523 lines
20 KiB
C++
523 lines
20 KiB
C++
// Copyright 2017, VIXL authors
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of ARM Limited nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
|
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef VIXL_POOL_MANAGER_IMPL_H_
|
|
#define VIXL_POOL_MANAGER_IMPL_H_
|
|
|
|
#include <algorithm>
|
|
|
|
#include "assembler-base-vixl.h"
|
|
#include "pool-manager.h"
|
|
|
|
namespace vixl {
|
|
|
|
|
|
template <typename T>
|
|
T PoolManager<T>::Emit(MacroAssemblerInterface* masm,
|
|
T pc,
|
|
int num_bytes,
|
|
ForwardReference<T>* new_reference,
|
|
LocationBase<T>* new_object,
|
|
EmitOption option) {
|
|
// Make sure that the buffer still has the alignment we think it does.
|
|
VIXL_ASSERT(IsAligned(masm->AsAssemblerBase()
|
|
->GetBuffer()
|
|
->GetStartAddress<uintptr_t>(),
|
|
buffer_alignment_));
|
|
|
|
// We should not call this method when the pools are blocked.
|
|
VIXL_ASSERT(!IsBlocked());
|
|
if (objects_.empty()) return pc;
|
|
|
|
// Emit header.
|
|
if (option == kBranchRequired) {
|
|
masm->EmitPoolHeader();
|
|
// TODO: The pc at this point might not actually be aligned according to
|
|
// alignment_. This is to support the current AARCH32 MacroAssembler which
|
|
// does not have a fixed size instruction set. In practice, the pc will be
|
|
// aligned to the alignment instructions need for the current instruction
|
|
// set, so we do not need to align it here. All other calculations do take
|
|
// the alignment into account, which only makes the checkpoint calculations
|
|
// more conservative when we use T32. Uncomment the following assertion if
|
|
// the AARCH32 MacroAssembler is modified to only support one ISA at the
|
|
// time.
|
|
// VIXL_ASSERT(pc == AlignUp(pc, alignment_));
|
|
pc += header_size_;
|
|
} else {
|
|
// If the header is optional, we might need to add some extra padding to
|
|
// meet the minimum location of the first object.
|
|
if (pc < objects_[0].min_location_) {
|
|
int32_t padding = objects_[0].min_location_ - pc;
|
|
masm->EmitNopBytes(padding);
|
|
pc += padding;
|
|
}
|
|
}
|
|
|
|
PoolObject<T>* existing_object = GetObjectIfTracked(new_object);
|
|
|
|
// Go through all objects and emit one by one.
|
|
for (objects_iter iter = objects_.begin(); iter != objects_.end();) {
|
|
PoolObject<T>& current = *iter;
|
|
if (ShouldSkipObject(¤t,
|
|
pc,
|
|
num_bytes,
|
|
new_reference,
|
|
new_object,
|
|
existing_object)) {
|
|
++iter;
|
|
continue;
|
|
}
|
|
LocationBase<T>* label_base = current.label_base_;
|
|
T aligned_pc = AlignUp(pc, current.alignment_);
|
|
masm->EmitPaddingBytes(aligned_pc - pc);
|
|
pc = aligned_pc;
|
|
VIXL_ASSERT(pc >= current.min_location_);
|
|
VIXL_ASSERT(pc <= current.max_location_);
|
|
// First call SetLocation, which will also resolve the references, and then
|
|
// call EmitPoolObject, which might add a new reference.
|
|
label_base->SetLocation(masm->AsAssemblerBase(), pc);
|
|
label_base->EmitPoolObject(masm);
|
|
int object_size = label_base->GetPoolObjectSizeInBytes();
|
|
if (label_base->ShouldDeletePoolObjectOnPlacement()) {
|
|
label_base->MarkBound();
|
|
iter = RemoveAndDelete(iter);
|
|
} else {
|
|
VIXL_ASSERT(!current.label_base_->ShouldDeletePoolObjectOnPlacement());
|
|
current.label_base_->UpdatePoolObject(¤t);
|
|
VIXL_ASSERT(current.alignment_ >= label_base->GetPoolObjectAlignment());
|
|
++iter;
|
|
}
|
|
pc += object_size;
|
|
}
|
|
|
|
// Recalculate the checkpoint before emitting the footer. The footer might
|
|
// call Bind() which will check if we need to emit.
|
|
RecalculateCheckpoint();
|
|
|
|
// Always emit footer - this might add some padding.
|
|
masm->EmitPoolFooter();
|
|
pc = AlignUp(pc, alignment_);
|
|
|
|
return pc;
|
|
}
|
|
|
|
template <typename T>
|
|
bool PoolManager<T>::ShouldSkipObject(PoolObject<T>* pool_object,
|
|
T pc,
|
|
int num_bytes,
|
|
ForwardReference<T>* new_reference,
|
|
LocationBase<T>* new_object,
|
|
PoolObject<T>* existing_object) const {
|
|
// We assume that all objects before this have been skipped and all objects
|
|
// after this will be emitted, therefore we will emit the whole pool. Add
|
|
// the header size and alignment, as well as the number of bytes we are
|
|
// planning to emit.
|
|
T max_actual_location = pc + num_bytes + max_pool_size_;
|
|
|
|
if (new_reference != NULL) {
|
|
// If we're adding a new object, also assume that it will have to be emitted
|
|
// before the object we are considering to skip.
|
|
VIXL_ASSERT(new_object != NULL);
|
|
T new_object_alignment = std::max(new_reference->object_alignment_,
|
|
new_object->GetPoolObjectAlignment());
|
|
if ((existing_object != NULL) &&
|
|
(existing_object->alignment_ > new_object_alignment)) {
|
|
new_object_alignment = existing_object->alignment_;
|
|
}
|
|
max_actual_location +=
|
|
(new_object->GetPoolObjectSizeInBytes() + new_object_alignment - 1);
|
|
}
|
|
|
|
// Hard limit.
|
|
if (max_actual_location >= pool_object->max_location_) return false;
|
|
|
|
// Use heuristic.
|
|
return (pc < pool_object->skip_until_location_hint_);
|
|
}
|
|
|
|
template <typename T>
|
|
T PoolManager<T>::UpdateCheckpointForObject(T checkpoint,
|
|
const PoolObject<T>* object) {
|
|
checkpoint -= object->label_base_->GetPoolObjectSizeInBytes();
|
|
if (checkpoint > object->max_location_) checkpoint = object->max_location_;
|
|
checkpoint = AlignDown(checkpoint, object->alignment_);
|
|
return checkpoint;
|
|
}
|
|
|
|
template <typename T>
|
|
static T MaxCheckpoint() {
|
|
return std::numeric_limits<T>::max();
|
|
}
|
|
|
|
template <typename T>
|
|
static inline bool CheckCurrentPC(T pc, T checkpoint) {
|
|
VIXL_ASSERT(pc <= checkpoint);
|
|
// We must emit the pools if we are at the checkpoint now.
|
|
return pc == checkpoint;
|
|
}
|
|
|
|
template <typename T>
|
|
static inline bool CheckFuturePC(T pc, T checkpoint) {
|
|
// We do not need to emit the pools now if the projected future PC will be
|
|
// equal to the checkpoint (we will need to emit the pools then).
|
|
return pc > checkpoint;
|
|
}
|
|
|
|
template <typename T>
|
|
bool PoolManager<T>::MustEmit(T pc,
|
|
int num_bytes,
|
|
ForwardReference<T>* reference,
|
|
LocationBase<T>* label_base) const {
|
|
// Check if we are at or past the checkpoint.
|
|
if (CheckCurrentPC(pc, checkpoint_)) return true;
|
|
|
|
// Check if the future PC will be past the checkpoint.
|
|
pc += num_bytes;
|
|
if (CheckFuturePC(pc, checkpoint_)) return true;
|
|
|
|
// No new reference - nothing to do.
|
|
if (reference == NULL) {
|
|
VIXL_ASSERT(label_base == NULL);
|
|
return false;
|
|
}
|
|
|
|
if (objects_.empty()) {
|
|
// Basic assertions that restrictions on the new (and only) reference are
|
|
// possible to satisfy.
|
|
VIXL_ASSERT(AlignUp(pc + header_size_, alignment_) >=
|
|
reference->min_object_location_);
|
|
VIXL_ASSERT(pc <= reference->max_object_location_);
|
|
return false;
|
|
}
|
|
|
|
// Check if the object is already being tracked.
|
|
const PoolObject<T>* existing_object = GetObjectIfTracked(label_base);
|
|
if (existing_object != NULL) {
|
|
// If the existing_object is already in existing_objects_ and its new
|
|
// alignment and new location restrictions are not stricter, skip the more
|
|
// expensive check.
|
|
if ((reference->min_object_location_ <= existing_object->min_location_) &&
|
|
(reference->max_object_location_ >= existing_object->max_location_) &&
|
|
(reference->object_alignment_ <= existing_object->alignment_)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Create a temporary object.
|
|
PoolObject<T> temp(label_base);
|
|
temp.RestrictRange(reference->min_object_location_,
|
|
reference->max_object_location_);
|
|
temp.RestrictAlignment(reference->object_alignment_);
|
|
if (existing_object != NULL) {
|
|
temp.RestrictRange(existing_object->min_location_,
|
|
existing_object->max_location_);
|
|
temp.RestrictAlignment(existing_object->alignment_);
|
|
}
|
|
|
|
// Check if the new reference can be added after the end of the current pool.
|
|
// If yes, we don't need to emit.
|
|
T last_reachable = AlignDown(temp.max_location_, temp.alignment_);
|
|
const PoolObject<T>& last = objects_.back();
|
|
T after_pool = AlignDown(last.max_location_, last.alignment_) +
|
|
last.label_base_->GetPoolObjectSizeInBytes();
|
|
// The current object can be placed at the end of the pool, even if the last
|
|
// object is placed at the last possible location.
|
|
if (last_reachable >= after_pool) return false;
|
|
// The current object can be placed after the code we are about to emit and
|
|
// after the existing pool (with a pessimistic size estimate).
|
|
if (last_reachable >= pc + num_bytes + max_pool_size_) return false;
|
|
|
|
// We're not in a trivial case, so we need to recalculate the checkpoint.
|
|
|
|
// Check (conservatively) if we can fit it into the objects_ array, without
|
|
// breaking our assumptions. Here we want to recalculate the checkpoint as
|
|
// if the new reference was added to the PoolManager but without actually
|
|
// adding it (as removing it is non-trivial).
|
|
|
|
T checkpoint = MaxCheckpoint<T>();
|
|
// Will temp be the last object in objects_?
|
|
if (PoolObjectLessThan(last, temp)) {
|
|
checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
|
|
if (checkpoint < temp.min_location_) return true;
|
|
}
|
|
|
|
bool temp_not_placed_yet = true;
|
|
for (int i = static_cast<int>(objects_.size()) - 1; i >= 0; --i) {
|
|
const PoolObject<T>& current = objects_[i];
|
|
if (temp_not_placed_yet && PoolObjectLessThan(current, temp)) {
|
|
checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
|
|
if (checkpoint < temp.min_location_) return true;
|
|
if (CheckFuturePC(pc, checkpoint)) return true;
|
|
temp_not_placed_yet = false;
|
|
}
|
|
if (current.label_base_ == label_base) continue;
|
|
checkpoint = UpdateCheckpointForObject(checkpoint, ¤t);
|
|
if (checkpoint < current.min_location_) return true;
|
|
if (CheckFuturePC(pc, checkpoint)) return true;
|
|
}
|
|
// temp is the object with the smallest max_location_.
|
|
if (temp_not_placed_yet) {
|
|
checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
|
|
if (checkpoint < temp.min_location_) return true;
|
|
}
|
|
|
|
// Take the header into account.
|
|
checkpoint -= header_size_;
|
|
checkpoint = AlignDown(checkpoint, alignment_);
|
|
|
|
return CheckFuturePC(pc, checkpoint);
|
|
}
|
|
|
|
template <typename T>
|
|
void PoolManager<T>::RecalculateCheckpoint(SortOption sort_option) {
|
|
// TODO: Improve the max_pool_size_ estimate by starting from the
|
|
// min_location_ of the first object, calculating the end of the pool as if
|
|
// all objects were placed starting from there, and in the end adding the
|
|
// maximum object alignment found minus one (which is the maximum extra
|
|
// padding we would need if we were to relocate the pool to a different
|
|
// address).
|
|
max_pool_size_ = 0;
|
|
|
|
if (objects_.empty()) {
|
|
checkpoint_ = MaxCheckpoint<T>();
|
|
return;
|
|
}
|
|
|
|
// Sort objects by their max_location_.
|
|
if (sort_option == kSortRequired) {
|
|
std::sort(objects_.begin(), objects_.end(), PoolObjectLessThan);
|
|
}
|
|
|
|
// Add the header size and header and footer max alignment to the maximum
|
|
// pool size.
|
|
max_pool_size_ += header_size_ + 2 * (alignment_ - 1);
|
|
|
|
T checkpoint = MaxCheckpoint<T>();
|
|
int last_object_index = static_cast<int>(objects_.size()) - 1;
|
|
for (int i = last_object_index; i >= 0; --i) {
|
|
// Bring back the checkpoint by the size of the current object, unless
|
|
// we need to bring it back more, then align.
|
|
PoolObject<T>& current = objects_[i];
|
|
checkpoint = UpdateCheckpointForObject(checkpoint, ¤t);
|
|
VIXL_ASSERT(checkpoint >= current.min_location_);
|
|
max_pool_size_ += (current.alignment_ - 1 +
|
|
current.label_base_->GetPoolObjectSizeInBytes());
|
|
}
|
|
// Take the header into account.
|
|
checkpoint -= header_size_;
|
|
checkpoint = AlignDown(checkpoint, alignment_);
|
|
|
|
// Update the checkpoint of the pool manager.
|
|
checkpoint_ = checkpoint;
|
|
|
|
// NOTE: To handle min_location_ in the generic case, we could make a second
|
|
// pass of the objects_ vector, increasing the checkpoint as needed, while
|
|
// maintaining the alignment requirements.
|
|
// It should not be possible to have any issues with min_location_ with actual
|
|
// code, since there should always be some kind of branch over the pool,
|
|
// whether introduced by the pool emission or by the user, which will make
|
|
// sure the min_location_ requirement is satisfied. It's possible that the
|
|
// user could emit code in the literal pool and intentionally load the first
|
|
// value and then fall-through into the pool, but that is not a supported use
|
|
// of VIXL and we will assert in that case.
|
|
}
|
|
|
|
template <typename T>
|
|
bool PoolManager<T>::PoolObjectLessThan(const PoolObject<T>& a,
|
|
const PoolObject<T>& b) {
|
|
if (a.max_location_ != b.max_location_)
|
|
return (a.max_location_ < b.max_location_);
|
|
int a_size = a.label_base_->GetPoolObjectSizeInBytes();
|
|
int b_size = b.label_base_->GetPoolObjectSizeInBytes();
|
|
if (a_size != b_size) return (a_size < b_size);
|
|
if (a.alignment_ != b.alignment_) return (a.alignment_ < b.alignment_);
|
|
if (a.min_location_ != b.min_location_)
|
|
return (a.min_location_ < b.min_location_);
|
|
return false;
|
|
}
|
|
|
|
template <typename T>
|
|
void PoolManager<T>::AddObjectReference(const ForwardReference<T>* reference,
|
|
LocationBase<T>* label_base) {
|
|
VIXL_ASSERT(reference->object_alignment_ <= buffer_alignment_);
|
|
VIXL_ASSERT(label_base->GetPoolObjectAlignment() <= buffer_alignment_);
|
|
|
|
PoolObject<T>* object = GetObjectIfTracked(label_base);
|
|
|
|
if (object == NULL) {
|
|
PoolObject<T> new_object(label_base);
|
|
new_object.RestrictRange(reference->min_object_location_,
|
|
reference->max_object_location_);
|
|
new_object.RestrictAlignment(reference->object_alignment_);
|
|
Insert(new_object);
|
|
} else {
|
|
object->RestrictRange(reference->min_object_location_,
|
|
reference->max_object_location_);
|
|
object->RestrictAlignment(reference->object_alignment_);
|
|
|
|
// Move the object, if needed.
|
|
if (objects_.size() != 1) {
|
|
PoolObject<T> new_object(*object);
|
|
ptrdiff_t distance = std::distance(objects_.data(), object);
|
|
objects_.erase(objects_.begin() + distance);
|
|
Insert(new_object);
|
|
}
|
|
}
|
|
// No need to sort, we inserted the object in an already sorted array.
|
|
RecalculateCheckpoint(kNoSortRequired);
|
|
}
|
|
|
|
template <typename T>
|
|
void PoolManager<T>::Insert(const PoolObject<T>& new_object) {
|
|
bool inserted = false;
|
|
// Place the object in the right position.
|
|
for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
|
|
PoolObject<T>& current = *iter;
|
|
if (!PoolObjectLessThan(current, new_object)) {
|
|
objects_.insert(iter, new_object);
|
|
inserted = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!inserted) {
|
|
objects_.push_back(new_object);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void PoolManager<T>::RemoveAndDelete(PoolObject<T>* object) {
|
|
for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
|
|
PoolObject<T>& current = *iter;
|
|
if (current.label_base_ == object->label_base_) {
|
|
(void)RemoveAndDelete(iter);
|
|
return;
|
|
}
|
|
}
|
|
VIXL_UNREACHABLE();
|
|
}
|
|
|
|
template <typename T>
|
|
typename PoolManager<T>::objects_iter PoolManager<T>::RemoveAndDelete(
|
|
objects_iter iter) {
|
|
PoolObject<T>& object = *iter;
|
|
LocationBase<T>* label_base = object.label_base_;
|
|
|
|
// Check if we also need to delete the LocationBase object.
|
|
if (label_base->ShouldBeDeletedOnPoolManagerDestruction()) {
|
|
delete_on_destruction_.push_back(label_base);
|
|
}
|
|
if (label_base->ShouldBeDeletedOnPlacementByPoolManager()) {
|
|
VIXL_ASSERT(!label_base->ShouldBeDeletedOnPoolManagerDestruction());
|
|
delete label_base;
|
|
}
|
|
|
|
return objects_.erase(iter);
|
|
}
|
|
|
|
template <typename T>
|
|
T PoolManager<T>::Bind(MacroAssemblerInterface* masm,
|
|
LocationBase<T>* object,
|
|
T location) {
|
|
PoolObject<T>* existing_object = GetObjectIfTracked(object);
|
|
int alignment;
|
|
T min_location;
|
|
if (existing_object == NULL) {
|
|
alignment = object->GetMaxAlignment();
|
|
min_location = object->GetMinLocation();
|
|
} else {
|
|
alignment = existing_object->alignment_;
|
|
min_location = existing_object->min_location_;
|
|
}
|
|
|
|
// Align if needed, and add necessary padding to reach the min_location_.
|
|
T aligned_location = AlignUp(location, alignment);
|
|
masm->EmitNopBytes(aligned_location - location);
|
|
location = aligned_location;
|
|
while (location < min_location) {
|
|
masm->EmitNopBytes(alignment);
|
|
location += alignment;
|
|
}
|
|
|
|
object->SetLocation(masm->AsAssemblerBase(), location);
|
|
object->MarkBound();
|
|
|
|
if (existing_object != NULL) {
|
|
RemoveAndDelete(existing_object);
|
|
// No need to sort, we removed the object from a sorted array.
|
|
RecalculateCheckpoint(kNoSortRequired);
|
|
}
|
|
|
|
// We assume that the maximum padding we can possibly add here is less
|
|
// than the header alignment - hence that we're not going to go past our
|
|
// checkpoint.
|
|
VIXL_ASSERT(!CheckFuturePC(location, checkpoint_));
|
|
return location;
|
|
}
|
|
|
|
template <typename T>
|
|
void PoolManager<T>::Release(T pc) {
|
|
USE(pc);
|
|
if (--monitor_ == 0) {
|
|
// Ensure the pool has not been blocked for too long.
|
|
VIXL_ASSERT(pc <= checkpoint_);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
PoolManager<T>::~PoolManager<T>() VIXL_NEGATIVE_TESTING_ALLOW_EXCEPTION {
|
|
#ifdef VIXL_DEBUG
|
|
// Check for unbound objects.
|
|
for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
|
|
// There should not be any bound objects left in the pool. For unbound
|
|
// objects, we will check in the destructor of the object itself.
|
|
VIXL_ASSERT(!(*iter).label_base_->IsBound());
|
|
}
|
|
#endif
|
|
// Delete objects the pool manager owns.
|
|
for (typename std::vector<LocationBase<T>*>::iterator
|
|
iter = delete_on_destruction_.begin(),
|
|
end = delete_on_destruction_.end();
|
|
iter != end;
|
|
++iter) {
|
|
delete *iter;
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
int PoolManager<T>::GetPoolSizeForTest() const {
|
|
// Iterate over objects and return their cumulative size. This does not take
|
|
// any padding into account, just the size of the objects themselves.
|
|
int size = 0;
|
|
for (const_objects_iter iter = objects_.begin(); iter != objects_.end();
|
|
++iter) {
|
|
size += (*iter).label_base_->GetPoolObjectSizeInBytes();
|
|
}
|
|
return size;
|
|
}
|
|
} // namespace vixl
|
|
|
|
#endif // VIXL_POOL_MANAGER_IMPL_H_
|