/* Created on: Oct 2, 2019 Copyright 2019 flyinghead This file is part of Flycast. Flycast is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. Flycast is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Flycast. If not, see . */ #include "vulkan_context.h" #include "imgui/imgui.h" #include "imgui_impl_vulkan.h" #include "../gui.h" #ifdef USE_SDL #include #include #endif #include "compiler.h" #include "texture.h" #include "utils.h" VulkanContext *VulkanContext::contextInstance; static const char *PipelineCacheFileName = DATA_PATH "vulkan_pipeline.cache"; #ifndef __ANDROID__ VKAPI_ATTR static VkBool32 VKAPI_CALL debugUtilsMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageTypes, VkDebugUtilsMessengerCallbackDataEXT const * pCallbackData, void * /*pUserData*/) { std::string msg = vk::to_string(static_cast(messageSeverity)) + ": " + vk::to_string(static_cast(messageTypes)) + ": "; if (pCallbackData->pMessageIdName) msg += std::string("messageIDName=") + pCallbackData->pMessageIdName + " "; // msg += std::string("messageIdNumber=") + pCallbackData->messageIdNumber + " "; if (pCallbackData->pMessage) msg += pCallbackData->pMessage; /* TODO if (0 < pCallbackData->queueLabelCount) { std::cerr << "\t" << "Queue Labels:\n"; for (uint8_t i = 0; i < pCallbackData->queueLabelCount; i++) { std::cerr << "\t\t" << "lableName = <" << pCallbackData->pQueueLabels[i].pLabelName << ">\n"; } } if (0 < pCallbackData->cmdBufLabelCount) { std::cerr << "\t" << "CommandBuffer Labels:\n"; for (uint8_t i = 0; i < pCallbackData->cmdBufLabelCount; i++) { std::cerr << "\t\t" << "labelName = <" << pCallbackData->pCmdBufLabels[i].pLabelName << ">\n"; } } if (0 < pCallbackData->objectCount) { std::cerr << "\t" << "Objects:\n"; for (uint8_t i = 0; i < pCallbackData->objectCount; i++) { std::cerr << "\t\t" << "Object " << i << "\n"; std::cerr << "\t\t\t" << "objectType = " << vk::to_string(static_cast(pCallbackData->pObjects[i].objectType)) << "\n"; std::cerr << "\t\t\t" << "objectHandle = " << pCallbackData->pObjects[i].objectHandle << "\n"; if (pCallbackData->pObjects[i].pObjectName) { std::cerr << "\t\t\t" << "objectName = <" << pCallbackData->pObjects[i].pObjectName << ">\n"; } } } */ switch (static_cast(messageSeverity)) { case vk::DebugUtilsMessageSeverityFlagBitsEXT::eVerbose: DEBUG_LOG(RENDERER, "%s", msg.c_str()); break; case vk::DebugUtilsMessageSeverityFlagBitsEXT::eInfo: INFO_LOG(RENDERER, "%s", msg.c_str()); break; case vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning: WARN_LOG(RENDERER, "%s", msg.c_str()); break; case vk::DebugUtilsMessageSeverityFlagBitsEXT::eError: default: ERROR_LOG(RENDERER, "%s", msg.c_str()); break; } return VK_TRUE; } #else static VkBool32 debugReportCallback(VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode, const char* pLayerPrefix, const char* pMessage, void* /*pUserData*/) { std::string msg = pMessage; if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) ERROR_LOG(RENDERER, "%s", msg.c_str()); else if (flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) WARN_LOG(RENDERER, "%s", msg.c_str()); else if (flags & (VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_INFORMATION_BIT_EXT)) NOTICE_LOG(RENDERER, "%s", msg.c_str()); else NOTICE_LOG(RENDERER, "(d) %s", msg.c_str()); return VK_FALSE; } #endif static void CheckImGuiResult(VkResult err) { if (err != VK_SUCCESS) WARN_LOG(RENDERER, "ImGui Vulkan error %d", err); } bool VulkanContext::InitInstance(const char** extensions, uint32_t extensions_count) { if (volkInitialize() != VK_SUCCESS) { ERROR_LOG(RENDERER, "Cannot load Vulkan libraries"); return false; } try { bool vulkan11 = false; if (::vkEnumerateInstanceVersion != nullptr) { u32 apiVersion; if (vk::enumerateInstanceVersion(&apiVersion) == vk::Result::eSuccess) vulkan11 = VK_VERSION_MINOR(apiVersion) == 1; } vk::ApplicationInfo applicationInfo("Flycast", 1, "Flycast", 1, vulkan11 ? VK_API_VERSION_1_1 : VK_API_VERSION_1_0); std::vector vext; for (uint32_t i = 0; i < extensions_count; i++) vext.push_back(extensions[i]); std::vector layer_names; //layer_names.push_back("VK_LAYER_ARM_AGA"); #ifdef VK_DEBUG #ifndef __ANDROID__ vext.push_back("VK_EXT_debug_utils"); layer_names.push_back("VK_LAYER_LUNARG_standard_validation"); layer_names.push_back("VK_LAYER_LUNARG_assistant_layer"); #else vext.push_back("VK_EXT_debug_report"); // NDK <= 19? layer_names.push_back("VK_LAYER_GOOGLE_threading"); layer_names.push_back("VK_LAYER_LUNARG_parameter_validation"); layer_names.push_back("VK_LAYER_LUNARG_core_validation"); layer_names.push_back("VK_LAYER_GOOGLE_unique_objects"); #endif #endif vk::InstanceCreateInfo instanceCreateInfo({}, &applicationInfo, layer_names.size(), layer_names.data(), vext.size(), vext.data()); // create a UniqueInstance instance = vk::createInstanceUnique(instanceCreateInfo); volkLoadInstance(static_cast(*instance)); #ifdef VK_DEBUG #ifndef __ANDROID__ vk::DebugUtilsMessageSeverityFlagsEXT severityFlags(vk::DebugUtilsMessageSeverityFlagBitsEXT::eInfo | vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning | vk::DebugUtilsMessageSeverityFlagBitsEXT::eError); vk::DebugUtilsMessageTypeFlagsEXT messageTypeFlags(vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral | vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance | vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation); debugUtilsMessenger = instance->createDebugUtilsMessengerEXTUnique(vk::DebugUtilsMessengerCreateInfoEXT({}, severityFlags, messageTypeFlags, debugUtilsMessengerCallback)); #else vk::DebugReportCallbackCreateInfoEXT createInfo(vk::DebugReportFlagBitsEXT::eDebug | vk::DebugReportFlagBitsEXT::eInformation | vk::DebugReportFlagBitsEXT::ePerformanceWarning | vk::DebugReportFlagBitsEXT::eWarning | vk::DebugReportFlagBitsEXT::eError, &::debugReportCallback); debugReportCallback = instance->createDebugReportCallbackEXTUnique(createInfo); #endif #endif // Choose a discrete gpu if there's one, otherwise just pick the first one physicalDevice = nullptr; const auto devices = instance->enumeratePhysicalDevices(); for (const auto& phyDev : devices) { vk::PhysicalDeviceProperties props; phyDev.getProperties(&props); if (props.deviceType == vk::PhysicalDeviceType::eDiscreteGpu) { physicalDevice = phyDev; break; } } if (!physicalDevice) physicalDevice = instance->enumeratePhysicalDevices().front(); const vk::PhysicalDeviceProperties *properties; if (vulkan11 && ::vkGetPhysicalDeviceProperties2 != nullptr) { static vk::PhysicalDeviceProperties2 properties2; vk::PhysicalDeviceMaintenance3Properties properties3; properties2.pNext = &properties3; physicalDevice.getProperties2(&properties2); properties = &properties2.properties; maxMemoryAllocationSize = properties3.maxMemoryAllocationSize; if (maxMemoryAllocationSize == 0) // Happens on Windows 7 with NVidia 376.33, ok on 441.66 maxMemoryAllocationSize = 0xFFFFFFFFu; } else { static vk::PhysicalDeviceProperties phyProperties; physicalDevice.getProperties(&phyProperties); properties = &phyProperties; } uniformBufferAlignment = properties->limits.minUniformBufferOffsetAlignment; storageBufferAlignment = properties->limits.minStorageBufferOffsetAlignment; maxStorageBufferRange = properties->limits.maxStorageBufferRange; unifiedMemory = properties->deviceType == vk::PhysicalDeviceType::eIntegratedGpu; vendorID = properties->vendorID; NOTICE_LOG(RENDERER, "Vulkan API %s. Device %s", vulkan11 ? "1.1" : "1.0", properties->deviceName); vk::FormatProperties formatProperties = physicalDevice.getFormatProperties(vk::Format::eR5G5B5A1UnormPack16); if ((formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage) && (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst) && (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc)) optimalTilingSupported1555 = true; else NOTICE_LOG(RENDERER, "eR5G5B5A1UnormPack16 not supported for optimal tiling"); formatProperties = physicalDevice.getFormatProperties(vk::Format::eR5G6B5UnormPack16); if ((formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage) && (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst) && (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc)) optimalTilingSupported565 = true; else NOTICE_LOG(RENDERER, "eR5G6B5UnormPack16 not supported for optimal tiling"); formatProperties = physicalDevice.getFormatProperties(vk::Format::eR4G4B4A4UnormPack16); if ((formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage) && (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst) && (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc)) optimalTilingSupported4444 = true; else NOTICE_LOG(RENDERER, "eR4G4B4A4UnormPack16 not supported for optimal tiling"); vk::PhysicalDeviceFeatures features; physicalDevice.getFeatures(&features); fragmentStoresAndAtomics = features.fragmentStoresAndAtomics; samplerAnisotropy = features.samplerAnisotropy; ShaderCompiler::Init(); return true; } catch (const vk::SystemError& err) { ERROR_LOG(RENDERER, "Vulkan error: %s", err.what()); } catch (...) { ERROR_LOG(RENDERER, "Unknown error"); } return false; } vk::Format VulkanContext::FindDepthFormat() { const vk::Format depthFormats[] = { vk::Format::eD32SfloatS8Uint, vk::Format::eD24UnormS8Uint, vk::Format::eD16UnormS8Uint }; vk::ImageTiling tiling; depthFormat = vk::Format::eUndefined; for (size_t i = 0; i < ARRAY_SIZE(depthFormats); i++) { vk::FormatProperties formatProperties = physicalDevice.getFormatProperties(depthFormats[i]); if (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eDepthStencilAttachment) { tiling = vk::ImageTiling::eOptimal; depthFormat = depthFormats[i]; break; } } if (depthFormat == vk::Format::eUndefined) { // Try to find a linear format for (size_t i = 0; i < ARRAY_SIZE(depthFormats); i++) { vk::FormatProperties formatProperties = physicalDevice.getFormatProperties(depthFormats[i]); if (formatProperties.linearTilingFeatures & vk::FormatFeatureFlagBits::eDepthStencilAttachment) { tiling = vk::ImageTiling::eLinear; depthFormat = depthFormats[i]; break; } } if (depthFormat == vk::Format::eUndefined) die("No supported depth/stencil format found"); } NOTICE_LOG(RENDERER, "Using depth format %s tiling %s", vk::to_string(depthFormat).c_str(), vk::to_string(tiling).c_str()); return depthFormat; } void VulkanContext::InitImgui() { gui_init(); ImGui_ImplVulkan_InitInfo initInfo = {}; initInfo.Instance = (VkInstance)*instance; initInfo.PhysicalDevice = (VkPhysicalDevice)physicalDevice; initInfo.Device = (VkDevice)*device; initInfo.QueueFamily = graphicsQueueIndex; initInfo.Queue = (VkQueue)graphicsQueue; initInfo.PipelineCache = (VkPipelineCache)*pipelineCache; initInfo.DescriptorPool = (VkDescriptorPool)*descriptorPool; #ifdef VK_DEBUG initInfo.CheckVkResultFn = &CheckImGuiResult; #endif if (!ImGui_ImplVulkan_Init(&initInfo, (VkRenderPass)*renderPass, 0)) { die("ImGui initialization failed"); } if (ImGui::GetIO().Fonts->TexID == 0) { // Upload Fonts device->resetFences(1, &(*drawFences.front())); device->resetCommandPool(*commandPools.front(), vk::CommandPoolResetFlagBits::eReleaseResources); vk::CommandBuffer& commandBuffer = *commandBuffers.front(); commandBuffer.begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit)); ImGui_ImplVulkan_CreateFontsTexture((VkCommandBuffer)commandBuffer); commandBuffer.end(); vk::SubmitInfo submitInfo(0, nullptr, nullptr, 1, &commandBuffer); graphicsQueue.submit(1, &submitInfo, *drawFences.front()); device->waitIdle(); ImGui_ImplVulkan_InvalidateFontUploadObjects(); } } bool VulkanContext::InitDevice() { if (!instance) return false; try { std::vector queueFamilyProperties = physicalDevice.getQueueFamilyProperties(); #ifdef VK_DEBUG std::for_each(queueFamilyProperties.begin(), queueFamilyProperties.end(), [](vk::QueueFamilyProperties const& qfp) { INFO_LOG(RENDERER, "Queue Family: count %d flags %s minImgGranularity %d x %d x %d", qfp.queueCount, vk::to_string(qfp.queueFlags).c_str(), qfp.minImageTransferGranularity.width, qfp.minImageTransferGranularity.height, qfp.minImageTransferGranularity.depth); }); #endif // get the first index into queueFamiliyProperties which supports graphics graphicsQueueIndex = (u32)std::distance(queueFamilyProperties.begin(), std::find_if(queueFamilyProperties.begin(), queueFamilyProperties.end(), [](vk::QueueFamilyProperties const& qfp) { return qfp.queueFlags & vk::QueueFlagBits::eGraphics; })); verify(graphicsQueueIndex < queueFamilyProperties.size()); // determine a queueFamilyIndex that supports present // first check if the graphicsQueueFamilyIndex is good enough presentQueueIndex = physicalDevice.getSurfaceSupportKHR(graphicsQueueIndex, GetSurface()) ? graphicsQueueIndex : queueFamilyProperties.size(); if (presentQueueIndex == queueFamilyProperties.size()) { // the graphicsQueueFamilyIndex doesn't support present -> look for an other family index that supports both graphics and present for (size_t i = 0; i < queueFamilyProperties.size(); i++) { if ((queueFamilyProperties[i].queueFlags & vk::QueueFlagBits::eGraphics) && physicalDevice.getSurfaceSupportKHR((u32)i, GetSurface())) { graphicsQueueIndex = (u32)i; presentQueueIndex = (u32)i; break; } } if (presentQueueIndex == queueFamilyProperties.size()) { // there's nothing like a single family index that supports both graphics and present -> look for an other family index that supports present DEBUG_LOG(RENDERER, "Using separate Graphics and Present queue families"); for (size_t i = 0; i < queueFamilyProperties.size(); i++) { if (physicalDevice.getSurfaceSupportKHR((u32)i, GetSurface())) { presentQueueIndex = (u32)i; break; } } } } if (graphicsQueueIndex == queueFamilyProperties.size() || presentQueueIndex == queueFamilyProperties.size()) die("Could not find a queue for graphics or present -> terminating"); if (graphicsQueueIndex == presentQueueIndex) DEBUG_LOG(RENDERER, "Using Graphics+Present queue family"); else DEBUG_LOG(RENDERER, "Using distinct Graphics and Present queue families"); // Enable VK_KHR_dedicated_allocation if available bool getMemReq2Supported = false; dedicatedAllocationSupported = false; std::vector deviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; for (const auto& property : physicalDevice.enumerateDeviceExtensionProperties()) { if (!strcmp(property.extensionName, VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME)) { deviceExtensions.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME); getMemReq2Supported = true; } else if (!strcmp(property.extensionName, VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME)) { deviceExtensions.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME); dedicatedAllocationSupported = true; } } dedicatedAllocationSupported &= getMemReq2Supported; // create a UniqueDevice float queuePriority = 1.0f; vk::DeviceQueueCreateInfo deviceQueueCreateInfo(vk::DeviceQueueCreateFlags(), graphicsQueueIndex, 1, &queuePriority); vk::PhysicalDeviceFeatures features; if (fragmentStoresAndAtomics) features.fragmentStoresAndAtomics = true; if (samplerAnisotropy) features.samplerAnisotropy = true; const char *layers[] = { "VK_LAYER_ARM_AGA" }; device = physicalDevice.createDeviceUnique(vk::DeviceCreateInfo(vk::DeviceCreateFlags(), 1, &deviceQueueCreateInfo, 0, layers, deviceExtensions.size(), &deviceExtensions[0], &features)); // This links entry points directly from the driver and isn't absolutely necessary volkLoadDevice(static_cast(*device)); // Queues graphicsQueue = device->getQueue(graphicsQueueIndex, 0); presentQueue = device->getQueue(presentQueueIndex, 0); // Descriptor pool vk::DescriptorPoolSize pool_sizes[] = { { vk::DescriptorType::eSampler, 2 }, { vk::DescriptorType::eCombinedImageSampler, 4000 }, { vk::DescriptorType::eSampledImage, 2 }, { vk::DescriptorType::eStorageImage, 12 }, { vk::DescriptorType::eUniformTexelBuffer, 2 }, { vk::DescriptorType::eStorageTexelBuffer, 2 }, { vk::DescriptorType::eUniformBuffer, 36 }, { vk::DescriptorType::eStorageBuffer, 36 }, { vk::DescriptorType::eUniformBufferDynamic, 2 }, { vk::DescriptorType::eStorageBufferDynamic, 2 }, { vk::DescriptorType::eInputAttachment, 36 } }; descriptorPool = device->createDescriptorPoolUnique(vk::DescriptorPoolCreateInfo(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet, 10000, ARRAY_SIZE(pool_sizes), pool_sizes)); std::string cachePath = get_writable_data_path(PipelineCacheFileName); FILE *f = fopen(cachePath.c_str(), "rb"); if (f == nullptr) pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo()); else { fseek(f, 0, SEEK_END); size_t cacheSize = ftell(f); fseek(f, 0, SEEK_SET); u8 *cacheData = new u8[cacheSize]; if (fread(cacheData, 1, cacheSize, f) != cacheSize) cacheSize = 0; fclose(f); pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo(vk::PipelineCacheCreateFlags(), cacheSize, cacheData)); delete [] cacheData; INFO_LOG(RENDERER, "Vulkan pipeline cache loaded from %s: %zd bytes", cachePath.c_str(), cacheSize); } allocator.Init(physicalDevice, *device); shaderManager = std::unique_ptr(new ShaderManager()); quadPipeline = std::unique_ptr(new QuadPipeline()); quadDrawer = std::unique_ptr(new QuadDrawer()); CreateSwapChain(); return true; } catch (const vk::SystemError& err) { ERROR_LOG(RENDERER, "Vulkan error: %s", err.what()); } catch (...) { ERROR_LOG(RENDERER, "Unknown error"); } return false; } void VulkanContext::CreateSwapChain() { try { device->waitIdle(); framebuffers.clear(); drawFences.clear(); imageAcquiredSemaphores.clear(); renderCompleteSemaphores.clear(); commandBuffers.clear(); commandPools.clear(); imageViews.clear(); // get the supported VkFormats std::vector formats = physicalDevice.getSurfaceFormatsKHR(GetSurface()); assert(!formats.empty()); for (const auto& f : formats) { DEBUG_LOG(RENDERER, "Supported surface format: %s", vk::to_string(f.format).c_str()); // Try to find an non-sRGB color format if (f.format == vk::Format::eB8G8R8A8Unorm || f.format == vk::Format::eR8G8B8A8Unorm) { colorFormat = f.format; break; } } if (colorFormat == vk::Format::eUndefined) { colorFormat = (formats[0].format == vk::Format::eUndefined) ? vk::Format::eB8G8R8A8Unorm : formats[0].format; } vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(GetSurface()); DEBUG_LOG(RENDERER, "Surface capabilities: %d x %d, %s, image count: %d - %d", surfaceCapabilities.currentExtent.width, surfaceCapabilities.currentExtent.height, vk::to_string(surfaceCapabilities.currentTransform).c_str(), surfaceCapabilities.minImageCount, surfaceCapabilities.maxImageCount); VkExtent2D swapchainExtent; if (surfaceCapabilities.currentExtent.width == std::numeric_limits::max()) { // If the surface size is undefined, the size is set to the size of the images requested. swapchainExtent.width = std::min(std::max(640u, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width); swapchainExtent.height = std::min(std::max(480u, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height); } else { // If the surface size is defined, the swap chain size must match swapchainExtent = surfaceCapabilities.currentExtent; } SetWindowSize(swapchainExtent.width, swapchainExtent.height); // The FIFO present mode is guaranteed by the spec to be supported vk::PresentModeKHR swapchainPresentMode = vk::PresentModeKHR::eFifo; // Use FIFO on mobile, prefer Mailbox on desktop #if HOST_CPU != CPU_ARM && HOST_CPU != CPU_ARM64 && !defined(__ANDROID__) for (auto& presentMode : physicalDevice.getSurfacePresentModesKHR(GetSurface())) { if (presentMode == vk::PresentModeKHR::eMailbox) { INFO_LOG(RENDERER, "Using mailbox present mode"); swapchainPresentMode = vk::PresentModeKHR::eMailbox; break; } #ifdef TEST_AUTOMATION if (presentMode == vk::PresentModeKHR::eImmediate) { INFO_LOG(RENDERER, "Using immediate present mode"); swapchainPresentMode = vk::PresentModeKHR::eImmediate; break; } #endif } #endif vk::SurfaceTransformFlagBitsKHR preTransform = (surfaceCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity) ? vk::SurfaceTransformFlagBitsKHR::eIdentity : surfaceCapabilities.currentTransform; vk::CompositeAlphaFlagBitsKHR compositeAlpha = (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePreMultiplied) ? vk::CompositeAlphaFlagBitsKHR::ePreMultiplied : (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::ePostMultiplied) ? vk::CompositeAlphaFlagBitsKHR::ePostMultiplied : (surfaceCapabilities.supportedCompositeAlpha & vk::CompositeAlphaFlagBitsKHR::eInherit) ? vk::CompositeAlphaFlagBitsKHR::eInherit : vk::CompositeAlphaFlagBitsKHR::eOpaque; u32 imageCount = std::max(3u, surfaceCapabilities.minImageCount); if (surfaceCapabilities.maxImageCount != 0) imageCount = std::min(imageCount, surfaceCapabilities.maxImageCount); vk::ImageUsageFlags usage = vk::ImageUsageFlagBits::eColorAttachment; #ifdef TEST_AUTOMATION // for final screenshot usage |= vk::ImageUsageFlagBits::eTransferSrc; #endif vk::SwapchainCreateInfoKHR swapChainCreateInfo(vk::SwapchainCreateFlagsKHR(), GetSurface(), imageCount, colorFormat, vk::ColorSpaceKHR::eSrgbNonlinear, swapchainExtent, 1, usage, vk::SharingMode::eExclusive, 0, nullptr, preTransform, compositeAlpha, swapchainPresentMode, true, nullptr); u32 queueFamilyIndices[2] = { graphicsQueueIndex, presentQueueIndex }; if (graphicsQueueIndex != presentQueueIndex) { // If the graphics and present queues are from different queue families, we either have to explicitly transfer ownership of images between // the queues, or we have to create the swapchain with imageSharingMode as VK_SHARING_MODE_CONCURRENT swapChainCreateInfo.imageSharingMode = vk::SharingMode::eConcurrent; swapChainCreateInfo.queueFamilyIndexCount = 2; swapChainCreateInfo.pQueueFamilyIndices = queueFamilyIndices; } swapChain.reset(); swapChain = device->createSwapchainKHRUnique(swapChainCreateInfo); std::vector swapChainImages = device->getSwapchainImagesKHR(*swapChain); imageViews.reserve(swapChainImages.size()); commandPools.reserve(swapChainImages.size()); commandBuffers.reserve(swapChainImages.size()); vk::ComponentMapping componentMapping(vk::ComponentSwizzle::eR, vk::ComponentSwizzle::eG, vk::ComponentSwizzle::eB, vk::ComponentSwizzle::eA); vk::ImageSubresourceRange subResourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1); for (auto image : swapChainImages) { vk::ImageViewCreateInfo imageViewCreateInfo(vk::ImageViewCreateFlags(), image, vk::ImageViewType::e2D, colorFormat, componentMapping, subResourceRange); imageViews.push_back(device->createImageViewUnique(imageViewCreateInfo)); // create a UniqueCommandPool to allocate a CommandBuffer from commandPools.push_back(device->createCommandPoolUnique(vk::CommandPoolCreateInfo(vk::CommandPoolCreateFlagBits::eTransient, graphicsQueueIndex))); // allocate a CommandBuffer from the CommandPool commandBuffers.push_back(std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(*commandPools.back(), vk::CommandBufferLevel::ePrimary, 1)).front())); } FindDepthFormat(); // Render pass vk::AttachmentDescription attachmentDescription = vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), colorFormat, vk::SampleCountFlagBits::e1, vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare, vk::ImageLayout::eUndefined, vk::ImageLayout::ePresentSrcKHR); vk::AttachmentReference colorReference(0, vk::ImageLayout::eColorAttachmentOptimal); vk::SubpassDescription subpass(vk::SubpassDescriptionFlags(), vk::PipelineBindPoint::eGraphics, 0, nullptr, 1, &colorReference, nullptr, nullptr); renderPass = device->createRenderPassUnique(vk::RenderPassCreateInfo(vk::RenderPassCreateFlags(), 1, &attachmentDescription, 1, &subpass)); // Framebuffers, fences, semaphores framebuffers.reserve(imageViews.size()); drawFences.reserve(imageViews.size()); renderCompleteSemaphores.reserve(imageViews.size()); imageAcquiredSemaphores.reserve(imageViews.size()); for (auto const& view : imageViews) { framebuffers.push_back(device->createFramebufferUnique(vk::FramebufferCreateInfo(vk::FramebufferCreateFlags(), *renderPass, 1, &view.get(), width, height, 1))); drawFences.push_back(device->createFenceUnique(vk::FenceCreateInfo(vk::FenceCreateFlagBits::eSignaled))); renderCompleteSemaphores.push_back(device->createSemaphoreUnique(vk::SemaphoreCreateInfo())); imageAcquiredSemaphores.push_back(device->createSemaphoreUnique(vk::SemaphoreCreateInfo())); } quadPipeline->Init(shaderManager.get(), *renderPass); quadDrawer->Init(quadPipeline.get()); vmus->Init(quadPipeline.get()); InitImgui(); currentImage = GetSwapChainSize() - 1; INFO_LOG(RENDERER, "Vulkan swap chain created: %d x %d, swap chain size %d", width, height, (int)imageViews.size()); } catch (const vk::SystemError& err) { ERROR_LOG(RENDERER, "Vulkan error: %s", err.what()); } catch (...) { ERROR_LOG(RENDERER, "Unknown error"); } } bool VulkanContext::Init() { std::vector extensions; extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME); #if defined(USE_SDL) sdl_recreate_window(SDL_WINDOW_VULKAN); uint32_t extensionsCount = 0; SDL_Vulkan_GetInstanceExtensions((SDL_Window *)window, &extensionsCount, NULL); extensions.resize(extensionsCount + 1); SDL_Vulkan_GetInstanceExtensions((SDL_Window *)window, &extensionsCount, &extensions[1]); #elif defined(_WIN32) extern void CreateMainWindow(); CreateMainWindow(); extensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); #elif defined(__MACH__) extensions.push_back(VK_MVK_MACOS_SURFACE_EXTENSION_NAME); #elif defined(SUPPORT_X11) extensions.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME); #elif defined(__ANDROID__) extensions.push_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME); #endif if (!InitInstance(&extensions[0], extensions.size())) return false; #if defined(USE_SDL) VkSurfaceKHR surface; if (SDL_Vulkan_CreateSurface((SDL_Window *)window, *instance, (VkSurfaceKHR *)&this->surface) == 0) return false; #elif defined(_WIN32) vk::Win32SurfaceCreateInfoKHR createInfo(vk::Win32SurfaceCreateFlagsKHR(), GetModuleHandle(NULL), (HWND)window); surface = instance->createWin32SurfaceKHRUnique(createInfo); #elif defined(SUPPORT_X11) vk::XlibSurfaceCreateInfoKHR createInfo(vk::XlibSurfaceCreateFlagsKHR(), (Display*)display, (Window)window); surface = instance->createXlibSurfaceKHRUnique(createInfo); #elif defined(__ANDROID__) vk::AndroidSurfaceCreateInfoKHR createInfo(vk::AndroidSurfaceCreateFlagsKHR(), (struct ANativeWindow*)window); surface = instance->createAndroidSurfaceKHRUnique(createInfo); #endif vmus = std::unique_ptr(new VulkanVMUs()); return InitDevice(); } void VulkanContext::NewFrame() { if (HasSurfaceDimensionChanged()) { CreateSwapChain(); rend_resize(width, height); } device->acquireNextImageKHR(*swapChain, UINT64_MAX, *imageAcquiredSemaphores[currentSemaphore], nullptr, ¤tImage); device->waitForFences(1, &(*drawFences[currentImage]), true, UINT64_MAX); device->resetFences(1, &(*drawFences[currentImage])); device->resetCommandPool(*commandPools[currentImage], vk::CommandPoolResetFlagBits::eReleaseResources); vk::CommandBuffer commandBuffer = *commandBuffers[currentImage]; commandBuffer.begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit)); verify(!rendering); rendering = true; } void VulkanContext::BeginRenderPass() { const vk::ClearValue clear_colors[] = { vk::ClearColorValue(std::array{0.f, 0.f, 0.f, 1.f}), vk::ClearDepthStencilValue{ 0.f, 0 } }; vk::CommandBuffer commandBuffer = *commandBuffers[currentImage]; commandBuffer.beginRenderPass(vk::RenderPassBeginInfo(*renderPass, *framebuffers[currentImage], vk::Rect2D({0, 0}, {width, height}), 2, clear_colors), vk::SubpassContents::eInline); } void VulkanContext::EndFrame(const std::vector *cmdBuffers) { vk::CommandBuffer commandBuffer = *commandBuffers[currentImage]; commandBuffer.endRenderPass(); commandBuffer.end(); vk::PipelineStageFlags wait_stage = vk::PipelineStageFlagBits::eColorAttachmentOutput; std::vector allCmdBuffers; if (cmdBuffers != nullptr) allCmdBuffers = vk::uniqueToRaw(*cmdBuffers); allCmdBuffers.push_back(commandBuffer); vk::SubmitInfo submitInfo(1, &(*imageAcquiredSemaphores[currentSemaphore]), &wait_stage, allCmdBuffers.size(),allCmdBuffers.data(), 1, &(*renderCompleteSemaphores[currentSemaphore])); graphicsQueue.submit(1, &submitInfo, *drawFences[currentImage]); verify(rendering); rendering = false; renderDone = true; } void VulkanContext::Present() { if (renderDone) { try { DoSwapAutomation(); presentQueue.presentKHR(vk::PresentInfoKHR(1, &(*renderCompleteSemaphores[currentSemaphore]), 1, &(*swapChain), ¤tImage)); currentSemaphore = (currentSemaphore + 1) % imageViews.size(); } catch (const vk::OutOfDateKHRError& e) { // Sometimes happens when resizing the window INFO_LOG(RENDERER, "vk::OutOfDateKHRError"); } renderDone = false; } } void VulkanContext::DrawFrame(vk::ImageView imageView, vk::Offset2D extent) { float marginWidth = ((float)extent.y / extent.x * width / height - 1.f) / 2.f; QuadVertex vtx[] = { { { -1, -1, 0 }, { 0 - marginWidth, 0 } }, { { 1, -1, 0 }, { 1 + marginWidth, 0 } }, { { -1, 1, 0 }, { 0 - marginWidth, 1 } }, { { 1, 1, 0 }, { 1 + marginWidth, 1 } }, }; vk::CommandBuffer commandBuffer = GetCurrentCommandBuffer(); quadPipeline->BindPipeline(commandBuffer); float blendConstants[4] = { 1.0, 1.0, 1.0, 1.0 }; commandBuffer.setBlendConstants(blendConstants); vk::Viewport viewport(0, 0, width, height); commandBuffer.setViewport(0, 1, &viewport); commandBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), vk::Extent2D(width, height))); quadDrawer->Draw(commandBuffer, imageView, vtx); } const std::vector *VulkanContext::PrepareVMUs() { return vmus->PrepareVMUs(*commandPools[GetCurrentImageIndex()]); } void VulkanContext::DrawVMUs(float scaling) { vmus->DrawVMUs(vk::Extent2D(width, height), scaling); } extern Renderer *renderer; void VulkanContext::PresentFrame(vk::ImageView imageView, vk::Offset2D extent) { NewFrame(); const std::vector *vmuCmdBuffers = nullptr; if (settings.rend.FloatVMUs) vmuCmdBuffers = PrepareVMUs(); BeginRenderPass(); DrawFrame(imageView, extent); if (settings.rend.FloatVMUs) DrawVMUs(gui_get_scaling()); renderer->DrawOSD(false); EndFrame(vmuCmdBuffers); lastFrameView = imageView; lastFrameExtent = extent; } void VulkanContext::PresentLastFrame() { if (lastFrameView) DrawFrame(lastFrameView, lastFrameExtent); } void VulkanContext::Term() { lastFrameView = nullptr; ImGui_ImplVulkan_Shutdown(); gui_term(); if (device && pipelineCache) { std::vector cacheData = device->getPipelineCacheData(*pipelineCache); if (!cacheData.empty()) { std::string cachePath = get_writable_data_path(PipelineCacheFileName); FILE *f = fopen(cachePath.c_str(), "wb"); if (f != nullptr) { (void)fwrite(&cacheData[0], 1, cacheData.size(), f); fclose(f); } } } vmus.reset(); ShaderCompiler::Term(); swapChain.reset(); imageViews.clear(); framebuffers.clear(); renderPass.reset(); quadDrawer.reset(); quadPipeline.reset(); shaderManager.reset(); descriptorPool.reset(); commandBuffers.clear(); commandPools.clear(); imageAcquiredSemaphores.clear(); renderCompleteSemaphores.clear(); drawFences.clear(); allocator.Term(); #ifndef USE_SDL surface.reset(); #endif pipelineCache.reset(); device.reset(); #ifdef VK_DEBUG #ifndef __ANDROID__ debugUtilsMessenger.reset(); #else debugReportCallback.reset(); #endif #endif instance.reset(); #ifdef _WIN32 extern void DestroyMainWindow(); DestroyMainWindow(); #endif } void VulkanContext::DoSwapAutomation() { #ifdef TEST_AUTOMATION extern void dc_exit(); extern bool do_screenshot; if (do_screenshot) { bool supportsBlit = true; vk::FormatProperties properties; physicalDevice.getFormatProperties(colorFormat, &properties); if (!(properties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc)) supportsBlit = false; physicalDevice.getFormatProperties(vk::Format::eR8G8B8A8Unorm, &properties); if (!(properties.linearTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst)) supportsBlit = false; { vk::Image srcImage = device->getSwapchainImagesKHR(*swapChain)[currentImage]; vk::ImageCreateInfo imageCreateInfo(vk::ImageCreateFlags(), vk::ImageType::e2D, vk::Format::eR8G8B8A8Unorm, vk::Extent3D(width, height, 1), 1, 1, vk::SampleCountFlagBits::e1, vk::ImageTiling::eLinear, vk::ImageUsageFlagBits::eTransferDst, vk::SharingMode::eExclusive, 0, nullptr, vk::ImageLayout::eUndefined); vk::UniqueImage dstImage = device->createImageUnique(imageCreateInfo); vk::MemoryRequirements memReq = device->getImageMemoryRequirements(*dstImage); u32 memoryType = findMemoryType(physicalDevice.getMemoryProperties(), memReq.memoryTypeBits, vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible); vk::UniqueDeviceMemory deviceMemory = device->allocateMemoryUnique(vk::MemoryAllocateInfo(memReq.size, memoryType)); device->bindImageMemory(dstImage.get(), *deviceMemory, 0); vk::UniqueCommandBuffer cmdBuffer = std::move(device->allocateCommandBuffersUnique( vk::CommandBufferAllocateInfo(*commandPools.back(), vk::CommandBufferLevel::ePrimary, 1)).front()); cmdBuffer->begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit)); // Transition destination image to transfer destination layout vk::ImageMemoryBarrier barrier(vk::AccessFlags(), vk::AccessFlagBits::eTransferWrite, vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferDstOptimal, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, *dstImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1)); cmdBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eTransfer, vk::DependencyFlags(), nullptr, nullptr, barrier); // Transition swapchain image from present to transfer source layout barrier = vk::ImageMemoryBarrier(vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eTransferRead, vk::ImageLayout::ePresentSrcKHR, vk::ImageLayout::eTransferSrcOptimal, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, srcImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1)); cmdBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eTransfer, vk::DependencyFlags(), nullptr, nullptr, barrier); if (supportsBlit) { vk::Offset3D blitSize(width, height, 1); vk::ImageBlit imageBlit( vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), { vk::Offset3D(), blitSize }, vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), { vk::Offset3D(), blitSize }); cmdBuffer->blitImage(srcImage, vk::ImageLayout::eTransferSrcOptimal, *dstImage, vk::ImageLayout::eTransferDstOptimal, imageBlit, vk::Filter::eNearest); } else { vk::ImageCopy imageCopy(vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), vk::Offset3D(), vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), vk::Offset3D(), { width, height, 1 }); cmdBuffer->copyImage(srcImage, vk::ImageLayout::eTransferSrcOptimal, *dstImage, vk::ImageLayout::eTransferDstOptimal, imageCopy); } // Transition destination image to general layout, which is the required layout for mapping the image memory later on barrier = vk::ImageMemoryBarrier(vk::AccessFlagBits::eTransferWrite, vk::AccessFlagBits::eMemoryRead, vk::ImageLayout::eTransferDstOptimal, vk::ImageLayout::eGeneral, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, *dstImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1)); cmdBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eTransfer, vk::DependencyFlags(), nullptr, nullptr, barrier); // Transition back the swap chain image after the blit is done barrier = vk::ImageMemoryBarrier(vk::AccessFlagBits::eTransferRead, vk::AccessFlagBits::eMemoryRead, vk::ImageLayout::eTransferSrcOptimal, vk::ImageLayout::ePresentSrcKHR, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, srcImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1)); cmdBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eTransfer, vk::DependencyFlags(), nullptr, nullptr, barrier); cmdBuffer->end(); vk::PipelineStageFlags wait_stage = vk::PipelineStageFlagBits::eColorAttachmentOutput; vk::SubmitInfo submitInfo(0, nullptr, nullptr, 1, &cmdBuffer.get(), 0, nullptr); graphicsQueue.submit(1, &submitInfo, nullptr); graphicsQueue.waitIdle(); vk::ImageSubresource subresource(vk::ImageAspectFlagBits::eColor, 0, 0); vk::SubresourceLayout subresourceLayout; device->getImageSubresourceLayout(*dstImage, &subresource, &subresourceLayout); u8* img = (u8*)device->mapMemory(*deviceMemory, 0, VK_WHOLE_SIZE); img += subresourceLayout.offset; u8 *end = img + screen_width * screen_height * 4; if (!supportsBlit && colorFormat == vk::Format::eB8G8R8A8Unorm) { for (u8 *p = img; p < end; p += 4) { u8 b = p[0]; p[0] = p[2]; p[2] = b; p[3] = 0xff; } } else { for (u8 *p = img; p < end; p += 4) p[3] = 0xff; } dump_screenshot(img, screen_width, screen_height, true, subresourceLayout.rowPitch, false); device->unmapMemory(*deviceMemory); } dc_exit(); Term(); exit(0); } #endif }