/*
Created on: Oct 2, 2019
Copyright 2019 flyinghead
This file is part of Flycast.
Flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
Flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Flycast. If not, see .
*/
#include "vulkan_context.h"
#include "vulkan_renderer.h"
#include "imgui.h"
#include "imgui_impl_vulkan.h"
#include "ui/gui.h"
#ifdef USE_SDL
#include
#include
#endif
#include "compiler.h"
#include "utils.h"
#include "emulator.h"
#include "oslib/oslib.h"
#include "vulkan_driver.h"
#include "rend/transform_matrix.h"
#if defined(__ANDROID__) && HOST_CPU == CPU_ARM64
#include "adreno.h"
#endif
#if VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1
VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE
#endif
#include
#include
#include
void ReInitOSD();
VulkanContext *VulkanContext::contextInstance;
#ifdef VK_DEBUG
#ifndef __ANDROID__
VKAPI_ATTR static VkBool32 VKAPI_CALL debugUtilsMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageTypes,
VkDebugUtilsMessengerCallbackDataEXT const * pCallbackData, void * /*pUserData*/)
{
std::string msg = vk::to_string(static_cast(messageSeverity)) + ": "
+ vk::to_string(static_cast(messageTypes)) + ": ";
if (pCallbackData->pMessageIdName)
msg += std::string("messageIDName=") + pCallbackData->pMessageIdName + " ";
// msg += std::string("messageIdNumber=") + pCallbackData->messageIdNumber + " ";
if (pCallbackData->pMessage)
msg += pCallbackData->pMessage;
/* TODO
if (0 < pCallbackData->queueLabelCount)
{
std::cerr << "\t" << "Queue Labels:\n";
for (uint8_t i = 0; i < pCallbackData->queueLabelCount; i++)
{
std::cerr << "\t\t" << "lableName = <" << pCallbackData->pQueueLabels[i].pLabelName << ">\n";
}
}
if (0 < pCallbackData->cmdBufLabelCount)
{
std::cerr << "\t" << "CommandBuffer Labels:\n";
for (uint8_t i = 0; i < pCallbackData->cmdBufLabelCount; i++)
{
std::cerr << "\t\t" << "labelName = <" << pCallbackData->pCmdBufLabels[i].pLabelName << ">\n";
}
}
if (0 < pCallbackData->objectCount)
{
std::cerr << "\t" << "Objects:\n";
for (uint8_t i = 0; i < pCallbackData->objectCount; i++)
{
std::cerr << "\t\t" << "Object " << i << "\n";
std::cerr << "\t\t\t" << "objectType = " << vk::to_string(static_cast(pCallbackData->pObjects[i].objectType)) << "\n";
std::cerr << "\t\t\t" << "objectHandle = " << pCallbackData->pObjects[i].objectHandle << "\n";
if (pCallbackData->pObjects[i].pObjectName)
{
std::cerr << "\t\t\t" << "objectName = <" << pCallbackData->pObjects[i].pObjectName << ">\n";
}
}
}
*/
switch (static_cast(messageSeverity))
{
case vk::DebugUtilsMessageSeverityFlagBitsEXT::eVerbose:
DEBUG_LOG(RENDERER, "%s", msg.c_str());
break;
case vk::DebugUtilsMessageSeverityFlagBitsEXT::eInfo:
INFO_LOG(RENDERER, "%s", msg.c_str());
break;
case vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning:
WARN_LOG(RENDERER, "%s", msg.c_str());
break;
case vk::DebugUtilsMessageSeverityFlagBitsEXT::eError:
default:
ERROR_LOG(RENDERER, "%s", msg.c_str());
break;
}
return VK_FALSE;
}
#else
#if HOST_CPU == CPU_ARM
__attribute__((pcs("aapcs-vfp")))
#endif
static VkBool32 debugReportCallback(VkDebugReportFlagsEXT flags, VkDebugReportObjectTypeEXT objectType, uint64_t object, size_t location, int32_t messageCode,
const char* pLayerPrefix, const char* pMessage, void* /*pUserData*/)
{
std::string msg = pMessage;
if (flags & VK_DEBUG_REPORT_ERROR_BIT_EXT)
ERROR_LOG(RENDERER, "%s", msg.c_str());
else if (flags & VK_DEBUG_REPORT_WARNING_BIT_EXT)
WARN_LOG(RENDERER, "%s", msg.c_str());
else if (flags & (VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT | VK_DEBUG_REPORT_INFORMATION_BIT_EXT))
NOTICE_LOG(RENDERER, "%s", msg.c_str());
else
NOTICE_LOG(RENDERER, "(d) %s", msg.c_str());
return VK_FALSE;
}
#endif
static void CheckImGuiResult(VkResult err)
{
if (err != VK_SUCCESS)
WARN_LOG(RENDERER, "ImGui Vulkan error %d", err);
}
#endif
bool VulkanContext::InitInstance(const char** extensions, uint32_t extensions_count)
{
try
{
#if VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1
PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr = nullptr;
#if defined(__ANDROID__) && HOST_CPU == CPU_ARM64
vkGetInstanceProcAddr = loadVulkanDriver();
#else
static vk::DynamicLoader dl;
vkGetInstanceProcAddr = dl.getProcAddress("vkGetInstanceProcAddr");
#endif
if (vkGetInstanceProcAddr == nullptr) {
ERROR_LOG(RENDERER, "Vulkan entry point vkGetInstanceProcAddr not found");
return false;
}
VULKAN_HPP_DEFAULT_DISPATCHER.init(vkGetInstanceProcAddr);
#endif
bool vulkan11 = false;
if (VULKAN_HPP_DEFAULT_DISPATCHER.vkEnumerateInstanceVersion != nullptr)
{
const u32 apiVersion = vk::enumerateInstanceVersion();
vulkan11 = (apiVersion >= VK_API_VERSION_1_1);
}
vk::ApplicationInfo applicationInfo("Flycast", 1, "Flycast", 1, vulkan11 ? VK_API_VERSION_1_1 : VK_API_VERSION_1_0);
std::vector vext;
for (uint32_t i = 0; i < extensions_count; i++)
vext.push_back(extensions[i]);
std::vector layer_names;
//layer_names.push_back("VK_LAYER_ARM_AGA");
#ifdef VK_DEBUG
#ifndef __ANDROID__
vext.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
vext.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
layer_names.push_back("VK_LAYER_KHRONOS_validation");
#else
vext.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME); // NDK <= 19?
layer_names.push_back("VK_LAYER_GOOGLE_threading");
layer_names.push_back("VK_LAYER_LUNARG_parameter_validation");
layer_names.push_back("VK_LAYER_LUNARG_core_validation");
layer_names.push_back("VK_LAYER_GOOGLE_unique_objects");
#endif
#endif
vk::InstanceCreateInfo instanceCreateInfo({}, &applicationInfo, layer_names, vext);
// create a UniqueInstance
instance = vk::createInstanceUnique(instanceCreateInfo);
#if VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1
VULKAN_HPP_DEFAULT_DISPATCHER.init(*instance);
#endif
#ifdef VK_DEBUG
#ifndef __ANDROID__
vk::DebugUtilsMessageSeverityFlagsEXT severityFlags(vk::DebugUtilsMessageSeverityFlagBitsEXT::eInfo
| vk::DebugUtilsMessageSeverityFlagBitsEXT::eWarning | vk::DebugUtilsMessageSeverityFlagBitsEXT::eError);
vk::DebugUtilsMessageTypeFlagsEXT messageTypeFlags(vk::DebugUtilsMessageTypeFlagBitsEXT::eGeneral
| vk::DebugUtilsMessageTypeFlagBitsEXT::ePerformance | vk::DebugUtilsMessageTypeFlagBitsEXT::eValidation);
debugUtilsMessenger = instance->createDebugUtilsMessengerEXTUnique(vk::DebugUtilsMessengerCreateInfoEXT({}, severityFlags, messageTypeFlags, debugUtilsMessengerCallback));
#else
vk::DebugReportCallbackCreateInfoEXT createInfo(vk::DebugReportFlagBitsEXT::eDebug | vk::DebugReportFlagBitsEXT::eInformation
| vk::DebugReportFlagBitsEXT::ePerformanceWarning | vk::DebugReportFlagBitsEXT::eWarning
| vk::DebugReportFlagBitsEXT::eError, &::debugReportCallback);
debugReportCallback = instance->createDebugReportCallbackEXTUnique(createInfo);
#endif
#endif
auto devices = instance->enumeratePhysicalDevices();
if (devices.empty())
{
ERROR_LOG(RENDERER, "Vulkan error: no physical devices found");
return false;
}
// The order of physical-devices provided by the driver should be somewhat preserved with stable-partitions/stable-sorts
// Prefer GPUs that support optimal R5G5B5/R5G6B5A1/R4G4B4A4
const auto supportsOptimalFormat = [](vk::Format format)
{
return [format](const vk::PhysicalDevice& physicalDevice) -> bool
{
const vk::FormatProperties formatProperties = physicalDevice.getFormatProperties(format);
return (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage)
&& (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst)
&& (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc);
};
};
std::stable_partition(devices.begin(), devices.end(), supportsOptimalFormat(vk::Format::eR5G6B5UnormPack16));
std::stable_partition(devices.begin(), devices.end(), supportsOptimalFormat(vk::Format::eR5G5B5A1UnormPack16));
std::stable_partition(devices.begin(), devices.end(), supportsOptimalFormat(vk::Format::eR4G4B4A4UnormPack16));
// Prefer GPUs that support fragmentStoresAndAtomics
std::stable_partition(
devices.begin(), devices.end(),
[](const vk::PhysicalDevice& physicalDevice) -> bool
{
return !!physicalDevice.getFeatures().fragmentStoresAndAtomics;
}
);
// Finally, prefer Discrete GPUs
std::stable_partition(
devices.begin(), devices.end(),
[](const vk::PhysicalDevice& physicalDevice) -> bool
{
return physicalDevice.getProperties().deviceType == vk::PhysicalDeviceType::eDiscreteGpu;
}
);
// Top of the device-list is the _most_ qualified GPU
physicalDevice = devices.front();
vk::PhysicalDeviceProperties properties = physicalDevice.getProperties();
if (vulkan11 && properties.apiVersion >= VK_API_VERSION_1_1)
{
const auto properties2 = physicalDevice.getProperties2();
properties = properties2.get().properties;
maxMemoryAllocationSize = properties2.get().maxMemoryAllocationSize;
if (maxMemoryAllocationSize == 0)
// Happens on Windows 7 with NVidia 376.33, ok on 441.66
maxMemoryAllocationSize = 0xFFFFFFFFu;
}
uniformBufferAlignment = properties.limits.minUniformBufferOffsetAlignment;
storageBufferAlignment = properties.limits.minStorageBufferOffsetAlignment;
maxSamplerAnisotropy = properties.limits.maxSamplerAnisotropy;
vendorID = properties.vendorID;
NOTICE_LOG(RENDERER, "Vulkan API %s. Device %s", vulkan11 ? "1.1" : "1.0", properties.deviceName.data());
vk::FormatProperties formatProperties = physicalDevice.getFormatProperties(vk::Format::eR5G5B5A1UnormPack16);
if ((formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage)
&& (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst)
&& (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc))
optimalTilingSupported1555 = true;
else
NOTICE_LOG(RENDERER, "eR5G5B5A1UnormPack16 not supported for optimal tiling");
formatProperties = physicalDevice.getFormatProperties(vk::Format::eR5G6B5UnormPack16);
if ((formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage)
&& (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst)
&& (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc))
optimalTilingSupported565 = true;
else
NOTICE_LOG(RENDERER, "eR5G6B5UnormPack16 not supported for optimal tiling");
formatProperties = physicalDevice.getFormatProperties(vk::Format::eR4G4B4A4UnormPack16);
if ((formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eSampledImage)
&& (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst)
&& (formatProperties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc))
optimalTilingSupported4444 = true;
else
NOTICE_LOG(RENDERER, "eR4G4B4A4UnormPack16 not supported for optimal tiling");
ShaderCompiler::Init();
return true;
}
catch (const vk::SystemError& err)
{
ERROR_LOG(RENDERER, "Vulkan error: %s", err.what());
}
catch (const std::exception& err)
{
ERROR_LOG(RENDERER, "Vulkan instance init failed: %s", err.what());
}
catch (...)
{
ERROR_LOG(RENDERER, "Unknown error");
}
return false;
}
void VulkanContext::InitImgui()
{
VulkanDriver *vkDriver = dynamic_cast(imguiDriver.get());
if (vkDriver == nullptr) {
imguiDriver.reset();
imguiDriver = std::unique_ptr(new VulkanDriver());
}
else {
vkDriver->reset();
}
ImGui_ImplVulkan_InitInfo initInfo{};
initInfo.Instance = (VkInstance)*instance;
initInfo.PhysicalDevice = (VkPhysicalDevice)physicalDevice;
initInfo.Device = (VkDevice)*device;
initInfo.QueueFamily = graphicsQueueIndex;
initInfo.Queue = (VkQueue)graphicsQueue;
initInfo.PipelineCache = (VkPipelineCache)*pipelineCache;
initInfo.DescriptorPool = (VkDescriptorPool)*descriptorPool;
initInfo.RenderPass = (VkRenderPass)*renderPass;
initInfo.MinImageCount = 2;
initInfo.ImageCount = GetSwapChainSize();
#ifdef VK_DEBUG
initInfo.CheckVkResultFn = &CheckImGuiResult;
#endif
#if VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1
ImGui_ImplVulkan_LoadFunctions([](const char *function_name, void *) {
return VULKAN_HPP_DEFAULT_DISPATCHER.vkGetInstanceProcAddr((VkInstance) *contextInstance->instance, function_name);
});
#endif
if (!ImGui_ImplVulkan_Init(&initInfo))
{
die("ImGui initialization failed");
}
}
bool VulkanContext::InitDevice()
{
if (!instance)
return false;
try
{
const vk::PhysicalDeviceProperties physicalDeviceProperties = physicalDevice.getProperties();
std::vector queueFamilyProperties = physicalDevice.getQueueFamilyProperties();
#ifdef VK_DEBUG
std::for_each(queueFamilyProperties.begin(), queueFamilyProperties.end(),
[](vk::QueueFamilyProperties const& qfp) { INFO_LOG(RENDERER, "Queue Family: count %d flags %s minImgGranularity %d x %d x %d",
qfp.queueCount, vk::to_string(qfp.queueFlags).c_str(), qfp.minImageTransferGranularity.width, qfp.minImageTransferGranularity.height,
qfp.minImageTransferGranularity.depth); });
#endif
// get the first index into queueFamiliyProperties which supports graphics
graphicsQueueIndex = (u32)std::distance(queueFamilyProperties.begin(),
std::find_if(queueFamilyProperties.begin(), queueFamilyProperties.end(),
[](vk::QueueFamilyProperties const& qfp) { return qfp.queueFlags & vk::QueueFlagBits::eGraphics; }));
verify(graphicsQueueIndex < queueFamilyProperties.size());
// determine a queueFamilyIndex that supports present
// first check if the graphicsQueueFamilyIndex is good enough
presentQueueIndex = physicalDevice.getSurfaceSupportKHR(graphicsQueueIndex, GetSurface()) ? graphicsQueueIndex : queueFamilyProperties.size();
if (presentQueueIndex == queueFamilyProperties.size())
{
// the graphicsQueueFamilyIndex doesn't support present -> look for an other family index that supports both graphics and present
for (size_t i = 0; i < queueFamilyProperties.size(); i++)
{
if ((queueFamilyProperties[i].queueFlags & vk::QueueFlagBits::eGraphics) && physicalDevice.getSurfaceSupportKHR((u32)i, GetSurface()))
{
graphicsQueueIndex = (u32)i;
presentQueueIndex = (u32)i;
break;
}
}
if (presentQueueIndex == queueFamilyProperties.size())
{
// there's nothing like a single family index that supports both graphics and present -> look for an other family index that supports present
DEBUG_LOG(RENDERER, "Using separate Graphics and Present queue families");
for (size_t i = 0; i < queueFamilyProperties.size(); i++)
{
if (physicalDevice.getSurfaceSupportKHR((u32)i, GetSurface()))
{
presentQueueIndex = (u32)i;
break;
}
}
}
}
if (graphicsQueueIndex == queueFamilyProperties.size() || presentQueueIndex == queueFamilyProperties.size())
die("Could not find a queue for graphics or present -> terminating");
if (graphicsQueueIndex == presentQueueIndex)
DEBUG_LOG(RENDERER, "Using Graphics+Present queue family");
else
DEBUG_LOG(RENDERER, "Using distinct Graphics and Present queue families");
std::set supportedExtensions;
const auto deviceExtensionProperties = physicalDevice.enumerateDeviceExtensionProperties();
for (const auto& property : deviceExtensionProperties)
{
supportedExtensions.insert(property.extensionName);
}
std::vector enabledExtensions;
const auto tryAddDeviceExtension = [&supportedExtensions = std::as_const(supportedExtensions), &enabledExtensions]
(std::string_view extensionName) -> bool
{
if (supportedExtensions.count(extensionName.data()))
{
enabledExtensions.push_back(extensionName.data());
NOTICE_LOG(RENDERER, "Device extension enabled: %s", extensionName.data());
return true;
}
NOTICE_LOG(RENDERER, "Device extension unavailable: %s", extensionName.data());
return false;
};
// Required swapchain extension
tryAddDeviceExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
#ifdef VK_ENABLE_BETA_EXTENSIONS
tryAddDeviceExtension(VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME);
#endif
#ifdef VK_USE_PLATFORM_METAL_EXT
tryAddDeviceExtension(VK_EXT_METAL_OBJECTS_EXTENSION_NAME);
#endif
#ifdef VK_DEBUG
tryAddDeviceExtension(VK_EXT_DEBUG_MARKER_EXTENSION_NAME);
#endif
// Enable VK_KHR_dedicated_allocation if available
if (physicalDeviceProperties.apiVersion >= VK_API_VERSION_1_1)
{
// Core in Vulkan 1.1
dedicatedAllocationSupported = true;
}
else
{
const bool getMemReq2Supported = tryAddDeviceExtension(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
if (getMemReq2Supported)
{
dedicatedAllocationSupported = tryAddDeviceExtension(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
}
}
// Check for VK_KHR_get_physical_device_properties2
// Core as of Vulkan 1.1
const bool getPhysicalDeviceProperties2Supported =
(physicalDeviceProperties.apiVersion >= VK_API_VERSION_1_1)
? true : tryAddDeviceExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
if (getPhysicalDeviceProperties2Supported)
{
// Enable VK_EXT_provoking_vertex if available
provokingVertexSupported = tryAddDeviceExtension(VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME);
}
// Get device features
vk::PhysicalDeviceFeatures2 featuresChain{};
vk::PhysicalDeviceFeatures& features = featuresChain.features;
vk::PhysicalDeviceProvokingVertexFeaturesEXT provokingVertexFeatures{};
if (provokingVertexSupported)
{
featuresChain.pNext = &provokingVertexFeatures;
}
// Get the physical device's features
if (getPhysicalDeviceProperties2Supported && featuresChain.pNext)
{
physicalDevice.getFeatures2(&featuresChain);
}
else
{
physicalDevice.getFeatures(&features);
}
if (provokingVertexSupported)
{
provokingVertexSupported &= provokingVertexFeatures.provokingVertexLast;
}
samplerAnisotropy = features.samplerAnisotropy;
fragmentStoresAndAtomics = features.fragmentStoresAndAtomics;
if (!fragmentStoresAndAtomics)
NOTICE_LOG(RENDERER, "Fragment stores & atomic not supported: no per-pixel sorting");
// create a UniqueDevice
float queuePriority = 1.0f;
vk::DeviceQueueCreateInfo deviceQueueCreateInfo(vk::DeviceQueueCreateFlags(), graphicsQueueIndex, 1, &queuePriority);
if (getPhysicalDeviceProperties2Supported)
{
vk::DeviceCreateInfo deviceCreateInfo(vk::DeviceCreateFlags(), deviceQueueCreateInfo,
nullptr, enabledExtensions);
deviceCreateInfo.pNext = &featuresChain;
device = physicalDevice.createDeviceUnique(deviceCreateInfo);
}
else
{
device = physicalDevice.createDeviceUnique(vk::DeviceCreateInfo(vk::DeviceCreateFlags(), deviceQueueCreateInfo,
nullptr, enabledExtensions, &features));
}
#if VULKAN_HPP_DISPATCH_LOADER_DYNAMIC == 1
VULKAN_HPP_DEFAULT_DISPATCHER.init(*device);
#endif
// Queues
graphicsQueue = device->getQueue(graphicsQueueIndex, 0);
presentQueue = device->getQueue(presentQueueIndex, 0);
// Descriptor pool
std::array pool_sizes =
{
vk::DescriptorPoolSize(vk::DescriptorType::eSampler, 2),
vk::DescriptorPoolSize(vk::DescriptorType::eCombinedImageSampler, 40000),
vk::DescriptorPoolSize(vk::DescriptorType::eSampledImage, 2),
vk::DescriptorPoolSize(vk::DescriptorType::eStorageImage, 12),
vk::DescriptorPoolSize(vk::DescriptorType::eUniformTexelBuffer, 2),
vk::DescriptorPoolSize(vk::DescriptorType::eStorageTexelBuffer, 2),
vk::DescriptorPoolSize(vk::DescriptorType::eUniformBuffer, 80000),
vk::DescriptorPoolSize(vk::DescriptorType::eStorageBuffer, 100),
vk::DescriptorPoolSize(vk::DescriptorType::eUniformBufferDynamic, 2),
vk::DescriptorPoolSize(vk::DescriptorType::eStorageBufferDynamic, 2),
vk::DescriptorPoolSize(vk::DescriptorType::eInputAttachment, 100)
};
descriptorPool = device->createDescriptorPoolUnique(vk::DescriptorPoolCreateInfo(vk::DescriptorPoolCreateFlagBits::eFreeDescriptorSet,
40000, pool_sizes));
std::string cachePath = hostfs::getShaderCachePath("vulkan_pipeline.cache");
FILE *f = nowide::fopen(cachePath.c_str(), "rb");
if (f == nullptr)
pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo());
else
{
std::fseek(f, 0, SEEK_END);
size_t cacheSize = std::ftell(f);
std::fseek(f, 0, SEEK_SET);
u8 *cacheData = new u8[cacheSize];
if (std::fread(cacheData, 1, cacheSize, f) != cacheSize)
cacheSize = 0;
std::fclose(f);
try {
pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo(vk::PipelineCacheCreateFlags(), cacheSize, cacheData));
INFO_LOG(RENDERER, "Vulkan pipeline cache loaded from %s: %zd bytes", cachePath.c_str(), cacheSize);
}
catch (const vk::SystemError& err) {
WARN_LOG(RENDERER, "Error loading pipeline cache: %s", err.what());
pipelineCache = device->createPipelineCacheUnique(vk::PipelineCacheCreateInfo());
}
delete [] cacheData;
}
allocator.Init(physicalDevice, *device, *instance);
shaderManager = std::make_unique();
quadPipeline = std::make_unique(true, false);
quadPipelineWithAlpha = std::make_unique(false, false);
quadDrawer = std::make_unique();
quadRotatePipeline = std::make_unique(true, true);
quadRotateDrawer = std::make_unique();
vk::PhysicalDeviceProperties props = physicalDevice.getProperties();
driverName = (const char *)props.deviceName;
#ifdef __APPLE__
driverVersion = std::to_string(VK_API_VERSION_MAJOR(props.apiVersion)) + "."
+ std::to_string(VK_API_VERSION_MINOR(props.apiVersion)) + "."
+ std::to_string(VK_API_VERSION_PATCH(props.apiVersion)) + " MoltenVK-"
// driverVersion = MoltenVK version, not using Vulkan apiVersion encoding
+ std::to_string(props.driverVersion / 10000) + "."
+ std::to_string((props.driverVersion % 10000) / 100) + "."
+ std::to_string(props.driverVersion % 100);
#else
driverVersion = std::to_string(VK_API_VERSION_MAJOR(props.driverVersion)) + "."
+ std::to_string(VK_API_VERSION_MINOR(props.driverVersion)) + "."
+ std::to_string(VK_API_VERSION_PATCH(props.driverVersion));
#endif
CreateSwapChain();
return true;
}
catch (const vk::SystemError& err)
{
ERROR_LOG(RENDERER, "Vulkan error: %s", err.what());
}
catch (const InvalidVulkanContext& err)
{
}
catch (...)
{
ERROR_LOG(RENDERER, "Unknown error");
}
return false;
}
void VulkanContext::CreateSwapChain()
{
try
{
device->waitIdle();
if (!drawFences.empty())
{
std::vector allFences = vk::uniqueToRaw(drawFences);
vk::Result res = device->waitForFences(allFences, true, UINT64_MAX);
if (res != vk::Result::eSuccess)
WARN_LOG(RENDERER, "VulkanContext::CreateSwapChain: waitForFences failed %d", (int)res);
}
inFlightObjects.clear();
overlay->Term();
framebuffers.clear();
drawFences.clear();
imageAcquiredSemaphores.clear();
renderCompleteSemaphores.clear();
commandBuffers.clear();
commandPools.clear();
for (auto& img : imageViews)
img.reset();
// Determine surface format and color-space
std::vector surfaceFormats = physicalDevice.getSurfaceFormatsKHR(GetSurface());
// Prefer a non-sRGB image format
std::stable_partition(surfaceFormats.begin(), surfaceFormats.end(),
[](const vk::SurfaceFormatKHR& surfaceFormat) -> bool
{
return std::string_view("SRGB").compare(vk::componentNumericFormat(surfaceFormat.format, 0)) != 0;
}
);
// Prefer an sRGB presentation color-space
std::stable_partition(surfaceFormats.begin(), surfaceFormats.end(),
[](const vk::SurfaceFormatKHR& surfaceFormat) -> bool
{
return surfaceFormat.colorSpace == vk::ColorSpaceKHR::eSrgbNonlinear;
}
);
// Top of the list is the best candidate surface format/color-space
const vk::SurfaceFormatKHR& targetSurfaceFormat = surfaceFormats[0];
presentFormat = targetSurfaceFormat.format;
int tries = 0;
do {
vk::SurfaceCapabilitiesKHR surfaceCapabilities = physicalDevice.getSurfaceCapabilitiesKHR(GetSurface());
DEBUG_LOG(RENDERER, "Surface capabilities: %d x %d, %s, image count: %d - %d", surfaceCapabilities.currentExtent.width, surfaceCapabilities.currentExtent.height,
vk::to_string(surfaceCapabilities.currentTransform).c_str(), surfaceCapabilities.minImageCount, surfaceCapabilities.maxImageCount);
vk::Extent2D swapchainExtent;
if (surfaceCapabilities.currentExtent.width == std::numeric_limits::max())
{
// If the surface size is undefined, use the current display size
swapchainExtent.width = std::min(std::max((u32)settings.display.width, surfaceCapabilities.minImageExtent.width), surfaceCapabilities.maxImageExtent.width);
swapchainExtent.height = std::min(std::max((u32)settings.display.height, surfaceCapabilities.minImageExtent.height), surfaceCapabilities.maxImageExtent.height);
}
else
{
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfaceCapabilities.currentExtent;
}
SetWindowSize(swapchainExtent.width, swapchainExtent.height);
resized = false;
if (!IsValid())
throw InvalidVulkanContext();
// The FIFO present mode is guaranteed by the spec to be supported
vk::PresentModeKHR swapchainPresentMode = vk::PresentModeKHR::eFifo;
// Use FIFO on mobile, prefer Mailbox on desktop
for (auto& presentMode : physicalDevice.getSurfacePresentModesKHR(GetSurface()))
{
#if HOST_CPU != CPU_ARM && HOST_CPU != CPU_ARM64 && !defined(__ANDROID__)
if (swapOnVSync && presentMode == vk::PresentModeKHR::eMailbox
&& vendorID != VENDOR_ATI && vendorID != VENDOR_AMD)
{
INFO_LOG(RENDERER, "Using mailbox present mode");
swapchainPresentMode = vk::PresentModeKHR::eMailbox;
break;
}
#endif
if (!swapOnVSync && presentMode == vk::PresentModeKHR::eImmediate)
{
INFO_LOG(RENDERER, "Using immediate present mode");
swapchainPresentMode = vk::PresentModeKHR::eImmediate;
break;
}
}
if (swapOnVSync && config::DupeFrames && settings.display.refreshRate > 60.f)
swapInterval = settings.display.refreshRate / 60.f;
else
swapInterval = 1;
vk::SurfaceTransformFlagBitsKHR preTransform = (surfaceCapabilities.supportedTransforms & vk::SurfaceTransformFlagBitsKHR::eIdentity) ? vk::SurfaceTransformFlagBitsKHR::eIdentity : surfaceCapabilities.currentTransform;
u32 imageCount = std::max(3u * swapInterval, surfaceCapabilities.minImageCount);
if (surfaceCapabilities.maxImageCount != 0)
imageCount = std::min(imageCount, surfaceCapabilities.maxImageCount);
vk::ImageUsageFlags usage = vk::ImageUsageFlagBits::eColorAttachment;
#if defined(TEST_AUTOMATION) || (defined(VIDEO_ROUTING) && defined(TARGET_MAC))
// for final screenshot or Syphon
usage |= vk::ImageUsageFlagBits::eTransferSrc;
#endif
vk::SwapchainCreateInfoKHR swapChainCreateInfo(vk::SwapchainCreateFlagsKHR(), GetSurface(), imageCount, targetSurfaceFormat.format, targetSurfaceFormat.colorSpace,
swapchainExtent, 1, usage, vk::SharingMode::eExclusive, 0, nullptr, preTransform, vk::CompositeAlphaFlagBitsKHR::eOpaque, swapchainPresentMode, true, nullptr);
u32 queueFamilyIndices[2] = { graphicsQueueIndex, presentQueueIndex };
if (graphicsQueueIndex != presentQueueIndex)
{
// If the graphics and present queues are from different queue families, we either have to explicitly transfer ownership of images between
// the queues, or we have to create the swapchain with imageSharingMode as VK_SHARING_MODE_CONCURRENT
swapChainCreateInfo.imageSharingMode = vk::SharingMode::eConcurrent;
swapChainCreateInfo.queueFamilyIndexCount = 2;
swapChainCreateInfo.pQueueFamilyIndices = queueFamilyIndices;
}
swapChain.reset();
try {
swapChain = device->createSwapchainKHRUnique(swapChainCreateInfo);
}
catch (const vk::SystemError& err)
{
DEBUG_LOG(RENDERER, "createSwapchainKHRUnique failed: %s", err.what());
if (++tries > 10)
throw InvalidVulkanContext();
}
}
while (!swapChain);
std::vector swapChainImages = device->getSwapchainImagesKHR(*swapChain);
imageViews.resize(swapChainImages.size());
commandPools.reserve(swapChainImages.size());
commandBuffers.reserve(swapChainImages.size());
vk::ComponentMapping componentMapping(vk::ComponentSwizzle::eR, vk::ComponentSwizzle::eG, vk::ComponentSwizzle::eB, vk::ComponentSwizzle::eA);
vk::ImageSubresourceRange subResourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1);
u32 imageIdx = 0;
for (auto image : swapChainImages)
{
vk::ImageViewCreateInfo imageViewCreateInfo(vk::ImageViewCreateFlags(), image, vk::ImageViewType::e2D, presentFormat, componentMapping, subResourceRange);
imageViews[imageIdx++] = device->createImageViewUnique(imageViewCreateInfo);
// create a UniqueCommandPool to allocate a CommandBuffer from
commandPools.push_back(device->createCommandPoolUnique(vk::CommandPoolCreateInfo(vk::CommandPoolCreateFlagBits::eTransient, graphicsQueueIndex)));
// allocate a CommandBuffer from the CommandPool
commandBuffers.push_back(std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(*commandPools.back(), vk::CommandBufferLevel::ePrimary, 1)).front()));
}
depthFormat = findDepthFormat(physicalDevice);
// Render pass
vk::AttachmentDescription attachmentDescription = vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), presentFormat, vk::SampleCountFlagBits::e1,
vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout::eUndefined, vk::ImageLayout::ePresentSrcKHR);
vk::AttachmentReference colorReference(0, vk::ImageLayout::eColorAttachmentOptimal);
vk::SubpassDescription subpass(vk::SubpassDescriptionFlags(), vk::PipelineBindPoint::eGraphics, nullptr, colorReference,
nullptr, nullptr);
renderPass = device->createRenderPassUnique(vk::RenderPassCreateInfo(vk::RenderPassCreateFlags(),
attachmentDescription, subpass));
// Framebuffers, fences, semaphores
framebuffers.reserve(imageViews.size());
drawFences.reserve(imageViews.size());
for (auto const& view : imageViews)
{
framebuffers.push_back(device->createFramebufferUnique(vk::FramebufferCreateInfo(vk::FramebufferCreateFlags(), *renderPass,
view.get(), width, height, 1)));
drawFences.push_back(device->createFenceUnique(vk::FenceCreateInfo(vk::FenceCreateFlagBits::eSignaled)));
}
renderCompleteSemaphores.reserve(imageViews.size() + 1);
imageAcquiredSemaphores.reserve(imageViews.size() + 1);
for (unsigned i = 0; i < imageViews.size() + 1; i++)
{
renderCompleteSemaphores.push_back(device->createSemaphoreUnique(vk::SemaphoreCreateInfo()));
imageAcquiredSemaphores.push_back(device->createSemaphoreUnique(vk::SemaphoreCreateInfo()));
}
inFlightObjects.resize(imageViews.size());
currentSemaphore = 0;
quadPipeline->Init(shaderManager.get(), *renderPass, 0);
quadPipelineWithAlpha->Init(shaderManager.get(), *renderPass, 0);
quadDrawer->Init(quadPipeline.get());
quadRotatePipeline->Init(shaderManager.get(), *renderPass, 0);
quadRotateDrawer->Init(quadRotatePipeline.get());
overlay->Init(quadPipelineWithAlpha.get());
InitImgui();
currentImage = GetSwapChainSize() - 1;
ReInitOSD();
INFO_LOG(RENDERER, "Vulkan swap chain created: %d x %d, swap chain size %d", width, height, (int)imageViews.size());
}
catch (const vk::SystemError& err)
{
ERROR_LOG(RENDERER, "Vulkan error: %s", err.what());
SetWindowSize(0, 0);
throw InvalidVulkanContext();
}
}
bool VulkanContext::init()
{
GraphicsContext::instance = this;
std::vector extensions;
extensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
#if defined(USE_SDL)
if (!sdl_recreate_window(SDL_WINDOW_VULKAN))
return false;
uint32_t extensionsCount = 0;
SDL_Vulkan_GetInstanceExtensions((SDL_Window *)window, &extensionsCount, NULL);
extensions.resize(extensionsCount + extensions.size());
SDL_Vulkan_GetInstanceExtensions((SDL_Window *)window, &extensionsCount, &extensions[extensions.size() - extensionsCount]);
#elif defined(VK_USE_PLATFORM_WIN32_KHR)
extern void CreateMainWindow();
CreateMainWindow();
extensions.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_METAL_EXT)
extensions.push_back(VK_EXT_METAL_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
extensions.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME);
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
extensions.push_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME);
#endif
if (!InitInstance(&extensions[0], extensions.size())) {
term();
return false;
}
#if defined(USE_SDL)
VkSurfaceKHR surface;
if (SDL_Vulkan_CreateSurface((SDL_Window *)window, (VkInstance)*instance, &surface) == 0) {
term();
return false;
}
this->surface.reset(vk::SurfaceKHR(surface));
SDL_Window *sdlWin = (SDL_Window *)window;
int w, h;
SDL_GetWindowSize(sdlWin, &w, &h);
SDL_Vulkan_GetDrawableSize(sdlWin, &settings.display.width, &settings.display.height);
settings.display.pointScale = (float)settings.display.width / w;
float hdpi, vdpi;
if (!SDL_GetDisplayDPI(SDL_GetWindowDisplayIndex(sdlWin), nullptr, &hdpi, &vdpi))
settings.display.dpi = roundf(std::max(hdpi, vdpi));
sdl_fix_steamdeck_dpi(sdlWin);
#elif defined(VK_USE_PLATFORM_WIN32_KHR)
vk::Win32SurfaceCreateInfoKHR createInfo(vk::Win32SurfaceCreateFlagsKHR(), GetModuleHandle(NULL), (HWND)window);
surface = instance->createWin32SurfaceKHRUnique(createInfo);
#elif defined(VK_USE_PLATFORM_XLIB_KHR)
vk::XlibSurfaceCreateInfoKHR createInfo(vk::XlibSurfaceCreateFlagsKHR(), (Display*)display, (Window)window);
surface = instance->createXlibSurfaceKHRUnique(createInfo);
#elif defined(VK_USE_PLATFORM_ANDROID_KHR)
vk::AndroidSurfaceCreateInfoKHR createInfo(vk::AndroidSurfaceCreateFlagsKHR(), (struct ANativeWindow*)window);
surface = instance->createAndroidSurfaceKHRUnique(createInfo);
#elif defined(VK_USE_PLATFORM_METAL_EXT)
vk::MetalSurfaceCreateInfoEXT createInfo(vk::MetalSurfaceCreateFlagsEXT(), window);
surface = instance->createMetalSurfaceEXTUnique(createInfo);
#else
#error "Unknown Vulkan platform"
#endif
overlay = std::make_unique();
if (!InitDevice()) {
term();
return false;
}
return true;
}
bool VulkanContext::recreateSwapChainIfNeeded()
{
if (resized || HasSurfaceDimensionChanged())
{
CreateSwapChain();
lastFrameView = vk::ImageView();
return true;
}
else
return false;
}
void VulkanContext::NewFrame()
{
recreateSwapChainIfNeeded();
if (!IsValid())
throw InvalidVulkanContext();
vk::Result res = device->acquireNextImageKHR(*swapChain, UINT64_MAX, *imageAcquiredSemaphores[currentSemaphore], nullptr, ¤tImage);
res = device->waitForFences(*drawFences[currentImage], true, UINT64_MAX);
(void)res;
device->resetCommandPool(*commandPools[currentImage], vk::CommandPoolResetFlagBits::eReleaseResources);
inFlightObjects[currentImage].clear();
vk::CommandBuffer commandBuffer = *commandBuffers[currentImage];
commandBuffer.begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit));
verify(!rendering);
rendering = true;
}
void VulkanContext::BeginRenderPass()
{
if (!IsValid())
return;
const std::array clear_colors = { getBorderColor(), vk::ClearDepthStencilValue{ 0.f, 0 } };
vk::CommandBuffer commandBuffer = *commandBuffers[currentImage];
commandBuffer.beginRenderPass(vk::RenderPassBeginInfo(*renderPass, *framebuffers[currentImage], vk::Rect2D({0, 0}, {width, height}), clear_colors),
vk::SubpassContents::eInline);
}
void VulkanContext::EndFrame(vk::CommandBuffer overlayCmdBuffer)
{
if (!IsValid())
return;
vk::CommandBuffer commandBuffer = *commandBuffers[currentImage];
commandBuffer.endRenderPass();
commandBuffer.end();
vk::PipelineStageFlags wait_stage(vk::PipelineStageFlagBits::eColorAttachmentOutput);
std::vector allCmdBuffers;
if (overlayCmdBuffer)
allCmdBuffers.push_back(overlayCmdBuffer);
allCmdBuffers.push_back(commandBuffer);
vk::SubmitInfo submitInfo(*imageAcquiredSemaphores[currentSemaphore], wait_stage, allCmdBuffers, *renderCompleteSemaphores[currentSemaphore]);
device->resetFences(*drawFences[currentImage]);
graphicsQueue.submit(submitInfo, *drawFences[currentImage]);
verify(rendering);
rendering = false;
renderDone = true;
}
void VulkanContext::Present() noexcept
{
if (renderDone)
{
try {
DoSwapAutomation();
vk::Result res = presentQueue.presentKHR(vk::PresentInfoKHR(1, &(*renderCompleteSemaphores[currentSemaphore]), 1, &(*swapChain), ¤tImage));
(void)res;
currentSemaphore = (currentSemaphore + 1) % renderCompleteSemaphores.size();
if (lastFrameView && IsValid() && !gui_is_open())
for (int i = 1; i < swapInterval; i++)
{
PresentFrame(vk::Image(), lastFrameView, lastFrameExtent, lastFrameAR);
res = presentQueue.presentKHR(vk::PresentInfoKHR(1, &(*renderCompleteSemaphores[currentSemaphore]), 1, &(*swapChain), ¤tImage));
currentSemaphore = (currentSemaphore + 1) % renderCompleteSemaphores.size();
}
} catch (const vk::SystemError& e) {
// Happens when resizing the window
INFO_LOG(RENDERER, "vk::SystemError %s", e.what());
resized = true;
}
renderDone = false;
}
if (swapOnVSync == (settings.input.fastForwardMode || !config::VSync))
{
swapOnVSync = (!settings.input.fastForwardMode && config::VSync);
resized = true;
}
if (resized)
try {
CreateSwapChain();
lastFrameView = vk::ImageView();
} catch (const InvalidVulkanContext& err) {
}
}
void VulkanContext::DrawFrame(vk::ImageView imageView, const vk::Extent2D& extent, float aspectRatio)
{
QuadVertex vtx[4] {
{ -1, -1, 0, 0, 0 },
{ 1, -1, 0, 1, 0 },
{ -1, 1, 0, 0, 1 },
{ 1, 1, 0, 1, 1 },
};
float shiftX, shiftY;
getVideoShift(shiftX, shiftY);
vtx[0].x = vtx[2].x = -1.f + shiftX * 2.f / extent.width;
vtx[1].x = vtx[3].x = vtx[0].x + 2;
vtx[0].y = vtx[1].y = -1.f + shiftY * 2.f / extent.height;
vtx[2].y = vtx[3].y = vtx[0].y + 2;
vk::CommandBuffer commandBuffer = GetCurrentCommandBuffer();
static const float scopeColor[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
CommandBufferDebugScope _(commandBuffer, "DrawFrame", scopeColor);
if (config::Rotate90)
quadRotatePipeline->BindPipeline(commandBuffer);
else
quadPipeline->BindPipeline(commandBuffer);
int dx = 0;
int dy = 0;
getWindowboxDimensions(width, height, aspectRatio, dx, dy, config::Rotate90);
vk::Viewport viewport(dx, dy, width - dx * 2, height - dy * 2);
commandBuffer.setViewport(0, viewport);
commandBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(dx, dy), vk::Extent2D(width - dx * 2, height - dy * 2)));
if (config::Rotate90)
quadRotateDrawer->Draw(commandBuffer, imageView, vtx, !config::LinearInterpolation);
else
quadDrawer->Draw(commandBuffer, imageView, vtx, !config::LinearInterpolation);
}
void VulkanContext::WaitIdle() const
{
try {
graphicsQueue.waitIdle();
} catch (const vk::Error &err) {
WARN_LOG(RENDERER, "WaitIdle: %s", err.what());
}
}
vk::CommandBuffer VulkanContext::PrepareOverlay(bool vmu, bool crosshair)
{
return overlay->Prepare(*commandPools[GetCurrentImageIndex()], vmu, crosshair);
}
void VulkanContext::DrawOverlay(float scaling, bool vmu, bool crosshair)
{
if (IsValid())
overlay->Draw(GetCurrentCommandBuffer(), vk::Extent2D(width, height), scaling, vmu, crosshair);
}
extern Renderer *renderer;
void VulkanContext::PresentFrame(vk::Image image, vk::ImageView imageView, const vk::Extent2D& extent, float aspectRatio) noexcept
{
lastFrameView = imageView;
lastFrameExtent = extent;
lastFrameAR = aspectRatio;
if (imageView && IsValid())
{
try {
NewFrame();
auto overlayCmdBuffer = PrepareOverlay(config::FloatVMUs, true);
gui_draw_osd();
BeginRenderPass();
if (lastFrameView) // Might have been nullified if swap chain recreated
DrawFrame(imageView, extent, aspectRatio);
DrawOverlay(settings.display.uiScale, config::FloatVMUs, true);
imguiDriver->renderDrawData(ImGui::GetDrawData(), false);
EndFrame(overlayCmdBuffer);
static_cast(renderer)->RenderVideoRouting();
} catch (const InvalidVulkanContext& err) {
}
}
}
void VulkanContext::PresentLastFrame()
{
if (lastFrameView && IsValid())
DrawFrame(lastFrameView, lastFrameExtent, lastFrameAR);
}
void VulkanContext::term()
{
GraphicsContext::instance = nullptr;
lastFrameView = nullptr;
if (device && graphicsQueue)
WaitIdle();
if (device && !drawFences.empty())
{
std::vector allFences = vk::uniqueToRaw(drawFences);
vk::Result res = device->waitForFences(allFences, true, UINT64_MAX);
if (res != vk::Result::eSuccess)
WARN_LOG(RENDERER, "VulkanContext::term: waitForFences failed %d", (int)res);
}
inFlightObjects.clear();
imguiDriver.reset();
if (device && pipelineCache)
{
std::vector cacheData = device->getPipelineCacheData(*pipelineCache);
if (!cacheData.empty())
{
std::string cachePath = hostfs::getShaderCachePath("vulkan_pipeline.cache");
FILE *f = nowide::fopen(cachePath.c_str(), "wb");
if (f != nullptr)
{
(void)std::fwrite(&cacheData[0], 1, cacheData.size(), f);
std::fclose(f);
}
}
}
overlay.reset();
ShaderCompiler::Term();
swapChain.reset();
imageViews.clear();
framebuffers.clear();
renderPass.reset();
quadDrawer.reset();
quadPipeline.reset();
quadPipelineWithAlpha.reset();
quadRotateDrawer.reset();
quadRotatePipeline.reset();
shaderManager.reset();
descriptorPool.reset();
commandBuffers.clear();
commandPools.clear();
imageAcquiredSemaphores.clear();
renderCompleteSemaphores.clear();
drawFences.clear();
allocator.Term();
#ifndef USE_SDL
surface.reset();
#else
if (instance && surface)
instance->destroySurfaceKHR(surface.release());
#endif
pipelineCache.reset();
device.reset();
#ifdef VK_DEBUG
#ifndef __ANDROID__
debugUtilsMessenger.reset();
#else
debugReportCallback.reset();
#endif
#endif
instance.reset();
#if defined(__ANDROID__) && HOST_CPU == CPU_ARM64
unloadVulkanDriver();
#endif
}
void VulkanContext::DoSwapAutomation()
{
#ifdef TEST_AUTOMATION
extern bool do_screenshot;
if (do_screenshot)
{
bool supportsBlit = true;
vk::FormatProperties properties;
physicalDevice.getFormatProperties(colorFormat, &properties);
if (!(properties.optimalTilingFeatures & vk::FormatFeatureFlagBits::eBlitSrc))
supportsBlit = false;
physicalDevice.getFormatProperties(vk::Format::eR8G8B8A8Unorm, &properties);
if (!(properties.linearTilingFeatures & vk::FormatFeatureFlagBits::eBlitDst))
supportsBlit = false;
{
vk::Image srcImage = device->getSwapchainImagesKHR(*swapChain)[currentImage];
vk::ImageCreateInfo imageCreateInfo(vk::ImageCreateFlags(), vk::ImageType::e2D, vk::Format::eR8G8B8A8Unorm,
vk::Extent3D(width, height, 1), 1, 1,
vk::SampleCountFlagBits::e1, vk::ImageTiling::eLinear, vk::ImageUsageFlagBits::eTransferDst,
vk::SharingMode::eExclusive, nullptr, vk::ImageLayout::eUndefined);
vk::UniqueImage dstImage = device->createImageUnique(imageCreateInfo);
vk::MemoryRequirements memReq = device->getImageMemoryRequirements(*dstImage);
u32 memoryType = findMemoryType(physicalDevice.getMemoryProperties(), memReq.memoryTypeBits,
vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible);
vk::UniqueDeviceMemory deviceMemory = device->allocateMemoryUnique(vk::MemoryAllocateInfo(memReq.size, memoryType));
device->bindImageMemory(dstImage.get(), *deviceMemory, 0);
vk::UniqueCommandBuffer cmdBuffer = std::move(device->allocateCommandBuffersUnique(
vk::CommandBufferAllocateInfo(*commandPools.back(), vk::CommandBufferLevel::ePrimary, 1)).front());
cmdBuffer->begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit));
// Transition destination image to transfer destination layout
vk::ImageMemoryBarrier barrier(vk::AccessFlags(), vk::AccessFlagBits::eTransferWrite,
vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferDstOptimal,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED,
*dstImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
cmdBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eTransfer,
vk::DependencyFlags(), nullptr, nullptr, barrier);
// Transition swapchain image from present to transfer source layout
barrier = vk::ImageMemoryBarrier(vk::AccessFlagBits::eMemoryRead, vk::AccessFlagBits::eTransferRead,
vk::ImageLayout::ePresentSrcKHR, vk::ImageLayout::eTransferSrcOptimal,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED,
srcImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
cmdBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eTransfer,
vk::DependencyFlags(), nullptr, nullptr, barrier);
if (supportsBlit)
{
vk::Offset3D blitSize(width, height, 1);
vk::ImageBlit imageBlit(
vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), { vk::Offset3D(), blitSize },
vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), { vk::Offset3D(), blitSize });
cmdBuffer->blitImage(srcImage, vk::ImageLayout::eTransferSrcOptimal, *dstImage, vk::ImageLayout::eTransferDstOptimal,
imageBlit, vk::Filter::eNearest);
}
else
{
vk::ImageCopy imageCopy(vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), vk::Offset3D(),
vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), vk::Offset3D(), { width, height, 1 });
cmdBuffer->copyImage(srcImage, vk::ImageLayout::eTransferSrcOptimal, *dstImage, vk::ImageLayout::eTransferDstOptimal,
imageCopy);
}
// Transition destination image to general layout, which is the required layout for mapping the image memory later on
barrier = vk::ImageMemoryBarrier(vk::AccessFlagBits::eTransferWrite, vk::AccessFlagBits::eMemoryRead,
vk::ImageLayout::eTransferDstOptimal, vk::ImageLayout::eGeneral,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED,
*dstImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
cmdBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eTransfer,
vk::DependencyFlags(), nullptr, nullptr, barrier);
// Transition back the swap chain image after the blit is done
barrier = vk::ImageMemoryBarrier(vk::AccessFlagBits::eTransferRead, vk::AccessFlagBits::eMemoryRead,
vk::ImageLayout::eTransferSrcOptimal, vk::ImageLayout::ePresentSrcKHR,
VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED,
srcImage, vk::ImageSubresourceRange(vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
cmdBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eTransfer,
vk::DependencyFlags(), nullptr, nullptr, barrier);
cmdBuffer->end();
vk::PipelineStageFlags wait_stage = vk::PipelineStageFlagBits::eColorAttachmentOutput;
vk::SubmitInfo submitInfo(nullptr, nullptr, cmdBuffer.get(), nullptr);
graphicsQueue.submit(submitInfo, nullptr);
graphicsQueue.waitIdle();
vk::ImageSubresource subresource(vk::ImageAspectFlagBits::eColor, 0, 0);
vk::SubresourceLayout subresourceLayout;
device->getImageSubresourceLayout(*dstImage, &subresource, &subresourceLayout);
u8* img = (u8*)device->mapMemory(*deviceMemory, 0, VK_WHOLE_SIZE);
img += subresourceLayout.offset;
u8 *end = img + settings.display.width * settings.display.height * 4;
if (!supportsBlit && colorFormat == vk::Format::eB8G8R8A8Unorm)
{
for (u8 *p = img; p < end; p += 4)
{
u8 b = p[0];
p[0] = p[2];
p[2] = b;
p[3] = 0xff;
}
}
else
{
for (u8 *p = img; p < end; p += 4)
p[3] = 0xff;
}
dump_screenshot(img, settings.display.width, settings.display.height, true, subresourceLayout.rowPitch, false);
device->unmapMemory(*deviceMemory);
}
dc_exit();
flycast_term();
exit(0);
}
#endif
}
bool VulkanContext::HasSurfaceDimensionChanged() const
{
vk::SurfaceCapabilitiesKHR surfaceCapabilities =
physicalDevice.getSurfaceCapabilitiesKHR(GetSurface());
vk::Extent2D swapchainExtent;
if (surfaceCapabilities.currentExtent.width == std::numeric_limits < uint32_t > ::max())
{
// If the surface size is undefined, the size is set to the size of the images requested.
swapchainExtent.width = std::min(
std::max(width, surfaceCapabilities.minImageExtent.width),
surfaceCapabilities.maxImageExtent.width);
swapchainExtent.height = std::min(
std::max(height, surfaceCapabilities.minImageExtent.height),
surfaceCapabilities.maxImageExtent.height);
}
else
{
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfaceCapabilities.currentExtent;
}
return width != swapchainExtent.width || height != swapchainExtent.height;
}
void VulkanContext::SetWindowSize(u32 width, u32 height)
{
if (width != this->width || height != this->height)
{
this->width = width;
this->height = height;
// When the window is minimized, it can happen that the max surface dimension is 0,0
// In this case, the context becomes invalid but we keep the previous
// dimensions to not confuse the renderer and imgui
if (width != 0)
settings.display.width = width;
if (height != 0)
settings.display.height = height;
resize();
}
}
VulkanContext::VulkanContext()
{
verify(contextInstance == nullptr);
contextInstance = this;
}
VulkanContext::~VulkanContext()
{
verify(contextInstance == this);
contextInstance = nullptr;
}
bool VulkanContext::GetLastFrame(std::vector& data, int& width, int& height)
{
if (!lastFrameView)
return false;
if (width != 0) {
height = width / lastFrameAR;
}
else if (height != 0) {
width = lastFrameAR * height;
}
else
{
width = lastFrameExtent.width;
height = lastFrameExtent.height;
if (config::Rotate90)
std::swap(width, height);
// We need square pixels for PNG
int w = lastFrameAR * height;
if (width > w)
height = width / lastFrameAR;
else
width = w;
}
vk::Format imageFormat = vk::Format::eR8G8B8A8Unorm;
const vk::ImageUsageFlags imageUsage = vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eTransferSrc;
// Test if RGB8 is natively supported to avoid having to do a format conversion
bool nativeRgb8 = false;
vk::ImageFormatProperties rgb8Properties{};
if (physicalDevice.getImageFormatProperties(vk::Format::eR8G8B8Unorm, vk::ImageType::e2D, vk::ImageTiling::eOptimal, imageUsage, {}, &rgb8Properties) == vk::Result::eSuccess)
{
nativeRgb8 = true;
imageFormat = vk::Format::eR8G8B8Unorm;
}
// color attachment
FramebufferAttachment attachment(physicalDevice, *device);
attachment.Init(width, height, imageFormat, imageUsage, "screenshot");
// command buffer
vk::UniqueCommandBuffer commandBuffer = std::move(device->allocateCommandBuffersUnique(
vk::CommandBufferAllocateInfo(*commandPools.back(), vk::CommandBufferLevel::ePrimary, 1)).front());
commandBuffer->begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit));
static const float scopeColor[4] = { 1.0f, 1.0f, 0.0f, 1.0f };
CommandBufferDebugScope _(commandBuffer.get(), "GetLastFrame", scopeColor);
// render pass
vk::AttachmentDescription attachmentDescription = vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), imageFormat, vk::SampleCountFlagBits::e1,
vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout::eUndefined, vk::ImageLayout::eTransferSrcOptimal);
vk::AttachmentReference colorReference(0, vk::ImageLayout::eColorAttachmentOptimal);
vk::SubpassDescription subpass(vk::SubpassDescriptionFlags(), vk::PipelineBindPoint::eGraphics, nullptr, colorReference,
nullptr, nullptr);
vk::UniqueRenderPass renderPass = device->createRenderPassUnique(vk::RenderPassCreateInfo(vk::RenderPassCreateFlags(),
attachmentDescription, subpass));
// framebuffer
vk::ImageView imageView = attachment.GetImageView();
vk::UniqueFramebuffer framebuffer = device->createFramebufferUnique(vk::FramebufferCreateInfo(vk::FramebufferCreateFlags(),
*renderPass, imageView, width, height, 1));
vk::ClearValue clearValue;
commandBuffer->beginRenderPass(vk::RenderPassBeginInfo(*renderPass, *framebuffer, vk::Rect2D({0, 0}, {(u32)width, (u32)height}), clearValue),
vk::SubpassContents::eInline);
// Pipeline
QuadPipeline pipeline(true, config::Rotate90);
pipeline.Init(shaderManager.get(), *renderPass, 0);
pipeline.BindPipeline(*commandBuffer);
// Draw
QuadVertex vtx[4] {
{ -1, -1, 0, 0, 0 },
{ 1, -1, 0, 1, 0 },
{ -1, 1, 0, 0, 1 },
{ 1, 1, 0, 1, 1 },
};
vk::Viewport viewport(0, 0, width, height);
commandBuffer->setViewport(0, viewport);
commandBuffer->setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), vk::Extent2D(width, height)));
QuadDrawer drawer;
drawer.Init(&pipeline);
drawer.Draw(*commandBuffer, lastFrameView, vtx, false);
commandBuffer->endRenderPass();
if (vendorID == VENDOR_ARM)
{
// Mali GPUs need an extra mem barrier here for some reason
vk::MemoryBarrier memoryBarrier(
vk::AccessFlagBits::eColorAttachmentWrite,
vk::AccessFlagBits::eTransferRead);
commandBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eColorAttachmentOutput,
vk::PipelineStageFlagBits::eTransfer, {}, memoryBarrier, nullptr, nullptr);
}
// Copy back
vk::BufferImageCopy copyRegion(0, width, height, vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), vk::Offset3D(0, 0, 0),
vk::Extent3D(width, height, 1));
commandBuffer->copyImageToBuffer(attachment.GetImage(), vk::ImageLayout::eTransferSrcOptimal,
*attachment.GetBufferData()->buffer, copyRegion);
vk::BufferMemoryBarrier bufferMemoryBarrier(
vk::AccessFlagBits::eTransferWrite,
vk::AccessFlagBits::eHostRead,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
*attachment.GetBufferData()->buffer,
0,
VK_WHOLE_SIZE);
commandBuffer->pipelineBarrier(vk::PipelineStageFlagBits::eTransfer,
vk::PipelineStageFlagBits::eHost, {}, nullptr, bufferMemoryBarrier, nullptr);
commandBuffer->end();
vk::UniqueFence fence = device->createFenceUnique(vk::FenceCreateInfo());
vk::SubmitInfo submitInfo(nullptr, nullptr, commandBuffer.get(), nullptr);
graphicsQueue.submit(submitInfo, *fence);
vk::Result res = device->waitForFences(fence.get(), true, UINT64_MAX);
if (res != vk::Result::eSuccess)
WARN_LOG(RENDERER, "VulkanContext::GetLastFrame: waitForFences failed %d", (int)res);
const u8 *img = (const u8 *)attachment.GetBufferData()->MapMemory();
data.clear();
if (nativeRgb8)
{
// Format is already RGB, can be directly copied
data.resize(width * height * 3);
std::memcpy(data.data(), img, width * height * 3);
}
else
{
data.reserve(width * height * 3);
// RGBA -> RGB
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
data.push_back(*img++);
data.push_back(*img++);
data.push_back(*img++);
img++;
}
}
}
attachment.GetBufferData()->UnmapMemory();
return true;
}