361 lines
13 KiB
C++
361 lines
13 KiB
C++
#ifndef FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H
|
|
#define FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H
|
|
|
|
/**
|
|
* This code is meant to handle the case where we have more than 19 digits.
|
|
*
|
|
* It is based on work by Nigel Tao (at https://github.com/google/wuffs/)
|
|
* who credits Ken Thompson for the design (via a reference to the Go source
|
|
* code).
|
|
*
|
|
* Rob Pike suggested that this algorithm be called "Simple Decimal Conversion".
|
|
*
|
|
* It is probably not very fast but it is a fallback that should almost never
|
|
* be used in real life. Though it is not fast, it is "easily" understood and debugged.
|
|
**/
|
|
#include "ascii_number.h"
|
|
#include "decimal_to_binary.h"
|
|
#include <cstdint>
|
|
|
|
namespace fast_float {
|
|
|
|
namespace detail {
|
|
|
|
// remove all final zeroes
|
|
inline void trim(decimal &h) {
|
|
while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) {
|
|
h.num_digits--;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
inline uint32_t number_of_digits_decimal_left_shift(const decimal &h, uint32_t shift) {
|
|
shift &= 63;
|
|
constexpr uint16_t number_of_digits_decimal_left_shift_table[65] = {
|
|
0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817,
|
|
0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067,
|
|
0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF,
|
|
0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0,
|
|
0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA,
|
|
0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC,
|
|
0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C,
|
|
0x051C, 0x051C,
|
|
};
|
|
uint32_t x_a = number_of_digits_decimal_left_shift_table[shift];
|
|
uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1];
|
|
uint32_t num_new_digits = x_a >> 11;
|
|
uint32_t pow5_a = 0x7FF & x_a;
|
|
uint32_t pow5_b = 0x7FF & x_b;
|
|
constexpr uint8_t
|
|
number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = {
|
|
5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3,
|
|
9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8,
|
|
1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1,
|
|
0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8,
|
|
7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6,
|
|
9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5,
|
|
3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3,
|
|
1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0,
|
|
9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3,
|
|
9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1,
|
|
4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8,
|
|
0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4,
|
|
6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5,
|
|
7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5,
|
|
6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2,
|
|
5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5,
|
|
1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5,
|
|
5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5,
|
|
2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2,
|
|
5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0,
|
|
6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2,
|
|
0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1,
|
|
6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6,
|
|
4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2,
|
|
9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,
|
|
0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7,
|
|
3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5,
|
|
6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9,
|
|
3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8,
|
|
0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0,
|
|
9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2,
|
|
5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2,
|
|
4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0,
|
|
0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7,
|
|
1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8,
|
|
9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4,
|
|
6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1,
|
|
9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5,
|
|
6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9,
|
|
4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4,
|
|
9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4,
|
|
0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4,
|
|
2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1,
|
|
5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5,
|
|
4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1,
|
|
3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1,
|
|
3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9,
|
|
5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0,
|
|
3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2,
|
|
6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,
|
|
8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5,
|
|
1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2,
|
|
4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1,
|
|
7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5,
|
|
9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5,
|
|
};
|
|
const uint8_t *pow5 =
|
|
&number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a];
|
|
uint32_t i = 0;
|
|
uint32_t n = pow5_b - pow5_a;
|
|
for (; i < n; i++) {
|
|
if (i >= h.num_digits) {
|
|
return num_new_digits - 1;
|
|
} else if (h.digits[i] == pow5[i]) {
|
|
continue;
|
|
} else if (h.digits[i] < pow5[i]) {
|
|
return num_new_digits - 1;
|
|
} else {
|
|
return num_new_digits;
|
|
}
|
|
}
|
|
return num_new_digits;
|
|
}
|
|
|
|
inline uint64_t round(decimal &h) {
|
|
if ((h.num_digits == 0) || (h.decimal_point < 0)) {
|
|
return 0;
|
|
} else if (h.decimal_point > 18) {
|
|
return UINT64_MAX;
|
|
}
|
|
// at this point, we know that h.decimal_point >= 0
|
|
uint32_t dp = uint32_t(h.decimal_point);
|
|
uint64_t n = 0;
|
|
for (uint32_t i = 0; i < dp; i++) {
|
|
n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0);
|
|
}
|
|
bool round_up = false;
|
|
if (dp < h.num_digits) {
|
|
round_up = h.digits[dp] >= 5; // normally, we round up
|
|
// but we may need to round to even!
|
|
if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) {
|
|
round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1]));
|
|
}
|
|
}
|
|
if (round_up) {
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
// computes h * 2^-shift
|
|
inline void decimal_left_shift(decimal &h, uint32_t shift) {
|
|
if (h.num_digits == 0) {
|
|
return;
|
|
}
|
|
uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift);
|
|
int32_t read_index = int32_t(h.num_digits - 1);
|
|
uint32_t write_index = h.num_digits - 1 + num_new_digits;
|
|
uint64_t n = 0;
|
|
|
|
while (read_index >= 0) {
|
|
n += uint64_t(h.digits[read_index]) << shift;
|
|
uint64_t quotient = n / 10;
|
|
uint64_t remainder = n - (10 * quotient);
|
|
if (write_index < max_digits) {
|
|
h.digits[write_index] = uint8_t(remainder);
|
|
} else if (remainder > 0) {
|
|
h.truncated = true;
|
|
}
|
|
n = quotient;
|
|
write_index--;
|
|
read_index--;
|
|
}
|
|
while (n > 0) {
|
|
uint64_t quotient = n / 10;
|
|
uint64_t remainder = n - (10 * quotient);
|
|
if (write_index < max_digits) {
|
|
h.digits[write_index] = uint8_t(remainder);
|
|
} else if (remainder > 0) {
|
|
h.truncated = true;
|
|
}
|
|
n = quotient;
|
|
write_index--;
|
|
}
|
|
h.num_digits += num_new_digits;
|
|
if (h.num_digits > max_digits) {
|
|
h.num_digits = max_digits;
|
|
}
|
|
h.decimal_point += int32_t(num_new_digits);
|
|
trim(h);
|
|
}
|
|
|
|
// computes h * 2^shift
|
|
inline void decimal_right_shift(decimal &h, uint32_t shift) {
|
|
uint32_t read_index = 0;
|
|
uint32_t write_index = 0;
|
|
|
|
uint64_t n = 0;
|
|
|
|
while ((n >> shift) == 0) {
|
|
if (read_index < h.num_digits) {
|
|
n = (10 * n) + h.digits[read_index++];
|
|
} else if (n == 0) {
|
|
return;
|
|
} else {
|
|
while ((n >> shift) == 0) {
|
|
n = 10 * n;
|
|
read_index++;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
h.decimal_point -= int32_t(read_index - 1);
|
|
if (h.decimal_point < -decimal_point_range) { // it is zero
|
|
h.num_digits = 0;
|
|
h.decimal_point = 0;
|
|
h.negative = false;
|
|
h.truncated = false;
|
|
return;
|
|
}
|
|
uint64_t mask = (uint64_t(1) << shift) - 1;
|
|
while (read_index < h.num_digits) {
|
|
uint8_t new_digit = uint8_t(n >> shift);
|
|
n = (10 * (n & mask)) + h.digits[read_index++];
|
|
h.digits[write_index++] = new_digit;
|
|
}
|
|
while (n > 0) {
|
|
uint8_t new_digit = uint8_t(n >> shift);
|
|
n = 10 * (n & mask);
|
|
if (write_index < max_digits) {
|
|
h.digits[write_index++] = new_digit;
|
|
} else if (new_digit > 0) {
|
|
h.truncated = true;
|
|
}
|
|
}
|
|
h.num_digits = write_index;
|
|
trim(h);
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
template <typename binary>
|
|
adjusted_mantissa compute_float(decimal &d) {
|
|
adjusted_mantissa answer;
|
|
if (d.num_digits == 0) {
|
|
// should be zero
|
|
answer.power2 = 0;
|
|
answer.mantissa = 0;
|
|
return answer;
|
|
}
|
|
// At this point, going further, we can assume that d.num_digits > 0.
|
|
//
|
|
// We want to guard against excessive decimal point values because
|
|
// they can result in long running times. Indeed, we do
|
|
// shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22
|
|
// which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not
|
|
// fine (runs for a long time).
|
|
//
|
|
if(d.decimal_point < -324) {
|
|
// We have something smaller than 1e-324 which is always zero
|
|
// in binary64 and binary32.
|
|
// It should be zero.
|
|
answer.power2 = 0;
|
|
answer.mantissa = 0;
|
|
return answer;
|
|
} else if(d.decimal_point >= 310) {
|
|
// We have something at least as large as 0.1e310 which is
|
|
// always infinite.
|
|
answer.power2 = binary::infinite_power();
|
|
answer.mantissa = 0;
|
|
return answer;
|
|
}
|
|
constexpr uint32_t max_shift = 60;
|
|
constexpr uint32_t num_powers = 19;
|
|
constexpr uint8_t decimal_powers[19] = {
|
|
0, 3, 6, 9, 13, 16, 19, 23, 26, 29, //
|
|
33, 36, 39, 43, 46, 49, 53, 56, 59, //
|
|
};
|
|
int32_t exp2 = 0;
|
|
while (d.decimal_point > 0) {
|
|
uint32_t n = uint32_t(d.decimal_point);
|
|
uint32_t shift = (n < num_powers) ? decimal_powers[n] : max_shift;
|
|
detail::decimal_right_shift(d, shift);
|
|
if (d.decimal_point < -decimal_point_range) {
|
|
// should be zero
|
|
answer.power2 = 0;
|
|
answer.mantissa = 0;
|
|
return answer;
|
|
}
|
|
exp2 += int32_t(shift);
|
|
}
|
|
// We shift left toward [1/2 ... 1].
|
|
while (d.decimal_point <= 0) {
|
|
uint32_t shift;
|
|
if (d.decimal_point == 0) {
|
|
if (d.digits[0] >= 5) {
|
|
break;
|
|
}
|
|
shift = (d.digits[0] < 2) ? 2 : 1;
|
|
} else {
|
|
uint32_t n = uint32_t(-d.decimal_point);
|
|
shift = (n < num_powers) ? decimal_powers[n] : max_shift;
|
|
}
|
|
detail::decimal_left_shift(d, shift);
|
|
if (d.decimal_point > decimal_point_range) {
|
|
// we want to get infinity:
|
|
answer.power2 = binary::infinite_power();
|
|
answer.mantissa = 0;
|
|
return answer;
|
|
}
|
|
exp2 -= int32_t(shift);
|
|
}
|
|
// We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2].
|
|
exp2--;
|
|
constexpr int32_t minimum_exponent = binary::minimum_exponent();
|
|
while ((minimum_exponent + 1) > exp2) {
|
|
uint32_t n = uint32_t((minimum_exponent + 1) - exp2);
|
|
if (n > max_shift) {
|
|
n = max_shift;
|
|
}
|
|
detail::decimal_right_shift(d, n);
|
|
exp2 += int32_t(n);
|
|
}
|
|
if ((exp2 - minimum_exponent) >= binary::infinite_power()) {
|
|
answer.power2 = binary::infinite_power();
|
|
answer.mantissa = 0;
|
|
return answer;
|
|
}
|
|
|
|
const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1;
|
|
detail::decimal_left_shift(d, mantissa_size_in_bits);
|
|
|
|
uint64_t mantissa = detail::round(d);
|
|
// It is possible that we have an overflow, in which case we need
|
|
// to shift back.
|
|
if(mantissa >= (uint64_t(1) << mantissa_size_in_bits)) {
|
|
detail::decimal_right_shift(d, 1);
|
|
exp2 += 1;
|
|
mantissa = detail::round(d);
|
|
if ((exp2 - minimum_exponent) >= binary::infinite_power()) {
|
|
answer.power2 = binary::infinite_power();
|
|
answer.mantissa = 0;
|
|
return answer;
|
|
}
|
|
}
|
|
answer.power2 = exp2 - binary::minimum_exponent();
|
|
if(mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; }
|
|
answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1);
|
|
return answer;
|
|
}
|
|
|
|
template <typename binary>
|
|
adjusted_mantissa parse_long_mantissa(const char *first, const char* last, parse_options options) {
|
|
decimal d = parse_decimal(first, last, options);
|
|
return compute_float<binary>(d);
|
|
}
|
|
|
|
} // namespace fast_float
|
|
#endif
|