"); return 0; } break; case A7_REG_HASH(RTC_BASE_addr): if (addr<=0x1FC8003C) { return (T)sh4_rio_read(RTC,addr & 0xFF); } else { OUT_OF_RANGE("RTC"); return 0; } break; case A7_REG_HASH(INTC_BASE_addr): if (addr<=0x1FD00010) { return (T)sh4_rio_read(INTC,addr & 0xFF); } else { OUT_OF_RANGE("INTC"); return 0; } break; case A7_REG_HASH(TMU_BASE_addr): if (addr<=0x1FD8002C) { return (T)sh4_rio_read(TMU,addr & 0xFF); } else { OUT_OF_RANGE("TMU"); return 0; } break; case A7_REG_HASH(SCI_BASE_addr): if (addr<=0x1FE0001C) { return (T)sh4_rio_read(SCI,addr & 0xFF); } else { OUT_OF_RANGE("SCI"); return 0; } break; case A7_REG_HASH(SCIF_BASE_addr): if (addr<=0x1FE80024) { return (T)sh4_rio_read(SCIF,addr & 0xFF); } else { OUT_OF_RANGE("SCIF"); return 0; } break; // Who really cares about ht-UDI? it's not existent on the Dreamcast IIRC case A7_REG_HASH(UDI_BASE_addr): switch(addr) { //UDI SDIR 0x1FF00000 0x1FF00000 16 0xFFFF Held Held Held Pclk case UDI_SDIR_addr : break; //UDI SDDR 0x1FF00008 0x1FF00008 32 Held Held Held Held Pclk case UDI_SDDR_addr : break; } break; } INFO_LOG(SH4, "Unknown Read from Area7 - addr=%x", addr); return 0; } //Write Area7 template void DYNACALL WriteMem_area7(u32 addr,T data) { if (likely(addr==0xFF000038)) { CCN_QACR_write<0>(addr,data); return; } else if (likely(addr==0xFF00003C)) { CCN_QACR_write<1>(addr,data); return; } //printf("%08X\n",addr); addr&=0x1FFFFFFF; u32 map_base=addr>>16; switch (map_base & 0x1FFF) { case A7_REG_HASH(CCN_BASE_addr): if (addr<=0x1F00003C) { sh4_rio_write(CCN,addr & 0xFF,data); } else { OUT_OF_RANGE("CCN"); } return; case A7_REG_HASH(UBC_BASE_addr): if (addr<=0x1F200020) { sh4_rio_write(UBC,addr & 0xFF,data); } else { OUT_OF_RANGE("UBC"); } return; case A7_REG_HASH(BSC_BASE_addr): if (addr<=0x1F800048) { sh4_rio_write(BSC,addr & 0xFF,data); } else { OUT_OF_RANGE("BSC"); } return; case A7_REG_HASH(BSC_SDMR2_addr): //dram settings 2 / write only return; case A7_REG_HASH(BSC_SDMR3_addr): //dram settings 3 / write only return; case A7_REG_HASH(DMAC_BASE_addr): if (addr<=0x1FA00040) { sh4_rio_write(DMAC,addr & 0xFF,data); } else { OUT_OF_RANGE("DMAC"); } return; case A7_REG_HASH(CPG_BASE_addr): if (addr<=0x1FC00010) { sh4_rio_write(CPG,addr & 0xFF,data); } else { OUT_OF_RANGE("CPG"); } return; case A7_REG_HASH(RTC_BASE_addr): if (addr<=0x1FC8003C) { sh4_rio_write(RTC,addr & 0xFF,data); } else { OUT_OF_RANGE("RTC"); } return; case A7_REG_HASH(INTC_BASE_addr): if (addr<=0x1FD0000C) { sh4_rio_write(INTC,addr & 0xFF,data); } else { OUT_OF_RANGE("INTC"); } return; case A7_REG_HASH(TMU_BASE_addr): if (addr<=0x1FD8002C) { sh4_rio_write(TMU,addr & 0xFF,data); } else { OUT_OF_RANGE("TMU"); } return; case A7_REG_HASH(SCI_BASE_addr): if (addr<=0x1FE0001C) { sh4_rio_write(SCI,addr & 0xFF,data); } else { OUT_OF_RANGE("SCI"); } return; case A7_REG_HASH(SCIF_BASE_addr): if (addr<=0x1FE80024) { sh4_rio_write(SCIF,addr & 0xFF,data); } else { OUT_OF_RANGE("SCIF"); } return; //who really cares about ht-udi ? it's not existent on dc iirc .. case A7_REG_HASH(UDI_BASE_addr): switch(addr) { //UDI SDIR 0xFFF00000 0x1FF00000 16 0xFFFF Held Held Held Pclk case UDI_SDIR_addr : break; //UDI SDDR 0xFFF00008 0x1FF00008 32 Held Held Held Held Pclk case UDI_SDDR_addr : break; } break; } INFO_LOG(SH4, "Write to Area7 not implemented, addr=%x, data=%x", addr, data); } //*********** //On Chip Ram //*********** //Read OCR template T DYNACALL ReadMem_area7_OCR_T(u32 addr) { if (CCN_CCR.ORA) { if (sz==1) return (T)OnChipRAM[addr&OnChipRAM_MASK]; else if (sz==2) return (T)*(u16*)&OnChipRAM[addr&OnChipRAM_MASK]; else if (sz==4) return (T)*(u32*)&OnChipRAM[addr&OnChipRAM_MASK]; else { ERROR_LOG(SH4, "ReadMem_area7_OCR_T: template SZ is wrong = %d", sz); return 0xDE; } } else { INFO_LOG(SH4, "On Chip Ram Read, but OCR is disabled"); return 0xDE; } } //Write OCR template void DYNACALL WriteMem_area7_OCR_T(u32 addr,T data) { if (CCN_CCR.ORA) { if (sz==1) OnChipRAM[addr&OnChipRAM_MASK]=(u8)data; else if (sz==2) *(u16*)&OnChipRAM[addr&OnChipRAM_MASK]=(u16)data; else if (sz==4) *(u32*)&OnChipRAM[addr&OnChipRAM_MASK]=data; else { ERROR_LOG(SH4, "WriteMem_area7_OCR_T: template SZ is wrong = %d", sz); } } else { INFO_LOG(SH4, "On Chip Ram Write, but OCR is disabled"); } } template static void init_regs(T& regs) { for (auto& reg : regs) { reg.flags = RIO_NO_ACCESS; reg.readFunctionAddr = &sh4io_read_noacc; reg.writeFunctionAddr = &sh4io_write_noacc; } } //Init/Res/Term void sh4_mmr_init() { init_regs(CCN); init_regs(UBC); init_regs(BSC); init_regs(DMAC); init_regs(CPG); init_regs(RTC); init_regs(INTC); init_regs(TMU); init_regs(SCI); init_regs(SCIF); //initialise Register structs bsc_init(); ccn_init(); cpg_init(); dmac_init(); intc_init(); rtc_init(); serial_init(); tmu_init(); ubc_init(); } void sh4_mmr_reset(bool hard) { if (hard) { for (auto& reg : CCN) reg.reset(); for (auto& reg : UBC) reg.reset(); for (auto& reg : BSC) reg.reset(); for (auto& reg : DMAC) reg.reset(); for (auto& reg : CPG) reg.reset(); for (auto& reg : RTC) reg.reset(); for (auto& reg : INTC) reg.reset(); for (auto& reg : TMU) reg.reset(); for (auto& reg : SCI) reg.reset(); for (auto& reg : SCIF) reg.reset(); } OnChipRAM = {}; //Reset register values bsc_reset(hard); ccn_reset(); cpg_reset(); dmac_reset(); intc_reset(); rtc_reset(); serial_reset(); tmu_reset(hard); ubc_reset(); } void sh4_mmr_term() { //free any alloc'd resources [if any] ubc_term(); tmu_term(); serial_term(); rtc_term(); intc_term(); dmac_term(); cpg_term(); ccn_term(); bsc_term(); } //Mem map :) //AREA 7--Sh4 Regs _vmem_handler area7_handler; _vmem_handler area7_orc_handler; void map_area7_init() { //=_vmem_register_handler(ReadMem8_area7,ReadMem16_area7,ReadMem32_area7, // WriteMem8_area7,WriteMem16_area7,WriteMem32_area7); //default area7 handler area7_handler= _vmem_register_handler_Template(ReadMem_area7,WriteMem_area7); area7_orc_handler= _vmem_register_handler_Template(ReadMem_area7_OCR_T,WriteMem_area7_OCR_T); } void map_area7(u32 base) { //OCR @ //((addr>=0x7C000000) && (addr<=0x7FFFFFFF)) if (base==0x60) _vmem_map_handler(area7_orc_handler,0x1C | base , 0x1F| base); else { _vmem_map_handler(area7_handler,0x1C | base , 0x1F| base); } } //P4 void map_p4() { //P4 Region : _vmem_handler p4_handler = _vmem_register_handler_Template(ReadMem_P4,WriteMem_P4); //register this before area7 and SQ , so they overwrite it and handle em :) //default P4 handler //0xE0000000-0xFFFFFFFF _vmem_map_handler(p4_handler,0xE0,0xFF); //Store Queues -- Write only 32bit _vmem_map_block(sq_both,0xE0,0xE0,63); _vmem_map_block(sq_both,0xE1,0xE1,63); _vmem_map_block(sq_both,0xE2,0xE2,63); _vmem_map_block(sq_both,0xE3,0xE3,63); map_area7(0xE0); }