1677 lines
140 KiB
HTML
1677 lines
140 KiB
HTML
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
|||
|
<html><head><title>CPU - 6502</title>
|
|||
|
<meta http-equiv="Content-Style-Type" content="text/css">
|
|||
|
<style type="text/css"><!--
|
|||
|
body {
|
|||
|
margin: 5px 5px 5px 5px;
|
|||
|
background-color: #ffffff;
|
|||
|
}
|
|||
|
/* ========== Text Styles ========== */
|
|||
|
hr { color: #000000}
|
|||
|
body, table /* Normal text */
|
|||
|
{
|
|||
|
font-size: 10pt;
|
|||
|
font-family: 'Arial', 'Helvetica', sans-serif;
|
|||
|
font-style: normal;
|
|||
|
font-weight: normal;
|
|||
|
color: #000000;
|
|||
|
text-decoration: none;
|
|||
|
;
|
|||
|
}
|
|||
|
span.rvts1 /* Heading */
|
|||
|
{
|
|||
|
font-weight: bold;
|
|||
|
color: #0000ff;
|
|||
|
}
|
|||
|
span.rvts2 /* Subheading */
|
|||
|
{
|
|||
|
font-weight: bold;
|
|||
|
color: #000080;
|
|||
|
}
|
|||
|
span.rvts3 /* Keywords */
|
|||
|
{
|
|||
|
font-style: italic;
|
|||
|
color: #800000;
|
|||
|
}
|
|||
|
a.rvts4, span.rvts4 /* Jump 1 */
|
|||
|
{
|
|||
|
color: #008000;
|
|||
|
text-decoration: underline;
|
|||
|
}
|
|||
|
a.rvts5, span.rvts5 /* Jump 2 */
|
|||
|
{
|
|||
|
color: #008000;
|
|||
|
text-decoration: underline;
|
|||
|
}
|
|||
|
span.rvts6 /* Font Hint */
|
|||
|
{
|
|||
|
color: #808080;
|
|||
|
}
|
|||
|
span.rvts7 /* Font Hint Title */
|
|||
|
{
|
|||
|
font-size: 15pt;
|
|||
|
font-family: 'Tahoma', 'Geneva', sans-serif;
|
|||
|
font-weight: bold;
|
|||
|
color: #404040;
|
|||
|
}
|
|||
|
span.rvts8 /* Font Hint Bold */
|
|||
|
{
|
|||
|
font-weight: bold;
|
|||
|
color: #808080;
|
|||
|
}
|
|||
|
span.rvts9 /* Font Hint Italic */
|
|||
|
{
|
|||
|
font-style: italic;
|
|||
|
color: #808080;
|
|||
|
}
|
|||
|
span.rvts10 /* Font Style */
|
|||
|
{
|
|||
|
font-size: 16pt;
|
|||
|
font-family: 'Tahoma', 'Geneva', sans-serif;
|
|||
|
color: #ffffff;
|
|||
|
}
|
|||
|
span.rvts11 /* Font Style */
|
|||
|
{
|
|||
|
font-family: 'MS Sans Serif', 'Geneva', sans-serif;
|
|||
|
color: #808080;
|
|||
|
}
|
|||
|
span.rvts12 /* Font Style */
|
|||
|
{
|
|||
|
font-family: 'Verdana', 'Geneva', sans-serif;
|
|||
|
font-style: italic;
|
|||
|
color: #c0c0c0;
|
|||
|
}
|
|||
|
a.rvts13, span.rvts13 /* Font Style */
|
|||
|
{
|
|||
|
font-family: 'Verdana', 'Geneva', sans-serif;
|
|||
|
font-style: italic;
|
|||
|
color: #6666ff;
|
|||
|
text-decoration: underline;
|
|||
|
}
|
|||
|
/* ========== Para Styles ========== */
|
|||
|
p,ul,ol /* Paragraph Style */
|
|||
|
{
|
|||
|
text-align: left;
|
|||
|
text-indent: 0px;
|
|||
|
padding: 0px 0px 0px 0px;
|
|||
|
margin: 0px 0px 0px 0px;
|
|||
|
}
|
|||
|
.rvps1 /* Centered */
|
|||
|
{
|
|||
|
text-align: center;
|
|||
|
}
|
|||
|
.rvps2 /* Paragraph Style */
|
|||
|
{
|
|||
|
background: #9fbed0;
|
|||
|
margin: 0px 0px 20px 0px;
|
|||
|
}
|
|||
|
.rvps3 /* Paragraph Style */
|
|||
|
{
|
|||
|
text-align: center;
|
|||
|
background: #e4e4e4;
|
|||
|
margin: 20px 0px 0px 0px;
|
|||
|
}
|
|||
|
.rvps4 /* Paragraph Style */
|
|||
|
{
|
|||
|
border-color: #c0c0c0;
|
|||
|
border-style: solid;
|
|||
|
border-width: 1px;
|
|||
|
border-right: none;
|
|||
|
border-bottom: none;
|
|||
|
border-left: none;
|
|||
|
background: #ffffff;
|
|||
|
padding: 3px 0px 0px 0px;
|
|||
|
margin: 27px 0px 0px 0px;
|
|||
|
}
|
|||
|
--></style>
|
|||
|
<script type="text/javascript">if(top.frames.length == 0) { top.location.href="../fceux-2.0.2.htm?{F2D1DEB3-8F0A-4394-9211-D82D466F09CC}.htm"; }</script>
|
|||
|
<meta name="generator" content="HelpNDoc Free"></head>
|
|||
|
<body>
|
|||
|
|
|||
|
<p class=rvps2><span class=rvts10>6502 CPU</span></p>
|
|||
|
<p>#</p>
|
|||
|
<p># $Id: 6502_cpu.txt,v 1.1.1.1 2004/08/29 01:29:35 bryan Exp $</p>
|
|||
|
<p>#</p>
|
|||
|
<p># This file is part of Commodore 64 emulator</p>
|
|||
|
<p># and Program Development System.</p>
|
|||
|
<p>#</p>
|
|||
|
<p># See README for copyright notice</p>
|
|||
|
<p>#</p>
|
|||
|
<p># This file contains documentation for 6502/6510/8500/8502 instruction set.</p>
|
|||
|
<p>#</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Written by</p>
|
|||
|
<p># John West (john@ucc.gu.uwa.edu.au)</p>
|
|||
|
<p># Marko M<>kel<65> (msmakela@kruuna.helsinki.fi)</p>
|
|||
|
<p>#</p>
|
|||
|
<p>#</p>
|
|||
|
<p># $Log: 6502_cpu.txt,v $</p>
|
|||
|
<p># Revision 1.1.1.1 2004/08/29 01:29:35 bryan</p>
|
|||
|
<p># no message</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Revision 1.1 2002/05/21 00:42:27 xodnizel</p>
|
|||
|
<p># updates</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Revision 1.8 1994/06/03 19:50:04 jopi</p>
|
|||
|
<p># Patchlevel 2</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Revision 1.7 1994/04/15 13:07:04 jopi</p>
|
|||
|
<p># 65xx Register descriptions added</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Revision 1.6 1994/02/18 16:09:36 jopi</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Revision 1.5 1994/01/26 16:08:37 jopi</p>
|
|||
|
<p># X64 version 0.2 PL 1</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Revision 1.4 1993/11/10 01:55:34 jopi</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Revision 1.3 93/06/21 13:37:18 jopi</p>
|
|||
|
<p># X64 version 0.2 PL 0</p>
|
|||
|
<p>#</p>
|
|||
|
<p># Revision 1.2 93/06/21 13:07:15 jopi</p>
|
|||
|
<p># *** empty log message ***</p>
|
|||
|
<p>#</p>
|
|||
|
<p>#</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Note: To extract the uuencoded ML programs in this article most</p>
|
|||
|
<p> easily you may use e.g. "uud" by Edwin Kremer ,</p>
|
|||
|
<p> which extracts them all at once.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p>Documentation for the NMOS 65xx/85xx Instruction Set</p>
|
|||
|
<p><br></p>
|
|||
|
<p> 6510 Instructions by Addressing Modes</p>
|
|||
|
<p> 6502 Registers</p>
|
|||
|
<p> 6510/8502 Undocumented Commands</p>
|
|||
|
<p> Register selection for load and store</p>
|
|||
|
<p> Decimal mode in NMOS 6500 series</p>
|
|||
|
<p> 6510 features</p>
|
|||
|
<p> Different CPU types</p>
|
|||
|
<p> 6510 Instruction Timing</p>
|
|||
|
<p> How Real Programmers Acknowledge Interrupts</p>
|
|||
|
<p> Memory Management</p>
|
|||
|
<p> Autostart Code</p>
|
|||
|
<p> Notes</p>
|
|||
|
<p> References</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p>6510 Instructions by Addressing Modes</p>
|
|||
|
<p><br></p>
|
|||
|
<p>off- ++++++++++ Positive ++++++++++ ---------- Negative ----------</p>
|
|||
|
<p>set 00 20 40 60 80 a0 c0 e0 mode</p>
|
|||
|
<p><br></p>
|
|||
|
<p>+00 BRK JSR RTI RTS NOP* LDY CPY CPX Impl/immed</p>
|
|||
|
<p>+01 ORA AND EOR ADC STA LDA CMP SBC (indir,x)</p>
|
|||
|
<p>+02 t t t t NOP*t LDX NOP*t NOP*t ? /immed</p>
|
|||
|
<p>+03 SLO* RLA* SRE* RRA* SAX* LAX* DCP* ISB* (indir,x)</p>
|
|||
|
<p>+04 NOP* BIT NOP* NOP* STY LDY CPY CPX Zeropage</p>
|
|||
|
<p>+05 ORA AND EOR ADC STA LDA CMP SBC Zeropage</p>
|
|||
|
<p>+06 ASL ROL LSR ROR STX LDX DEC INC Zeropage</p>
|
|||
|
<p>+07 SLO* RLA* SRE* RRA* SAX* LAX* DCP* ISB* Zeropage</p>
|
|||
|
<p><br></p>
|
|||
|
<p>+08 PHP PLP PHA PLA DEY TAY INY INX Implied</p>
|
|||
|
<p>+09 ORA AND EOR ADC NOP* LDA CMP SBC Immediate</p>
|
|||
|
<p>+0a ASL ROL LSR ROR TXA TAX DEX NOP Accu/impl</p>
|
|||
|
<p>+0b ANC** ANC** ASR** ARR** ANE** LXA** SBX** SBC* Immediate</p>
|
|||
|
<p>+0c NOP* BIT JMP JMP () STY LDY CPY CPX Absolute</p>
|
|||
|
<p>+0d ORA AND EOR ADC STA LDA CMP SBC Absolute</p>
|
|||
|
<p>+0e ASL ROL LSR ROR STX LDX DEC INC Absolute</p>
|
|||
|
<p>+0f SLO* RLA* SRE* RRA* SAX* LAX* DCP* ISB* Absolute</p>
|
|||
|
<p><br></p>
|
|||
|
<p>+10 BPL BMI BVC BVS BCC BCS BNE BEQ Relative</p>
|
|||
|
<p>+11 ORA AND EOR ADC STA LDA CMP SBC (indir),y</p>
|
|||
|
<p>+12 t t t t t t t t ?</p>
|
|||
|
<p>+13 SLO* RLA* SRE* RRA* SHA** LAX* DCP* ISB* (indir),y</p>
|
|||
|
<p>+14 NOP* NOP* NOP* NOP* STY LDY NOP* NOP* Zeropage,x</p>
|
|||
|
<p>+15 ORA AND EOR ADC STA LDA CMP SBC Zeropage,x</p>
|
|||
|
<p>+16 ASL ROL LSR ROR STX y) LDX y) DEC INC Zeropage,x</p>
|
|||
|
<p>+17 SLO* RLA* SRE* RRA* SAX* y) LAX* y) DCP* ISB* Zeropage,x</p>
|
|||
|
<p><br></p>
|
|||
|
<p>+18 CLC SEC CLI SEI TYA CLV CLD SED Implied</p>
|
|||
|
<p>+19 ORA AND EOR ADC STA LDA CMP SBC Absolute,y</p>
|
|||
|
<p>+1a NOP* NOP* NOP* NOP* TXS TSX NOP* NOP* Implied</p>
|
|||
|
<p>+1b SLO* RLA* SRE* RRA* SHS** LAS** DCP* ISB* Absolute,y</p>
|
|||
|
<p>+1c NOP* NOP* NOP* NOP* SHY** LDY NOP* NOP* Absolute,x</p>
|
|||
|
<p>+1d ORA AND EOR ADC STA LDA CMP SBC Absolute,x</p>
|
|||
|
<p>+1e ASL ROL LSR ROR SHX**y) LDX y) DEC INC Absolute,x</p>
|
|||
|
<p>+1f SLO* RLA* SRE* RRA* SHA**y) LAX* y) DCP* ISB* Absolute,x</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ROR intruction is available on MC650x microprocessors after</p>
|
|||
|
<p> June, 1976.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Legend:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> t Jams the machine</p>
|
|||
|
<p> *t Jams very rarely</p>
|
|||
|
<p> * Undocumented command</p>
|
|||
|
<p> ** Unusual operation</p>
|
|||
|
<p> y) indexed using Y instead of X</p>
|
|||
|
<p> () indirect instead of absolute</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Note that the NOP instructions do have other addressing modes than the</p>
|
|||
|
<p>implied addressing. The NOP instruction is just like any other load</p>
|
|||
|
<p>instruction, except it does not store the result anywhere nor affects the</p>
|
|||
|
<p>flags.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>6502 Registers</p>
|
|||
|
<p><br></p>
|
|||
|
<p>The NMOS 65xx processors are not ruined with too many registers. In addition</p>
|
|||
|
<p>to that, the registers are mostly 8-bit. Here is a brief description of each</p>
|
|||
|
<p>register:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> PC Program Counter</p>
|
|||
|
<p> This register points the address from which the next instruction</p>
|
|||
|
<p> byte (opcode or parameter) will be fetched. Unlike other</p>
|
|||
|
<p> registers, this one is 16 bits in length. The low and high 8-bit</p>
|
|||
|
<p> halves of the register are called PCL and PCH, respectively. The</p>
|
|||
|
<p> Program Counter may be read by pushing its value on the stack.</p>
|
|||
|
<p> This can be done either by jumping to a subroutine or by causing</p>
|
|||
|
<p> an interrupt.</p>
|
|||
|
<p> S Stack pointer</p>
|
|||
|
<p> The NMOS 65xx processors have 256 bytes of stack memory, ranging</p>
|
|||
|
<p> from $0100 to $01FF. The S register is a 8-bit offset to the stack</p>
|
|||
|
<p> page. In other words, whenever anything is being pushed on the</p>
|
|||
|
<p> stack, it will be stored to the address $0100+S.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The Stack pointer can be read and written by transfering its value</p>
|
|||
|
<p> to or from the index register X (see below) with the TSX and TXS</p>
|
|||
|
<p> instructions.</p>
|
|||
|
<p> P Processor status</p>
|
|||
|
<p> This 8-bit register stores the state of the processor. The bits in</p>
|
|||
|
<p> this register are called flags. Most of the flags have something</p>
|
|||
|
<p> to do with arithmetic operations.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The P register can be read by pushing it on the stack (with PHP or</p>
|
|||
|
<p> by causing an interrupt). If you only need to read one flag, you</p>
|
|||
|
<p> can use the branch instructions. Setting the flags is possible by</p>
|
|||
|
<p> pulling the P register from stack or by using the flag set or</p>
|
|||
|
<p> clear instructions.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Following is a list of the flags, starting from the 8th bit of the</p>
|
|||
|
<p> P register (bit 7, value $80):</p>
|
|||
|
<p> N Negative flag</p>
|
|||
|
<p> This flag will be set after any arithmetic operations</p>
|
|||
|
<p> (when any of the registers A, X or Y is being loaded</p>
|
|||
|
<p> with a value). Generally, the N flag will be copied from</p>
|
|||
|
<p> the topmost bit of the register being loaded.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Note that TXS (Transfer X to S) is not an arithmetic</p>
|
|||
|
<p> operation. Also note that the BIT instruction affects</p>
|
|||
|
<p> the Negative flag just like arithmetic operations.</p>
|
|||
|
<p> Finally, the Negative flag behaves differently in</p>
|
|||
|
<p> Decimal operations (see description below).</p>
|
|||
|
<p> V oVerflow flag</p>
|
|||
|
<p> Like the Negative flag, this flag is intended to be used</p>
|
|||
|
<p> with 8-bit signed integer numbers. The flag will be</p>
|
|||
|
<p> affected by addition and subtraction, the instructions</p>
|
|||
|
<p> PLP, CLV and BIT, and the hardware signal -SO. Note that</p>
|
|||
|
<p> there is no SEV instruction, even though the MOS</p>
|
|||
|
<p> engineers loved to use East European abbreviations, like</p>
|
|||
|
<p> DDR (Deutsche Demokratische Republik vs. Data Direction</p>
|
|||
|
<p> Register). (The Russian abbreviation for their former</p>
|
|||
|
<p> trade association COMECON is SEV.) The -SO (Set</p>
|
|||
|
<p> Overflow) signal is available on some processors, at</p>
|
|||
|
<p> least the 6502, to set the V flag. This enables response</p>
|
|||
|
<p> to an I/O activity in equal or less than three clock</p>
|
|||
|
<p> cycles when using a BVC instruction branching to itself</p>
|
|||
|
<p> ($50 $FE).</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The CLV instruction clears the V flag, and the PLP and</p>
|
|||
|
<p> BIT instructions copy the flag value from the bit 6 of</p>
|
|||
|
<p> the topmost stack entry or from memory.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> After a binary addition or subtraction, the V flag will</p>
|
|||
|
<p> be set on a sign overflow, cleared otherwise. What is a</p>
|
|||
|
<p> sign overflow? For instance, if you are trying to add</p>
|
|||
|
<p> 123 and 45 together, the result (168) does not fit in a</p>
|
|||
|
<p> 8-bit signed integer (upper limit 127 and lower limit</p>
|
|||
|
<p> -128). Similarly, adding -123 to -45 causes the</p>
|
|||
|
<p> overflow, just like subtracting -45 from 123 or 123 from</p>
|
|||
|
<p> -45 would do.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Like the N flag, the V flag will not be set as expected</p>
|
|||
|
<p> in the Decimal mode. Later in this document is a precise</p>
|
|||
|
<p> operation description.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> A common misbelief is that the V flag could only be set</p>
|
|||
|
<p> by arithmetic operations, not cleared.</p>
|
|||
|
<p> 1 unused flag</p>
|
|||
|
<p> To the current knowledge, this flag is always 1.</p>
|
|||
|
<p> B Break flag</p>
|
|||
|
<p> This flag is used to distinguish software (BRK)</p>
|
|||
|
<p> interrupts from hardware interrupts (IRQ or NMI). The B</p>
|
|||
|
<p> flag is always set except when the P register is being</p>
|
|||
|
<p> pushed on stack when jumping to an interrupt routine to</p>
|
|||
|
<p> process only a hardware interrupt.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The official NMOS 65xx documentation claims that the BRK</p>
|
|||
|
<p> instruction could only cause a jump to the IRQ vector</p>
|
|||
|
<p> ($FFFE). However, if an NMI interrupt occurs while</p>
|
|||
|
<p> executing a BRK instruction, the processor will jump to</p>
|
|||
|
<p> the NMI vector ($FFFA), and the P register will be</p>
|
|||
|
<p> pushed on the stack with the B flag set.</p>
|
|||
|
<p> D Decimal mode flag</p>
|
|||
|
<p> This flag is used to select the (Binary Coded) Decimal</p>
|
|||
|
<p> mode for addition and subtraction. In most applications,</p>
|
|||
|
<p> the flag is zero.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The Decimal mode has many oddities, and it operates</p>
|
|||
|
<p> differently on CMOS processors. See the description of</p>
|
|||
|
<p> the ADC, SBC and ARR instructions below.</p>
|
|||
|
<p> I Interrupt disable flag</p>
|
|||
|
<p> This flag can be used to prevent the processor from</p>
|
|||
|
<p> jumping to the IRQ handler vector ($FFFE) whenever the</p>
|
|||
|
<p> hardware line -IRQ is active. The flag will be</p>
|
|||
|
<p> automatically set after taking an interrupt, so that the</p>
|
|||
|
<p> processor would not keep jumping to the interrupt</p>
|
|||
|
<p> routine if the -IRQ signal remains low for several clock</p>
|
|||
|
<p> cycles.</p>
|
|||
|
<p> Z Zero flag</p>
|
|||
|
<p> The Zero flag will be affected in the same cases than</p>
|
|||
|
<p> the Negative flag. Generally, it will be set if an</p>
|
|||
|
<p> arithmetic register is being loaded with the value zero,</p>
|
|||
|
<p> and cleared otherwise. The flag will behave differently</p>
|
|||
|
<p> in Decimal operations.</p>
|
|||
|
<p> C Carry flag</p>
|
|||
|
<p> This flag is used in additions, subtractions,</p>
|
|||
|
<p> comparisons and bit rotations. In additions and</p>
|
|||
|
<p> subtractions, it acts as a 9th bit and lets you to chain</p>
|
|||
|
<p> operations to calculate with bigger than 8-bit numbers.</p>
|
|||
|
<p> When subtracting, the Carry flag is the negative of</p>
|
|||
|
<p> Borrow: if an overflow occurs, the flag will be clear,</p>
|
|||
|
<p> otherwise set. Comparisons are a special case of</p>
|
|||
|
<p> subtraction: they assume Carry flag set and Decimal flag</p>
|
|||
|
<p> clear, and do not store the result of the subtraction</p>
|
|||
|
<p> anywhere.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> There are four kinds of bit rotations. All of them store</p>
|
|||
|
<p> the bit that is being rotated off to the Carry flag. The</p>
|
|||
|
<p> left shifting instructions are ROL and ASL. ROL copies</p>
|
|||
|
<p> the initial Carry flag to the lowmost bit of the byte;</p>
|
|||
|
<p> ASL always clears it. Similarly, the ROR and LSR</p>
|
|||
|
<p> instructions shift to the right.</p>
|
|||
|
<p> A Accumulator</p>
|
|||
|
<p> The accumulator is the main register for arithmetic and logic</p>
|
|||
|
<p> operations. Unlike the index registers X and Y, it has a direct</p>
|
|||
|
<p> connection to the Arithmetic and Logic Unit (ALU). This is why</p>
|
|||
|
<p> many operations are only available for the accumulator, not the</p>
|
|||
|
<p> index registers.</p>
|
|||
|
<p> X Index register X</p>
|
|||
|
<p> This is the main register for addressing data with indices. It has</p>
|
|||
|
<p> a special addressing mode, indexed indirect, which lets you to</p>
|
|||
|
<p> have a vector table on the zero page.</p>
|
|||
|
<p> Y Index register Y</p>
|
|||
|
<p> The Y register has the least operations available. On the other</p>
|
|||
|
<p> hand, only it has the indirect indexed addressing mode that</p>
|
|||
|
<p> enables access to any memory place without having to use</p>
|
|||
|
<p> self-modifying code.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>6510/8502 Undocumented Commands</p>
|
|||
|
<p><br></p>
|
|||
|
<p>-- A brief explanation about what may happen while using don't care states.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ANE $8B A = (A | #$EE) & X & #byte</p>
|
|||
|
<p> same as</p>
|
|||
|
<p> A = ((A & #$11 & X) | ( #$EE & X)) & #byte</p>
|
|||
|
<p><br></p>
|
|||
|
<p> In real 6510/8502 the internal parameter #$11</p>
|
|||
|
<p> may occasionally be #$10, #$01 or even #$00.</p>
|
|||
|
<p> This occurs when the video chip starts DMA</p>
|
|||
|
<p> between the opcode fetch and the parameter fetch</p>
|
|||
|
<p> of the instruction. The value probably depends</p>
|
|||
|
<p> on the data that was left on the bus by the VIC-II.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> LXA $AB C=Lehti: A = X = ANE</p>
|
|||
|
<p> Alternate: A = X = (A & #byte)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> TXA and TAX have to be responsible for these.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> SHA $93,$9F Store (A & X & (ADDR_HI + 1))</p>
|
|||
|
<p> SHX $9E Store (X & (ADDR_HI + 1))</p>
|
|||
|
<p> SHY $9C Store (Y & (ADDR_HI + 1))</p>
|
|||
|
<p> SHS $9B SHA and TXS, where X is replaced by (A & X).</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Note: The value to be stored is copied also</p>
|
|||
|
<p> to ADDR_HI if page boundary is crossed.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> SBX $CB Carry and Decimal flags are ignored but the</p>
|
|||
|
<p> Carry flag will be set in substraction. This</p>
|
|||
|
<p> is due to the CMP command, which is executed</p>
|
|||
|
<p> instead of the real SBC.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ARR $6B This instruction first performs an AND</p>
|
|||
|
<p> between the accumulator and the immediate</p>
|
|||
|
<p> parameter, then it shifts the accumulator to</p>
|
|||
|
<p> the right. However, this is not the whole</p>
|
|||
|
<p> truth. See the description below.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Many undocumented commands do not use AND between registers, the CPU</p>
|
|||
|
<p>just throws the bytes to a bus simultaneously and lets the</p>
|
|||
|
<p>open-collector drivers perform the AND. I.e. the command called 'SAX',</p>
|
|||
|
<p>which is in the STORE section (opcodes $A0...$BF), stores the result</p>
|
|||
|
<p>of (A & X) by this way.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>More fortunate is its opposite, 'LAX' which just loads a byte</p>
|
|||
|
<p>simultaneously into both A and X.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> $6B ARR</p>
|
|||
|
<p><br></p>
|
|||
|
<p>This instruction seems to be a harmless combination of AND and ROR at</p>
|
|||
|
<p>first sight, but it turns out that it affects the V flag and also has</p>
|
|||
|
<p>a special kind of decimal mode. This is because the instruction has</p>
|
|||
|
<p>inherited some properties of the ADC instruction ($69) in addition to</p>
|
|||
|
<p>the ROR ($6A).</p>
|
|||
|
<p><br></p>
|
|||
|
<p>In Binary mode (D flag clear), the instruction effectively does an AND</p>
|
|||
|
<p>between the accumulator and the immediate parameter, and then shifts</p>
|
|||
|
<p>the accumulator to the right, copying the C flag to the 8th bit. It</p>
|
|||
|
<p>sets the Negative and Zero flags just like the ROR would. The ADC code</p>
|
|||
|
<p>shows up in the Carry and oVerflow flags. The C flag will be copied</p>
|
|||
|
<p>from the bit 6 of the result (which doesn't seem too logical), and the</p>
|
|||
|
<p>V flag is the result of an Exclusive OR operation between the bit 6</p>
|
|||
|
<p>and the bit 5 of the result. This makes sense, since the V flag will</p>
|
|||
|
<p>be normally set by an Exclusive OR, too.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>In Decimal mode (D flag set), the ARR instruction first performs the</p>
|
|||
|
<p>AND and ROR, just like in Binary mode. The N flag will be copied from</p>
|
|||
|
<p>the initial C flag, and the Z flag will be set according to the ROR</p>
|
|||
|
<p>result, as expected. The V flag will be set if the bit 6 of the</p>
|
|||
|
<p>accumulator changed its state between the AND and the ROR, cleared</p>
|
|||
|
<p>otherwise.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Now comes the funny part. If the low nybble of the AND result,</p>
|
|||
|
<p>incremented by its lowmost bit, is greater than 5, the low nybble in</p>
|
|||
|
<p>the ROR result will be incremented by 6. The low nybble may overflow</p>
|
|||
|
<p>as a consequence of this BCD fixup, but the high nybble won't be</p>
|
|||
|
<p>adjusted. The high nybble will be BCD fixed in a similar way. If the</p>
|
|||
|
<p>high nybble of the AND result, incremented by its lowmost bit, is</p>
|
|||
|
<p>greater than 5, the high nybble in the ROR result will be incremented</p>
|
|||
|
<p>by 6, and the Carry flag will be set. Otherwise the C flag will be</p>
|
|||
|
<p>cleared.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>To help you understand this description, here is a C routine that</p>
|
|||
|
<p>illustrates the ARR operation in Decimal mode:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> unsigned</p>
|
|||
|
<p> A, /* Accumulator */</p>
|
|||
|
<p> AL, /* low nybble of accumulator */</p>
|
|||
|
<p> AH, /* high nybble of accumulator */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> C, /* Carry flag */</p>
|
|||
|
<p> Z, /* Zero flag */</p>
|
|||
|
<p> V, /* oVerflow flag */</p>
|
|||
|
<p> N, /* Negative flag */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> t, /* temporary value */</p>
|
|||
|
<p> s; /* value to be ARRed with Accumulator */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> t = A & s; /* Perform the AND. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> AH = t >> 4; /* Separate the high */</p>
|
|||
|
<p> AL = t & 15; /* and low nybbles. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> N = C; /* Set the N and */</p>
|
|||
|
<p> Z = !(A = (t >> 1) | (C << 7)); /* Z flags traditionally */</p>
|
|||
|
<p> V = (t ^ A) & 64; /* and V flag in a weird way. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> if (AL + (AL & 1) > 5) /* BCD "fixup" for low nybble. */</p>
|
|||
|
<p> A = (A & 0xF0) | ((A + 6) & 0xF);</p>
|
|||
|
<p><br></p>
|
|||
|
<p> if (C = AH + (AH & 1) > 5) /* Set the Carry flag. */</p>
|
|||
|
<p> A = (A + 0x60) & 0xFF; /* BCD "fixup" for high nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> $CB SBX X <- (A & X) - Immediate</p>
|
|||
|
<p><br></p>
|
|||
|
<p>The 'SBX' ($CB) may seem to be very complex operation, even though it</p>
|
|||
|
<p>is a combination of the subtraction of accumulator and parameter, as</p>
|
|||
|
<p>in the 'CMP' instruction, and the command 'DEX'. As a result, both A</p>
|
|||
|
<p>and X are connected to ALU but only the subtraction takes place. Since</p>
|
|||
|
<p>the comparison logic was used, the result of subtraction should be</p>
|
|||
|
<p>normally ignored, but the 'DEX' now happily stores to X the value of</p>
|
|||
|
<p>(A & X) - Immediate. That is why this instruction does not have any</p>
|
|||
|
<p>decimal mode, and it does not affect the V flag. Also Carry flag will</p>
|
|||
|
<p>be ignored in the subtraction but set according to the result.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Proof:</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 644 vsbx</p>
|
|||
|
<p>M`0@9$,D'GL(H-#,IJC(U-JS"*#0T*:HR-@```*D`H#V1*Z`_D2N@09$KJ0>%</p>
|
|||
|
<p>M^QBE^VEZJ+$KH#F1*ZD`2"BI`*(`RP`(:-B@.5$K*4#P`E@`H#VQ*SAI`)$K</p>
|
|||
|
<p>JD-Z@/[$K:0"1*Y#4J2X@TO\XH$&Q*VD`D2N0Q,;[$+188/_^]_:_OK>V</p>
|
|||
|
<p>`</p>
|
|||
|
<p>end</p>
|
|||
|
<p><br></p>
|
|||
|
<p> and</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 644 sbx</p>
|
|||
|
<p>M`0@9$,D'GL(H-#,IJC(U-JS"*#0T*:HR-@```'BI`*!-D2N@3Y$KH%&1*ZD#</p>
|
|||
|
<p>MA?L8I?M*2)`#J1@LJ3B@29$K:$J0`ZGX+*G8R)$K&/BXJ?2B8\L)AOP(:(7]</p>
|
|||
|
<p>MV#B@3;$KH$\Q*Z!1\2L(1?SP`0!H1?TIM]#XH$VQ*SAI`)$KD,N@3[$K:0"1</p>
|
|||
|
<p>9*Y#!J2X@TO\XH%&Q*VD`D2N0L<;[$))88-#X</p>
|
|||
|
<p>`</p>
|
|||
|
<p>end</p>
|
|||
|
<p><br></p>
|
|||
|
<p>These test programs show if your machine is compatible with ours</p>
|
|||
|
<p>regarding the opcode $CB. The first test, vsbx, proves that SBX does</p>
|
|||
|
<p>not affect the V flag. The latter one, sbx, proves the rest of our</p>
|
|||
|
<p>theory. The vsbx test tests 33554432 SBX combinations (16777216</p>
|
|||
|
<p>different A, X and Immediate combinations, and two different V flag</p>
|
|||
|
<p>states), and the sbx test doubles that amount (16777216*4 D and C flag</p>
|
|||
|
<p>combinations). Both tests have run successfully on a C64 and a Vic20.</p>
|
|||
|
<p>They ought to run on C16, +4 and the PET series as well. The tests</p>
|
|||
|
<p>stop with BRK, if the opcode $CB does not work as expected. Successful</p>
|
|||
|
<p>operation ends in RTS. As the tests are very slow, they print dots on</p>
|
|||
|
<p>the screen while running so that you know that the machine has not</p>
|
|||
|
<p>jammed. On computers running at 1 MHz, the first test prints</p>
|
|||
|
<p>approximately one dot every four seconds and a total of 2048 dots,</p>
|
|||
|
<p>whereas the second one prints half that amount, one dot every seven</p>
|
|||
|
<p>seconds.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>If the tests fail on your machine, please let us know your processor's</p>
|
|||
|
<p>part number and revision. If possible, save the executable (after it</p>
|
|||
|
<p>has stopped with BRK) under another name and send it to us so that we</p>
|
|||
|
<p>know at which stage the program stopped.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>The following program is a Commodore 64 executable that Marko M"akel"a</p>
|
|||
|
<p>developed when trying to find out how the V flag is affected by SBX.</p>
|
|||
|
<p>(It was believed that the SBX affects the flag in a weird way, and</p>
|
|||
|
<p>this program shows how SBX sets the flag differently from SBC.) You</p>
|
|||
|
<p>may find the subroutine at $C150 useful when researching other</p>
|
|||
|
<p>undocumented instructions' flags. Run the program in a machine</p>
|
|||
|
<p>language monitor, as it makes use of the BRK instruction. The result</p>
|
|||
|
<p>tables will be written on pages $C2 and $C3.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 644 sbx-c100</p>
|
|||
|
<p>M`,%XH`",#L&,$,&,$L&XJ8*B@LL7AOL(:(7\N#BM#L$M$,'M$L$(Q?OP`B@`</p>
|
|||
|
<p>M:$7\\`,@4,'N#L'0U.X0P=#/SB#0[A+!T,<``````````````)BJ\!>M#L$M</p>
|
|||
|
<p>L$,'=_\'0":T2P=W_PM`!8,K0Z:T.P2T0P9D`PID`!*T2P9D`PYD`!</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Other undocumented instructions usually cause two preceding opcodes</p>
|
|||
|
<p>being executed. However 'NOP' seems to completely disappear from 'SBC'</p>
|
|||
|
<p>code $EB.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>The most difficult to comprehend are the rest of the instructions</p>
|
|||
|
<p>located on the '$0B' line.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>All the instructions located at the positive (left) side of this line</p>
|
|||
|
<p>should rotate either memory or the accumulator, but the addressing</p>
|
|||
|
<p>mode turns out to be immediate! No problem. Just read the operand, let</p>
|
|||
|
<p>it be ANDed with the accumulator and finally use accumulator</p>
|
|||
|
<p>addressing mode for the instructions above them.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>RELIGION_MODE_ON</p>
|
|||
|
<p>/* This part of the document is not accurate. You can</p>
|
|||
|
<p> read it as a fairy tale, but do not count on it when</p>
|
|||
|
<p> performing your own measurements. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p>The rest two instructions on the same line, called 'ANE' and 'LXA'</p>
|
|||
|
<p>($8B and $AB respectively) often give quite unpredictable results.</p>
|
|||
|
<p>However, the most usual operation is to store ((A | #$ee) & X & #$nn)</p>
|
|||
|
<p>to accumulator. Note that this does not work reliably in a real 64!</p>
|
|||
|
<p>In the Commodore 128 the opcode $8B uses values 8C, CC, EE, and</p>
|
|||
|
<p>occasionally 0C and 8E for the OR instead of EE,EF,FE and FF used in</p>
|
|||
|
<p>the C64. With a C128 running at 2 MHz #$EE is always used. Opcode $AB</p>
|
|||
|
<p>does not cause this OR taking place on 8502 while 6510 always performs</p>
|
|||
|
<p>it. Note that this behaviour depends on processor and/or video chip</p>
|
|||
|
<p>revision.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Let's take a closer look at $8B (6510).</p>
|
|||
|
<p><br></p>
|
|||
|
<p> A <- X & D & (A | VAL)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> where VAL comes from this table:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> X high D high D low VAL</p>
|
|||
|
<p> even even --- $EE (1)</p>
|
|||
|
<p> even odd --- $EE</p>
|
|||
|
<p> odd even --- $EE</p>
|
|||
|
<p> odd odd 0 $EE</p>
|
|||
|
<p> odd odd not 0 $FE (2)</p>
|
|||
|
<p><br></p>
|
|||
|
<p>(1) If the bottom 2 bits of A are both 1, then the LSB of the result may</p>
|
|||
|
<p> be 0. The values of X and D are different every time I run the test.</p>
|
|||
|
<p> This appears to be very rare.</p>
|
|||
|
<p>(2) VAL is $FE most of the time. Sometimes it is $EE - it seems to be random,</p>
|
|||
|
<p> not related to any of the data. This is much more common than (1).</p>
|
|||
|
<p><br></p>
|
|||
|
<p> In decimal mode, VAL is usually $FE.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Two different functions have been discovered for LAX, opcode $AB. One</p>
|
|||
|
<p>is A = X = ANE (see above) and the other, encountered with 6510 and</p>
|
|||
|
<p>8502, is less complicated A = X = (A & #byte). However, according to</p>
|
|||
|
<p>what is reported, the version altering only the lowest bits of each</p>
|
|||
|
<p>nybble seems to be more common.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>What happens, is that $AB loads a value into both A and X, ANDing the</p>
|
|||
|
<p>low bit of each nybble with the corresponding bit of the old</p>
|
|||
|
<p>A. However, there are exceptions. Sometimes the low bit is cleared</p>
|
|||
|
<p>even when A contains a '1', and sometimes other bits are cleared. The</p>
|
|||
|
<p>exceptions seem random (they change every time I run the test). Oops -</p>
|
|||
|
<p>that was in decimal mode. Much the same with D=0.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>What causes the randomness? Probably it is that it is marginal logic</p>
|
|||
|
<p>levels - when too much wired-anding goes on, some of the signals get</p>
|
|||
|
<p>very close to the threshold. Perhaps we're seeing some of them step</p>
|
|||
|
<p>over it. The low bit of each nybble is special, since it has to cope</p>
|
|||
|
<p>with carry differently (remember decimal mode). We never see a '0'</p>
|
|||
|
<p>turn into a '1'.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Since these instructions are unpredictable, they should not be used.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>There is still very strange instruction left, the one named SHA/X/Y,</p>
|
|||
|
<p>which is the only one with only indexed addressing modes. Actually,</p>
|
|||
|
<p>the commands 'SHA', 'SHX' and 'SHY' are generated by the indexing</p>
|
|||
|
<p>algorithm.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>While using indexed addressing, effective address for page boundary</p>
|
|||
|
<p>crossing is calculated as soon as possible so it does not slow down</p>
|
|||
|
<p>operation. As a result, in the case of SHA/X/Y, the address and data</p>
|
|||
|
<p>are processed at the same time making AND between them to take place.</p>
|
|||
|
<p>Thus, the value to be stored by SAX, for example, is in fact (A & X &</p>
|
|||
|
<p>(ADDR_HI + 1)). On page boundary crossing the same value is copied</p>
|
|||
|
<p>also to high byte of the effective address.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>RELIGION_MODE_OFF</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p>Register selection for load and store</p>
|
|||
|
<p><br></p>
|
|||
|
<p> bit1 bit0 A X Y</p>
|
|||
|
<p> 0 0 x</p>
|
|||
|
<p> 0 1 x</p>
|
|||
|
<p> 1 0 x</p>
|
|||
|
<p> 1 1 x x</p>
|
|||
|
<p><br></p>
|
|||
|
<p>So, A and X are selected by bits 1 and 0 respectively, while</p>
|
|||
|
<p> ~(bit1|bit0) enables Y.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Indexing is determined by bit4, even in relative addressing mode,</p>
|
|||
|
<p>which is one kind of indexing.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Lines containing opcodes xxx000x1 (01 and 03) are treated as absolute</p>
|
|||
|
<p>after the effective address has been loaded into CPU.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Zeropage,y and Absolute,y (codes 10x1 x11x) are distinquished by bit5.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p>Decimal mode in NMOS 6500 series</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Most sources claim that the NMOS 6500 series sets the N, V and Z</p>
|
|||
|
<p>flags unpredictably when performing addition or subtraction in decimal</p>
|
|||
|
<p>mode. Of course, this is not true. While testing how the flags are</p>
|
|||
|
<p>set, I also wanted to see what happens if you use illegal BCD values.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ADC works in Decimal mode in a quite complicated way. It is amazing</p>
|
|||
|
<p>how it can do that all in a single cycle. Here's a C code version of</p>
|
|||
|
<p>the instruction:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> unsigned</p>
|
|||
|
<p> A, /* Accumulator */</p>
|
|||
|
<p> AL, /* low nybble of accumulator */</p>
|
|||
|
<p> AH, /* high nybble of accumulator */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> C, /* Carry flag */</p>
|
|||
|
<p> Z, /* Zero flag */</p>
|
|||
|
<p> V, /* oVerflow flag */</p>
|
|||
|
<p> N, /* Negative flag */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> s; /* value to be added to Accumulator */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> AL = (A & 15) + (s & 15) + C; /* Calculate the lower nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> AH = (A >> 4) + (s >> 4) + (AL > 15); /* Calculate the upper nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> if (AL > 9) AL += 6; /* BCD fixup for lower nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Z = ((A + s + C) & 255 != 0); /* Zero flag is set just</p>
|
|||
|
<p> like in Binary mode. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> /* Negative and Overflow flags are set with the same logic than in</p>
|
|||
|
<p> Binary mode, but after fixing the lower nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> N = (AH & 8 != 0);</p>
|
|||
|
<p> V = ((AH << 4) ^ A) & 128 && !((A ^ s) & 128);</p>
|
|||
|
<p><br></p>
|
|||
|
<p> if (AH > 9) AH += 6; /* BCD fixup for upper nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> /* Carry is the only flag set after fixing the result. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> C = (AH > 15);</p>
|
|||
|
<p> A = ((AH << 4) | (AL & 15)) & 255;</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The C flag is set as the quiche eaters expect, but the N and V flags</p>
|
|||
|
<p>are set after fixing the lower nybble but before fixing the upper one.</p>
|
|||
|
<p>They use the same logic than binary mode ADC. The Z flag is set before</p>
|
|||
|
<p>any BCD fixup, so the D flag does not have any influence on it.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Proof: The following test program tests all 131072 ADC combinations in</p>
|
|||
|
<p> Decimal mode, and aborts with BRK if anything breaks this theory.</p>
|
|||
|
<p> If everything goes well, it ends in RTS.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 600 dadc</p>
|
|||
|
<p>M 0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@ 'BI&* A/N$_$B@+)$KH(V1</p>
|
|||
|
<p>M*Q@(I?PI#X7]I?LI#V7]R0J0 FD%J"D/A?VE^RGP9?PI\ C $) ":0^JL @H</p>
|
|||
|
<p>ML ?)H) &""@X:5\X!?V%_0AH*3W@ ! ""8"HBD7[$ JE^T7\, 28"4"H**7[</p>
|
|||
|
<p>M9?S0!)@) J@8N/BE^V7\V A%_= G:(3]1?W0(.;[T(?F_-"#:$D8\ )88*D=</p>
|
|||
|
<p>0&&4KA?NI &4LA?RI.&S[ A%</p>
|
|||
|
<p><br></p>
|
|||
|
<p>end</p>
|
|||
|
<p><br></p>
|
|||
|
<p> All programs in this chapter have been successfully tested on a Vic20</p>
|
|||
|
<p>and a Commodore 64 and a Commodore 128D in C64 mode. They should run on</p>
|
|||
|
<p>C16, +4 and on the PET series as well. If not, please report the problem</p>
|
|||
|
<p>to Marko M"akel"a. Each test in this chapter should run in less than a</p>
|
|||
|
<p>minute at 1 MHz.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>SBC is much easier. Just like CMP, its flags are not affected by</p>
|
|||
|
<p>the D flag.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>Proof:</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 600 dsbc-cmp-flags</p>
|
|||
|
<p>M 0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@ 'B@ (3[A/RB XH8:66HL2N@</p>
|
|||
|
<p>M09$KH$R1*XII::BQ*Z!%D2N@4)$K^#BXI?OE_-@(:(7].+BE^^7\"&A%_? !</p>
|
|||
|
<p>5 .;[T./F_-#?RA"_8!@X&#CEY<7%</p>
|
|||
|
<p><br></p>
|
|||
|
<p>end</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The only difference in SBC's operation in decimal mode from binary mode</p>
|
|||
|
<p>is the result-fixup:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> unsigned</p>
|
|||
|
<p> A, /* Accumulator */</p>
|
|||
|
<p> AL, /* low nybble of accumulator */</p>
|
|||
|
<p> AH, /* high nybble of accumulator */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> C, /* Carry flag */</p>
|
|||
|
<p> Z, /* Zero flag */</p>
|
|||
|
<p> V, /* oVerflow flag */</p>
|
|||
|
<p> N, /* Negative flag */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> s; /* value to be added to Accumulator */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> AL = (A & 15) - (s & 15) - !C; /* Calculate the lower nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> if (AL & 16) AL -= 6; /* BCD fixup for lower nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> AH = (A >> 4) - (s >> 4) - (AL & 16); /* Calculate the upper nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> if (AH & 16) AH -= 6; /* BCD fixup for upper nybble. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> /* The flags are set just like in Binary mode. */</p>
|
|||
|
<p><br></p>
|
|||
|
<p> C = (A - s - !C) & 256 != 0;</p>
|
|||
|
<p> Z = (A - s - !C) & 255 != 0;</p>
|
|||
|
<p> V = ((A - s - !C) ^ s) & 128 && (A ^ s) & 128;</p>
|
|||
|
<p> N = (A - s - !C) & 128 != 0;</p>
|
|||
|
<p><br></p>
|
|||
|
<p> A = ((AH << 4) | (AL & 15)) & 255;</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Again Z flag is set before any BCD fixup. The N and V flags are set</p>
|
|||
|
<p>at any time before fixing the high nybble. The C flag may be set in any</p>
|
|||
|
<p>phase.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Decimal subtraction is easier than decimal addition, as you have to</p>
|
|||
|
<p>make the BCD fixup only when a nybble overflows. In decimal addition,</p>
|
|||
|
<p>you had to verify if the nybble was greater than 9. The processor has</p>
|
|||
|
<p>an internal "half carry" flag for the lower nybble, used to trigger</p>
|
|||
|
<p>the BCD fixup. When calculating with legal BCD values, the lower nybble</p>
|
|||
|
<p>cannot overflow again when fixing it.</p>
|
|||
|
<p>So, the processor does not handle overflows while performing the fixup.</p>
|
|||
|
<p>Similarly, the BCD fixup occurs in the high nybble only if the value</p>
|
|||
|
<p>overflows, i.e. when the C flag will be cleared.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Because SBC's flags are not affected by the Decimal mode flag, you</p>
|
|||
|
<p>could guess that CMP uses the SBC logic, only setting the C flag</p>
|
|||
|
<p>first. But the SBX instruction shows that CMP also temporarily clears</p>
|
|||
|
<p>the D flag, although it is totally unnecessary.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The following program, which tests SBC's result and flags,</p>
|
|||
|
<p>contains the 6502 version of the pseudo code example above.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 600 dsbc</p>
|
|||
|
<p>M 0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@ 'BI&* A/N$_$B@+)$KH':1</p>
|
|||
|
<p>M*S@(I?PI#X7]I?LI#^7]L /I!1@I#ZBE_"GPA?VE^RGP"#CE_2GPL KI7RBP</p>
|
|||
|
<p>M#ND/.+ )*+ &Z0^P NE?A/T%_87]*+BE^^7\"&BH.+CXI?OE_-@(1?W0FVB$</p>
|
|||
|
<p>8_47]T)3F^]">YOS0FFA)&- $J3C0B%A@</p>
|
|||
|
<p><br></p>
|
|||
|
<p>end</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Obviously the undocumented instructions RRA (ROR+ADC) and ISB</p>
|
|||
|
<p>(INC+SBC) have inherited also the decimal operation from the official</p>
|
|||
|
<p>instructions ADC and SBC. The program droradc proves this statement</p>
|
|||
|
<p>for ROR, and the dincsbc test proves this for ISB. Finally,</p>
|
|||
|
<p>dincsbc-deccmp proves that ISB's and DCP's (DEC+CMP) flags are not</p>
|
|||
|
<p>affected by the D flag.</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 644 droradc</p>
|
|||
|
<p>M`0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@```'BI&*``A/N$_$B@+)$KH(V1</p>
|
|||
|
<p>M*S@(I?PI#X7]I?LI#V7]R0J0`FD%J"D/A?VE^RGP9?PI\`C`$)`":0^JL`@H</p>
|
|||
|
<p>ML`?)H)`&""@X:5\X!?V%_0AH*3W@`!`""8"HBD7[$`JE^T7\,`28"4"H**7[</p>
|
|||
|
<p>M9?S0!)@)`J@XN/BE^R;\9_S8"$7]T"=HA/U%_=`@YOO0A>;\T(%H21CP`EA@</p>
|
|||
|
<p>2J1T892N%^ZD`92R%_*DX;/L`</p>
|
|||
|
<p>`</p>
|
|||
|
<p>end</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 644 dincsbc</p>
|
|||
|
<p>M`0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@```'BI&*``A/N$_$B@+)$KH':1</p>
|
|||
|
<p>M*S@(I?PI#X7]I?LI#^7]L`/I!1@I#ZBE_"GPA?VE^RGP"#CE_2GPL`KI7RBP</p>
|
|||
|
<p>M#ND/.+`)*+`&Z0^P`NE?A/T%_87]*+BE^^7\"&BH.+CXI?O&_.?\V`A%_="9</p>
|
|||
|
<p>::(3]1?W0DN;[T)SF_-"8:$D8T`2I.-"&6&#\</p>
|
|||
|
<p>`</p>
|
|||
|
<p>end</p>
|
|||
|
<p><br></p>
|
|||
|
<p>begin 644 dincsbc-deccmp</p>
|
|||
|
<p>M`0@9",D'GL(H-#,IJC(U-JS"*#0T*:HR-@```'B@`(3[A/RB`XH8:7>HL2N@</p>
|
|||
|
<p>M3Y$KH%R1*XII>ZBQ*Z!3D2N@8)$KBFE_J+$KH%61*Z!BD2OX.+BE^^;\Q_S8</p>
|
|||
|
<p>L"&B%_3BXI?OF_,?\"&A%_?`!`.;[T-_F_-#;RA"M8!@X&#CFYL;&Q\?GYP#8</p>
|
|||
|
<p>`</p>
|
|||
|
<p>end</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p>6510 features</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o PHP always pushes the Break (B) flag as a `1' to the stack.</p>
|
|||
|
<p> Jukka Tapanim"aki claimed in C=lehti issue 3/89, on page 27 that the</p>
|
|||
|
<p> processor makes a logical OR between the status register's bit 4</p>
|
|||
|
<p> and the bit 8 of the stack pointer register (which is always 1).</p>
|
|||
|
<p> He did not give any reasons for this argument, and has refused to clarify</p>
|
|||
|
<p> it afterwards. Well, this was not the only error in his article...</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o Indirect addressing modes do not handle page boundary crossing at all.</p>
|
|||
|
<p> When the parameter's low byte is $FF, the effective address wraps</p>
|
|||
|
<p> around and the CPU fetches high byte from $xx00 instead of $xx00+$0100.</p>
|
|||
|
<p> E.g. JMP ($01FF) fetches PCL from $01FF and PCH from $0100,</p>
|
|||
|
<p> and LDA ($FF),Y fetches the base address from $FF and $00.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o Indexed zero page addressing modes never fix the page address on</p>
|
|||
|
<p> crossing the zero page boundary.</p>
|
|||
|
<p> E.g. LDX #$01 : LDA ($FF,X) loads the effective address from $00 and $01.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o The processor always fetches the byte following a relative branch</p>
|
|||
|
<p> instruction. If the branch is taken, the processor reads then the</p>
|
|||
|
<p> opcode from the destination address. If page boundary is crossed, it</p>
|
|||
|
<p> first reads a byte from the old page from a location that is bigger</p>
|
|||
|
<p> or smaller than the correct address by one page.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o If you cross a page boundary in any other indexed mode,</p>
|
|||
|
<p> the processor reads an incorrect location first, a location that is</p>
|
|||
|
<p> smaller by one page.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o Read-Modify-Write instructions write unmodified data, then modified</p>
|
|||
|
<p> (so INC effectively does LDX loc;STX loc;INX;STX loc)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o -RDY is ignored during writes</p>
|
|||
|
<p> (This is why you must wait 3 cycles before doing any DMA --</p>
|
|||
|
<p> the maximum number of consecutive writes is 3, which occurs</p>
|
|||
|
<p> during interrupts except -RESET.)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o Some undefined opcodes may give really unpredictable results.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> o All registers except the Program Counter remain unmodified after -RESET.</p>
|
|||
|
<p> (This is why you must preset D and I flags in the RESET handler.)</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p>Different CPU types</p>
|
|||
|
<p><br></p>
|
|||
|
<p>The Rockwell data booklet 29651N52 (technical information about R65C00</p>
|
|||
|
<p>microprocessors, dated October 1984), lists the following differences between</p>
|
|||
|
<p>NMOS R6502 microprocessor and CMOS R65C00 family:</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p> 1. Indexed addressing across page boundary.</p>
|
|||
|
<p> NMOS: Extra read of invalid address.</p>
|
|||
|
<p> CMOS: Extra read of last instruction byte.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p> 2. Execution of invalid op codes.</p>
|
|||
|
<p> NMOS: Some terminate only by reset. Results are undefined.</p>
|
|||
|
<p> CMOS: All are NOPs (reserved for future use).</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p> 3. Jump indirect, operand = XXFF.</p>
|
|||
|
<p> NMOS: Page address does not increment.</p>
|
|||
|
<p> CMOS: Page address increments and adds one additional cycle.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p> 4. Read/modify/write instructions at effective address.</p>
|
|||
|
<p> NMOS: One read and two write cycles.</p>
|
|||
|
<p> CMOS: Two read and one write cycle.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p> 5. Decimal flag.</p>
|
|||
|
<p> NMOS: Indeterminate after reset.</p>
|
|||
|
<p> CMOS: Initialized to binary mode (D=0) after reset and interrupts.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p> 6. Flags after decimal operation.</p>
|
|||
|
<p> NMOS: Invalid N, V and Z flags.</p>
|
|||
|
<p> CMOS: Valid flag adds one additional cycle.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p> 7. Interrupt after fetch of BRK instruction.</p>
|
|||
|
<p> NMOS: Interrupt vector is loaded, BRK vector is ignored.</p>
|
|||
|
<p> CMOS: BRK is executed, then interrupt is executed.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p>6510 Instruction Timing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The NMOS 6500 series processors always perform at least two reads</p>
|
|||
|
<p>for each instruction. In addition to the operation code (opcode), they</p>
|
|||
|
<p>fetch the next byte. This is quite efficient, as most instructions are</p>
|
|||
|
<p>two or three bytes long.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The processors also use a sort of pipelining. If an instruction does</p>
|
|||
|
<p>not store data in memory on its last cycle, the processor can fetch</p>
|
|||
|
<p>the opcode of the next instruction while executing the last cycle. For</p>
|
|||
|
<p>instance, the instruction EOR #$FF truly takes three cycles. On the</p>
|
|||
|
<p>first cycle, the opcode $49 will be fetched. During the second cycle</p>
|
|||
|
<p>the processor decodes the opcode and fetches the parameter #$FF. On</p>
|
|||
|
<p>the third cycle, the processor will perform the operation and store</p>
|
|||
|
<p>the result to accumulator, but simultaneously it fetches the opcode</p>
|
|||
|
<p>for the next instruction. This is why the instruction effectively</p>
|
|||
|
<p>takes only two cycles.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The following tables show what happens on the bus while executing</p>
|
|||
|
<p>different kinds of instructions.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Interrupts</p>
|
|||
|
<p><br></p>
|
|||
|
<p> NMI and IRQ both take 7 cycles. Their timing diagram is much like</p>
|
|||
|
<p> BRK's (see below). IRQ will be executed only when the I flag is</p>
|
|||
|
<p> clear. IRQ and BRK both set the I flag, whereas the NMI does not</p>
|
|||
|
<p> affect its state.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The processor will usually wait for the current instruction to</p>
|
|||
|
<p> complete before executing the interrupt sequence. To process the</p>
|
|||
|
<p> interrupt before the next instruction, the interrupt must occur</p>
|
|||
|
<p> before the last cycle of the current instruction.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> There is one exception to this rule: the BRK instruction. If a</p>
|
|||
|
<p> hardware interrupt (NMI or IRQ) occurs before the fourth (flags</p>
|
|||
|
<p> saving) cycle of BRK, the BRK instruction will be skipped, and</p>
|
|||
|
<p> the processor will jump to the hardware interrupt vector. This</p>
|
|||
|
<p> sequence will always take 7 cycles.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> You do not completely lose the BRK interrupt, the B flag will be</p>
|
|||
|
<p> set in the pushed status register if a BRK instruction gets</p>
|
|||
|
<p> interrupted. When BRK and IRQ occur at the same time, this does</p>
|
|||
|
<p> not cause any problems, as your program will consider it as a</p>
|
|||
|
<p> BRK, and the IRQ would occur again after the processor returned</p>
|
|||
|
<p> from your BRK routine, unless you cleared the interrupt source in</p>
|
|||
|
<p> your BRK handler. But the simultaneous occurrence of NMI and BRK</p>
|
|||
|
<p> is far more fatal. If you do not check the B flag in the NMI</p>
|
|||
|
<p> routine and subtract two from the return address when needed, the</p>
|
|||
|
<p> BRK instruction will be skipped.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> If the NMI and IRQ interrupts overlap each other (one interrupt</p>
|
|||
|
<p> occurs before fetching the interrupt vector for the other</p>
|
|||
|
<p> interrupt), the processor will most probably jump to the NMI</p>
|
|||
|
<p> vector in every case, and then jump to the IRQ vector after</p>
|
|||
|
<p> processing the first instruction of the NMI handler. This has not</p>
|
|||
|
<p> been measured yet, but the IRQ is very similar to BRK, and many</p>
|
|||
|
<p> sources state that the NMI has higher priority than IRQ. However,</p>
|
|||
|
<p> it might be that the processor takes the interrupt that comes</p>
|
|||
|
<p> later, i.e. you could lose an NMI interrupt if an IRQ occurred in</p>
|
|||
|
<p> four cycles after it.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> After finishing the interrupt sequence, the processor will start</p>
|
|||
|
<p> to execute the first instruction of the interrupt routine. This</p>
|
|||
|
<p> proves that the processor uses a sort of pipelining: it finishes</p>
|
|||
|
<p> the current instruction (or interrupt sequence) while reading the</p>
|
|||
|
<p> opcode of the next instruction.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> RESET does not push program counter on stack, and it lasts</p>
|
|||
|
<p> probably 6 cycles after deactivating the signal. Like NMI, RESET</p>
|
|||
|
<p> preserves all registers except PC.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Instructions accessing the stack</p>
|
|||
|
<p><br></p>
|
|||
|
<p> BRK</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- -----------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R read next instruction byte (and throw it away),</p>
|
|||
|
<p> increment PC</p>
|
|||
|
<p> 3 $0100,S W push PCH on stack (with B flag set), decrement S</p>
|
|||
|
<p> 4 $0100,S W push PCL on stack, decrement S</p>
|
|||
|
<p> 5 $0100,S W push P on stack, decrement S</p>
|
|||
|
<p> 6 $FFFE R fetch PCL</p>
|
|||
|
<p> 7 $FFFF R fetch PCH</p>
|
|||
|
<p><br></p>
|
|||
|
<p> RTI</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- -----------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R read next instruction byte (and throw it away)</p>
|
|||
|
<p> 3 $0100,S R increment S</p>
|
|||
|
<p> 4 $0100,S R pull P from stack, increment S</p>
|
|||
|
<p> 5 $0100,S R pull PCL from stack, increment S</p>
|
|||
|
<p> 6 $0100,S R pull PCH from stack</p>
|
|||
|
<p><br></p>
|
|||
|
<p> RTS</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- -----------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R read next instruction byte (and throw it away)</p>
|
|||
|
<p> 3 $0100,S R increment S</p>
|
|||
|
<p> 4 $0100,S R pull PCL from stack, increment S</p>
|
|||
|
<p> 5 $0100,S R pull PCH from stack</p>
|
|||
|
<p> 6 PC R increment PC</p>
|
|||
|
<p><br></p>
|
|||
|
<p> PHA, PHP</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- -----------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R read next instruction byte (and throw it away)</p>
|
|||
|
<p> 3 $0100,S W push register on stack, decrement S</p>
|
|||
|
<p><br></p>
|
|||
|
<p> PLA, PLP</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- -----------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R read next instruction byte (and throw it away)</p>
|
|||
|
<p> 3 $0100,S R increment S</p>
|
|||
|
<p> 4 $0100,S R pull register from stack</p>
|
|||
|
<p><br></p>
|
|||
|
<p> JSR</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- -------------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch low address byte, increment PC</p>
|
|||
|
<p> 3 $0100,S R internal operation (predecrement S?)</p>
|
|||
|
<p> 4 $0100,S W push PCH on stack, decrement S</p>
|
|||
|
<p> 5 $0100,S W push PCL on stack, decrement S</p>
|
|||
|
<p> 6 PC R copy low address byte to PCL, fetch high address</p>
|
|||
|
<p> byte to PCH</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Accumulator or implied addressing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- -----------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R read next instruction byte (and throw it away)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Immediate addressing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch value, increment PC</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Absolute addressing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> JMP</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- -------------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch low address byte, increment PC</p>
|
|||
|
<p> 3 PC R copy low address byte to PCL, fetch high address</p>
|
|||
|
<p> byte to PCH</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read instructions (LDA, LDX, LDY, EOR, AND, ORA, ADC, SBC, CMP, BIT,</p>
|
|||
|
<p> LAX, NOP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch low byte of address, increment PC</p>
|
|||
|
<p> 3 PC R fetch high byte of address, increment PC</p>
|
|||
|
<p> 4 address R read from effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read-Modify-Write instructions (ASL, LSR, ROL, ROR, INC, DEC,</p>
|
|||
|
<p> SLO, SRE, RLA, RRA, ISB, DCP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch low byte of address, increment PC</p>
|
|||
|
<p> 3 PC R fetch high byte of address, increment PC</p>
|
|||
|
<p> 4 address R read from effective address</p>
|
|||
|
<p> 5 address W write the value back to effective address,</p>
|
|||
|
<p> and do the operation on it</p>
|
|||
|
<p> 6 address W write the new value to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Write instructions (STA, STX, STY, SAX)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch low byte of address, increment PC</p>
|
|||
|
<p> 3 PC R fetch high byte of address, increment PC</p>
|
|||
|
<p> 4 address W write register to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Zero page addressing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read instructions (LDA, LDX, LDY, EOR, AND, ORA, ADC, SBC, CMP, BIT,</p>
|
|||
|
<p> LAX, NOP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch address, increment PC</p>
|
|||
|
<p> 3 address R read from effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read-Modify-Write instructions (ASL, LSR, ROL, ROR, INC, DEC,</p>
|
|||
|
<p> SLO, SRE, RLA, RRA, ISB, DCP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch address, increment PC</p>
|
|||
|
<p> 3 address R read from effective address</p>
|
|||
|
<p> 4 address W write the value back to effective address,</p>
|
|||
|
<p> and do the operation on it</p>
|
|||
|
<p> 5 address W write the new value to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Write instructions (STA, STX, STY, SAX)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch address, increment PC</p>
|
|||
|
<p> 3 address W write register to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Zero page indexed addressing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read instructions (LDA, LDX, LDY, EOR, AND, ORA, ADC, SBC, CMP, BIT,</p>
|
|||
|
<p> LAX, NOP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- --------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch address, increment PC</p>
|
|||
|
<p> 3 address R read from address, add index register to it</p>
|
|||
|
<p> 4 address+I* R read from effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: I denotes either index register (X or Y).</p>
|
|||
|
<p><br></p>
|
|||
|
<p> * The high byte of the effective address is always zero,</p>
|
|||
|
<p> i.e. page boundary crossings are not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read-Modify-Write instructions (ASL, LSR, ROL, ROR, INC, DEC,</p>
|
|||
|
<p> SLO, SRE, RLA, RRA, ISB, DCP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- --------- --- ---------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch address, increment PC</p>
|
|||
|
<p> 3 address R read from address, add index register X to it</p>
|
|||
|
<p> 4 address+X* R read from effective address</p>
|
|||
|
<p> 5 address+X* W write the value back to effective address,</p>
|
|||
|
<p> and do the operation on it</p>
|
|||
|
<p> 6 address+X* W write the new value to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Note: * The high byte of the effective address is always zero,</p>
|
|||
|
<p> i.e. page boundary crossings are not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Write instructions (STA, STX, STY, SAX)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- --------- --- -------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch address, increment PC</p>
|
|||
|
<p> 3 address R read from address, add index register to it</p>
|
|||
|
<p> 4 address+I* W write to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: I denotes either index register (X or Y).</p>
|
|||
|
<p><br></p>
|
|||
|
<p> * The high byte of the effective address is always zero,</p>
|
|||
|
<p> i.e. page boundary crossings are not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Absolute indexed addressing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read instructions (LDA, LDX, LDY, EOR, AND, ORA, ADC, SBC, CMP, BIT,</p>
|
|||
|
<p> LAX, LAE, SHS, NOP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- --------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch low byte of address, increment PC</p>
|
|||
|
<p> 3 PC R fetch high byte of address,</p>
|
|||
|
<p> add index register to low address byte,</p>
|
|||
|
<p> increment PC</p>
|
|||
|
<p> 4 address+I* R read from effective address,</p>
|
|||
|
<p> fix the high byte of effective address</p>
|
|||
|
<p> 5+ address+I R re-read from effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: I denotes either index register (X or Y).</p>
|
|||
|
<p><br></p>
|
|||
|
<p> * The high byte of the effective address may be invalid</p>
|
|||
|
<p> at this time, i.e. it may be smaller by $100.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> + This cycle will be executed only if the effective address</p>
|
|||
|
<p> was invalid during cycle #4, i.e. page boundary was crossed.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read-Modify-Write instructions (ASL, LSR, ROL, ROR, INC, DEC,</p>
|
|||
|
<p> SLO, SRE, RLA, RRA, ISB, DCP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- --------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch low byte of address, increment PC</p>
|
|||
|
<p> 3 PC R fetch high byte of address,</p>
|
|||
|
<p> add index register X to low address byte,</p>
|
|||
|
<p> increment PC</p>
|
|||
|
<p> 4 address+X* R read from effective address,</p>
|
|||
|
<p> fix the high byte of effective address</p>
|
|||
|
<p> 5 address+X R re-read from effective address</p>
|
|||
|
<p> 6 address+X W write the value back to effective address,</p>
|
|||
|
<p> and do the operation on it</p>
|
|||
|
<p> 7 address+X W write the new value to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: * The high byte of the effective address may be invalid</p>
|
|||
|
<p> at this time, i.e. it may be smaller by $100.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Write instructions (STA, STX, STY, SHA, SHX, SHY)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- --------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch low byte of address, increment PC</p>
|
|||
|
<p> 3 PC R fetch high byte of address,</p>
|
|||
|
<p> add index register to low address byte,</p>
|
|||
|
<p> increment PC</p>
|
|||
|
<p> 4 address+I* R read from effective address,</p>
|
|||
|
<p> fix the high byte of effective address</p>
|
|||
|
<p> 5 address+I W write to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: I denotes either index register (X or Y).</p>
|
|||
|
<p><br></p>
|
|||
|
<p> * The high byte of the effective address may be invalid</p>
|
|||
|
<p> at this time, i.e. it may be smaller by $100. Because</p>
|
|||
|
<p> the processor cannot undo a write to an invalid</p>
|
|||
|
<p> address, it always reads from the address first.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Relative addressing (BCC, BCS, BNE, BEQ, BPL, BMI, BVC, BVS)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- --------- --- ---------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch operand, increment PC</p>
|
|||
|
<p> 3 PC R Fetch opcode of next instruction,</p>
|
|||
|
<p> If branch is taken, add operand to PCL.</p>
|
|||
|
<p> Otherwise increment PC.</p>
|
|||
|
<p> 4+ PC* R Fetch opcode of next instruction.</p>
|
|||
|
<p> Fix PCH. If it did not change, increment PC.</p>
|
|||
|
<p> 5! PC R Fetch opcode of next instruction,</p>
|
|||
|
<p> increment PC.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: The opcode fetch of the next instruction is included to</p>
|
|||
|
<p> this diagram for illustration purposes. When determining</p>
|
|||
|
<p> real execution times, remember to subtract the last</p>
|
|||
|
<p> cycle.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> * The high byte of Program Counter (PCH) may be invalid</p>
|
|||
|
<p> at this time, i.e. it may be smaller or bigger by $100.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> + If branch is taken, this cycle will be executed.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ! If branch occurs to different page, this cycle will be</p>
|
|||
|
<p> executed.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Indexed indirect addressing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read instructions (LDA, ORA, EOR, AND, ADC, CMP, SBC, LAX)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ----------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch pointer address, increment PC</p>
|
|||
|
<p> 3 pointer R read from the address, add X to it</p>
|
|||
|
<p> 4 pointer+X R fetch effective address low</p>
|
|||
|
<p> 5 pointer+X+1 R fetch effective address high</p>
|
|||
|
<p> 6 address R read from effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Note: The effective address is always fetched from zero page,</p>
|
|||
|
<p> i.e. the zero page boundary crossing is not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read-Modify-Write instructions (SLO, SRE, RLA, RRA, ISB, DCP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ----------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch pointer address, increment PC</p>
|
|||
|
<p> 3 pointer R read from the address, add X to it</p>
|
|||
|
<p> 4 pointer+X R fetch effective address low</p>
|
|||
|
<p> 5 pointer+X+1 R fetch effective address high</p>
|
|||
|
<p> 6 address R read from effective address</p>
|
|||
|
<p> 7 address W write the value back to effective address,</p>
|
|||
|
<p> and do the operation on it</p>
|
|||
|
<p> 8 address W write the new value to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Note: The effective address is always fetched from zero page,</p>
|
|||
|
<p> i.e. the zero page boundary crossing is not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Write instructions (STA, SAX)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ----------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch pointer address, increment PC</p>
|
|||
|
<p> 3 pointer R read from the address, add X to it</p>
|
|||
|
<p> 4 pointer+X R fetch effective address low</p>
|
|||
|
<p> 5 pointer+X+1 R fetch effective address high</p>
|
|||
|
<p> 6 address W write to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Note: The effective address is always fetched from zero page,</p>
|
|||
|
<p> i.e. the zero page boundary crossing is not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Indirect indexed addressing</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read instructions (LDA, EOR, AND, ORA, ADC, SBC, CMP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ----------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch pointer address, increment PC</p>
|
|||
|
<p> 3 pointer R fetch effective address low</p>
|
|||
|
<p> 4 pointer+1 R fetch effective address high,</p>
|
|||
|
<p> add Y to low byte of effective address</p>
|
|||
|
<p> 5 address+Y* R read from effective address,</p>
|
|||
|
<p> fix high byte of effective address</p>
|
|||
|
<p> 6+ address+Y R read from effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: The effective address is always fetched from zero page,</p>
|
|||
|
<p> i.e. the zero page boundary crossing is not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> * The high byte of the effective address may be invalid</p>
|
|||
|
<p> at this time, i.e. it may be smaller by $100.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> + This cycle will be executed only if the effective address</p>
|
|||
|
<p> was invalid during cycle #5, i.e. page boundary was crossed.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Read-Modify-Write instructions (SLO, SRE, RLA, RRA, ISB, DCP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ----------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch pointer address, increment PC</p>
|
|||
|
<p> 3 pointer R fetch effective address low</p>
|
|||
|
<p> 4 pointer+1 R fetch effective address high,</p>
|
|||
|
<p> add Y to low byte of effective address</p>
|
|||
|
<p> 5 address+Y* R read from effective address,</p>
|
|||
|
<p> fix high byte of effective address</p>
|
|||
|
<p> 6 address+Y R read from effective address</p>
|
|||
|
<p> 7 address+Y W write the value back to effective address,</p>
|
|||
|
<p> and do the operation on it</p>
|
|||
|
<p> 8 address+Y W write the new value to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: The effective address is always fetched from zero page,</p>
|
|||
|
<p> i.e. the zero page boundary crossing is not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> * The high byte of the effective address may be invalid</p>
|
|||
|
<p> at this time, i.e. it may be smaller by $100.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Write instructions (STA, SHA)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- ----------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch pointer address, increment PC</p>
|
|||
|
<p> 3 pointer R fetch effective address low</p>
|
|||
|
<p> 4 pointer+1 R fetch effective address high,</p>
|
|||
|
<p> add Y to low byte of effective address</p>
|
|||
|
<p> 5 address+Y* R read from effective address,</p>
|
|||
|
<p> fix high byte of effective address</p>
|
|||
|
<p> 6 address+Y W write to effective address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Notes: The effective address is always fetched from zero page,</p>
|
|||
|
<p> i.e. the zero page boundary crossing is not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> * The high byte of the effective address may be invalid</p>
|
|||
|
<p> at this time, i.e. it may be smaller by $100.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Absolute indirect addressing (JMP)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # address R/W description</p>
|
|||
|
<p> --- --------- --- ------------------------------------------</p>
|
|||
|
<p> 1 PC R fetch opcode, increment PC</p>
|
|||
|
<p> 2 PC R fetch pointer address low, increment PC</p>
|
|||
|
<p> 3 PC R fetch pointer address high, increment PC</p>
|
|||
|
<p> 4 pointer R fetch low address to latch</p>
|
|||
|
<p> 5 pointer+1* R fetch PCH, copy latch to PCL</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Note: * The PCH will always be fetched from the same page</p>
|
|||
|
<p> than PCL, i.e. page boundary crossing is not handled.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> How Real Programmers Acknowledge Interrupts</p>
|
|||
|
<p><br></p>
|
|||
|
<p> With RMW instructions:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ; beginning of combined raster/timer interrupt routine</p>
|
|||
|
<p> LSR $D019 ; clear VIC interrupts, read raster interrupt flag to C</p>
|
|||
|
<p> BCS raster ; jump if VIC caused an interrupt</p>
|
|||
|
<p> ... ; timer interrupt routine</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Operational diagram of LSR $D019:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # data address R/W</p>
|
|||
|
<p> --- ---- ------- --- ---------------------------------</p>
|
|||
|
<p> 1 4E PC R fetch opcode</p>
|
|||
|
<p> 2 19 PC+1 R fetch address low</p>
|
|||
|
<p> 3 D0 PC+2 R fetch address high</p>
|
|||
|
<p> 4 xx $D019 R read memory</p>
|
|||
|
<p> 5 xx $D019 W write the value back, rotate right</p>
|
|||
|
<p> 6 xx/2 $D019 W write the new value back</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The 5th cycle acknowledges the interrupt by writing the same</p>
|
|||
|
<p> value back. If only raster interrupts are used, the 6th cycle</p>
|
|||
|
<p> has no effect on the VIC. (It might acknowledge also some</p>
|
|||
|
<p> other interrupts.)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> With indexed addressing:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ; acknowledge interrupts to both CIAs</p>
|
|||
|
<p> LDX #$10</p>
|
|||
|
<p> LDA $DCFD,X</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Operational diagram of LDA $DCFD,X:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # data address R/W description</p>
|
|||
|
<p> --- ---- ------- --- ---------------------------------</p>
|
|||
|
<p> 1 BD PC R fetch opcode</p>
|
|||
|
<p> 2 FD PC+1 R fetch address low</p>
|
|||
|
<p> 3 DC PC+2 R fetch address high, add X to address low</p>
|
|||
|
<p> 4 xx $DC0D R read from address, fix high byte of address</p>
|
|||
|
<p> 5 yy $DD0D R read from right address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ; acknowledge interrupts to CIA 2</p>
|
|||
|
<p> LDX #$10</p>
|
|||
|
<p> STA $DDFD,X</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Operational diagram of STA $DDFD,X:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # data address R/W description</p>
|
|||
|
<p> --- ---- ------- --- ---------------------------------</p>
|
|||
|
<p> 1 9D PC R fetch opcode</p>
|
|||
|
<p> 2 FD PC+1 R fetch address low</p>
|
|||
|
<p> 3 DC PC+2 R fetch address high, add X to address low</p>
|
|||
|
<p> 4 xx $DD0D R read from address, fix high byte of address</p>
|
|||
|
<p> 5 ac $DE0D W write to right address</p>
|
|||
|
<p><br></p>
|
|||
|
<p> With branch instructions:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ; acknowledge interrupts to CIA 2</p>
|
|||
|
<p> LDA #$00 ; clear N flag</p>
|
|||
|
<p> JMP $DD0A</p>
|
|||
|
<p> DD0A BPL $DC9D ; branch</p>
|
|||
|
<p> DC9D BRK ; return</p>
|
|||
|
<p><br></p>
|
|||
|
<p> You need the following preparations to initialize the CIA registers:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> LDA #$91 ; argument of BPL</p>
|
|||
|
<p> STA $DD0B</p>
|
|||
|
<p> LDA #$10 ; BPL</p>
|
|||
|
<p> STA $DD0A</p>
|
|||
|
<p> STA $DD08 ; load the ToD values from the latches</p>
|
|||
|
<p> LDA $DD0B ; freeze the ToD display</p>
|
|||
|
<p> LDA #$7F</p>
|
|||
|
<p> STA $DC0D ; assure that $DC0D is $00</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Operational diagram of BPL $DC9D:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # data address R/W description</p>
|
|||
|
<p> --- ---- ------- --- ---------------------------------</p>
|
|||
|
<p> 1 10 $DD0A R fetch opcode</p>
|
|||
|
<p> 2 91 $DD0B R fetch argument</p>
|
|||
|
<p> 3 xx $DD0C R fetch opcode, add argument to PCL</p>
|
|||
|
<p> 4 yy $DD9D R fetch opcode, fix PCH</p>
|
|||
|
<p> ( 5 00 $DC9D R fetch opcode )</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ; acknowledge interrupts to CIA 1</p>
|
|||
|
<p> LSR ; clear N flag</p>
|
|||
|
<p> JMP $DCFA</p>
|
|||
|
<p> DCFA BPL $DD0D</p>
|
|||
|
<p> DD0D BRK</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ; Again you need to set the ToD registers of CIA 1 and the</p>
|
|||
|
<p> ; Interrupt Control Register of CIA 2 first.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Operational diagram of BPL $DD0D:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # data address R/W description</p>
|
|||
|
<p> --- ---- ------- --- ---------------------------------</p>
|
|||
|
<p> 1 10 $DCFA R fetch opcode</p>
|
|||
|
<p> 2 11 $DCFB R fetch argument</p>
|
|||
|
<p> 3 xx $DCFC R fetch opcode, add argument to PCL</p>
|
|||
|
<p> 4 yy $DC0D R fetch opcode, fix PCH</p>
|
|||
|
<p> ( 5 00 $DD0D R fetch opcode )</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ; acknowledge interrupts to CIA 2 automagically</p>
|
|||
|
<p> ; preparations</p>
|
|||
|
<p> LDA #$7F</p>
|
|||
|
<p> STA $DD0D ; disable all interrupt sources of CIA2</p>
|
|||
|
<p> LDA $DD0E</p>
|
|||
|
<p> AND #$BE ; ensure that $DD0C remains constant</p>
|
|||
|
<p> STA $DD0E ; and stop the timer</p>
|
|||
|
<p> LDA #$FD</p>
|
|||
|
<p> STA $DD0C ; parameter of BPL</p>
|
|||
|
<p> LDA #$10</p>
|
|||
|
<p> STA $DD0B ; BPL</p>
|
|||
|
<p> LDA #$40</p>
|
|||
|
<p> STA $DD0A ; RTI/parameter of LSR</p>
|
|||
|
<p> LDA #$46</p>
|
|||
|
<p> STA $DD09 ; LSR</p>
|
|||
|
<p> STA $DD08 ; load the ToD values from the latches</p>
|
|||
|
<p> LDA $DD0B ; freeze the ToD display</p>
|
|||
|
<p> LDA #$09</p>
|
|||
|
<p> STA $0318</p>
|
|||
|
<p> LDA #$DD</p>
|
|||
|
<p> STA $0319 ; change NMI vector to $DD09</p>
|
|||
|
<p> LDA #$FF ; Try changing this instruction's operand</p>
|
|||
|
<p> STA $DD05 ; (see comment below).</p>
|
|||
|
<p> LDA #$FF</p>
|
|||
|
<p> STA $DD04 ; set interrupt frequency to 1/65536 cycles</p>
|
|||
|
<p> LDA $DD0E</p>
|
|||
|
<p> AND #$80</p>
|
|||
|
<p> ORA #$11</p>
|
|||
|
<p> LDX #$81</p>
|
|||
|
<p> STX $DD0D ; enable timer interrupt</p>
|
|||
|
<p> STA $DD0E ; start timer</p>
|
|||
|
<p><br></p>
|
|||
|
<p> LDA #$00 ; To see that the interrupts really occur,</p>
|
|||
|
<p> STA $D011 ; use something like this and see how</p>
|
|||
|
<p> LOOP DEC $D020 ; changing the byte loaded to $DD05 from</p>
|
|||
|
<p> BNE LOOP ; #$FF to #$0F changes the image.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> When an NMI occurs, the processor jumps to Kernal code, which jumps to</p>
|
|||
|
<p> ($0318), which points to the following routine:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> DD09 LSR $40 ; clear N flag</p>
|
|||
|
<p> BPL $DD0A ; Note: $DD0A contains RTI.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Operational diagram of BPL $DD0A:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> # data address R/W description</p>
|
|||
|
<p> --- ---- ------- --- ---------------------------------</p>
|
|||
|
<p> 1 10 $DD0B R fetch opcode</p>
|
|||
|
<p> 2 11 $DD0C R fetch argument</p>
|
|||
|
<p> 3 xx $DD0D R fetch opcode, add argument to PCL</p>
|
|||
|
<p> 4 40 $DD0A R fetch opcode, (fix PCH)</p>
|
|||
|
<p><br></p>
|
|||
|
<p> With RTI:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> ; the fastest possible interrupt handler in the 6500 family</p>
|
|||
|
<p> ; preparations</p>
|
|||
|
<p> SEI</p>
|
|||
|
<p> LDA $01 ; disable ROM and enable I/O</p>
|
|||
|
<p> AND #$FD</p>
|
|||
|
<p> ORA #$05</p>
|
|||
|
<p> STA $01</p>
|
|||
|
<p> LDA #$7F</p>
|
|||
|
<p> STA $DD0D ; disable CIA 2's all interrupt sources</p>
|
|||
|
<p> LDA $DD0E</p>
|
|||
|
<p> AND #$BE ; ensure that $DD0C remains constant</p>
|
|||
|
<p> STA $DD0E ; and stop the timer</p>
|
|||
|
<p> LDA #$40</p>
|
|||
|
<p> STA $DD0C ; store RTI to $DD0C</p>
|
|||
|
<p> LDA #$0C</p>
|
|||
|
<p> STA $FFFA</p>
|
|||
|
<p> LDA #$DD</p>
|
|||
|
<p> STA $FFFB ; change NMI vector to $DD0C</p>
|
|||
|
<p> LDA #$FF ; Try changing this instruction's operand</p>
|
|||
|
<p> STA $DD05 ; (see comment below).</p>
|
|||
|
<p> LDA #$FF</p>
|
|||
|
<p> STA $DD04 ; set interrupt frequency to 1/65536 cycles</p>
|
|||
|
<p> LDA $DD0E</p>
|
|||
|
<p> AND #$80</p>
|
|||
|
<p> ORA #$11</p>
|
|||
|
<p> LDX #$81</p>
|
|||
|
<p> STX $DD0D ; enable timer interrupt</p>
|
|||
|
<p> STA $DD0E ; start timer</p>
|
|||
|
<p><br></p>
|
|||
|
<p> LDA #$00 ; To see that the interrupts really occur,</p>
|
|||
|
<p> STA $D011 ; use something like this and see how</p>
|
|||
|
<p> LOOP DEC $D020 ; changing the byte loaded to $DD05 from</p>
|
|||
|
<p> BNE LOOP ; #$FF to #$0F changes the image.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> When an NMI occurs, the processor jumps to Kernal code, which</p>
|
|||
|
<p> jumps to ($0318), which points to the following routine:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> DD0C RTI</p>
|
|||
|
<p><br></p>
|
|||
|
<p> How on earth can this clear the interrupts? Remember, the</p>
|
|||
|
<p> processor always fetches two successive bytes for each</p>
|
|||
|
<p> instruction.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> A little more practical version of this is redirecting the NMI</p>
|
|||
|
<p> (or IRQ) to your own routine, whose last instruction is JMP</p>
|
|||
|
<p> $DD0C or JMP $DC0C. If you want to confuse more, change the 0</p>
|
|||
|
<p> in the address to a hexadecimal digit different from the one</p>
|
|||
|
<p> you used when writing the RTI.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> Or you can combine the latter two methods:</p>
|
|||
|
<p><br></p>
|
|||
|
<p> DD09 LSR $xx ; xx is any appropriate BCD value 00-59.</p>
|
|||
|
<p> BPL $DCFC</p>
|
|||
|
<p> DCFC RTI</p>
|
|||
|
<p><br></p>
|
|||
|
<p> This example acknowledges interrupts to both CIAs.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> If you want to confuse the examiners of your code, you can use any</p>
|
|||
|
<p>of these techniques. Although these examples use no undefined opcodes,</p>
|
|||
|
<p>they do not necessarily run correctly on CMOS processors. However, the</p>
|
|||
|
<p>RTI example should run on 65C02 and 65C816, and the latter branch</p>
|
|||
|
<p>instruction example might work as well.</p>
|
|||
|
<p><br></p>
|
|||
|
<p> The RMW instruction method has been used in some demos, others were</p>
|
|||
|
<p>developed by Marko M"akel"a. His favourite is the automagical RTI</p>
|
|||
|
<p>method, although it does not have any practical applications, except</p>
|
|||
|
<p>for some time dependent data decryption routines for very complicated</p>
|
|||
|
<p>copy protections.</p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p><br></p>
|
|||
|
<p class=rvps3><span class=rvts11>2008</span></p>
|
|||
|
<p class=rvps4><span class=rvts12>This help file has been generated by the freeware version of </span><a class=rvts13 href="http://www.ibe-software.com/products/software/helpndoc/" target="_blank">HelpNDoc</a></p>
|
|||
|
|
|||
|
</body></html>
|