vulkan: RTT support

This commit is contained in:
Flyinghead 2019-10-09 21:16:12 +02:00
parent 38f50c1b5a
commit 6406523720
13 changed files with 1327 additions and 680 deletions

View File

@ -53,6 +53,16 @@ struct BufferData
device.unmapMemory(*this->deviceMemory);
}
void download(vk::Device const& device, u32 size, void *data, u32 offset = 0) const
{
verify((m_propertyFlags & vk::MemoryPropertyFlagBits::eHostCoherent) && (m_propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible));
verify(offset + size <= m_size);
void* dataPtr = device.mapMemory(*this->deviceMemory, offset, size);
memcpy(data, dataPtr, size);
device.unmapMemory(*this->deviceMemory);
}
vk::UniqueDeviceMemory deviceMemory;
vk::UniqueBuffer buffer;
vk::DeviceSize m_size;

View File

@ -0,0 +1,104 @@
/*
Created on: Oct 8, 2019
Copyright 2019 flyinghead
This file is part of Flycast.
Flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
Flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#include "vulkan.h"
class CommandPool
{
public:
void Init()
{
size_t size = VulkanContext::Instance()->GetSwapChainSize();
if (commandPools.size() > size)
{
commandPools.resize(size);
fences.resize(size);
}
else
{
while (commandPools.size() < size)
{
commandPools.emplace_back(std::move(VulkanContext::Instance()->GetDevice()->createCommandPoolUnique(
vk::CommandPoolCreateInfo(vk::CommandPoolCreateFlagBits::eTransient, VulkanContext::Instance()->GetGraphicsQueueFamilyIndex()))));
fences.emplace_back(std::move(VulkanContext::Instance()->GetDevice()->createFenceUnique(vk::FenceCreateInfo(vk::FenceCreateFlagBits::eSignaled))));
}
}
if (freeBuffers.size() != size)
freeBuffers.resize(size);
if (inFlightBuffers.size() != size)
inFlightBuffers.resize(size);
}
void Term()
{
freeBuffers.clear();
inFlightBuffers.clear();
fences.clear();
commandPools.clear();
}
void EndFrame()
{
vk::CommandBuffer commandBuffer = Allocate();
commandBuffer.begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit));
commandBuffer.end();
VulkanContext::Instance()->GetGraphicsQueue().submit(vk::SubmitInfo(0, nullptr, nullptr, 1, &commandBuffer), *fences[index]);
}
void BeginFrame()
{
index = (index + 1) % VulkanContext::Instance()->GetSwapChainSize();
VulkanContext::Instance()->GetDevice()->waitForFences(1, &fences[index].get(), true, UINT64_MAX);
VulkanContext::Instance()->GetDevice()->resetFences(1, &fences[index].get());
std::vector<vk::UniqueCommandBuffer>& inFlight = inFlightBuffers[index];
std::vector<vk::UniqueCommandBuffer>& freeBuf = freeBuffers[index];
while (!inFlight.empty())
{
freeBuf.emplace_back(std::move(inFlight.back()));
inFlight.pop_back();
}
VulkanContext::Instance()->GetDevice()->resetCommandPool(*commandPools[index], vk::CommandPoolResetFlagBits::eReleaseResources);
}
vk::CommandBuffer Allocate()
{
if (freeBuffers[index].empty())
{
inFlightBuffers[index].emplace_back(std::move(
VulkanContext::Instance()->GetDevice()->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(*commandPools[index], vk::CommandBufferLevel::ePrimary, 1))
.front()));
}
else
{
inFlightBuffers[index].emplace_back(std::move(freeBuffers[index].back()));
freeBuffers[index].pop_back();
}
return *inFlightBuffers[index].back();
}
private:
int index = 0;
std::vector<std::vector<vk::UniqueCommandBuffer>> freeBuffers;
std::vector<std::vector<vk::UniqueCommandBuffer>> inFlightBuffers;
std::vector<vk::UniqueCommandPool> commandPools;
std::vector<vk::UniqueFence> fences;
};

609
core/rend/vulkan/drawer.cpp Normal file
View File

@ -0,0 +1,609 @@
/*
Created on: Oct 8, 2019
Copyright 2019 flyinghead
This file is part of Flycast.
Flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
Flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "drawer.h"
#include "../gui.h"
#include "hw/pvr/pvr_mem.h"
void Drawer::SortTriangles()
{
sortedPolys.resize(pvrrc.render_passes.used());
sortedIndexes.resize(pvrrc.render_passes.used());
sortedIndexCount = 0;
RenderPass previousPass = {};
for (int render_pass = 0; render_pass < pvrrc.render_passes.used(); render_pass++)
{
const RenderPass& current_pass = pvrrc.render_passes.head()[render_pass];
sortedIndexes[render_pass].clear();
if (current_pass.autosort)
{
GenSorted(previousPass.tr_count, current_pass.tr_count - previousPass.tr_count, sortedPolys[render_pass], sortedIndexes[render_pass]);
for (auto& poly : sortedPolys[render_pass])
poly.first += sortedIndexCount;
sortedIndexCount += sortedIndexes[render_pass].size();
}
else
sortedPolys[render_pass].clear();
previousPass = current_pass;
}
}
// FIXME Code dup
s32 Drawer::SetTileClip(u32 val, float *values)
{
if (!settings.rend.Clipping)
return 0;
u32 clipmode = val >> 28;
s32 clip_mode;
if (clipmode < 2)
{
clip_mode = 0; //always passes
}
else if (clipmode & 1)
clip_mode = -1; //render stuff outside the region
else
clip_mode = 1; //render stuff inside the region
float csx = 0, csy = 0, cex = 0, cey = 0;
csx = (float)(val & 63);
cex = (float)((val >> 6) & 63);
csy = (float)((val >> 12) & 31);
cey = (float)((val >> 17) & 31);
csx = csx * 32;
cex = cex * 32 + 32;
csy = csy * 32;
cey = cey * 32 + 32;
if (csx <= 0 && csy <= 0 && cex >= 640 && cey >= 480)
return 0;
if (values != nullptr && clip_mode)
{
if (!pvrrc.isRTT)
{
csx /= scale_x;
csy /= scale_y;
cex /= scale_x;
cey /= scale_y;
float dc2s_scale_h;
float ds2s_offs_x;
float screen_stretching = settings.rend.ScreenStretching / 100.f;
if (settings.rend.Rotate90)
{
float t = cex;
cex = cey;
cey = 640 - csx;
csx = csy;
csy = 640 - t;
dc2s_scale_h = screen_height / 640.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 480.0 * screen_stretching) / 2;
}
else
{
dc2s_scale_h = screen_height / 480.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 640.0 * screen_stretching) / 2;
}
csx = csx * dc2s_scale_h * screen_stretching + ds2s_offs_x;
cex = cex * dc2s_scale_h * screen_stretching + ds2s_offs_x;
csy = csy * dc2s_scale_h;
cey = cey * dc2s_scale_h;
}
else if (!settings.rend.RenderToTextureBuffer)
{
csx *= settings.rend.RenderToTextureUpscale;
csy *= settings.rend.RenderToTextureUpscale;
cex *= settings.rend.RenderToTextureUpscale;
cey *= settings.rend.RenderToTextureUpscale;
}
values[0] = csx;
values[1] = csy;
values[2] = cex;
values[3] = cey;
}
return clip_mode;
}
void Drawer::DrawPoly(const vk::CommandBuffer& cmdBuffer, u32 listType, bool sortTriangles, const PolyParam& poly, u32 first, u32 count)
{
float trilinearAlpha;
if (poly.pcw.Texture && poly.tsp.FilterMode > 1 && listType != ListType_Punch_Through)
{
trilinearAlpha = 0.25 * (poly.tsp.MipMapD & 0x3);
if (poly.tsp.FilterMode == 2)
// Trilinear pass A
trilinearAlpha = 1.0 - trilinearAlpha;
}
else
trilinearAlpha = 1.f;
std::array<float, 5> pushConstants = { 0, 0, 0, 0, trilinearAlpha };
SetTileClip(poly.tileclip, &pushConstants[0]);
cmdBuffer.pushConstants<float>(pipelineManager->GetPipelineLayout(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants);
if (poly.pcw.Texture)
GetCurrentDescSet().SetTexture(poly.texid, poly.tsp);
vk::Pipeline pipeline = pipelineManager->GetPipeline(listType, sortTriangles, poly);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
if (poly.pcw.Texture)
GetCurrentDescSet().BindPerPolyDescriptorSets(cmdBuffer, poly.texid, poly.tsp);
cmdBuffer.drawIndexed(count, 1, first, 0, 0);
}
void Drawer::DrawSorted(const vk::CommandBuffer& cmdBuffer, const std::vector<SortTrigDrawParam>& polys)
{
for (const SortTrigDrawParam& param : polys)
{
DrawPoly(cmdBuffer, ListType_Translucent, true, *param.ppid, pvrrc.idx.used() + param.first, param.count);
}
}
void Drawer::DrawList(const vk::CommandBuffer& cmdBuffer, u32 listType, bool sortTriangles, const List<PolyParam>& polys, u32 first, u32 count)
{
for (u32 i = first; i < count; i++)
{
const PolyParam &pp = polys.head()[i];
DrawPoly(cmdBuffer, listType, sortTriangles, pp, pp.first, pp.count);
}
}
void Drawer::DrawModVols(const vk::CommandBuffer& cmdBuffer, int first, int count)
{
if (count == 0 || pvrrc.modtrig.used() == 0)
return;
vk::DeviceSize offsets[] = { (vk::DeviceSize)pvrrc.verts.bytes() };
vk::Buffer buffer = GetMainBuffer(0)->buffer.get();
cmdBuffer.bindVertexBuffers(0, 1, &buffer, offsets);
ModifierVolumeParam* params = &pvrrc.global_param_mvo.head()[first];
int mod_base = -1;
vk::Pipeline pipeline;
for (u32 cmv = 0; cmv < count; cmv++)
{
ModifierVolumeParam& param = params[cmv];
if (param.count == 0)
continue;
u32 mv_mode = param.isp.DepthMode;
if (mod_base == -1)
mod_base = param.first;
if (!param.isp.VolumeLast && mv_mode > 0)
pipeline = pipelineManager->GetModifierVolumePipeline(ModVolMode::Or); // OR'ing (open volume or quad)
else
pipeline = pipelineManager->GetModifierVolumePipeline(ModVolMode::Xor); // XOR'ing (closed volume)
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
cmdBuffer.draw(param.count * 3, 1, param.first * 3, 0);
if (mv_mode == 1 || mv_mode == 2)
{
// Sum the area
pipeline = pipelineManager->GetModifierVolumePipeline(mv_mode == 1 ? ModVolMode::Inclusion : ModVolMode::Exclusion);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
cmdBuffer.draw((param.first + param.count - mod_base) * 3, 1, mod_base * 3, 0);
mod_base = -1;
}
}
offsets[0] = 0;
cmdBuffer.bindVertexBuffers(0, 1, &buffer, offsets);
std::array<float, 5> pushConstants = { 1 - FPU_SHAD_SCALE.scale_factor / 256.f, 0, 0, 0, 0 };
cmdBuffer.pushConstants<float>(pipelineManager->GetPipelineLayout(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants);
pipeline = pipelineManager->GetModifierVolumePipeline(ModVolMode::Final);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
cmdBuffer.drawIndexed(4, 1, 0, 0, 0);
}
void Drawer::UploadMainBuffer(const VertexShaderUniforms& vertexUniforms, const FragmentShaderUniforms& fragmentUniforms, u32& vertexUniformsOffset)
{
vertexUniformsOffset = pvrrc.verts.bytes() + pvrrc.idx.bytes() + pvrrc.modtrig.bytes() + sortedIndexCount * sizeof(u32);
u32 totalSize = vertexUniformsOffset + sizeof(VertexShaderUniforms) + sizeof(FragmentShaderUniforms);
BufferData *buffer = GetMainBuffer(totalSize);
std::vector<const void *> chunks;
std::vector<u32> chunkSizes;
chunks.push_back(pvrrc.verts.head());
chunkSizes.push_back(pvrrc.verts.bytes());
chunks.push_back(pvrrc.modtrig.head());
chunkSizes.push_back(pvrrc.modtrig.bytes());
chunks.push_back(pvrrc.idx.head());
chunkSizes.push_back(pvrrc.idx.bytes());
for (const std::vector<u32>& idx : sortedIndexes)
{
if (!idx.empty())
{
chunks.push_back(&idx[0]);
chunkSizes.push_back(idx.size() * sizeof(u32));
}
}
chunks.push_back(&vertexUniforms);
chunkSizes.push_back(sizeof(vertexUniforms));
chunks.push_back(&fragmentUniforms);
chunkSizes.push_back(sizeof(fragmentUniforms));
buffer->upload(GetContext()->GetDevice().get(), chunks.size(), &chunkSizes[0], &chunks[0]);
}
bool Drawer::Draw(const Texture *fogTexture)
{
extern float fb_scale_x, fb_scale_y;
extern bool fog_needs_update;
bool is_rtt = pvrrc.isRTT;
float dc_width = 640;
float dc_height = 480;
if (is_rtt)
{
dc_width = pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1;
dc_height = pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1;
}
scale_x = 1;
scale_y = 1;
float scissoring_scale_x = 1;
if (!is_rtt && !pvrrc.isRenderFramebuffer)
{
scale_x = fb_scale_x;
scale_y = fb_scale_y;
if (SCALER_CTL.interlace == 0 && SCALER_CTL.vscalefactor > 0x400)
scale_y *= roundf((float)SCALER_CTL.vscalefactor / 0x400);
//work out scaling parameters !
//Pixel doubling is on VO, so it does not affect any pixel operations
//A second scaling is used here for scissoring
if (VO_CONTROL.pixel_double)
{
scissoring_scale_x = 0.5f;
scale_x *= 0.5f;
}
if (SCALER_CTL.hscale)
{
scissoring_scale_x /= 2;
scale_x*=2;
}
}
dc_width *= scale_x;
dc_height *= scale_y;
float screen_stretching = settings.rend.ScreenStretching / 100.f;
float screen_scaling = settings.rend.ScreenScaling / 100.f;
float dc2s_scale_h;
float ds2s_offs_x;
VertexShaderUniforms vtxUniforms;
if (is_rtt)
{
vtxUniforms.scale[0] = 2.0f / dc_width;
vtxUniforms.scale[1] = 2.0f / dc_height; // FIXME CT2 needs 480 here instead of dc_height=512
vtxUniforms.scale[2] = 1;
vtxUniforms.scale[3] = 1;
}
else
{
if (settings.rend.Rotate90)
{
dc2s_scale_h = screen_height / 640.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 480.0f * screen_stretching) / 2;
vtxUniforms.scale[0] = -2.0f / (screen_width / dc2s_scale_h * scale_x) * screen_stretching;
vtxUniforms.scale[1] = 2.0f / dc_width;
vtxUniforms.scale[2] = 1 - 2 * ds2s_offs_x / screen_width;
vtxUniforms.scale[3] = 1;
}
else
{
dc2s_scale_h = screen_height / 480.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 640.0f * screen_stretching) / 2;
vtxUniforms.scale[0] = 2.0f / (screen_width / dc2s_scale_h * scale_x) * screen_stretching;
vtxUniforms.scale[1] = 2.0f / dc_height;
vtxUniforms.scale[2] = 1 - 2 * ds2s_offs_x / screen_width;
vtxUniforms.scale[3] = 1;
}
//-1 -> too much to left
}
vtxUniforms.extra_depth_scale = settings.rend.ExtraDepthScale;
FragmentShaderUniforms fragUniforms;
fragUniforms.extra_depth_scale = settings.rend.ExtraDepthScale;
//VERT and RAM fog color constants
u8* fog_colvert_bgra=(u8*)&FOG_COL_VERT;
u8* fog_colram_bgra=(u8*)&FOG_COL_RAM;
fragUniforms.sp_FOG_COL_VERT[0]=fog_colvert_bgra[2]/255.0f;
fragUniforms.sp_FOG_COL_VERT[1]=fog_colvert_bgra[1]/255.0f;
fragUniforms.sp_FOG_COL_VERT[2]=fog_colvert_bgra[0]/255.0f;
fragUniforms.sp_FOG_COL_RAM[0]=fog_colram_bgra [2]/255.0f;
fragUniforms.sp_FOG_COL_RAM[1]=fog_colram_bgra [1]/255.0f;
fragUniforms.sp_FOG_COL_RAM[2]=fog_colram_bgra [0]/255.0f;
//Fog density constant
u8* fog_density=(u8*)&FOG_DENSITY;
float fog_den_mant=fog_density[1]/128.0f; //bit 7 -> x. bit, so [6:0] -> fraction -> /128
s32 fog_den_exp=(s8)fog_density[0];
fragUniforms.sp_FOG_DENSITY = fog_den_mant * powf(2.0f, fog_den_exp);
fragUniforms.colorClampMin[0] = ((pvrrc.fog_clamp_min >> 16) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[1] = ((pvrrc.fog_clamp_min >> 8) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[2] = ((pvrrc.fog_clamp_min >> 0) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[3] = ((pvrrc.fog_clamp_min >> 24) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[0] = ((pvrrc.fog_clamp_max >> 16) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[1] = ((pvrrc.fog_clamp_max >> 8) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[2] = ((pvrrc.fog_clamp_max >> 0) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[3] = ((pvrrc.fog_clamp_max >> 24) & 0xFF) / 255.0f;
fragUniforms.cp_AlphaTestValue = (PT_ALPHA_REF & 0xFF) / 255.0f;
SortTriangles();
vk::CommandBuffer cmdBuffer = BeginRenderPass();
// Upload vertex and index buffers
u32 vertexUniformsOffset;
UploadMainBuffer(vtxUniforms, fragUniforms, vertexUniformsOffset);
// Update per-frame descriptor set and bind it
GetCurrentDescSet().UpdateUniforms(GetMainBuffer(0)->buffer.get(), vertexUniformsOffset, fogTexture->GetImageView());
GetCurrentDescSet().BindPerFrameDescriptorSets(cmdBuffer);
// Reset per-poly descriptor set pool
GetCurrentDescSet().Reset();
// Bind vertex and index buffers
const vk::DeviceSize offsets[] = { 0 };
const vk::Buffer buffer = GetMainBuffer(0)->buffer.get();
cmdBuffer.bindVertexBuffers(0, 1, &buffer, offsets);
cmdBuffer.bindIndexBuffer(buffer, pvrrc.verts.bytes() + pvrrc.modtrig.bytes(), vk::IndexType::eUint32);
// FIXME
if (!is_rtt)
cmdBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), GetContext()->GetViewPort()));
RenderPass previous_pass = {};
for (int render_pass = 0; render_pass < pvrrc.render_passes.used(); render_pass++)
{
const RenderPass& current_pass = pvrrc.render_passes.head()[render_pass];
DEBUG_LOG(RENDERER, "Render pass %d OP %d PT %d TR %d MV %d", render_pass + 1,
current_pass.op_count - previous_pass.op_count,
current_pass.pt_count - previous_pass.pt_count,
current_pass.tr_count - previous_pass.tr_count,
current_pass.mvo_count - previous_pass.mvo_count);
DrawList(cmdBuffer, ListType_Opaque, false, pvrrc.global_param_op, previous_pass.op_count, current_pass.op_count - previous_pass.op_count);
DrawList(cmdBuffer, ListType_Punch_Through, false, pvrrc.global_param_pt, previous_pass.pt_count, current_pass.pt_count - previous_pass.pt_count);
DrawModVols(cmdBuffer, previous_pass.mvo_count, current_pass.mvo_count - previous_pass.mvo_count);
if (current_pass.autosort)
{
if (!settings.rend.PerStripSorting)
{
DrawSorted(cmdBuffer, sortedPolys[render_pass]);
}
else
{
SortPParams(previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
DrawList(cmdBuffer, ListType_Translucent, true, pvrrc.global_param_tr, previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
}
}
else
DrawList(cmdBuffer, ListType_Translucent, false, pvrrc.global_param_tr, previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
previous_pass = current_pass;
}
if (!is_rtt)
gui_display_osd();
EndRenderPass();
return !is_rtt;
}
vk::CommandBuffer TextureDrawer::BeginRenderPass()
{
DEBUG_LOG(RENDERER, "RenderToTexture packmode=%d stride=%d - %d,%d -> %d,%d", FB_W_CTRL.fb_packmode, FB_W_LINESTRIDE.stride * 8,
FB_X_CLIP.min, FB_Y_CLIP.min, FB_X_CLIP.max, FB_Y_CLIP.max);
textureAddr = FB_W_SOF1 & VRAM_MASK;
u32 origWidth = pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1;
u32 origHeight = pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1;
u32 upscaledWidth = origWidth;
u32 upscaledHeight = origHeight;
int heightPow2 = 2;
while (heightPow2 < upscaledHeight)
heightPow2 *= 2;
int widthPow2 = 2;
while (widthPow2 < upscaledWidth)
widthPow2 *= 2;
if (settings.rend.RenderToTextureUpscale > 1 && !settings.rend.RenderToTextureBuffer)
{
upscaledWidth *= settings.rend.RenderToTextureUpscale;
upscaledHeight *= settings.rend.RenderToTextureUpscale;
widthPow2 *= settings.rend.RenderToTextureUpscale;
heightPow2 *= settings.rend.RenderToTextureUpscale;
}
VulkanContext *context = GetContext();
vk::Device device = *context->GetDevice();
vk::CommandBuffer commandBuffer = commandPool->Allocate();
commandBuffer.begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit));
if (widthPow2 != this->width || heightPow2 != this->height || !depthAttachment)
{
if (!depthAttachment)
depthAttachment = std::unique_ptr<FramebufferAttachment>(new FramebufferAttachment(context->GetPhysicalDevice(), device));
depthAttachment->Init(widthPow2, heightPow2, vk::Format::eD32SfloatS8Uint);
}
vk::ImageView colorImageView;
vk::ImageLayout colorImageCurrentLayout;
if (!settings.rend.RenderToTextureBuffer)
{
// TexAddr : fb_rtt.TexAddr, Reserved : 0, StrideSel : 0, ScanOrder : 1
TCW tcw = { { textureAddr >> 3, 0, 0, 1 } };
switch (FB_W_CTRL.fb_packmode) {
case 0:
case 3:
tcw.PixelFmt = Pixel1555;
break;
case 1:
tcw.PixelFmt = Pixel565;
break;
case 2:
tcw.PixelFmt = Pixel4444;
break;
}
TSP tsp = { 0 };
for (tsp.TexU = 0; tsp.TexU <= 7 && (8 << tsp.TexU) < origWidth; tsp.TexU++);
for (tsp.TexV = 0; tsp.TexV <= 7 && (8 << tsp.TexV) < origHeight; tsp.TexV++);
texture = static_cast<Texture*>(getTextureCacheData(tsp, tcw, [](){
return (BaseTextureCacheData *)new Texture(VulkanContext::Instance()->GetPhysicalDevice(), *VulkanContext::Instance()->GetDevice());
}));
if (texture->IsNew())
texture->Create();
if (texture->format != vk::Format::eR8G8B8A8Unorm)
{
//texture->Init(newWidth, newHeight, format);
texture->extent = vk::Extent2D(widthPow2, heightPow2);
texture->format = vk::Format::eR8G8B8A8Unorm;
texture->CreateImage(vk::ImageTiling::eOptimal, vk::ImageUsageFlagBits::eColorAttachment | vk::ImageUsageFlagBits::eSampled,
vk::ImageLayout::eUndefined, vk::MemoryPropertyFlags(), vk::ImageAspectFlagBits::eColor);
colorImageCurrentLayout = vk::ImageLayout::eUndefined;
}
else
{
colorImageCurrentLayout = vk::ImageLayout::eShaderReadOnlyOptimal;
}
colorImage = *texture->image;
colorImageView = texture->GetImageView();
}
else
{
if (widthPow2 != this->width || heightPow2 != this->height || !colorAttachment)
{
if (!colorAttachment)
{
colorAttachment = std::unique_ptr<FramebufferAttachment>(new FramebufferAttachment(VulkanContext::Instance()->GetPhysicalDevice(),
*VulkanContext::Instance()->GetDevice()));
}
colorAttachment->Init(widthPow2, heightPow2, vk::Format::eR8G8B8A8Unorm);
}
colorImage = *colorAttachment->GetImage();
colorImageView = *colorAttachment->GetImageView();
colorImageCurrentLayout = vk::ImageLayout::eUndefined;
}
width = widthPow2;
height = heightPow2;
setImageLayout(commandBuffer, colorImage, vk::Format::eR8G8B8A8Unorm, colorImageCurrentLayout, vk::ImageLayout::eColorAttachmentOptimal);
vk::ImageView imageViews[] = {
colorImageView,
*depthAttachment->GetImageView(),
};
framebuffer = context->GetDevice()->createFramebufferUnique(vk::FramebufferCreateInfo(vk::FramebufferCreateFlags(),
pipelineManager->GetRenderPass(), ARRAY_SIZE(imageViews), imageViews, widthPow2, heightPow2, 1));
const vk::ClearValue clear_colors[] = { vk::ClearColorValue(std::array<float, 4> { 0.f, 0.f, 0.f, 1.f }), vk::ClearDepthStencilValue { 0.f, 0 } };
commandBuffer.beginRenderPass(vk::RenderPassBeginInfo(pipelineManager->GetRenderPass(), *framebuffer,
vk::Rect2D( { 0, 0 }, { width, height }), 2, clear_colors), vk::SubpassContents::eInline);
commandBuffer.setViewport(0, vk::Viewport(0.0f, 0.0f, (float)upscaledWidth, (float)upscaledHeight, 1.0f, 0.0f));
// FIXME
commandBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), { upscaledWidth, upscaledHeight }));
currentCommandBuffer = commandBuffer;
return commandBuffer;
}
void TextureDrawer::EndRenderPass()
{
currentCommandBuffer.endRenderPass();
if (settings.rend.RenderToTextureBuffer)
{
vk::BufferImageCopy copyRegion(0, width, height, vk::ImageSubresourceLayers(vk::ImageAspectFlagBits::eColor, 0, 0, 1), vk::Offset3D(0, 0, 0),
vk::Extent3D(vk::Extent2D(width, height), 1));
currentCommandBuffer.copyImageToBuffer(*colorAttachment->GetImage(), vk::ImageLayout::eTransferSrcOptimal,
*colorAttachment->GetBufferData()->buffer, copyRegion);
vk::BufferMemoryBarrier bufferMemoryBarrier(
vk::AccessFlagBits::eTransferWrite,
vk::AccessFlagBits::eHostRead,
VK_QUEUE_FAMILY_IGNORED,
VK_QUEUE_FAMILY_IGNORED,
*colorAttachment->GetBufferData()->buffer,
0,
VK_WHOLE_SIZE);
currentCommandBuffer.pipelineBarrier(vk::PipelineStageFlagBits::eTransfer,
vk::PipelineStageFlagBits::eHost, {}, nullptr, bufferMemoryBarrier, nullptr);
}
currentCommandBuffer.end();
GetContext()->GetGraphicsQueue().submit(vk::SubmitInfo(0, nullptr, nullptr, 1, &currentCommandBuffer),
settings.rend.RenderToTextureBuffer ? *fence : nullptr);
colorImage = nullptr;
currentCommandBuffer = nullptr;
commandPool->EndFrame();
if (settings.rend.RenderToTextureBuffer)
{
GetContext()->GetDevice()->waitForFences(1, &fence.get(), true, UINT64_MAX);
GetContext()->GetDevice()->resetFences(1, &fence.get());
u16 *dst = (u16 *)&vram[textureAddr];
PixelBuffer<u32> tmpBuf;
tmpBuf.init(width, height);
colorAttachment->GetBufferData()->download(*GetContext()->GetDevice(), width * height * 4, tmpBuf.data());
WriteTextureToVRam(width, height, (u8 *)tmpBuf.data(), dst);
return;
}
//memset(&vram[fb_rtt.TexAddr << 3], '\0', size);
if (width > 1024 || height > 1024)
return;
texture->dirty = 0;
if (texture->lock_block == NULL)
texture->lock_block = libCore_vramlock_Lock(texture->sa_tex, texture->sa + texture->size - 1, texture);
}

179
core/rend/vulkan/drawer.h Normal file
View File

@ -0,0 +1,179 @@
/*
Created on: Oct 8, 2019
Copyright 2019 flyinghead
This file is part of Flycast.
Flycast is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
Flycast is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#pragma once
#include <memory>
#include "rend/sorter.h"
#include "vulkan.h"
#include "buffer.h"
#include "commandpool.h"
#include "pipeline.h"
#include "shaders.h"
#include "texture.h"
class Drawer
{
public:
virtual ~Drawer() {}
bool Draw(const Texture *fogTexture);
protected:
virtual void Init(SamplerManager *samplerManager, ShaderManager *shaderManager)
{
this->samplerManager = samplerManager;
pipelineManager->Init(shaderManager);
}
virtual DescriptorSets& GetCurrentDescSet() = 0;
virtual BufferData *GetMainBuffer(u32 size) = 0;
virtual vk::CommandBuffer BeginRenderPass() = 0;
virtual void EndRenderPass() = 0;
VulkanContext *GetContext() const { return VulkanContext::Instance(); }
std::unique_ptr<PipelineManager> pipelineManager;
private:
s32 SetTileClip(u32 val, float *values);
void SortTriangles();
void DrawPoly(const vk::CommandBuffer& cmdBuffer, u32 listType, bool sortTriangles, const PolyParam& poly, u32 first, u32 count);
void DrawSorted(const vk::CommandBuffer& cmdBuffer, const std::vector<SortTrigDrawParam>& polys);
void DrawList(const vk::CommandBuffer& cmdBuffer, u32 listType, bool sortTriangles, const List<PolyParam>& polys, u32 first, u32 count);
void DrawModVols(const vk::CommandBuffer& cmdBuffer, int first, int count);
void UploadMainBuffer(const VertexShaderUniforms& vertexUniforms, const FragmentShaderUniforms& fragmentUniforms, u32& vertexUniformsOffset);
// temp stuff
float scale_x;
float scale_y;
// Per-triangle sort results
std::vector<std::vector<SortTrigDrawParam>> sortedPolys;
std::vector<std::vector<u32>> sortedIndexes;
u32 sortedIndexCount;
SamplerManager *samplerManager;
};
class ScreenDrawer : public Drawer
{
public:
void Init(SamplerManager *samplerManager, ShaderManager *shaderManager) override
{
pipelineManager = std::unique_ptr<PipelineManager>(new PipelineManager());
Drawer::Init(samplerManager, shaderManager);
while (descriptorSets.size() < GetContext()->GetSwapChainSize())
{
descriptorSets.push_back(DescriptorSets());
descriptorSets.back().Init(samplerManager, pipelineManager->GetPipelineLayout(), pipelineManager->GetPerFrameDSLayout(), pipelineManager->GetPerPolyDSLayout());
}
}
protected:
virtual DescriptorSets& GetCurrentDescSet() override { return descriptorSets[GetCurrentImage()]; }
virtual BufferData* GetMainBuffer(u32 size) override
{
if (mainBuffers.empty())
{
for (int i = 0; i < GetContext()->GetSwapChainSize(); i++)
mainBuffers.push_back(std::unique_ptr<BufferData>(new BufferData(GetContext()->GetPhysicalDevice(), GetContext()->GetDevice().get(),
std::max(512 * 1024u, size),
vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eUniformBuffer)));
}
else if (mainBuffers[GetCurrentImage()]->m_size < size)
{
u32 newSize = mainBuffers[GetCurrentImage()]->m_size;
while (newSize < size)
newSize *= 2;
INFO_LOG(RENDERER, "Increasing main buffer size %d -> %d", (u32)mainBuffers[GetCurrentImage()]->m_size, newSize);
mainBuffers[GetCurrentImage()] = std::unique_ptr<BufferData>(new BufferData(GetContext()->GetPhysicalDevice(), GetContext()->GetDevice().get(), newSize,
vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eUniformBuffer));
}
return mainBuffers[GetCurrentImage()].get();
};
virtual vk::CommandBuffer BeginRenderPass() override
{
GetContext()->NewFrame();
GetContext()->BeginRenderPass();
vk::CommandBuffer commandBuffer = GetContext()->GetCurrentCommandBuffer();
commandBuffer.setViewport(0, vk::Viewport(0.0f, 0.0f, (float)screen_width, (float)screen_height, 1.0f, 0.0f));
return commandBuffer;
}
virtual void EndRenderPass() override
{
GetContext()->EndFrame();
}
private:
int GetCurrentImage() { return GetContext()->GetCurrentImageIndex(); }
std::vector<DescriptorSets> descriptorSets;
std::vector<std::unique_ptr<BufferData>> mainBuffers;
};
class TextureDrawer : public Drawer
{
public:
void Init(SamplerManager *samplerManager, ShaderManager *shaderManager) override
{
pipelineManager = std::unique_ptr<RttPipelineManager>(new RttPipelineManager());
Drawer::Init(samplerManager, shaderManager);
descriptorSets.Init(samplerManager, pipelineManager->GetPipelineLayout(), pipelineManager->GetPerFrameDSLayout(), pipelineManager->GetPerPolyDSLayout());
fence = GetContext()->GetDevice()->createFenceUnique(vk::FenceCreateInfo());
}
void SetCommandPool(CommandPool *commandPool) { this->commandPool = commandPool; }
protected:
virtual vk::CommandBuffer BeginRenderPass() override;
virtual void EndRenderPass() override;
DescriptorSets& GetCurrentDescSet() override { return descriptorSets; }
virtual BufferData* GetMainBuffer(u32 size) override
{
if (!mainBuffer || mainBuffer->m_size < size)
{
u32 newSize = mainBuffer ? mainBuffer->m_size : 128 * 1024u;
while (newSize < size)
newSize *= 2;
INFO_LOG(RENDERER, "Increasing RTT main buffer size %d -> %d", !mainBuffer ? 0 : (u32)mainBuffer->m_size, newSize);
mainBuffer = std::unique_ptr<BufferData>(new BufferData(GetContext()->GetPhysicalDevice(), *GetContext()->GetDevice(), newSize,
vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eIndexBuffer | vk::BufferUsageFlagBits::eUniformBuffer));
}
return mainBuffer.get();
}
private:
u32 width = 0;
u32 height = 0;
u32 textureAddr = 0;
Texture *texture = nullptr;
vk::Image colorImage;
vk::CommandBuffer currentCommandBuffer;
vk::UniqueFramebuffer framebuffer;
std::unique_ptr<FramebufferAttachment> colorAttachment;
std::unique_ptr<FramebufferAttachment> depthAttachment;
vk::UniqueFence fence;
DescriptorSets descriptorSets;
std::unique_ptr<BufferData> mainBuffer;
CommandPool *commandPool;
};

View File

@ -171,8 +171,8 @@ void PipelineManager::CreateModVolPipeline(ModVolMode mode)
vk::DynamicState dynamicStates[2] = { vk::DynamicState::eViewport, vk::DynamicState::eScissor };
vk::PipelineDynamicStateCreateInfo pipelineDynamicStateCreateInfo(vk::PipelineDynamicStateCreateFlags(), 2, dynamicStates);
vk::ShaderModule vertex_module = shaderManager.GetModVolVertexShader();
vk::ShaderModule fragment_module = shaderManager.GetModVolShader();
vk::ShaderModule vertex_module = shaderManager->GetModVolVertexShader();
vk::ShaderModule fragment_module = shaderManager->GetModVolShader();
vk::PipelineShaderStageCreateInfo stages[] = {
{ vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eVertex, vertex_module, "main" },
@ -192,8 +192,8 @@ void PipelineManager::CreateModVolPipeline(ModVolMode mode)
&pipelineDepthStencilStateCreateInfo, // pDepthStencilState
&pipelineColorBlendStateCreateInfo, // pColorBlendState
&pipelineDynamicStateCreateInfo, // pDynamicState
descriptorSets.GetPipelineLayout(), // layout
GetContext()->GetRenderPass() // renderPass
*pipelineLayout, // layout
renderPass // renderPass
);
if (modVolPipelines.empty())
@ -314,7 +314,7 @@ void PipelineManager::CreatePipeline(u32 listType, bool sortTriangles, const Pol
vk::DynamicState dynamicStates[2] = { vk::DynamicState::eViewport, vk::DynamicState::eScissor };
vk::PipelineDynamicStateCreateInfo pipelineDynamicStateCreateInfo(vk::PipelineDynamicStateCreateFlags(), 2, dynamicStates);
vk::ShaderModule vertex_module = shaderManager.GetVertexShader(VertexShaderParams{ pp.pcw.Gouraud == 1, false }); // TODO rotate90
vk::ShaderModule vertex_module = shaderManager->GetVertexShader(VertexShaderParams{ pp.pcw.Gouraud == 1, false }); // TODO rotate90
FragmentShaderParams params = {};
params.alphaTest = listType == ListType_Punch_Through;
params.bumpmap = pp.tcw.PixelFmt == PixelBumpMap;
@ -339,7 +339,7 @@ void PipelineManager::CreatePipeline(u32 listType, bool sortTriangles, const Pol
params.texture = pp.pcw.Texture;
params.trilinear = pp.pcw.Texture && pp.tsp.FilterMode > 1 && listType != ListType_Punch_Through;
params.useAlpha = pp.tsp.UseAlpha;
vk::ShaderModule fragment_module = shaderManager.GetFragmentShader(params);
vk::ShaderModule fragment_module = shaderManager->GetFragmentShader(params);
vk::PipelineShaderStageCreateInfo stages[] = {
{ vk::PipelineShaderStageCreateFlags(), vk::ShaderStageFlagBits::eVertex, vertex_module, "main" },
@ -359,8 +359,8 @@ void PipelineManager::CreatePipeline(u32 listType, bool sortTriangles, const Pol
&pipelineDepthStencilStateCreateInfo, // pDepthStencilState
&pipelineColorBlendStateCreateInfo, // pColorBlendState
&pipelineDynamicStateCreateInfo, // pDynamicState
descriptorSets.GetPipelineLayout(), // layout
GetContext()->GetRenderPass() // renderPass
*pipelineLayout, // layout
renderPass // renderPass
);
pipelines[hash(listType, sortTriangles, &pp)] = GetContext()->GetDevice()->createGraphicsPipelineUnique(GetContext()->GetPipelineCache(),

View File

@ -29,10 +29,107 @@ enum class ModVolMode { Xor, Or, Inclusion, Exclusion, Final };
class DescriptorSets
{
public:
vk::PipelineLayout GetPipelineLayout() const { return *pipelineLayout; }
void Init()
void Init(SamplerManager* samplerManager, vk::PipelineLayout pipelineLayout, vk::DescriptorSetLayout perFrameLayout, vk::DescriptorSetLayout perPolyLayout)
{
this->samplerManager = samplerManager;
this->pipelineLayout = pipelineLayout;
this->perFrameLayout = perFrameLayout;
this->perPolyLayout = perPolyLayout;
}
void UpdateUniforms(vk::Buffer buffer, u32 vertexUniformOffset, vk::ImageView fogImageView)
{
if (!perFrameDescSet)
{
perFrameDescSet = std::move(GetContext()->GetDevice()->allocateDescriptorSetsUnique(
vk::DescriptorSetAllocateInfo(GetContext()->GetDescriptorPool(), 1, &perFrameLayout)).front());
}
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.push_back(vk::DescriptorBufferInfo(buffer, vertexUniformOffset, sizeof(VertexShaderUniforms)));
bufferInfos.push_back(vk::DescriptorBufferInfo(buffer, vertexUniformOffset + sizeof(VertexShaderUniforms), sizeof(FragmentShaderUniforms)));
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.push_back(vk::WriteDescriptorSet(*perFrameDescSet, 0, 0, 1, vk::DescriptorType::eUniformBuffer, nullptr, &bufferInfos[0], nullptr));
writeDescriptorSets.push_back(vk::WriteDescriptorSet(*perFrameDescSet, 1, 0, 1, vk::DescriptorType::eUniformBuffer, nullptr, &bufferInfos[1], nullptr));
if (fogImageView)
{
TSP fogTsp = {};
fogTsp.FilterMode = 1;
fogTsp.ClampU = 1;
fogTsp.ClampV = 1;
vk::Sampler fogSampler = samplerManager->GetSampler(fogTsp);
vk::DescriptorImageInfo imageInfo(fogSampler, fogImageView, vk::ImageLayout::eShaderReadOnlyOptimal);
writeDescriptorSets.push_back(vk::WriteDescriptorSet(*perFrameDescSet, 2, 0, 1, vk::DescriptorType::eCombinedImageSampler, &imageInfo, nullptr, nullptr));
}
GetContext()->GetDevice()->updateDescriptorSets(writeDescriptorSets, nullptr);
}
void SetTexture(u64 textureId, TSP tsp)
{
auto& inFlight = perPolyDescSetsInFlight;
std::pair<u64, u32> index = std::make_pair(textureId, tsp.full & SamplerManager::TSP_Mask);
if (inFlight.find(index) != inFlight.end())
return;
if (perPolyDescSets.empty())
{
std::vector<vk::DescriptorSetLayout> layouts(10, perPolyLayout);
perPolyDescSets = GetContext()->GetDevice()->allocateDescriptorSetsUnique(
vk::DescriptorSetAllocateInfo(GetContext()->GetDescriptorPool(), layouts.size(), &layouts[0]));
}
Texture *texture = reinterpret_cast<Texture *>(textureId);
vk::DescriptorImageInfo imageInfo(samplerManager->GetSampler(tsp), texture->GetImageView(), vk::ImageLayout::eShaderReadOnlyOptimal);
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.push_back(vk::WriteDescriptorSet(*perPolyDescSets.back(), 0, 0, 1, vk::DescriptorType::eCombinedImageSampler, &imageInfo, nullptr, nullptr));
GetContext()->GetDevice()->updateDescriptorSets(writeDescriptorSets, nullptr);
inFlight[index] = std::move(perPolyDescSets.back());
perPolyDescSets.pop_back();
}
void BindPerFrameDescriptorSets(vk::CommandBuffer cmdBuffer)
{
cmdBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout, 0, 1, &perFrameDescSet.get(), 0, nullptr);
}
void BindPerPolyDescriptorSets(vk::CommandBuffer cmdBuffer, u64 textureId, TSP tsp)
{
cmdBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipelineLayout, 1, 1,
&perPolyDescSetsInFlight[std::make_pair(textureId, tsp.full & SamplerManager::TSP_Mask)].get(), 0, nullptr);
}
void Reset()
{
for (auto& pair : perPolyDescSetsInFlight)
perPolyDescSets.emplace_back(std::move(pair.second));
perPolyDescSetsInFlight.clear();
}
private:
VulkanContext *GetContext() const { return VulkanContext::Instance(); }
vk::DescriptorSetLayout perFrameLayout;
vk::DescriptorSetLayout perPolyLayout;
vk::PipelineLayout pipelineLayout;
vk::UniqueDescriptorSet perFrameDescSet;
std::vector<vk::UniqueDescriptorSet> perPolyDescSets;
std::map<std::pair<u64, u32>, vk::UniqueDescriptorSet> perPolyDescSetsInFlight;
SamplerManager* samplerManager;
};
class PipelineManager
{
public:
virtual ~PipelineManager() {}
virtual void Init(ShaderManager *shaderManager)
{
this->shaderManager = shaderManager;
// Descriptor set and pipeline layout
vk::DescriptorSetLayoutBinding perFrameBindings[] = {
{ 0, vk::DescriptorType::eUniformBuffer, 1, vk::ShaderStageFlagBits::eVertex }, // vertex uniforms
@ -50,114 +147,10 @@ public:
vk::PushConstantRange pushConstant(vk::ShaderStageFlagBits::eFragment, 0, 20);
pipelineLayout = GetContext()->GetDevice()->createPipelineLayoutUnique(
vk::PipelineLayoutCreateInfo(vk::PipelineLayoutCreateFlags(), ARRAY_SIZE(layouts), layouts, 1, &pushConstant));
renderPass = VulkanContext::Instance()->GetRenderPass();
}
void UpdateUniforms(const vk::Buffer& vertexUniformBuffer, const vk::Buffer& fragmentUniformBuffer, vk::ImageView fogImageView)
{
if (perFrameDescSets.empty())
{
std::vector<vk::DescriptorSetLayout> layouts(GetContext()->GetSwapChainSize(), *perFrameLayout);
perFrameDescSets = GetContext()->GetDevice()->allocateDescriptorSetsUnique(
vk::DescriptorSetAllocateInfo(GetContext()->GetDescriptorPool(), layouts.size(), &layouts[0]));
}
while (perPolyDescSets.size() < GetContext()->GetSwapChainSize())
perPolyDescSets.push_back(std::vector<vk::UniqueDescriptorSet>());
while (perPolyDescSetsInFlight.size() < GetContext()->GetSwapChainSize())
perPolyDescSetsInFlight.push_back(std::map<std::pair<u64, u32>, vk::UniqueDescriptorSet>());
int currentImage = GetContext()->GetCurrentImageIndex();
std::vector<vk::DescriptorBufferInfo> bufferInfos;
bufferInfos.push_back(vk::DescriptorBufferInfo(vertexUniformBuffer, 0, VK_WHOLE_SIZE));
bufferInfos.push_back(vk::DescriptorBufferInfo(fragmentUniformBuffer, 0, VK_WHOLE_SIZE));
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.push_back(vk::WriteDescriptorSet(*perFrameDescSets[currentImage], 0, 0, 1, vk::DescriptorType::eUniformBuffer, nullptr, &bufferInfos[0], nullptr));
writeDescriptorSets.push_back(vk::WriteDescriptorSet(*perFrameDescSets[currentImage], 1, 0, 1, vk::DescriptorType::eUniformBuffer, nullptr, &bufferInfos[1], nullptr));
if (fogImageView)
{
TSP fogTsp = {};
fogTsp.FilterMode = 1;
fogTsp.ClampU = 1;
fogTsp.ClampV = 1;
vk::Sampler fogSampler = samplerManager.GetSampler(fogTsp);
vk::DescriptorImageInfo imageInfo(fogSampler, fogImageView, vk::ImageLayout::eShaderReadOnlyOptimal);
writeDescriptorSets.push_back(vk::WriteDescriptorSet(*perFrameDescSets[currentImage], 2, 0, 1, vk::DescriptorType::eCombinedImageSampler, &imageInfo, nullptr, nullptr));
}
GetContext()->GetDevice()->updateDescriptorSets(writeDescriptorSets, nullptr);
}
void SetTexture(u64 textureId, TSP tsp)
{
int currentImage = GetContext()->GetCurrentImageIndex();
auto& inFlight = perPolyDescSetsInFlight[currentImage];
std::pair<u64, u32> index = std::make_pair(textureId, tsp.full & SamplerManager::TSP_Mask);
if (inFlight.find(index) != inFlight.end())
return;
auto& descSets = perPolyDescSets[currentImage];
if (descSets.empty())
{
std::vector<vk::DescriptorSetLayout> layouts(10, *perPolyLayout);
descSets = GetContext()->GetDevice()->allocateDescriptorSetsUnique(
vk::DescriptorSetAllocateInfo(GetContext()->GetDescriptorPool(), layouts.size(), &layouts[0]));
}
Texture *texture = reinterpret_cast<Texture *>(textureId);
vk::DescriptorImageInfo imageInfo(samplerManager.GetSampler(tsp), texture->GetImageView(), vk::ImageLayout::eShaderReadOnlyOptimal);
std::vector<vk::WriteDescriptorSet> writeDescriptorSets;
writeDescriptorSets.push_back(vk::WriteDescriptorSet(*descSets.back(), 0, 0, 1, vk::DescriptorType::eCombinedImageSampler, &imageInfo, nullptr, nullptr));
GetContext()->GetDevice()->updateDescriptorSets(writeDescriptorSets, nullptr);
inFlight[index] = std::move(descSets.back());
descSets.pop_back();
}
void BindPerFrameDescriptorSets(vk::CommandBuffer cmdBuffer)
{
int currentImage = GetContext()->GetCurrentImageIndex();
cmdBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, *pipelineLayout, 0, 1, &perFrameDescSets[currentImage].get(), 0, nullptr);
}
void BindPerPolyDescriptorSets(vk::CommandBuffer cmdBuffer, u64 textureId, TSP tsp)
{
int currentImage = GetContext()->GetCurrentImageIndex();
cmdBuffer.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, *pipelineLayout, 1, 1,
&perPolyDescSetsInFlight[currentImage][std::make_pair(textureId, tsp.full & SamplerManager::TSP_Mask)].get(), 0, nullptr);
}
void Reset()
{
int currentImage = GetContext()->GetCurrentImageIndex();
for (auto& pair : perPolyDescSetsInFlight[currentImage])
perPolyDescSets[currentImage].emplace_back(std::move(pair.second));
perPolyDescSetsInFlight[currentImage].clear();
}
private:
VulkanContext *GetContext() const { return VulkanContext::Instance(); }
vk::UniqueDescriptorSetLayout perFrameLayout;
vk::UniqueDescriptorSetLayout perPolyLayout;
vk::UniquePipelineLayout pipelineLayout;
std::vector<vk::UniqueDescriptorSet> perFrameDescSets;
std::vector<std::vector<vk::UniqueDescriptorSet>> perPolyDescSets;
std::vector<std::map<std::pair<u64, u32>, vk::UniqueDescriptorSet>> perPolyDescSetsInFlight;
SamplerManager samplerManager;
};
class PipelineManager
{
public:
void Init()
{
shaderManager.Init();
descriptorSets.Init();
}
DescriptorSets& GetDescriptorSets() { return descriptorSets; }
vk::Pipeline GetPipeline(u32 listType, bool sortTriangles, const PolyParam& pp)
{
u32 pipehash = hash(listType, sortTriangles, &pp);
@ -176,9 +169,12 @@ public:
CreateModVolPipeline(mode);
return *modVolPipelines[(size_t)mode];
}
vk::PipelineLayout GetPipelineLayout() const { return *pipelineLayout; }
vk::DescriptorSetLayout GetPerFrameDSLayout() const { return *perFrameLayout; }
vk::DescriptorSetLayout GetPerPolyDSLayout() const { return *perPolyLayout; }
vk::RenderPass GetRenderPass() const { return renderPass; }
private:
VulkanContext *GetContext() const { return VulkanContext::Instance(); }
void CreateModVolPipeline(ModVolMode mode);
u32 hash(u32 listType, bool sortTriangles, const PolyParam *pp) const
@ -226,8 +222,58 @@ private:
std::map<u32, vk::UniquePipeline> pipelines;
std::vector<vk::UniquePipeline> modVolPipelines;
ShaderManager shaderManager;
DescriptorSets descriptorSets;
ShaderManager *shaderManager;
vk::UniquePipelineLayout pipelineLayout;
vk::UniqueDescriptorSetLayout perFrameLayout;
vk::UniqueDescriptorSetLayout perPolyLayout;
protected:
VulkanContext *GetContext() const { return VulkanContext::Instance(); }
vk::RenderPass renderPass;
};
class RttPipelineManager : public PipelineManager
{
public:
void Init(ShaderManager *shaderManager) override
{
PipelineManager::Init(shaderManager);
// RTT render pass
vk::AttachmentDescription attachmentDescriptions[] = {
vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), vk::Format::eR8G8B8A8Unorm, vk::SampleCountFlagBits::e1,
vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare,
// vk::ImageLayout::eUndefined, settings.rend.RenderToTextureBuffer ? vk::ImageLayout::eTransferSrcOptimal : vk::ImageLayout::eColorAttachmentOptimal),
vk::ImageLayout::eColorAttachmentOptimal,
settings.rend.RenderToTextureBuffer ? vk::ImageLayout::eTransferSrcOptimal : vk::ImageLayout::eShaderReadOnlyOptimal),
vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), vk::Format::eD32SfloatS8Uint, vk::SampleCountFlagBits::e1,
vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eDontCare, vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eDontCare,
vk::ImageLayout::eUndefined, vk::ImageLayout::eDepthStencilAttachmentOptimal),
};
vk::AttachmentReference colorReference(0, vk::ImageLayout::eColorAttachmentOptimal);
vk::AttachmentReference depthReference(1, vk::ImageLayout::eDepthStencilAttachmentOptimal);
vk::SubpassDescription subpass(vk::SubpassDescriptionFlags(), vk::PipelineBindPoint::eGraphics, 0, nullptr, 1, &colorReference, nullptr, &depthReference);
vk::SubpassDependency dependencies[] {
vk::SubpassDependency(VK_SUBPASS_EXTERNAL, 0, vk::PipelineStageFlagBits::eFragmentShader, vk::PipelineStageFlagBits::eColorAttachmentOutput,
vk::AccessFlagBits::eShaderRead, vk::AccessFlagBits::eColorAttachmentWrite),
vk::SubpassDependency(0, VK_SUBPASS_EXTERNAL, vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eFragmentShader,
vk::AccessFlagBits::eColorAttachmentWrite, vk::AccessFlagBits::eShaderRead),
};
vk::SubpassDependency vramWriteDeps[] {
vk::SubpassDependency(0, VK_SUBPASS_EXTERNAL,
vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eTransfer | vk::PipelineStageFlagBits::eHost,
vk::AccessFlagBits::eColorAttachmentWrite, vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eHostRead),
};
rttRenderPass = GetContext()->GetDevice()->createRenderPassUnique(vk::RenderPassCreateInfo(vk::RenderPassCreateFlags(), 2, attachmentDescriptions,
1, &subpass, ARRAY_SIZE(settings.rend.RenderToTextureBuffer ? vramWriteDeps : dependencies),
settings.rend.RenderToTextureBuffer ? vramWriteDeps : dependencies));
renderPass = *rttRenderPass;
printf("RttPipelineManager renderPass %p created\n", (VkRenderPass)renderPass);
}
private:
vk::UniqueRenderPass rttRenderPass;
};

View File

@ -81,6 +81,10 @@ public:
{
verify(glslang::InitializeProcess());
}
void Term()
{
glslang::FinalizeProcess();
}
vk::ShaderModule GetVertexShader(const VertexShaderParams& params) { return getShader(vertexShaders, params); }
vk::ShaderModule GetFragmentShader(const FragmentShaderParams& params) { return getShader(fragmentShaders, params); }
vk::ShaderModule GetModVolVertexShader()

View File

@ -21,7 +21,7 @@
#include "texture.h"
#include "utils.h"
static void setImageLayout(vk::CommandBuffer const& commandBuffer, vk::Image image, vk::Format format, vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout)
void setImageLayout(vk::CommandBuffer const& commandBuffer, vk::Image image, vk::Format format, vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout)
{
vk::AccessFlags sourceAccessMask;
switch (oldImageLayout)
@ -34,7 +34,10 @@ static void setImageLayout(vk::CommandBuffer const& commandBuffer, vk::Image ima
break;
case vk::ImageLayout::eGeneral: // sourceAccessMask is empty
case vk::ImageLayout::eUndefined:
// case vk::ImageLayout::eShaderReadOnlyOptimal:
break;
case vk::ImageLayout::eShaderReadOnlyOptimal:
sourceAccessMask = vk::AccessFlagBits::eShaderRead;
break;
default:
verify(false);
@ -190,7 +193,7 @@ void Texture::Init(u32 width, u32 height, vk::Format format)
initialLayout = vk::ImageLayout::ePreinitialized;
requirements = vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostVisible;
}
CreateImage(imageTiling, usageFlags | vk::ImageUsageFlagBits::eSampled, initialLayout, requirements,
CreateImage(imageTiling, usageFlags, initialLayout, requirements,
vk::ImageAspectFlagBits::eColor);
}
@ -248,3 +251,43 @@ void Texture::SetImage(u32 srcSize, void *srcData, bool isNew)
VulkanContext::Instance()->GetGraphicsQueue().submit(vk::SubmitInfo(0, nullptr, nullptr, 1, &commandBuffer), nullptr);
}
void FramebufferAttachment::Init(u32 width, u32 height, vk::Format format)
{
this->format = format;
this->extent = vk::Extent2D { width, height };
bool depth = format == vk::Format::eD32SfloatS8Uint || format == vk::Format::eD24UnormS8Uint;
vk::ImageUsageFlags usage;
if (depth)
{
usage = vk::ImageUsageFlagBits::eDepthStencilAttachment;
}
else
{
usage = vk::ImageUsageFlagBits::eColorAttachment;
if (settings.rend.RenderToTextureBuffer)
{
usage |= vk::ImageUsageFlagBits::eTransferSrc;
stagingBufferData = std::unique_ptr<BufferData>(new BufferData(VulkanContext::Instance()->GetPhysicalDevice(), *VulkanContext::Instance()->GetDevice(),
width * height * 4, vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent));
}
else
{
usage |= vk::ImageUsageFlagBits::eSampled;
}
}
vk::ImageCreateInfo imageCreateInfo(vk::ImageCreateFlags(), vk::ImageType::e2D, format, vk::Extent3D(extent, 1), 1, 1, vk::SampleCountFlagBits::e1,
vk::ImageTiling::eOptimal, usage,
vk::SharingMode::eExclusive, 0, nullptr, vk::ImageLayout::eUndefined);
image = device.createImageUnique(imageCreateInfo);
vk::MemoryRequirements memReq = device.getImageMemoryRequirements(image.get());
u32 memoryTypeIndex = findMemoryType(physicalDevice.getMemoryProperties(), memReq.memoryTypeBits,
vk::MemoryPropertyFlagBits::eDeviceLocal);
deviceMemory = device.allocateMemoryUnique(vk::MemoryAllocateInfo(memReq.size, memoryTypeIndex));
device.bindImageMemory(image.get(), deviceMemory.get(), 0);
vk::ImageViewCreateInfo imageViewCreateInfo(vk::ImageViewCreateFlags(), image.get(), vk::ImageViewType::e2D,
format, vk::ComponentMapping(), vk::ImageSubresourceRange(depth ? vk::ImageAspectFlagBits::eDepth : vk::ImageAspectFlagBits::eColor, 0, 1, 0, 1));
imageView = device.createImageViewUnique(imageViewCreateInfo);
}

View File

@ -23,11 +23,14 @@
#include "vulkan.h"
#include "buffer.h"
#include "rend/TexCache.h"
#include "hw/pvr/Renderer_if.h"
void setImageLayout(vk::CommandBuffer const& commandBuffer, vk::Image image, vk::Format format, vk::ImageLayout oldImageLayout, vk::ImageLayout newImageLayout);
struct Texture : BaseTextureCacheData
{
Texture(vk::PhysicalDevice physicalDevice, vk::Device device)
: physicalDevice(physicalDevice), device(device), format(vk::Format::eR8G8B8A8Unorm)
: physicalDevice(physicalDevice), device(device), format(vk::Format::eUndefined)
{}
void UploadToGPU(int width, int height, u8 *data) override;
u64 GetIntId() { return (u64)reinterpret_cast<uintptr_t>(this); }
@ -54,6 +57,8 @@ private:
vk::PhysicalDevice physicalDevice;
vk::Device device;
friend class TextureDrawer;
};
class SamplerManager
@ -83,3 +88,161 @@ public:
private:
std::map<u32, vk::UniqueSampler> samplers;
};
class FramebufferAttachment
{
public:
FramebufferAttachment(vk::PhysicalDevice physicalDevice, vk::Device device)
: physicalDevice(physicalDevice), device(device), format(vk::Format::eUndefined)
{}
void Init(u32 width, u32 height, vk::Format format);
void Reset() { image.reset(); imageView.reset(); deviceMemory.reset(); }
vk::UniqueImageView& GetImageView() { return imageView; }
vk::UniqueImage& GetImage() { return image; }
vk::UniqueDeviceMemory& GetDeviceMemory() { return deviceMemory; }
const BufferData* GetBufferData() const { return stagingBufferData.get(); }
private:
vk::Format format;
vk::Extent2D extent;
std::unique_ptr<BufferData> stagingBufferData;
vk::UniqueDeviceMemory deviceMemory;
vk::UniqueImageView imageView;
vk::UniqueImage image;
vk::PhysicalDevice physicalDevice;
vk::Device device;
};
class RenderToTexture
{
public:
RenderToTexture() : colorAttachment(VulkanContext::Instance()->GetPhysicalDevice(), *VulkanContext::Instance()->GetDevice()),
depthAttachment(VulkanContext::Instance()->GetPhysicalDevice(), *VulkanContext::Instance()->GetDevice())
{}
void PrepareRender(vk::RenderPass rttRenderPass)
{
DEBUG_LOG(RENDERER, "RenderToTexture packmode=%d stride=%d - %d,%d -> %d,%d", FB_W_CTRL.fb_packmode, FB_W_LINESTRIDE.stride * 8,
FB_X_CLIP.min, FB_Y_CLIP.min, FB_X_CLIP.max, FB_Y_CLIP.max);
u32 newWidth = pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1;
u32 newHeight = pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1;
int fbh = 2;
while (fbh < newHeight)
fbh *= 2;
int fbw = 2;
while (fbw < newWidth)
fbw *= 2;
if (settings.rend.RenderToTextureUpscale > 1 && !settings.rend.RenderToTextureBuffer)
{
newWidth *= settings.rend.RenderToTextureUpscale;
newHeight *= settings.rend.RenderToTextureUpscale;
fbw *= settings.rend.RenderToTextureUpscale;
fbh *= settings.rend.RenderToTextureUpscale;
}
VulkanContext *context = VulkanContext::Instance();
if (newWidth != this->width || newHeight != this->height)
{
width = newWidth;
height = newHeight;
colorAttachment.Init(width, height, vk::Format::eR8G8B8A8Unorm);
depthAttachment.Init(width, height, vk::Format::eD32SfloatS8Uint);
vk::ImageView imageViews[] = {
*colorAttachment.GetImageView(),
*depthAttachment.GetImageView(),
};
framebuffer = context->GetDevice()->createFramebufferUnique(vk::FramebufferCreateInfo(vk::FramebufferCreateFlags(),
rttRenderPass, ARRAY_SIZE(imageViews), imageViews, newWidth, newHeight, 1));
}
const vk::ClearValue clear_colors[] = { vk::ClearColorValue(std::array<float, 4>{0.f, 0.f, 0.f, 1.f}), vk::ClearDepthStencilValue{ 0.f, 0 } };
VulkanContext::Instance()->GetCurrentCommandBuffer().beginRenderPass(vk::RenderPassBeginInfo(rttRenderPass, *framebuffer,
vk::Rect2D({0, 0}, {width, height}), 2, clear_colors), vk::SubpassContents::eInline);
VulkanContext::Instance()->GetCurrentCommandBuffer().setViewport(0, vk::Viewport(0.0f, 0.0f, (float)width, (float)height, 1.0f, 0.0f));
// FIXME if the texture exists, need to transition it first
}
void EndRender()
{
VulkanContext::Instance()->GetCurrentCommandBuffer().endRenderPass();
u32 w = pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1;
u32 h = pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1;
u32 stride = FB_W_LINESTRIDE.stride * 8;
if (stride == 0)
stride = w * 2;
else if (w * 2 > stride) {
// Happens for Virtua Tennis
w = stride / 2;
}
u32 size = w * h * 2;
const u8 fb_packmode = FB_W_CTRL.fb_packmode;
if (settings.rend.RenderToTextureBuffer)
{
// wait! need to synchronize buddy!
// FIXME wtf? need a different cmd buffer if writing back to vram PITA
u32 tex_addr = FB_W_SOF1 & VRAM_MASK;
// Remove all vram locks before calling glReadPixels
// (deadlock on rpi)
u32 page_tex_addr = tex_addr & PAGE_MASK;
u32 page_size = size + tex_addr - page_tex_addr;
page_size = ((page_size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
for (u32 page = page_tex_addr; page < page_tex_addr + page_size; page += PAGE_SIZE)
VramLockedWriteOffset(page);
die("Not implemented");
}
else
{
//memset(&vram[fb_rtt.TexAddr << 3], '\0', size);
}
if (w > 1024 || h > 1024 || settings.rend.RenderToTextureBuffer) {
// TODO glcache.DeleteTextures(1, &gl.rtt.tex);
}
else
{
// TexAddr : fb_rtt.TexAddr, Reserved : 0, StrideSel : 0, ScanOrder : 1
TCW tcw = { { (FB_W_SOF1 & VRAM_MASK) >> 3, 0, 0, 1 } };
switch (fb_packmode) {
case 0:
case 3:
tcw.PixelFmt = Pixel1555;
break;
case 1:
tcw.PixelFmt = Pixel565;
break;
case 2:
tcw.PixelFmt = Pixel4444;
break;
}
TSP tsp = { 0 };
for (tsp.TexU = 0; tsp.TexU <= 7 && (8 << tsp.TexU) < w; tsp.TexU++);
for (tsp.TexV = 0; tsp.TexV <= 7 && (8 << tsp.TexV) < h; tsp.TexV++);
Texture* texture = static_cast<Texture*>(getTextureCacheData(tsp, tcw, [](){
return (BaseTextureCacheData *)new Texture(VulkanContext::Instance()->GetPhysicalDevice(), *VulkanContext::Instance()->GetDevice());
}));
if (texture->IsNew())
texture->Create();
// TODO replace tex vk:: stuff
texture->dirty = 0;
if (texture->lock_block == NULL)
texture->lock_block = libCore_vramlock_Lock(texture->sa_tex, texture->sa + texture->size - 1, texture);
}
}
private:
u32 width = 0;
u32 height = 0;
vk::UniqueFramebuffer framebuffer;
FramebufferAttachment colorAttachment;
FramebufferAttachment depthAttachment;
};

View File

@ -44,20 +44,3 @@ static inline vk::UniqueDeviceMemory allocateMemory(vk::Device const& device, vk
return device.allocateMemoryUnique(vk::MemoryAllocateInfo(memoryRequirements.size, memoryTypeIndex));
}
template <typename Func>
void oneTimeSubmit(vk::CommandBuffer const& commandBuffer, vk::Queue const& queue, Func const& func)
{
commandBuffer.begin(vk::CommandBufferBeginInfo(vk::CommandBufferUsageFlagBits::eOneTimeSubmit));
func(commandBuffer);
commandBuffer.end();
queue.submit(vk::SubmitInfo(0, nullptr, nullptr, 1, &commandBuffer), nullptr);
queue.waitIdle();
}
template <typename Func>
void oneTimeSubmit(vk::Device const& device, vk::CommandPool const& commandPool, vk::Queue const& queue, Func const& func)
{
vk::UniqueCommandBuffer commandBuffer = std::move(device.allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(commandPool, vk::CommandBufferLevel::ePrimary, 1)).front());
oneTimeSubmit(*commandBuffer, queue, func);
}

View File

@ -21,16 +21,6 @@
#pragma once
#include "types.h"
//#if defined(_WIN32)
//# define VK_USE_PLATFORM_WIN32_KHR
//#elif defined(__linux__) || defined(__unix__)
//# define VK_USE_PLATFORM_XLIB_KHR
//#elif defined(__APPLE__)
//# define VK_USE_PLATFORM_MACOS_MVK
//#else
//# error "Platform not supported"
//#endif
#include "volk/volk.h"
#undef VK_NO_PROTOTYPES
#include "vulkan/vulkan.hpp"
@ -50,6 +40,7 @@ public:
VkInstance GetInstance() const { return static_cast<VkInstance>(instance.get()); }
u32 GetGraphicsQueueFamilyIndex() const { return graphicsQueueIndex; }
VkSurfaceKHR GetSurface() { return this->surface; }
void SetSurface(VkSurfaceKHR surface) { this->surface = vk::SurfaceKHR(surface); }
void SetWindowSize(u32 width, u32 height) { this->width = screen_width = width; this->height = screen_height = height; }
void NewFrame();
@ -111,7 +102,7 @@ private:
u32 presentQueueIndex = 0;
vk::UniqueDevice device;
vk::SurfaceKHR surface; // FIXME needs to be destroyed manually
vk::SurfaceKHR surface;
vk::UniqueSwapchainKHR swapChain;
std::vector<vk::UniqueImageView> imageViews;

View File

@ -419,7 +419,7 @@ void VulkanContext::CreateSwapChain()
imageViews.push_back(device->createImageViewUnique(imageViewCreateInfo));
// create a UniqueCommandPool to allocate a CommandBuffer from
commandPools.push_back(device->createCommandPoolUnique(vk::CommandPoolCreateInfo(vk::CommandPoolCreateFlags(), graphicsQueueIndex)));
commandPools.push_back(device->createCommandPoolUnique(vk::CommandPoolCreateInfo(vk::CommandPoolCreateFlagBits::eTransient, graphicsQueueIndex)));
// allocate a CommandBuffer from the CommandPool
commandBuffers.push_back(std::move(device->allocateCommandBuffersUnique(vk::CommandBufferAllocateInfo(*commandPools.back(), vk::CommandBufferLevel::ePrimary, 1)).front()));
@ -433,7 +433,7 @@ void VulkanContext::CreateSwapChain()
attachmentDescriptions[0] = vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), colorFormat, vk::SampleCountFlagBits::e1, vk::AttachmentLoadOp::eClear,
vk::AttachmentStoreOp::eStore, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare, vk::ImageLayout::eUndefined, vk::ImageLayout::ePresentSrcKHR);
attachmentDescriptions[1] = vk::AttachmentDescription(vk::AttachmentDescriptionFlags(), depthFormat, vk::SampleCountFlagBits::e1, vk::AttachmentLoadOp::eClear,
vk::AttachmentStoreOp::eDontCare, vk::AttachmentLoadOp::eDontCare, vk::AttachmentStoreOp::eDontCare, vk::ImageLayout::eUndefined, vk::ImageLayout::eDepthStencilAttachmentOptimal);
vk::AttachmentStoreOp::eDontCare, vk::AttachmentLoadOp::eClear, vk::AttachmentStoreOp::eDontCare, vk::ImageLayout::eUndefined, vk::ImageLayout::eDepthStencilAttachmentOptimal);
vk::AttachmentReference colorReference(0, vk::ImageLayout::eColorAttachmentOptimal);
vk::AttachmentReference depthReference(1, vk::ImageLayout::eDepthStencilAttachmentOptimal);
@ -532,6 +532,21 @@ VulkanContext::~VulkanContext()
fclose(f);
}
}
swapChain.reset();
imageViews.clear();
framebuffers.clear();
renderPass.reset();
descriptorPool.reset();
depthView.reset();
depthMemory.reset();
depthImage.reset();
commandBuffers.clear();
commandPools.clear();
imageAcquiredSemaphores.clear();
renderCompleteSemaphores.clear();
drawFences.clear();
vkDestroySurfaceKHR((VkInstance)*instance, (VkSurfaceKHR)surface, nullptr);
verify(contextInstance == this);
contextInstance = nullptr;
}

View File

@ -19,18 +19,11 @@
along with Flycast. If not, see <https://www.gnu.org/licenses/>.
*/
#include <memory>
#include <unordered_set>
#include <math.h>
#include "vulkan.h"
#include "hw/pvr/Renderer_if.h"
#include "hw/pvr/ta_ctx.h"
#include "../gui.h"
#include "rend/sorter.h"
#include "buffer.h"
#include "pipeline.h"
#include "commandpool.h"
#include "drawer.h"
#include "shaders.h"
#include "texture.h"
#include "utils.h"
extern bool ProcessFrame(TA_context* ctx);
@ -40,9 +33,12 @@ public:
bool Init() override
{
printf("VulkanRenderer::Init\n");
InitUniforms();
shaderManager.Init();
texCommandPool.Init();
pipelineManager.Init();
textureDrawer.Init(&samplerManager, &shaderManager);
textureDrawer.SetCommandPool(&texCommandPool);
screenDrawer.Init(&samplerManager, &shaderManager);
return true;
}
@ -56,9 +52,8 @@ public:
printf("VulkanRenderer::Term\n");
GetContext()->WaitIdle();
killtex();
inFlightCommandBuffers.clear();
glslang::FinalizeProcess();
texCommandPool.Term();
shaderManager.Term();
}
bool Process(TA_context* ctx) override
@ -68,23 +63,18 @@ public:
// TODO RenderFramebuffer();
return false;
}
// FIXME We shouldn't wait for the next vk image if doing a RTT
if (ctx->rend.isRTT)
return false;
GetContext()->NewFrame();
if (inFlightCommandBuffers.size() != GetContext()->GetSwapChainSize())
inFlightCommandBuffers.resize(GetContext()->GetSwapChainSize());
inFlightCommandBuffers[GetCurrentImage()].clear();
texCommandPool.BeginFrame();
if (ProcessFrame(ctx))
return true;
bool result = ProcessFrame(ctx);
// FIXME
GetContext()->BeginRenderPass();
GetContext()->EndFrame();
GetContext()->Present();
return false;
if (result)
CheckFogTexture();
if (!result || !ctx->rend.isRTT)
texCommandPool.EndFrame();
return result;
}
void DrawOSD(bool clear_screen) override
@ -93,181 +83,10 @@ public:
bool Render() override
{
extern float fb_scale_x, fb_scale_y;
extern bool fog_needs_update;
bool is_rtt = pvrrc.isRTT;
float dc_width = 640;
float dc_height = 480;
if (is_rtt)
{
dc_width = pvrrc.fb_X_CLIP.max - pvrrc.fb_X_CLIP.min + 1;
dc_height = pvrrc.fb_Y_CLIP.max - pvrrc.fb_Y_CLIP.min + 1;
}
scale_x = 1;
scale_y = 1;
float scissoring_scale_x = 1;
if (!is_rtt && !pvrrc.isRenderFramebuffer)
{
scale_x = fb_scale_x;
scale_y = fb_scale_y;
if (SCALER_CTL.interlace == 0 && SCALER_CTL.vscalefactor > 0x400)
scale_y *= roundf((float)SCALER_CTL.vscalefactor / 0x400);
//work out scaling parameters !
//Pixel doubling is on VO, so it does not affect any pixel operations
//A second scaling is used here for scissoring
if (VO_CONTROL.pixel_double)
{
scissoring_scale_x = 0.5f;
scale_x *= 0.5f;
}
if (SCALER_CTL.hscale)
{
scissoring_scale_x /= 2;
scale_x*=2;
}
}
dc_width *= scale_x;
dc_height *= scale_y;
float screen_stretching = settings.rend.ScreenStretching / 100.f;
float screen_scaling = settings.rend.ScreenScaling / 100.f;
float dc2s_scale_h;
float ds2s_offs_x;
VertexShaderUniforms vtxUniforms;
if (is_rtt)
{
vtxUniforms.scale[0] = 2.0f / dc_width;
vtxUniforms.scale[1] = 2.0f / dc_height; // FIXME CT2 needs 480 here instead of dc_height=512
vtxUniforms.scale[2] = 1;
vtxUniforms.scale[3] = 1;
}
if (pvrrc.isRTT)
return textureDrawer.Draw(fogTexture.get());
else
{
if (settings.rend.Rotate90)
{
dc2s_scale_h = screen_height / 640.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 480.0f * screen_stretching) / 2;
vtxUniforms.scale[0] = -2.0f / (screen_width / dc2s_scale_h * scale_x) * screen_stretching;
vtxUniforms.scale[1] = 2.0f / dc_width;
vtxUniforms.scale[2] = 1 - 2 * ds2s_offs_x / screen_width;
vtxUniforms.scale[3] = 1;
}
else
{
dc2s_scale_h = screen_height / 480.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 640.0f * screen_stretching) / 2;
vtxUniforms.scale[0] = 2.0f / (screen_width / dc2s_scale_h * scale_x) * screen_stretching;
vtxUniforms.scale[1] = 2.0f / dc_height;
vtxUniforms.scale[2] = 1 - 2 * ds2s_offs_x / screen_width;
vtxUniforms.scale[3] = 1;
}
//-1 -> too much to left
}
vtxUniforms.extra_depth_scale = settings.rend.ExtraDepthScale;
FragmentShaderUniforms fragUniforms;
fragUniforms.extra_depth_scale = settings.rend.ExtraDepthScale;
//VERT and RAM fog color constants
u8* fog_colvert_bgra=(u8*)&FOG_COL_VERT;
u8* fog_colram_bgra=(u8*)&FOG_COL_RAM;
fragUniforms.sp_FOG_COL_VERT[0]=fog_colvert_bgra[2]/255.0f;
fragUniforms.sp_FOG_COL_VERT[1]=fog_colvert_bgra[1]/255.0f;
fragUniforms.sp_FOG_COL_VERT[2]=fog_colvert_bgra[0]/255.0f;
fragUniforms.sp_FOG_COL_RAM[0]=fog_colram_bgra [2]/255.0f;
fragUniforms.sp_FOG_COL_RAM[1]=fog_colram_bgra [1]/255.0f;
fragUniforms.sp_FOG_COL_RAM[2]=fog_colram_bgra [0]/255.0f;
//Fog density constant
u8* fog_density=(u8*)&FOG_DENSITY;
float fog_den_mant=fog_density[1]/128.0f; //bit 7 -> x. bit, so [6:0] -> fraction -> /128
s32 fog_den_exp=(s8)fog_density[0];
fragUniforms.sp_FOG_DENSITY = fog_den_mant * powf(2.0f, fog_den_exp);
fragUniforms.colorClampMin[0] = ((pvrrc.fog_clamp_min >> 16) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[1] = ((pvrrc.fog_clamp_min >> 8) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[2] = ((pvrrc.fog_clamp_min >> 0) & 0xFF) / 255.0f;
fragUniforms.colorClampMin[3] = ((pvrrc.fog_clamp_min >> 24) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[0] = ((pvrrc.fog_clamp_max >> 16) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[1] = ((pvrrc.fog_clamp_max >> 8) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[2] = ((pvrrc.fog_clamp_max >> 0) & 0xFF) / 255.0f;
fragUniforms.colorClampMax[3] = ((pvrrc.fog_clamp_max >> 24) & 0xFF) / 255.0f;
CheckFogTexture();
fragUniforms.cp_AlphaTestValue = (PT_ALPHA_REF & 0xFF) / 255.0f;
SortTriangles();
UploadUniforms(vtxUniforms, fragUniforms);
GetContext()->BeginRenderPass();
vk::CommandBuffer cmdBuffer = GetContext()->GetCurrentCommandBuffer();
// Upload vertex and index buffers
UploadMainBuffer();
// Update per-frame descriptor set and bind it
pipelineManager.GetDescriptorSets().UpdateUniforms(*vertexUniformBuffer, *fragmentUniformBuffer, fogTexture->GetImageView());
pipelineManager.GetDescriptorSets().BindPerFrameDescriptorSets(cmdBuffer);
// Reset per-poly descriptor set pool
pipelineManager.GetDescriptorSets().Reset();
// Bind vertex and index buffers
const vk::DeviceSize offsets[] = { 0 };
cmdBuffer.bindVertexBuffers(0, 1, &mainBuffers[GetCurrentImage()]->buffer.get(), offsets);
cmdBuffer.bindIndexBuffer(*mainBuffers[GetCurrentImage()]->buffer, pvrrc.verts.bytes() + pvrrc.modtrig.bytes(), vk::IndexType::eUint32);
cmdBuffer.setViewport(0, vk::Viewport(0.0f, 0.0f, (float)GetContext()->GetViewPort().width,
(float)GetContext()->GetViewPort().height, 1.0f, 0.0f));
cmdBuffer.setScissor(0, vk::Rect2D(vk::Offset2D(0, 0), GetContext()->GetViewPort()));
RenderPass previous_pass = {};
for (int render_pass = 0; render_pass < pvrrc.render_passes.used(); render_pass++)
{
const RenderPass& current_pass = pvrrc.render_passes.head()[render_pass];
DEBUG_LOG(RENDERER, "Render pass %d OP %d PT %d TR %d MV %d", render_pass + 1,
current_pass.op_count - previous_pass.op_count,
current_pass.pt_count - previous_pass.pt_count,
current_pass.tr_count - previous_pass.tr_count,
current_pass.mvo_count - previous_pass.mvo_count);
DrawList(cmdBuffer, ListType_Opaque, false, pvrrc.global_param_op, previous_pass.op_count, current_pass.op_count - previous_pass.op_count);
DrawList(cmdBuffer, ListType_Punch_Through, false, pvrrc.global_param_pt, previous_pass.pt_count, current_pass.pt_count - previous_pass.pt_count);
DrawModVols(cmdBuffer, previous_pass.mvo_count, current_pass.mvo_count - previous_pass.mvo_count);
if (current_pass.autosort)
{
if (!settings.rend.PerStripSorting)
{
DrawSorted(cmdBuffer, sortedPolys[render_pass]);
}
else
{
SortPParams(previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
DrawList(cmdBuffer, ListType_Translucent, true, pvrrc.global_param_tr, previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
}
}
else
DrawList(cmdBuffer, ListType_Translucent, false, pvrrc.global_param_tr, previous_pass.tr_count, current_pass.tr_count - previous_pass.tr_count);
previous_pass = current_pass;
}
if (!is_rtt)
gui_display_osd();
GetContext()->EndFrame();
return !is_rtt;
return screenDrawer.Draw(fogTexture.get());
}
void Present() override
@ -287,12 +106,7 @@ public:
//update if needed
if (tf->NeedsUpdate())
{
int previousImage = GetCurrentImage() - 1;
if (previousImage < 0)
previousImage = GetContext()->GetSwapChainSize() - 1;
inFlightCommandBuffers[GetCurrentImage()].emplace_back(std::move(GetContext()->GetDevice()->allocateCommandBuffersUnique(
vk::CommandBufferAllocateInfo(GetContext()->GetCurrentCommandPool(), vk::CommandBufferLevel::ePrimary, 1)).front()));
tf->SetCommandBuffer(*inFlightCommandBuffers[GetCurrentImage()].back());
tf->SetCommandBuffer(texCommandPool.Allocate());
tf->Update();
tf->SetCommandBuffer(nullptr);
}
@ -304,299 +118,6 @@ public:
private:
VulkanContext *GetContext() const { return VulkanContext::Instance(); }
int GetCurrentImage() const { return GetContext()->GetCurrentImageIndex(); }
// FIXME Code dup
s32 SetTileClip(u32 val, float *values)
{
if (!settings.rend.Clipping)
return 0;
u32 clipmode = val >> 28;
s32 clip_mode;
if (clipmode < 2)
{
clip_mode = 0; //always passes
}
else if (clipmode & 1)
clip_mode = -1; //render stuff outside the region
else
clip_mode = 1; //render stuff inside the region
float csx = 0, csy = 0, cex = 0, cey = 0;
csx = (float)(val & 63);
cex = (float)((val >> 6) & 63);
csy = (float)((val >> 12) & 31);
cey = (float)((val >> 17) & 31);
csx = csx * 32;
cex = cex * 32 + 32;
csy = csy * 32;
cey = cey * 32 + 32;
if (csx <= 0 && csy <= 0 && cex >= 640 && cey >= 480)
return 0;
if (values != nullptr && clip_mode)
{
if (!pvrrc.isRTT)
{
csx /= scale_x;
csy /= scale_y;
cex /= scale_x;
cey /= scale_y;
float dc2s_scale_h;
float ds2s_offs_x;
float screen_stretching = settings.rend.ScreenStretching / 100.f;
if (settings.rend.Rotate90)
{
float t = cex;
cex = cey;
cey = 640 - csx;
csx = csy;
csy = 640 - t;
dc2s_scale_h = screen_height / 640.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 480.0 * screen_stretching) / 2;
}
else
{
dc2s_scale_h = screen_height / 480.0f;
ds2s_offs_x = (screen_width - dc2s_scale_h * 640.0 * screen_stretching) / 2;
}
csx = csx * dc2s_scale_h * screen_stretching + ds2s_offs_x;
cex = cex * dc2s_scale_h * screen_stretching + ds2s_offs_x;
csy = csy * dc2s_scale_h;
cey = cey * dc2s_scale_h;
}
else if (!settings.rend.RenderToTextureBuffer)
{
csx *= settings.rend.RenderToTextureUpscale;
csy *= settings.rend.RenderToTextureUpscale;
cex *= settings.rend.RenderToTextureUpscale;
cey *= settings.rend.RenderToTextureUpscale;
}
values[0] = csx;
values[1] = csy;
values[2] = cex;
values[3] = cey;
}
return clip_mode;
}
void DrawList(const vk::CommandBuffer& cmdBuffer, u32 listType, bool sortTriangles, const List<PolyParam>& polys, u32 first, u32 count)
{
for (u32 i = first; i < count; i++)
{
const PolyParam &pp = polys.head()[i];
float trilinearAlpha;
if (pp.pcw.Texture && pp.tsp.FilterMode > 1 && listType != ListType_Punch_Through)
{
trilinearAlpha = 0.25 * (pp.tsp.MipMapD & 0x3);
if (pp.tsp.FilterMode == 2)
// Trilinear pass A
trilinearAlpha = 1.0 - trilinearAlpha;
}
else
trilinearAlpha = 1.f;
std::array<float, 5> pushConstants = { 0, 0, 0, 0, trilinearAlpha };
SetTileClip(pp.tileclip, &pushConstants[0]);
cmdBuffer.pushConstants<float>(pipelineManager.GetDescriptorSets().GetPipelineLayout(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants);
if (pp.pcw.Texture)
pipelineManager.GetDescriptorSets().SetTexture(pp.texid, pp.tsp);
vk::Pipeline pipeline = pipelineManager.GetPipeline(listType, sortTriangles, pp);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
if (pp.pcw.Texture)
pipelineManager.GetDescriptorSets().BindPerPolyDescriptorSets(cmdBuffer, pp.texid, pp.tsp);
cmdBuffer.drawIndexed(pp.count, 1, pp.first, 0, 0);
}
}
void SortTriangles()
{
sortedPolys.resize(pvrrc.render_passes.used());
sortedIndexes.resize(pvrrc.render_passes.used());
sortedIndexCount = 0;
RenderPass previousPass = {};
for (int render_pass = 0; render_pass < pvrrc.render_passes.used(); render_pass++)
{
const RenderPass& current_pass = pvrrc.render_passes.head()[render_pass];
sortedIndexes[render_pass].clear();
if (current_pass.autosort)
{
GenSorted(previousPass.tr_count, current_pass.tr_count - previousPass.tr_count, sortedPolys[render_pass], sortedIndexes[render_pass]);
for (auto& poly : sortedPolys[render_pass])
poly.first += sortedIndexCount;
sortedIndexCount += sortedIndexes[render_pass].size();
}
else
sortedPolys[render_pass].clear();
previousPass = current_pass;
}
}
// FIXME Code dup with DrawList()
void DrawSorted(const vk::CommandBuffer& cmdBuffer, const std::vector<SortTrigDrawParam>& polys)
{
for (const SortTrigDrawParam& param : polys)
{
float trilinearAlpha;
if (param.ppid->pcw.Texture && param.ppid->tsp.FilterMode > 1)
{
trilinearAlpha = 0.25 * (param.ppid->tsp.MipMapD & 0x3);
if (param.ppid->tsp.FilterMode == 2)
// Trilinear pass A
trilinearAlpha = 1.0 - trilinearAlpha;
}
else
trilinearAlpha = 1.f;
std::array<float, 5> pushConstants = { 0, 0, 0, 0, trilinearAlpha };
SetTileClip(param.ppid->tileclip, &pushConstants[0]);
cmdBuffer.pushConstants<float>(pipelineManager.GetDescriptorSets().GetPipelineLayout(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants);
if (param.ppid->pcw.Texture)
pipelineManager.GetDescriptorSets().SetTexture(param.ppid->texid, param.ppid->tsp);
vk::Pipeline pipeline = pipelineManager.GetPipeline(ListType_Translucent, true, *param.ppid);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
if (param.ppid->pcw.Texture)
pipelineManager.GetDescriptorSets().BindPerPolyDescriptorSets(cmdBuffer, param.ppid->texid, param.ppid->tsp);
cmdBuffer.drawIndexed(param.count, 1, pvrrc.idx.used() + param.first, 0, 0);
}
}
void DrawModVols(const vk::CommandBuffer& cmdBuffer, int first, int count)
{
if (count == 0 || pvrrc.modtrig.used() == 0)
return;
vk::DeviceSize offsets[] = { (vk::DeviceSize)pvrrc.verts.bytes() };
cmdBuffer.bindVertexBuffers(0, 1, &mainBuffers[GetCurrentImage()]->buffer.get(), offsets);
ModifierVolumeParam* params = &pvrrc.global_param_mvo.head()[first];
int mod_base = -1;
vk::Pipeline pipeline;
for (u32 cmv = 0; cmv < count; cmv++)
{
ModifierVolumeParam& param = params[cmv];
if (param.count == 0)
continue;
u32 mv_mode = param.isp.DepthMode;
if (mod_base == -1)
mod_base = param.first;
if (!param.isp.VolumeLast && mv_mode > 0)
pipeline = pipelineManager.GetModifierVolumePipeline(ModVolMode::Or); // OR'ing (open volume or quad)
else
pipeline = pipelineManager.GetModifierVolumePipeline(ModVolMode::Xor); // XOR'ing (closed volume)
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
cmdBuffer.draw(param.count * 3, 1, param.first * 3, 0);
if (mv_mode == 1 || mv_mode == 2)
{
// Sum the area
pipeline = pipelineManager.GetModifierVolumePipeline(mv_mode == 1 ? ModVolMode::Inclusion : ModVolMode::Exclusion);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
cmdBuffer.draw((param.first + param.count - mod_base) * 3, 1, mod_base * 3, 0);
mod_base = -1;
}
}
offsets[0] = 0;
cmdBuffer.bindVertexBuffers(0, 1, &mainBuffers[GetCurrentImage()]->buffer.get(), offsets);
std::array<float, 5> pushConstants = { 1 - FPU_SHAD_SCALE.scale_factor / 256.f, 0, 0, 0, 0 };
cmdBuffer.pushConstants<float>(pipelineManager.GetDescriptorSets().GetPipelineLayout(), vk::ShaderStageFlagBits::eFragment, 0, pushConstants);
pipeline = pipelineManager.GetModifierVolumePipeline(ModVolMode::Final);
cmdBuffer.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline);
cmdBuffer.drawIndexed(4, 1, 0, 0, 0);
}
void InitUniforms()
{
vertexUniformBuffer = GetContext()->GetDevice()->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(),
sizeof(VertexShaderUniforms), vk::BufferUsageFlagBits::eUniformBuffer));
vk::MemoryRequirements memRequirements = GetContext()->GetDevice()->getBufferMemoryRequirements(vertexUniformBuffer.get());
vertexUniformMemSize = memRequirements.size;
u32 typeIndex = findMemoryType(GetContext()->GetPhysicalDevice().getMemoryProperties(), memRequirements.memoryTypeBits,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
vertexUniformMemory = GetContext()->GetDevice()->allocateMemoryUnique(vk::MemoryAllocateInfo(vertexUniformMemSize, typeIndex));
GetContext()->GetDevice()->bindBufferMemory(vertexUniformBuffer.get(), vertexUniformMemory.get(), 0);
fragmentUniformBuffer = GetContext()->GetDevice()->createBufferUnique(vk::BufferCreateInfo(vk::BufferCreateFlags(),
sizeof(FragmentShaderUniforms), vk::BufferUsageFlagBits::eUniformBuffer));
memRequirements = GetContext()->GetDevice()->getBufferMemoryRequirements(fragmentUniformBuffer.get());
fragmentUniformsMemSize = memRequirements.size;
typeIndex = findMemoryType(GetContext()->GetPhysicalDevice().getMemoryProperties(), memRequirements.memoryTypeBits,
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
fragmentUniformMemory = GetContext()->GetDevice()->allocateMemoryUnique(vk::MemoryAllocateInfo(fragmentUniformsMemSize, typeIndex));
GetContext()->GetDevice()->bindBufferMemory(fragmentUniformBuffer.get(), fragmentUniformMemory.get(), 0);
}
void UploadUniforms(const VertexShaderUniforms& vertexUniforms, const FragmentShaderUniforms& fragmentUniforms)
{
uint8_t* pData = static_cast<uint8_t*>(GetContext()->GetDevice()->mapMemory(vertexUniformMemory.get(), 0, vertexUniformMemSize));
memcpy(pData, &vertexUniforms, sizeof(vertexUniforms));
GetContext()->GetDevice()->unmapMemory(vertexUniformMemory.get());
pData = static_cast<uint8_t*>(GetContext()->GetDevice()->mapMemory(fragmentUniformMemory.get(), 0, fragmentUniformsMemSize));
memcpy(pData, &fragmentUniforms, sizeof(fragmentUniforms));
GetContext()->GetDevice()->unmapMemory(fragmentUniformMemory.get());
}
void UploadMainBuffer()
{
u32 totalSize = pvrrc.verts.bytes() + pvrrc.idx.bytes() + pvrrc.modtrig.bytes() + sortedIndexCount * sizeof(u32);
if (mainBuffers.empty())
{
for (int i = 0; i < GetContext()->GetSwapChainSize(); i++)
mainBuffers.push_back(std::unique_ptr<BufferData>(new BufferData(GetContext()->GetPhysicalDevice(), GetContext()->GetDevice().get(),
std::max(512 * 1024u, totalSize), vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eIndexBuffer)));
}
else if (mainBuffers[GetCurrentImage()]->m_size < totalSize)
{
u32 newSize = mainBuffers[GetCurrentImage()]->m_size;
while (newSize < totalSize)
newSize *= 2;
INFO_LOG(RENDERER, "Increasing main buffer size %d -> %d", (u32)mainBuffers[GetCurrentImage()]->m_size, newSize);
mainBuffers[GetCurrentImage()] = std::unique_ptr<BufferData>(new BufferData(GetContext()->GetPhysicalDevice(), GetContext()->GetDevice().get(), newSize,
vk::BufferUsageFlagBits::eVertexBuffer | vk::BufferUsageFlagBits::eIndexBuffer));
}
std::vector<const void *> chunks;
std::vector<u32> chunkSizes;
chunks.push_back(pvrrc.verts.head());
chunkSizes.push_back(pvrrc.verts.bytes());
chunks.push_back(pvrrc.modtrig.head());
chunkSizes.push_back(pvrrc.modtrig.bytes());
chunks.push_back(pvrrc.idx.head());
chunkSizes.push_back(pvrrc.idx.bytes());
for (const std::vector<u32>& idx : sortedIndexes)
{
if (!idx.empty())
{
chunks.push_back(&idx[0]);
chunkSizes.push_back(idx.size() * sizeof(u32));
}
}
mainBuffers[GetCurrentImage()]->upload(GetContext()->GetDevice().get(), chunks.size(), &chunkSizes[0], &chunks[0]);
}
void CheckFogTexture()
{
@ -611,41 +132,20 @@ private:
fog_needs_update = false;
u8 texData[256];
MakeFogTexture(texData);
inFlightCommandBuffers[GetCurrentImage()].emplace_back(std::move(GetContext()->GetDevice()->allocateCommandBuffersUnique(
vk::CommandBufferAllocateInfo(GetContext()->GetCurrentCommandPool(), vk::CommandBufferLevel::ePrimary, 1)).front()));
fogTexture->SetCommandBuffer(*inFlightCommandBuffers[GetCurrentImage()].back());
fogTexture->SetCommandBuffer(texCommandPool.Allocate());
fogTexture->UploadToGPU(128, 2, texData);
fogTexture->SetCommandBuffer(nullptr);
}
// temp stuff
float scale_x;
float scale_y;
// Per-triangle sort results
std::vector<std::vector<SortTrigDrawParam>> sortedPolys;
std::vector<std::vector<u32>> sortedIndexes;
u32 sortedIndexCount;
std::unique_ptr<Texture> fogTexture;
std::vector<std::vector<vk::UniqueCommandBuffer>> inFlightCommandBuffers;
// Uniforms
// TODO put these in the main buffer
vk::UniqueBuffer vertexUniformBuffer;
vk::UniqueBuffer fragmentUniformBuffer;
vk::UniqueDeviceMemory vertexUniformMemory;
vk::UniqueDeviceMemory fragmentUniformMemory;
vk::DeviceSize vertexUniformMemSize;
vk::DeviceSize fragmentUniformsMemSize;
// Buffers
std::vector<std::unique_ptr<BufferData>> mainBuffers;
CommandPool texCommandPool;
SamplerManager samplerManager;
ShaderManager shaderManager;
PipelineManager pipelineManager;
ScreenDrawer screenDrawer;
TextureDrawer textureDrawer;
};
Renderer* rend_Vulkan()