duckstation/dep/lzma/include/CpuArch.h

648 lines
17 KiB
C

/* CpuArch.h -- CPU specific code
2024-06-17 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_CPU_ARCH_H
#define ZIP7_INC_CPU_ARCH_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
MY_CPU_LE means that CPU is LITTLE ENDIAN.
MY_CPU_BE means that CPU is BIG ENDIAN.
If MY_CPU_LE and MY_CPU_BE are not defined, we don't know about ENDIANNESS of platform.
MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned memory accesses.
MY_CPU_64BIT means that processor can work with 64-bit registers.
MY_CPU_64BIT can be used to select fast code branch
MY_CPU_64BIT doesn't mean that (sizeof(void *) == 8)
*/
#if !defined(_M_ARM64EC)
#if defined(_M_X64) \
|| defined(_M_AMD64) \
|| defined(__x86_64__) \
|| defined(__AMD64__) \
|| defined(__amd64__)
#define MY_CPU_AMD64
#ifdef __ILP32__
#define MY_CPU_NAME "x32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "x64"
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#endif
#endif
#if defined(_M_IX86) \
|| defined(__i386__)
#define MY_CPU_X86
#define MY_CPU_NAME "x86"
/* #define MY_CPU_32BIT */
#define MY_CPU_SIZEOF_POINTER 4
#endif
#if defined(_M_ARM64) \
|| defined(_M_ARM64EC) \
|| defined(__AARCH64EL__) \
|| defined(__AARCH64EB__) \
|| defined(__aarch64__)
#define MY_CPU_ARM64
#if defined(__ILP32__) \
|| defined(__SIZEOF_POINTER__) && (__SIZEOF_POINTER__ == 4)
#define MY_CPU_NAME "arm64-32"
#define MY_CPU_SIZEOF_POINTER 4
#elif defined(__SIZEOF_POINTER__) && (__SIZEOF_POINTER__ == 16)
#define MY_CPU_NAME "arm64-128"
#define MY_CPU_SIZEOF_POINTER 16
#else
#if defined(_M_ARM64EC)
#define MY_CPU_NAME "arm64ec"
#else
#define MY_CPU_NAME "arm64"
#endif
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#endif
#if defined(_M_ARM) \
|| defined(_M_ARM_NT) \
|| defined(_M_ARMT) \
|| defined(__arm__) \
|| defined(__thumb__) \
|| defined(__ARMEL__) \
|| defined(__ARMEB__) \
|| defined(__THUMBEL__) \
|| defined(__THUMBEB__)
#define MY_CPU_ARM
#if defined(__thumb__) || defined(__THUMBEL__) || defined(_M_ARMT)
#define MY_CPU_ARMT
#define MY_CPU_NAME "armt"
#else
#define MY_CPU_ARM32
#define MY_CPU_NAME "arm"
#endif
/* #define MY_CPU_32BIT */
#define MY_CPU_SIZEOF_POINTER 4
#endif
#if defined(_M_IA64) \
|| defined(__ia64__)
#define MY_CPU_IA64
#define MY_CPU_NAME "ia64"
#define MY_CPU_64BIT
#endif
#if defined(__mips64) \
|| defined(__mips64__) \
|| (defined(__mips) && (__mips == 64 || __mips == 4 || __mips == 3))
#define MY_CPU_NAME "mips64"
#define MY_CPU_64BIT
#elif defined(__mips__)
#define MY_CPU_NAME "mips"
/* #define MY_CPU_32BIT */
#endif
#if defined(__ppc64__) \
|| defined(__powerpc64__) \
|| defined(__ppc__) \
|| defined(__powerpc__) \
|| defined(__PPC__) \
|| defined(_POWER)
#define MY_CPU_PPC_OR_PPC64
#if defined(__ppc64__) \
|| defined(__powerpc64__) \
|| defined(_LP64) \
|| defined(__64BIT__)
#ifdef __ILP32__
#define MY_CPU_NAME "ppc64-32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "ppc64"
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#else
#define MY_CPU_NAME "ppc"
#define MY_CPU_SIZEOF_POINTER 4
/* #define MY_CPU_32BIT */
#endif
#endif
#if defined(__sparc__) \
|| defined(__sparc)
#define MY_CPU_SPARC
#if defined(__LP64__) \
|| defined(_LP64) \
|| defined(__SIZEOF_POINTER__) && (__SIZEOF_POINTER__ == 8)
#define MY_CPU_NAME "sparcv9"
#define MY_CPU_SIZEOF_POINTER 8
#define MY_CPU_64BIT
#elif defined(__sparc_v9__) \
|| defined(__sparcv9)
#define MY_CPU_64BIT
#if defined(__SIZEOF_POINTER__) && (__SIZEOF_POINTER__ == 4)
#define MY_CPU_NAME "sparcv9-32"
#else
#define MY_CPU_NAME "sparcv9m"
#endif
#elif defined(__sparc_v8__) \
|| defined(__sparcv8)
#define MY_CPU_NAME "sparcv8"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "sparc"
#endif
#endif
#if defined(__riscv) \
|| defined(__riscv__)
#define MY_CPU_RISCV
#if __riscv_xlen == 32
#define MY_CPU_NAME "riscv32"
#elif __riscv_xlen == 64
#define MY_CPU_NAME "riscv64"
#else
#define MY_CPU_NAME "riscv"
#endif
#endif
#if defined(__loongarch__)
#define MY_CPU_LOONGARCH
#if defined(__loongarch64) || defined(__loongarch_grlen) && (__loongarch_grlen == 64)
#define MY_CPU_64BIT
#endif
#if defined(__loongarch64)
#define MY_CPU_NAME "loongarch64"
#define MY_CPU_LOONGARCH64
#else
#define MY_CPU_NAME "loongarch"
#endif
#endif
// #undef MY_CPU_NAME
// #undef MY_CPU_SIZEOF_POINTER
// #define __e2k__
// #define __SIZEOF_POINTER__ 4
#if defined(__e2k__)
#define MY_CPU_E2K
#if defined(__ILP32__) || defined(__SIZEOF_POINTER__) && (__SIZEOF_POINTER__ == 4)
#define MY_CPU_NAME "e2k-32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "e2k"
#if defined(__LP64__) || defined(__SIZEOF_POINTER__) && (__SIZEOF_POINTER__ == 8)
#define MY_CPU_SIZEOF_POINTER 8
#endif
#endif
#define MY_CPU_64BIT
#endif
#if defined(MY_CPU_X86) || defined(MY_CPU_AMD64)
#define MY_CPU_X86_OR_AMD64
#endif
#if defined(MY_CPU_ARM) || defined(MY_CPU_ARM64)
#define MY_CPU_ARM_OR_ARM64
#endif
#ifdef _WIN32
#ifdef MY_CPU_ARM
#define MY_CPU_ARM_LE
#endif
#ifdef MY_CPU_ARM64
#define MY_CPU_ARM64_LE
#endif
#ifdef _M_IA64
#define MY_CPU_IA64_LE
#endif
#endif
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM_LE) \
|| defined(MY_CPU_ARM64_LE) \
|| defined(MY_CPU_IA64_LE) \
|| defined(_LITTLE_ENDIAN) \
|| defined(__LITTLE_ENDIAN__) \
|| defined(__ARMEL__) \
|| defined(__THUMBEL__) \
|| defined(__AARCH64EL__) \
|| defined(__MIPSEL__) \
|| defined(__MIPSEL) \
|| defined(_MIPSEL) \
|| defined(__BFIN__) \
|| (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
#define MY_CPU_LE
#endif
#if defined(__BIG_ENDIAN__) \
|| defined(__ARMEB__) \
|| defined(__THUMBEB__) \
|| defined(__AARCH64EB__) \
|| defined(__MIPSEB__) \
|| defined(__MIPSEB) \
|| defined(_MIPSEB) \
|| defined(__m68k__) \
|| defined(__s390__) \
|| defined(__s390x__) \
|| defined(__zarch__) \
|| (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
#define MY_CPU_BE
#endif
#if defined(MY_CPU_LE) && defined(MY_CPU_BE)
#error Stop_Compiling_Bad_Endian
#endif
#if !defined(MY_CPU_LE) && !defined(MY_CPU_BE)
#error Stop_Compiling_CPU_ENDIAN_must_be_detected_at_compile_time
#endif
#if defined(MY_CPU_32BIT) && defined(MY_CPU_64BIT)
#error Stop_Compiling_Bad_32_64_BIT
#endif
#ifdef __SIZEOF_POINTER__
#ifdef MY_CPU_SIZEOF_POINTER
#if MY_CPU_SIZEOF_POINTER != __SIZEOF_POINTER__
#error Stop_Compiling_Bad_MY_CPU_PTR_SIZE
#endif
#else
#define MY_CPU_SIZEOF_POINTER __SIZEOF_POINTER__
#endif
#endif
#if defined(MY_CPU_SIZEOF_POINTER) && (MY_CPU_SIZEOF_POINTER == 4)
#if defined (_LP64)
#error Stop_Compiling_Bad_MY_CPU_PTR_SIZE
#endif
#endif
#ifdef _MSC_VER
#if _MSC_VER >= 1300
#define MY_CPU_pragma_pack_push_1 __pragma(pack(push, 1))
#define MY_CPU_pragma_pop __pragma(pack(pop))
#else
#define MY_CPU_pragma_pack_push_1
#define MY_CPU_pragma_pop
#endif
#else
#ifdef __xlC__
#define MY_CPU_pragma_pack_push_1 _Pragma("pack(1)")
#define MY_CPU_pragma_pop _Pragma("pack()")
#else
#define MY_CPU_pragma_pack_push_1 _Pragma("pack(push, 1)")
#define MY_CPU_pragma_pop _Pragma("pack(pop)")
#endif
#endif
#ifndef MY_CPU_NAME
// #define MY_CPU_IS_UNKNOWN
#ifdef MY_CPU_LE
#define MY_CPU_NAME "LE"
#elif defined(MY_CPU_BE)
#define MY_CPU_NAME "BE"
#else
/*
#define MY_CPU_NAME ""
*/
#endif
#endif
#ifdef __has_builtin
#define Z7_has_builtin(x) __has_builtin(x)
#else
#define Z7_has_builtin(x) 0
#endif
#define Z7_BSWAP32_CONST(v) \
( (((UInt32)(v) << 24) ) \
| (((UInt32)(v) << 8) & (UInt32)0xff0000) \
| (((UInt32)(v) >> 8) & (UInt32)0xff00 ) \
| (((UInt32)(v) >> 24) ))
#if defined(_MSC_VER) && (_MSC_VER >= 1300)
#include <stdlib.h>
/* Note: these macros will use bswap instruction (486), that is unsupported in 386 cpu */
#pragma intrinsic(_byteswap_ushort)
#pragma intrinsic(_byteswap_ulong)
#pragma intrinsic(_byteswap_uint64)
#define Z7_BSWAP16(v) _byteswap_ushort(v)
#define Z7_BSWAP32(v) _byteswap_ulong (v)
#define Z7_BSWAP64(v) _byteswap_uint64(v)
#define Z7_CPU_FAST_BSWAP_SUPPORTED
/* GCC can generate slow code that calls function for __builtin_bswap32() for:
- GCC for RISCV, if Zbb/XTHeadBb extension is not used.
- GCC for SPARC.
The code from CLANG for SPARC also is not fastest.
So we don't define Z7_CPU_FAST_BSWAP_SUPPORTED in some cases.
*/
#elif (!defined(MY_CPU_RISCV) || defined (__riscv_zbb) || defined(__riscv_xtheadbb)) \
&& !defined(MY_CPU_SPARC) \
&& ( \
(defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))) \
|| (defined(__clang__) && Z7_has_builtin(__builtin_bswap16)) \
)
#define Z7_BSWAP16(v) __builtin_bswap16(v)
#define Z7_BSWAP32(v) __builtin_bswap32(v)
#define Z7_BSWAP64(v) __builtin_bswap64(v)
#define Z7_CPU_FAST_BSWAP_SUPPORTED
#else
#define Z7_BSWAP16(v) ((UInt16) \
( ((UInt32)(v) << 8) \
| ((UInt32)(v) >> 8) \
))
#define Z7_BSWAP32(v) Z7_BSWAP32_CONST(v)
#define Z7_BSWAP64(v) \
( ( ( (UInt64)(v) ) << 8 * 7 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 1) ) << 8 * 5 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 2) ) << 8 * 3 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 3) ) << 8 * 1 ) \
| ( ( (UInt64)(v) >> 8 * 1 ) & ((UInt32)0xff << 8 * 3) ) \
| ( ( (UInt64)(v) >> 8 * 3 ) & ((UInt32)0xff << 8 * 2) ) \
| ( ( (UInt64)(v) >> 8 * 5 ) & ((UInt32)0xff << 8 * 1) ) \
| ( ( (UInt64)(v) >> 8 * 7 ) ) \
)
#endif
#ifdef MY_CPU_LE
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM64) \
|| defined(MY_CPU_RISCV) && defined(__riscv_misaligned_fast) \
|| defined(MY_CPU_E2K) && defined(__iset__) && (__iset__ >= 6)
#define MY_CPU_LE_UNALIGN
#define MY_CPU_LE_UNALIGN_64
#elif defined(__ARM_FEATURE_UNALIGNED)
/* === ALIGNMENT on 32-bit arm and LDRD/STRD/LDM/STM instructions.
Description of problems:
problem-1 : 32-bit ARM architecture:
multi-access (pair of 32-bit accesses) instructions (LDRD/STRD/LDM/STM)
require 32-bit (WORD) alignment (by 32-bit ARM architecture).
So there is "Alignment fault exception", if data is not aligned for 32-bit.
problem-2 : 32-bit kernels and arm64 kernels:
32-bit linux kernels provide fixup for these "paired" instruction "Alignment fault exception".
So unaligned paired-access instructions work via exception handler in kernel in 32-bit linux.
But some arm64 kernels do not handle these faults in 32-bit programs.
So we have unhandled exception for such instructions.
Probably some new arm64 kernels have fixed it, and unaligned
paired-access instructions work in new kernels?
problem-3 : compiler for 32-bit arm:
Compilers use LDRD/STRD/LDM/STM for UInt64 accesses
and for another cases where two 32-bit accesses are fused
to one multi-access instruction.
So UInt64 variables must be aligned for 32-bit, and each
32-bit access must be aligned for 32-bit, if we want to
avoid "Alignment fault" exception (handled or unhandled).
problem-4 : performace:
Even if unaligned access is handled by kernel, it will be slow.
So if we allow unaligned access, we can get fast unaligned
single-access, and slow unaligned paired-access.
We don't allow unaligned access on 32-bit arm, because compiler
genarates paired-access instructions that require 32-bit alignment,
and some arm64 kernels have no handler for these instructions.
Also unaligned paired-access instructions will be slow, if kernel handles them.
*/
// it must be disabled:
// #define MY_CPU_LE_UNALIGN
#endif
#endif
#ifdef MY_CPU_LE_UNALIGN
#define GetUi16(p) (*(const UInt16 *)(const void *)(p))
#define GetUi32(p) (*(const UInt32 *)(const void *)(p))
#ifdef MY_CPU_LE_UNALIGN_64
#define GetUi64(p) (*(const UInt64 *)(const void *)(p))
#define SetUi64(p, v) { *(UInt64 *)(void *)(p) = (v); }
#endif
#define SetUi16(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define SetUi32(p, v) { *(UInt32 *)(void *)(p) = (v); }
#else
#define GetUi16(p) ( (UInt16) ( \
((const Byte *)(p))[0] | \
((UInt16)((const Byte *)(p))[1] << 8) ))
#define GetUi32(p) ( \
((const Byte *)(p))[0] | \
((UInt32)((const Byte *)(p))[1] << 8) | \
((UInt32)((const Byte *)(p))[2] << 16) | \
((UInt32)((const Byte *)(p))[3] << 24))
#define SetUi16(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); }
#define SetUi32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); \
_ppp_[2] = (Byte)(_vvv_ >> 16); \
_ppp_[3] = (Byte)(_vvv_ >> 24); }
#endif
#ifndef GetUi64
#define GetUi64(p) (GetUi32(p) | ((UInt64)GetUi32(((const Byte *)(p)) + 4) << 32))
#endif
#ifndef SetUi64
#define SetUi64(p, v) { Byte *_ppp2_ = (Byte *)(p); UInt64 _vvv2_ = (v); \
SetUi32(_ppp2_ , (UInt32)_vvv2_) \
SetUi32(_ppp2_ + 4, (UInt32)(_vvv2_ >> 32)) }
#endif
#if defined(MY_CPU_LE_UNALIGN) && defined(Z7_CPU_FAST_BSWAP_SUPPORTED)
#define GetBe32(p) Z7_BSWAP32 (*(const UInt32 *)(const void *)(p))
#define SetBe32(p, v) { (*(UInt32 *)(void *)(p)) = Z7_BSWAP32(v); }
#if defined(MY_CPU_LE_UNALIGN_64)
#define GetBe64(p) Z7_BSWAP64 (*(const UInt64 *)(const void *)(p))
#endif
#else
#define GetBe32(p) ( \
((UInt32)((const Byte *)(p))[0] << 24) | \
((UInt32)((const Byte *)(p))[1] << 16) | \
((UInt32)((const Byte *)(p))[2] << 8) | \
((const Byte *)(p))[3] )
#define SetBe32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)(_vvv_ >> 24); \
_ppp_[1] = (Byte)(_vvv_ >> 16); \
_ppp_[2] = (Byte)(_vvv_ >> 8); \
_ppp_[3] = (Byte)_vvv_; }
#endif
#ifndef GetBe64
#define GetBe64(p) (((UInt64)GetBe32(p) << 32) | GetBe32(((const Byte *)(p)) + 4))
#endif
#ifndef GetBe16
#define GetBe16(p) ( (UInt16) ( \
((UInt16)((const Byte *)(p))[0] << 8) | \
((const Byte *)(p))[1] ))
#endif
#if defined(MY_CPU_BE)
#define Z7_CONV_BE_TO_NATIVE_CONST32(v) (v)
#define Z7_CONV_LE_TO_NATIVE_CONST32(v) Z7_BSWAP32_CONST(v)
#define Z7_CONV_NATIVE_TO_BE_32(v) (v)
#elif defined(MY_CPU_LE)
#define Z7_CONV_BE_TO_NATIVE_CONST32(v) Z7_BSWAP32_CONST(v)
#define Z7_CONV_LE_TO_NATIVE_CONST32(v) (v)
#define Z7_CONV_NATIVE_TO_BE_32(v) Z7_BSWAP32(v)
#else
#error Stop_Compiling_Unknown_Endian_CONV
#endif
#if defined(MY_CPU_BE)
#define GetBe64a(p) (*(const UInt64 *)(const void *)(p))
#define GetBe32a(p) (*(const UInt32 *)(const void *)(p))
#define GetBe16a(p) (*(const UInt16 *)(const void *)(p))
#define SetBe32a(p, v) { *(UInt32 *)(void *)(p) = (v); }
#define SetBe16a(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define GetUi64a(p) GetUi64(p)
#define GetUi32a(p) GetUi32(p)
#define GetUi16a(p) GetUi16(p)
#define SetUi32a(p, v) SetUi32(p, v)
#define SetUi16a(p, v) SetUi16(p, v)
#elif defined(MY_CPU_LE)
#define GetUi64a(p) (*(const UInt64 *)(const void *)(p))
#define GetUi32a(p) (*(const UInt32 *)(const void *)(p))
#define GetUi16a(p) (*(const UInt16 *)(const void *)(p))
#define SetUi32a(p, v) { *(UInt32 *)(void *)(p) = (v); }
#define SetUi16a(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define GetBe64a(p) GetBe64(p)
#define GetBe32a(p) GetBe32(p)
#define GetBe16a(p) GetBe16(p)
#define SetBe32a(p, v) SetBe32(p, v)
#define SetBe16a(p, v) SetBe16(p, v)
#else
#error Stop_Compiling_Unknown_Endian_CPU_a
#endif
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM_OR_ARM64) \
|| defined(MY_CPU_PPC_OR_PPC64)
#define Z7_CPU_FAST_ROTATE_SUPPORTED
#endif
#ifdef MY_CPU_X86_OR_AMD64
void Z7_FASTCALL z7_x86_cpuid(UInt32 a[4], UInt32 function);
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void);
#if defined(MY_CPU_AMD64)
#define Z7_IF_X86_CPUID_SUPPORTED
#else
#define Z7_IF_X86_CPUID_SUPPORTED if (z7_x86_cpuid_GetMaxFunc())
#endif
BoolInt CPU_IsSupported_AES(void);
BoolInt CPU_IsSupported_AVX(void);
BoolInt CPU_IsSupported_AVX2(void);
BoolInt CPU_IsSupported_AVX512F_AVX512VL(void);
BoolInt CPU_IsSupported_VAES_AVX2(void);
BoolInt CPU_IsSupported_CMOV(void);
BoolInt CPU_IsSupported_SSE(void);
BoolInt CPU_IsSupported_SSE2(void);
BoolInt CPU_IsSupported_SSSE3(void);
BoolInt CPU_IsSupported_SSE41(void);
BoolInt CPU_IsSupported_SHA(void);
BoolInt CPU_IsSupported_PageGB(void);
#elif defined(MY_CPU_ARM_OR_ARM64)
BoolInt CPU_IsSupported_CRC32(void);
BoolInt CPU_IsSupported_NEON(void);
#if defined(_WIN32)
BoolInt CPU_IsSupported_CRYPTO(void);
#define CPU_IsSupported_SHA1 CPU_IsSupported_CRYPTO
#define CPU_IsSupported_SHA2 CPU_IsSupported_CRYPTO
#define CPU_IsSupported_AES CPU_IsSupported_CRYPTO
#else
BoolInt CPU_IsSupported_SHA1(void);
BoolInt CPU_IsSupported_SHA2(void);
BoolInt CPU_IsSupported_AES(void);
#endif
#endif
#if defined(__APPLE__)
int z7_sysctlbyname_Get(const char *name, void *buf, size_t *bufSize);
int z7_sysctlbyname_Get_UInt32(const char *name, UInt32 *val);
#endif
EXTERN_C_END
#endif