reios: cancel gd dma int in g1_end_dma. drv_stat returns busy when busy

Cancel G1 DMA interrupt in G1_DMA_END (fixes MSR, Psychic Force, Pro
Pinball, Sega Swirl)
GET_DRV_STAT must return busy when drive is busy (fixes Hell Gate, Zero
Gunner)
Better named constants
This commit is contained in:
Flyinghead 2022-04-29 15:18:41 +02:00
parent afb0a80de1
commit 77a2bbbb8d
3 changed files with 246 additions and 191 deletions

View File

@ -193,17 +193,8 @@ static void loadSpecialSettings()
} }
if (prod_id == "T9512N" // The Grinch (US) if (prod_id == "T9512N" // The Grinch (US)
|| prod_id == "T9503D" // The Grinch (EU) || prod_id == "T9503D" // The Grinch (EU)
|| prod_id == "T0000M" // Hell Gate FIXME
|| prod_id == "MK-51012" // Metropolis Street Racer (US)
|| prod_id == "MK-5102250" // Metropolis Street Racer (EU)
|| prod_id == "T-31101N" // Psychic Force 2012 (US)
|| prod_id == "T1101M" // Psychic Force 2012 (JP)
|| prod_id == "T-8106D-50" // Psychic Force 2012 (EU)
|| prod_id == "T-9707N" // San Francisco Rush 2049 (US) || prod_id == "T-9707N" // San Francisco Rush 2049 (US)
|| prod_id == "T-9709D-50" // San Francisco Rush 2049 (EU) || prod_id == "T-9709D-50" // San Francisco Rush 2049 (EU)
|| prod_id == "MK-51146" // Sega Smashpack vol.1 (Sega Swirl)
|| prod_id == "MK-51152" // World Series Baseball 2K2
|| prod_id == "T20401M" // Zero Gunner
|| prod_id == "12502D-50" // Caesar's palace 2000 (EU) || prod_id == "12502D-50" // Caesar's palace 2000 (EU)
|| prod_id == "T7001D 50" // Jimmy White's 2 Cueball || prod_id == "T7001D 50" // Jimmy White's 2 Cueball
|| prod_id == "T17717D 50" // The Next Tetris (EU) || prod_id == "T17717D 50" // The Next Tetris (EU)

View File

@ -44,7 +44,7 @@ static void GDROM_HLE_ReadTOC()
if (area == DoubleDensity && libGDR_GetDiscType() != GdRom) if (area == DoubleDensity && libGDR_GetDiscType() != GdRom)
{ {
// Only GD-ROM has a high-density area but no error is reported // Only GD-ROM has a high-density area but no error is reported
gd_hle_state.status = BIOS_INACTIVE; gd_hle_state.status = GDC_OK;
return; return;
} }
@ -112,29 +112,29 @@ static void read_sectors_to(u32 addr, u32 sector, u32 count)
static void GDROM_HLE_ReadDMA() static void GDROM_HLE_ReadDMA()
{ {
u32 s = gd_hle_state.params[0]; u32 fad = gd_hle_state.params[0];
u32 n = gd_hle_state.params[1]; u32 nsect = gd_hle_state.params[1];
u32 b = gd_hle_state.params[2]; u32 buffer = gd_hle_state.params[2];
u32 u = gd_hle_state.params[3]; // params[3] 0
debugf("GDROM: DMA READ Sector=%d, Num=%d, Buffer=0x%08X, Unk01=0x%08X", s, n, b, u); debugf("GDROM: DMA READ Sector=%d, Num=%d, Buffer=%08x, zero=%x", fad, nsect, buffer, gd_hle_state.params[3]);
read_sectors_to<false>(b, s, n); read_sectors_to<false>(buffer, fad, nsect);
gd_hle_state.result[2] = 0; gd_hle_state.result[2] = 0;
gd_hle_state.result[3] = 0; gd_hle_state.result[3] = 0;
} }
static void GDROM_HLE_ReadPIO() static void GDROM_HLE_ReadPIO()
{ {
u32 s = gd_hle_state.params[0]; u32 fad = gd_hle_state.params[0];
u32 n = gd_hle_state.params[1]; u32 nsect = gd_hle_state.params[1];
u32 b = gd_hle_state.params[2]; u32 buffer = gd_hle_state.params[2];
u32 u = gd_hle_state.params[3]; // params[3] seekAhead (wince) or 0
debugf("GDROM: PIO READ Sector=%d, Num=%d, Buffer=0x%08X, Unk01=0x%08X", s, n, b, u); debugf("GDROM: PIO READ Sector=%d, Num=%d, Buffer=%08x, SeekAhead=%x", fad, nsect, buffer, gd_hle_state.params[3]);
read_sectors_to<true>(b, s, n); read_sectors_to<true>(buffer, fad, nsect);
gd_hle_state.result[2] = n * 2048; gd_hle_state.result[2] = nsect * 2048;
gd_hle_state.result[3] = 0; gd_hle_state.result[3] = 0;
} }
@ -142,13 +142,14 @@ static void GDCC_HLE_GETSCD() {
u32 format = gd_hle_state.params[0]; u32 format = gd_hle_state.params[0];
u32 size = gd_hle_state.params[1]; u32 size = gd_hle_state.params[1];
u32 dest = gd_hle_state.params[2]; u32 dest = gd_hle_state.params[2];
// params[3] 0
DEBUG_LOG(REIOS, "GDROM: GETSCD format %x size %x dest %08x", format, size, dest); DEBUG_LOG(REIOS, "GDROM: GETSCD format %x size %x dest %08x", format, size, dest);
if (libGDR_GetDiscType() == Open || libGDR_GetDiscType() == NoDisk) if (libGDR_GetDiscType() == Open || libGDR_GetDiscType() == NoDisk)
{ {
gd_hle_state.status = BIOS_ERROR; gd_hle_state.status = GDC_ERR;
gd_hle_state.result[0] = 2; // ? gd_hle_state.result[0] = 6; // GDC_ERR_UNITATTENTION
gd_hle_state.result[1] = 0; gd_hle_state.result[1] = 0;
gd_hle_state.result[2] = 0; gd_hle_state.result[2] = 0;
gd_hle_state.result[3] = 0; gd_hle_state.result[3] = 0;
@ -157,7 +158,7 @@ static void GDCC_HLE_GETSCD() {
if (sns_asc != 0) if (sns_asc != 0)
{ {
// Helps D2 detect the disk change // Helps D2 detect the disk change
gd_hle_state.status = BIOS_ERROR; gd_hle_state.status = GDC_ERR;
gd_hle_state.result[0] = sns_key; gd_hle_state.result[0] = sns_key;
gd_hle_state.result[1] = sns_asc; gd_hle_state.result[1] = sns_asc;
gd_hle_state.result[2] = 0x18; // ? gd_hle_state.result[2] = 0x18; // ?
@ -184,6 +185,7 @@ static void GDCC_HLE_GETSCD() {
// record size of pio transfer to gdrom // record size of pio transfer to gdrom
gd_hle_state.result[2] = size; gd_hle_state.result[2] = size;
} }
template<bool dma> template<bool dma>
static void multi_xfer() static void multi_xfer()
{ {
@ -243,7 +245,7 @@ static void multi_xfer()
if (!dma) if (!dma)
{ {
gd_hle_state.result[2] = gd_hle_state.multi_read_total - gd_hle_state.multi_read_count; gd_hle_state.result[2] = gd_hle_state.multi_read_total - gd_hle_state.multi_read_count;
gd_hle_state.result[3] = 0; // 1 hangs Bust-a-Move-4 gd_hle_state.result[3] = GDC_WAIT_INTERNAL;
if (gd_hle_state.multi_callback != 0) if (gd_hle_state.multi_callback != 0)
{ {
Sh4cntx.r[4] = gd_hle_state.multi_callback_arg; Sh4cntx.r[4] = gd_hle_state.multi_callback_arg;
@ -253,17 +255,17 @@ static void multi_xfer()
else else
{ {
gd_hle_state.result[2] = 2048; gd_hle_state.result[2] = 2048;
gd_hle_state.result[3] = gd_hle_state.multi_read_count > 0 ? 1 : 0; gd_hle_state.result[3] = gd_hle_state.multi_read_count > 0 ? GDC_WAIT_IRQ : GDC_WAIT_INTERNAL;
gd_hle_state.dma_trans_ended = true; gd_hle_state.dma_trans_ended = true;
if (gd_hle_state.multi_read_count == 0) if (gd_hle_state.multi_read_count == 0)
gd_hle_state.status = BIOS_COMPLETED; gd_hle_state.status = GDC_COMPLETE;
asic_RaiseInterrupt(holly_GDROM_DMA); asic_RaiseInterrupt(holly_GDROM_DMA);
} }
} }
u32 SecMode[4]; u32 SecMode[4];
static void GD_HLE_Command(u32 cc) static void GD_HLE_Command(gd_command cc)
{ {
switch(cc) switch(cc)
{ {
@ -275,7 +277,7 @@ static void GD_HLE_Command(u32 cc)
GDROM_HLE_ReadTOC(); GDROM_HLE_ReadTOC();
break; break;
case GDCC_GETSES: case GDCC_REQ_SES:
GDROM_HLE_ReadSES(); GDROM_HLE_ReadSES();
break; break;
@ -308,22 +310,23 @@ static void GD_HLE_Command(u32 cc)
break; break;
case GDCC_PLAY_SECTOR: case GDCC_PLAY2:
{ {
u32 start_fad = gd_hle_state.params[0]; cdda.StartAddr.FAD = gd_hle_state.params[0];
u32 end_fad = gd_hle_state.params[1]; cdda.EndAddr.FAD = gd_hle_state.params[1];
DEBUG_LOG(REIOS, "GDROM: CMD PLAYSEC from %d to %d repeats %d", start_fad, end_fad, gd_hle_state.params[2]);
cdda.status = cdda_t::Playing;
cdda.StartAddr.FAD = start_fad;
cdda.EndAddr.FAD = end_fad;
cdda.repeats = gd_hle_state.params[2]; cdda.repeats = gd_hle_state.params[2];
cdda.CurrAddr.FAD = start_fad; // params[3] debug (0)
DEBUG_LOG(REIOS, "GDROM: CMD PLAYSEC from %d to %d repeats %d", cdda.StartAddr.FAD, cdda.EndAddr.FAD, cdda.repeats);
cdda.status = cdda_t::Playing;
cdda.CurrAddr.FAD = cdda.StartAddr.FAD;
SecNumber.Status = GD_PLAY; SecNumber.Status = GD_PLAY;
} }
break; break;
case GDCC_RELEASE: case GDCC_RELEASE:
DEBUG_LOG(REIOS, "GDROM: CMD RELEASE"); DEBUG_LOG(REIOS, "GDROM: CMD RELEASE");
cdda.repeats = gd_hle_state.params[0];
// params[1] debug (0)
if (cdda.status == cdda_t::Paused) if (cdda.status == cdda_t::Paused)
cdda.status = cdda_t::Playing; cdda.status = cdda_t::Playing;
SecNumber.Status = GD_PLAY; SecNumber.Status = GD_PLAY;
@ -337,6 +340,8 @@ static void GD_HLE_Command(u32 cc)
case GDCC_SEEK: case GDCC_SEEK:
DEBUG_LOG(REIOS, "GDROM: CMD SEEK"); DEBUG_LOG(REIOS, "GDROM: CMD SEEK");
cdda.CurrAddr.FAD = cdda.StartAddr.FAD = gd_hle_state.params[0];
// params[1] debug (0)
cdda.status = cdda_t::Paused; cdda.status = cdda_t::Paused;
SecNumber.Status = GD_PAUSE; SecNumber.Status = GD_PAUSE;
break; break;
@ -345,18 +350,16 @@ static void GD_HLE_Command(u32 cc)
{ {
u32 first_track = gd_hle_state.params[0]; u32 first_track = gd_hle_state.params[0];
u32 last_track = gd_hle_state.params[1]; u32 last_track = gd_hle_state.params[1];
u32 repeats = gd_hle_state.params[2]; cdda.repeats = gd_hle_state.params[2];
u32 start_fad, end_fad, dummy; // params[3] debug (0)
libGDR_GetTrack(first_track, start_fad, dummy); u32 dummy;
libGDR_GetTrack(last_track, dummy, end_fad); libGDR_GetTrack(first_track, cdda.StartAddr.FAD, dummy);
DEBUG_LOG(REIOS, "GDROM: CMD PLAY first_track %x last_track %x repeats %x start_fad %x end_fad %x param4 %x", first_track, last_track, repeats, libGDR_GetTrack(last_track, dummy, cdda.EndAddr.FAD);
start_fad, end_fad, gd_hle_state.params[3]); DEBUG_LOG(REIOS, "GDROM: CMD PLAY first_track %x last_track %x repeats %x start_fad %x end_fad %x", first_track, last_track, cdda.repeats,
cdda.StartAddr.FAD, cdda.EndAddr.FAD);
cdda.status = cdda_t::Playing; cdda.status = cdda_t::Playing;
cdda.StartAddr.FAD = start_fad; if (SecNumber.Status != GD_PAUSE || cdda.CurrAddr.FAD < cdda.StartAddr.FAD || cdda.CurrAddr.FAD > cdda.EndAddr.FAD)
cdda.EndAddr.FAD = end_fad; cdda.CurrAddr.FAD = cdda.StartAddr.FAD;
cdda.repeats = repeats;
if (SecNumber.Status != GD_PAUSE || cdda.CurrAddr.FAD < start_fad || cdda.CurrAddr.FAD > end_fad)
cdda.CurrAddr.FAD = start_fad;
SecNumber.Status = GD_PLAY; SecNumber.Status = GD_PLAY;
} }
break; break;
@ -368,19 +371,19 @@ static void GD_HLE_Command(u32 cc)
SecNumber.Status = GD_PAUSE; SecNumber.Status = GD_PAUSE;
break; break;
case GDCC_READ: case GDCC_DMA_READ_REQ:
{ {
u32 sector = gd_hle_state.params[0]; u32 sector = gd_hle_state.params[0];
u32 num = gd_hle_state.params[1]; u32 num = gd_hle_state.params[1];
DEBUG_LOG(REIOS, "GDROM: CMD READ Sector=%d, Num=%d", sector, num); DEBUG_LOG(REIOS, "GDROM: CMD READ Sector=%d, Num=%d", sector, num);
gd_hle_state.status = BIOS_DATA_AVAIL; gd_hle_state.status = GDC_CONTINUE;
gd_hle_state.multi_read_sector = sector; gd_hle_state.multi_read_sector = sector;
gd_hle_state.multi_read_count = num * 2048; gd_hle_state.multi_read_count = num * 2048;
gd_hle_state.multi_read_total = gd_hle_state.multi_read_count; gd_hle_state.multi_read_total = gd_hle_state.multi_read_count;
gd_hle_state.multi_read_offset = 0; gd_hle_state.multi_read_offset = 0;
gd_hle_state.result[2] = 2048; gd_hle_state.result[2] = 2048;
gd_hle_state.result[3] = num > 0 ? 1 : 0; gd_hle_state.result[3] = num > 0 ? GDC_WAIT_IRQ : GDC_WAIT_INTERNAL;
} }
break; break;
@ -422,11 +425,12 @@ static void GD_HLE_Command(u32 cc)
} }
break; break;
case GDCC_GET_VER: case GDCC_GET_VERSION:
{ {
u32 dest = gd_hle_state.params[0]; u32 dest = gd_hle_state.params[0];
// params[1] 0
debugf("GDROM: GDCC_GET_VER dest %x", dest); debugf("GDROM: GDCC_GET_VERSION dest %x", dest);
char ver[] = "GDC Version 1.10 1999-03-31 "; char ver[] = "GDC Version 1.10 1999-03-31 ";
u32 len = (u32)strlen(ver); u32 len = (u32)strlen(ver);
@ -444,10 +448,10 @@ static void GD_HLE_Command(u32 cc)
case GDCC_REQ_STAT: case GDCC_REQ_STAT:
{ {
// odd, but this function seems to get passed 4 unique pointers // odd, but this function seems to get passed 4 unique pointers
u32 dst0 = gd_hle_state.params[0]; u32 dst0 = gd_hle_state.params[0]; // repeat
u32 dst1 = gd_hle_state.params[1]; u32 dst1 = gd_hle_state.params[1]; // track
u32 dst2 = gd_hle_state.params[2]; u32 dst2 = gd_hle_state.params[2]; // toc
u32 dst3 = gd_hle_state.params[3]; u32 dst3 = gd_hle_state.params[3]; // index
debugf("GDROM: GDCC_REQ_STAT dst0=%08x dst1=%08x dst2=%08x dst3=%08x", dst0, dst1, dst2, dst3); debugf("GDROM: GDCC_REQ_STAT dst0=%08x dst1=%08x dst2=%08x dst3=%08x", dst0, dst1, dst2, dst3);
@ -459,7 +463,6 @@ static void GD_HLE_Command(u32 cc)
// 1 | 0 | 0 | 0 | 0 | repeat count // 1 | 0 | 0 | 0 | 0 | repeat count
// ------------------------------------------------------ // ------------------------------------------------------
// 2-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 // 2-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
// WriteMem32(dst0, (cdda.repeats << 8) | SecNumber.Status);
WriteMem32(dst0, (cdda.repeats << 8) | (SecNumber.Status == GD_STANDBY ? GD_PAUSE : SecNumber.Status)); WriteMem32(dst0, (cdda.repeats << 8) | (SecNumber.Status == GD_STANDBY ? GD_PAUSE : SecNumber.Status));
// bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 // bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
@ -500,11 +503,12 @@ static void GD_HLE_Command(u32 cc)
{ {
u32 sector = gd_hle_state.params[0]; u32 sector = gd_hle_state.params[0];
u32 num = gd_hle_state.params[1]; u32 num = gd_hle_state.params[1];
// params[2] seekAhead (wince)
bool dma = cc == GDCC_MULTI_DMAREAD; bool dma = cc == GDCC_MULTI_DMAREAD;
DEBUG_LOG(REIOS, "GDROM: MULTI_%sREAD Sector=%d, Num=%d", dma ? "DMA" : "PIO", sector, num); DEBUG_LOG(REIOS, "GDROM: MULTI_%sREAD Sector=%d, Num=%d SeekAhead=%d", dma ? "DMA" : "PIO", sector, num, gd_hle_state.params[2]);
gd_hle_state.status = BIOS_DATA_AVAIL; gd_hle_state.status = GDC_CONTINUE;
gd_hle_state.multi_read_sector = sector; gd_hle_state.multi_read_sector = sector;
gd_hle_state.multi_read_count = num * 2048; gd_hle_state.multi_read_count = num * 2048;
gd_hle_state.multi_read_total = gd_hle_state.multi_read_count; gd_hle_state.multi_read_total = gd_hle_state.multi_read_count;
@ -535,29 +539,29 @@ static void GD_HLE_Command(u32 cc)
WARN_LOG(REIOS, "GDROM: Unknown GDROM CC:%X", cc); WARN_LOG(REIOS, "GDROM: Unknown GDROM CC:%X", cc);
break; break;
} }
if (gd_hle_state.status == BIOS_ACTIVE) if (gd_hle_state.status == GDC_BUSY)
gd_hle_state.status = BIOS_COMPLETED; gd_hle_state.status = GDC_COMPLETE;
gd_hle_state.command = -1; gd_hle_state.command = GDCC_NONE;
} }
#define r Sh4cntx.r #define r Sh4cntx.r
void gdrom_hle_op() void gdrom_hle_op()
{ {
if( SYSCALL_GDROM == r[6] ) // GDROM SYSCALL if (SYSCALL_GDROM == r[6]) // GDROM SYSCALL
{ {
switch(r[7]) // COMMAND CODE switch(r[7]) // COMMAND CODE
{ {
case GDROM_SEND_COMMAND: case GDROM_REQ_CMD:
// Enqueue a command for the GDROM subsystem to execute. // Enqueue a command for the GDROM subsystem to execute.
// //
// Args: // Args:
// r4 = command code // r4 = command code
// r5 = pointer to parameter block for the command, can be NULL if the command does not take parameters // r5 = pointer to parameter block for the command, can be NULL if the command does not take parameters
// //
// Returns: a request id (>=0) if successful, negative error code if failed // Returns: a request id (>0) if successful, 0 if failed
debugf("GDROM: HLE SEND COMMAND CC:%X param ptr: %X bios status %d", r[4], r[5], gd_hle_state.status); debugf("GDROM: HLE REQ_CMD CC:%X param ptr: %X bios status %d", r[4], r[5], gd_hle_state.status);
if (gd_hle_state.status != BIOS_INACTIVE) if (gd_hle_state.status != GDC_OK)
{ {
r[0] = 0; r[0] = 0;
} }
@ -576,147 +580,158 @@ void gdrom_hle_op()
if (gd_hle_state.next_request_id == ~0u || gd_hle_state.next_request_id == 0) if (gd_hle_state.next_request_id == ~0u || gd_hle_state.next_request_id == 0)
gd_hle_state.next_request_id = 1; gd_hle_state.next_request_id = 1;
gd_hle_state.last_request_id = r[0] = gd_hle_state.next_request_id++; gd_hle_state.last_request_id = r[0] = gd_hle_state.next_request_id++;
gd_hle_state.status = BIOS_ACTIVE; gd_hle_state.status = GDC_BUSY;
gd_hle_state.command = r[4]; gd_hle_state.command = (gd_command)r[4];
gd_hle_state.multi_read_count = 0; gd_hle_state.multi_read_count = 0;
} }
break; break;
case GDROM_CHECK_COMMAND: case GDROM_GET_CMD_STAT:
// Check if an enqueued command has completed. // Check if an enqueued command has completed.
// //
// Args: // Args:
// r4 = request id // r4 = request id
// r5 = pointer to four 32 bit integers to receive extended status information. The first is a generic error code. // r5 = pointer to four 32 bit integers to receive extended status information. The first is a generic error code:
// GDC_ERR_NOERR 0x00
// GDC_ERR_RECOVERED 0x01
// GDC_ERR_NOTREADY 0x02
// GDC_ERR_MEDIUM 0x03
// GDC_ERR_HARDWARE 0x04
// GDC_ERR_ILLEGALREQUEST 0x05
// GDC_ERR_UNITATTENTION 0x06
// GDC_ERR_DATAPROTECT 0x07
// GDC_ERR_ABORTED 0x0B
// GDC_ERR_NOREADABLE 0x10
// GDC_ERR_G1SEMAPHORE 0x20
// //
// Returns: // Returns:
// 0 - no such request active // GDC_OK - no such request active (idle)
// 1 - request is still being processed // GDC_BUSY - request is still being processed
// 2 - request has completed (if queried again, you will get a 0) // GDC_COMPLETE - request has completed (if queried again, you will get GDC_OK)
// 3 - multi request has data available // GDC_CONTINUE - multi request has data available
// -1 - request has failed (examine extended status information for cause of failure) // GDC_SMPHR_BUSY ?
// GDC_ERR - request has failed (examine extended status information for cause of failure)
try { try {
WriteMem32(r[5], gd_hle_state.result[0]); WriteMem32(r[5], gd_hle_state.result[0]); // error
WriteMem32(r[5] + 4, gd_hle_state.result[1]); WriteMem32(r[5] + 4, gd_hle_state.result[1]); // error1
WriteMem32(r[5] + 8, gd_hle_state.result[2]); WriteMem32(r[5] + 8, gd_hle_state.result[2]); // size
WriteMem32(r[5] + 12, gd_hle_state.result[3]); WriteMem32(r[5] + 12, gd_hle_state.result[3]); // wait state (if busy)
} catch (SH4ThrownException&) { } catch (SH4ThrownException&) {
} }
if (gd_hle_state.status == BIOS_INACTIVE || gd_hle_state.status == BIOS_ACTIVE) if (gd_hle_state.status == GDC_OK || gd_hle_state.status == GDC_BUSY)
{ {
r[0] = gd_hle_state.status; // no such request active or still being processed r[0] = gd_hle_state.status;
} }
else if (r[4] != gd_hle_state.last_request_id) else if (r[4] != gd_hle_state.last_request_id)
{ {
r[0] = 0; // no such request active r[0] = GDC_OK; // no such request active
} }
else else
{ {
if (gd_hle_state.status == BIOS_DATA_AVAIL && gd_hle_state.command == GDCC_REQ_PIO_TRANS) if (gd_hle_state.status == GDC_CONTINUE && gd_hle_state.command == GDCC_REQ_PIO_TRANS)
r[0] = BIOS_ACTIVE; // Bust-a-move 4 likes this r[0] = GDC_BUSY; // Bust-a-move 4 likes this
else else
r[0] = gd_hle_state.status; // completed or error r[0] = gd_hle_state.status; // completed or error
// Fixes NBA 2K // Fixes NBA 2K
if (gd_hle_state.status == BIOS_DATA_AVAIL && gd_hle_state.multi_read_count == 0) if (gd_hle_state.status == GDC_CONTINUE && gd_hle_state.multi_read_count == 0)
{ {
gd_hle_state.status = BIOS_COMPLETED; gd_hle_state.status = GDC_COMPLETE;
gd_hle_state.result[3] = 0; gd_hle_state.result[3] = 0;
} }
else if (gd_hle_state.status != BIOS_DATA_AVAIL) else if (gd_hle_state.status != GDC_CONTINUE)
{ {
gd_hle_state.status = BIOS_INACTIVE; gd_hle_state.status = GDC_OK;
gd_hle_state.last_request_id = 0xFFFFFFFF; gd_hle_state.last_request_id = 0xFFFFFFFF;
} }
} }
debugf("GDROM: HLE CHECK COMMAND REQID:%X param ptr: %X -> %X : %x %x %x %x", r[4], r[5], r[0], debugf("GDROM: HLE GET_CMD_STAT REQID:%X param ptr: %X -> %X : %x %x %x %x", r[4], r[5], r[0],
gd_hle_state.result[0], gd_hle_state.result[1], gd_hle_state.result[2], gd_hle_state.result[3]); gd_hle_state.result[0], gd_hle_state.result[1], gd_hle_state.result[2], gd_hle_state.result[3]);
break; break;
case GDROM_MAIN: case GDROM_EXEC_SERVER:
// In order for enqueued commands to get processed, this function must be called a few times. // In order for enqueued commands to get processed, this function must be called a few times.
debugf("GDROM: HLE GDROM_MAIN"); debugf("GDROM: HLE EXEC_SERVER");
if (gd_hle_state.status == BIOS_ACTIVE || (gd_hle_state.status == BIOS_DATA_AVAIL && gd_hle_state.command == GDCC_REQ_PIO_TRANS)) if (gd_hle_state.status == GDC_BUSY || (gd_hle_state.status == GDC_CONTINUE && gd_hle_state.command == GDCC_REQ_PIO_TRANS))
{ {
GD_HLE_Command(gd_hle_state.command); GD_HLE_Command(gd_hle_state.command);
} }
break; break;
case GDROM_INIT: case GDROM_INIT_SYSTEM:
// Initialize the GDROM subsystem. Should be called before any requests are enqueued. // Initialize the GDROM subsystem. Should be called before any requests are enqueued.
DEBUG_LOG(REIOS, "GDROM: HLE GDROM_INIT"); DEBUG_LOG(REIOS, "GDROM: HLE INIT_SYSTEM");
gd_hle_state = {}; gd_hle_state = {};
break; break;
case GDROM_RESET: case GDROM_RESET:
// Resets the drive. // Resets the drive.
DEBUG_LOG(REIOS, "GDROM: HLE GDROM_RESET"); DEBUG_LOG(REIOS, "GDROM: HLE RESET");
gd_hle_state.last_request_id = 0xFFFFFFFF; gd_hle_state.last_request_id = 0xFFFFFFFF;
gd_hle_state.status = BIOS_INACTIVE; gd_hle_state.status = GDC_OK;
break; break;
case GDROM_CHECK_DRIVE: case GDROM_GET_DRV_STAT:
{ {
// Checks the general condition of the drive. // Checks the general condition of the drive.
// //
// Args: // Args:
// r4 = pointer to two 32 bit integers, to receive the drive status. The first is the current drive status, the second is the type of disc inserted (if any). // r4 = pointer to two 32 bit integers, to receive the drive status. The first is the current drive status (gd_drv_stat),
// 0 Drive is busy // the second is the type of disc inserted (if any).
// 1 Drive is paused
// 2 Drive is in standby
// 3 Drive is playing
// 4 Drive is seeking
// 5 Drive is scanning
// 6 Drive lid is open
// 7 Lid is closed, but there is no disc
// //
// Returns: zero if successful, nonzero if failure // Returns: 0 OK, -1 ERR, 1 BUSY, 2 COMPLETE, 3 CONTINUE
gd_drv_stat status;
u32 discType = libGDR_GetDiscType(); u32 discType = libGDR_GetDiscType();
switch (discType) switch (discType)
{ {
case Open: case Open:
WriteMem32(r[4], 6); status = GD_STAT_OPEN;
WriteMem32(r[4] + 4, 0); discType = 0;
break; break;
case NoDisk: case NoDisk:
WriteMem32(r[4], 7); status = GD_STAT_NODISC;
WriteMem32(r[4] + 4, 0); discType = 0;
break; break;
default: default:
WriteMem32(r[4], (gd_hle_state.status == BIOS_DATA_AVAIL || SecNumber.Status == GD_PLAY) ? 3 : 1); if (gd_hle_state.status == GDC_BUSY)
if (memcmp(ip_meta.disk_type, "GD-ROM", sizeof(ip_meta.disk_type)) == 0) status = GD_STAT_BUSY;
WriteMem32(r[4] + 4, GdRom); else if (gd_hle_state.status == GDC_CONTINUE || SecNumber.Status == GD_PLAY)
status = GD_STAT_PLAY;
else else
WriteMem32(r[4] + 4, discType); status = GD_STAT_PAUSE;
if (memcmp(ip_meta.disk_type, "GD-ROM", sizeof(ip_meta.disk_type)) == 0)
discType = GdRom;
break; break;
} }
debugf("GDROM: HLE GDROM_CHECK_DRIVE r4:%X -> %x %x", r[4], ReadMem32(r[4]), ReadMem32(r[4] + 4)); WriteMem32(r[4], (u32)status);
r[0] = 0; WriteMem32(r[4] + 4, discType);
debugf("GDROM: HLE GET_DRV_STAT r4:%X -> %x %x", r[4], status, discType);
r[0] = GDC_OK;
} }
break; break;
case GDROM_ABORT_COMMAND: case GDROM_READ_ABORT:
// Tries to abort a previously enqueued command. // Tries to abort a previously enqueued command.
// //
// Args: // Args:
// r4 = request id // r4 = request id
// //
// Returns: zero if successful, nonzero if failure // Returns: GDC_OK, GDC_ERR
WARN_LOG(REIOS, "GDROM: HLE GDROM_ABORT_COMMAND r4:%X",r[4]); WARN_LOG(REIOS, "GDROM: HLE GDROM_ABORT_COMMAND req id%x", r[4]);
if (r[4] == gd_hle_state.last_request_id if (r[4] == gd_hle_state.last_request_id
&& (gd_hle_state.status == BIOS_DATA_AVAIL || gd_hle_state.status == BIOS_ACTIVE)) && (gd_hle_state.status == GDC_CONTINUE || gd_hle_state.status == GDC_BUSY || gd_hle_state.status == GDC_COMPLETE))
{ {
r[0] = 0; r[0] = GDC_OK;
gd_hle_state.multi_read_count = 0; gd_hle_state.multi_read_count = 0;
gd_hle_state.xfer_end_time = 0; gd_hle_state.xfer_end_time = 0;
} }
else else
{ {
r[0] = -1; r[0] = GDC_ERR;
} }
break; break;
case GDROM_SECTOR_MODE: case GDROM_CHANGE_DATA_TYPE:
// Sets/gets the sector format for read commands. // Sets/gets the sector format for read commands.
// //
// Args: // Args:
@ -727,42 +742,43 @@ void gdrom_hle_op()
// 2 1024 = mode 1, 2048 = mode 2, 0 = auto detect // 2 1024 = mode 1, 2048 = mode 2, 0 = auto detect
// 3 Sector size in bytes (normally 2048) // 3 Sector size in bytes (normally 2048)
// //
// Returns: zero if successful, -1 if failure // Returns: GDC_OK, GDC_ERR
DEBUG_LOG(REIOS, "GDROM: HLE GDROM_SECTOR_MODE PTR_r4:%X",r[4]); DEBUG_LOG(REIOS, "GDROM: HLE CHANGE_DATA_TYPE PTR_r4:%X",r[4]);
for(int i=0; i<4; i++) { for(int i=0; i<4; i++) {
SecMode[i] = ReadMem32(r[4]+(i<<2)); SecMode[i] = ReadMem32(r[4]+(i<<2));
DEBUG_LOG(REIOS, "%08X", SecMode[i]); DEBUG_LOG(REIOS, "%08X", SecMode[i]);
} }
r[0] = 0; r[0] = GDC_OK;
break; break;
case GDROM_G1_DMA_END: case GDROM_G1_DMA_END:
DEBUG_LOG(REIOS, "GDROM: G1_DMA_END callback %x arg %x", r[4], r[5]); DEBUG_LOG(REIOS, "GDROM: G1_DMA_END callback %x arg %x", r[4], r[5]);
gd_hle_state.multi_callback = r[4]; gd_hle_state.multi_callback = r[4];
gd_hle_state.multi_callback_arg = r[5]; gd_hle_state.multi_callback_arg = r[5];
r[0] = 0; r[0] = GDC_OK;
if (gd_hle_state.multi_callback != 0 && gd_hle_state.dma_trans_ended) // FIXME hack for 2K sports games if (gd_hle_state.multi_callback != 0 && gd_hle_state.dma_trans_ended) // FIXME hack for 2K sports games
{ {
r[4] = gd_hle_state.multi_callback_arg; r[4] = gd_hle_state.multi_callback_arg;
Sh4cntx.pc = gd_hle_state.multi_callback; Sh4cntx.pc = gd_hle_state.multi_callback;
gd_hle_state.dma_trans_ended = false; gd_hle_state.dma_trans_ended = false;
} }
asic_CancelInterrupt(holly_GDROM_DMA);
break; break;
case GDROM_REQ_DMA_TRANS: case GDROM_REQ_DMA_TRANS:
gd_hle_state.params[0] = ReadMem32(r[5]); gd_hle_state.params[0] = ReadMem32(r[5]); // buffer
gd_hle_state.params[1] = ReadMem32(r[5] + 4); gd_hle_state.params[1] = ReadMem32(r[5] + 4); // size
DEBUG_LOG(REIOS, "GDROM: REQ_DMA_TRANS req_id %x dest %x size %x", DEBUG_LOG(REIOS, "GDROM: REQ_DMA_TRANS req_id %x dest %x size %x",
r[4], gd_hle_state.params[0], gd_hle_state.params[1]); r[4], gd_hle_state.params[0], gd_hle_state.params[1]);
if (gd_hle_state.status != BIOS_DATA_AVAIL || gd_hle_state.params[1] > gd_hle_state.multi_read_count) if (gd_hle_state.status != GDC_CONTINUE || gd_hle_state.params[1] > gd_hle_state.multi_read_count || gd_hle_state.params[1] == 0)
{ {
r[0] = -1; r[0] = GDC_ERR;
} }
else else
{ {
multi_xfer<true>(); multi_xfer<true>();
r[0] = 0; r[0] = GDC_OK;
} }
break; break;
@ -771,29 +787,30 @@ void gdrom_hle_op()
gd_hle_state.params[1] = ReadMem32(r[5] + 4); gd_hle_state.params[1] = ReadMem32(r[5] + 4);
DEBUG_LOG(REIOS, "GDROM: REQ_PIO_TRANS req_id %x dest %x size %x", DEBUG_LOG(REIOS, "GDROM: REQ_PIO_TRANS req_id %x dest %x size %x",
r[4], gd_hle_state.params[0], gd_hle_state.params[1]); r[4], gd_hle_state.params[0], gd_hle_state.params[1]);
if (gd_hle_state.status != BIOS_DATA_AVAIL || gd_hle_state.params[1] > gd_hle_state.multi_read_count) if (gd_hle_state.status != GDC_CONTINUE || gd_hle_state.params[1] > gd_hle_state.multi_read_count)
{ {
r[0] = -1; r[0] = GDC_ERR;
} }
else else
{ {
gd_hle_state.command = GDCC_REQ_PIO_TRANS; gd_hle_state.command = GDCC_REQ_PIO_TRANS;
r[0] = 0; r[0] = GDC_OK;
} }
break; break;
case GDROM_CHECK_DMA_TRANS: case GDROM_CHECK_DMA_TRANS:
{ {
// r4 handle
u32 len_addr = r[5]; u32 len_addr = r[5];
DEBUG_LOG(REIOS, "GDROM: CHECK_DMA_TRANS req_id %x len_addr %x -> %x", r[4], len_addr, gd_hle_state.multi_read_count); DEBUG_LOG(REIOS, "GDROM: CHECK_DMA_TRANS req_id %x len_addr %x -> %x", r[4], len_addr, gd_hle_state.multi_read_count);
if (gd_hle_state.status == BIOS_DATA_AVAIL) WriteMem32(len_addr, gd_hle_state.multi_read_count);
if (gd_hle_state.status == GDC_CONTINUE)
{ {
WriteMem32(len_addr, gd_hle_state.multi_read_count); r[0] = GDC_OK;
r[0] = 0;
} }
else else
{ {
r[0] = -1; r[0] = GDC_BUSY;
} }
} }
break; break;
@ -802,21 +819,21 @@ void gdrom_hle_op()
DEBUG_LOG(REIOS, "GDROM: SET_PIO_CALLBACK callback %x arg %x", r[4], r[5]); DEBUG_LOG(REIOS, "GDROM: SET_PIO_CALLBACK callback %x arg %x", r[4], r[5]);
gd_hle_state.multi_callback = r[4]; gd_hle_state.multi_callback = r[4];
gd_hle_state.multi_callback_arg = r[5]; gd_hle_state.multi_callback_arg = r[5];
r[0] = 0; r[0] = GDC_OK;
break; break;
case GDROM_CHECK_PIO_TRANS: case GDROM_CHECK_PIO_TRANS:
{ {
u32 len_addr = r[5]; u32 len_addr = r[5];
DEBUG_LOG(REIOS, "GDROM: CHECK_PIO_TRANS req_id %x len_addr %x -> %x", r[4], len_addr, gd_hle_state.multi_read_count); DEBUG_LOG(REIOS, "GDROM: CHECK_PIO_TRANS req_id %x len_addr %x -> %x", r[4], len_addr, gd_hle_state.multi_read_count);
if (gd_hle_state.status == BIOS_DATA_AVAIL) if (gd_hle_state.status == GDC_CONTINUE)
{ {
WriteMem32(len_addr, gd_hle_state.multi_read_count); WriteMem32(len_addr, gd_hle_state.multi_read_count);
r[0] = 0; r[0] = GDC_OK;
} }
else else
{ {
r[0] = -1; r[0] = GDC_ERR;
} }
} }
break; break;
@ -834,7 +851,7 @@ void gdrom_hle_op()
// Initializes all the syscall vectors to their default values. // Initializes all the syscall vectors to their default values.
// Returns: zero // Returns: zero
WARN_LOG(REIOS, "GDROM: MISC_INIT not implemented"); WARN_LOG(REIOS, "GDROM: MISC_INIT not implemented");
r[0] = 0; r[0] = GDC_OK;
break; break;
case MISC_SETVECTOR: case MISC_SETVECTOR:

View File

@ -3,61 +3,95 @@
#define SYSCALL_GDROM 0x00 #define SYSCALL_GDROM 0x00
#define GDROM_SEND_COMMAND 0x00 enum gd_entry_points {
#define GDROM_CHECK_COMMAND 0x01 GDROM_REQ_CMD,
#define GDROM_MAIN 0x02 GDROM_GET_CMD_STAT,
#define GDROM_INIT 0x03 GDROM_EXEC_SERVER,
#define GDROM_CHECK_DRIVE 0x04 GDROM_INIT_SYSTEM,
#define GDROM_G1_DMA_END 0x05 // r4: callback, r5: callback arg GDROM_GET_DRV_STAT,
#define GDROM_REQ_DMA_TRANS 0x06 // r4: request id GDROM_G1_DMA_END, // r4: callback, r5: callback arg
#define GDROM_CHECK_DMA_TRANS 0x07 // r4: request id, r5: u32 *size GDROM_REQ_DMA_TRANS, // r4: request id
#define GDROM_ABORT_COMMAND 0x08 GDROM_CHECK_DMA_TRANS, // r4: request id, r5: u32 *size
#define GDROM_RESET 0x09 GDROM_READ_ABORT,
#define GDROM_SECTOR_MODE 0x0A GDROM_RESET,
#define GDROM_SET_PIO_CALLBACK 0x0B // r4: callback, r5: callback arg GDROM_CHANGE_DATA_TYPE,
#define GDROM_REQ_PIO_TRANS 0x0C // r4: request id GDROM_SET_PIO_CALLBACK, // r4: callback, r5: callback arg
#define GDROM_CHECK_PIO_TRANS 0x0D // r4: request id, r5: u32 *size GDROM_REQ_PIO_TRANS, // r4: request id
GDROM_CHECK_PIO_TRANS // r4: request id, r5: u32 *size
};
#define GDCC_PIOREAD 0x10 typedef enum : u32 {
#define GDCC_DMAREAD 0x11 GDCC_NONE = 0,
#define GDCC_GETTOC 0x12 GDCC_PIOREAD = 0x10,
#define GDCC_GETTOC2 0x13 GDCC_DMAREAD,
#define GDCC_PLAY 0x14 GDCC_GETTOC,
#define GDCC_PLAY_SECTOR 0x15 GDCC_GETTOC2,
#define GDCC_PAUSE 0x16 GDCC_PLAY,
#define GDCC_RELEASE 0x17 GDCC_PLAY2,
#define GDCC_INIT 0x18 GDCC_PAUSE,
#define GDCC_SEEK 0x1b GDCC_RELEASE,
#define GDCC_READ 0x1c GDCC_INIT,
#define GDCC_REQ_MODE 0x1e GDCC_READABORT,
#define GDCC_SET_MODE 0x1f GDCC_OPEN,
#define GDCC_STOP 0x21 GDCC_SEEK,
#define GDCC_GETSCD 0x22 GDCC_DMA_READ_REQ,
#define GDCC_GETSES 0x23 GDCC_GETQINFO,
#define GDCC_REQ_STAT 0x24 GDCC_REQ_MODE,
#define GDCC_MULTI_DMAREAD 0x26 GDCC_SET_MODE,
#define GDCC_MULTI_PIOREAD 0x27 GDCC_SCAN,
#define GDCC_GET_VER 0x28 GDCC_STOP,
// pseudo-commands for multi dma/pio xfers GDCC_GETSCD,
#define GDCC_REQ_DMA_TRANS 0x106 GDCC_REQ_SES,
#define GDCC_REQ_PIO_TRANS 0x10C GDCC_REQ_STAT,
GDCC_PIOREADREQ,
GDCC_MULTI_DMAREAD,
GDCC_MULTI_PIOREAD,
GDCC_GET_VERSION,
GDCC_CMDA,
GDCC_CMDB,
GDCC_CMDC,
GDCC_CMDD,
GDCC_CMDE,
GDCC_CMDF,
GDCC_CMDG,
// pseudo-commands for multi dma/pio xfers
GDCC_REQ_DMA_TRANS = 0x106,
GDCC_REQ_PIO_TRANS = 0x10C
} gd_command;
#define MISC_INIT 0x00 enum gdc_wait {
#define MISC_SETVECTOR 0x01 GDC_WAIT_INTERNAL,
GDC_WAIT_IRQ
};
enum misc_command {
MISC_INIT,
MISC_SETVECTOR
};
void gdrom_hle_init(); void gdrom_hle_init();
void gdrom_hle_term(); void gdrom_hle_term();
void gdrom_hle_op(); void gdrom_hle_op();
typedef enum { BIOS_ERROR = -1, BIOS_INACTIVE, BIOS_ACTIVE, BIOS_COMPLETED, BIOS_DATA_AVAIL } gd_bios_status; typedef enum : int32_t {
GDC_ERR = -1,
GDC_OK, // Idle
GDC_BUSY, // Command being processed
GDC_COMPLETE, // Command has finished
GDC_CONTINUE, // Data has been transferred, more data available
GDC_SMPHR_BUSY,
GDC_RET1,
GDC_RET2
} gd_return_value;
struct gdrom_hle_state_t struct gdrom_hle_state_t
{ {
gdrom_hle_state_t() : params{}, result{} {} gdrom_hle_state_t() : params{}, result{} {}
u32 last_request_id = 0xFFFFFFFF; u32 last_request_id = 0xFFFFFFFF;
u32 next_request_id = 2; u32 next_request_id = 2;
gd_bios_status status = BIOS_INACTIVE; gd_return_value status = GDC_OK;
u32 command = 0; gd_command command = GDCC_NONE;
u32 params[4]; u32 params[4];
u32 result[4]; u32 result[4];
u32 cur_sector = 0; u32 cur_sector = 0;
@ -110,3 +144,16 @@ struct gdrom_hle_state_t
}; };
extern gdrom_hle_state_t gd_hle_state; extern gdrom_hle_state_t gd_hle_state;
// status for GDROM_GET_DRV_STAT
enum gd_drv_stat {
GD_STAT_BUSY,
GD_STAT_PAUSE,
GD_STAT_STANDBY,
GD_STAT_PLAY,
GD_STAT_SEEK,
GD_STAT_SCAN,
GD_STAT_OPEN,
GD_STAT_NODISC,
GD_STAT_RETRY,
GD_STAT_ERROR
};