1282 lines
44 KiB
C++
1282 lines
44 KiB
C++
// Copyright 2015, VIXL authors
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of ARM Limited nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
|
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef VIXL_UTILS_H
|
|
#define VIXL_UTILS_H
|
|
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "compiler-intrinsics-vixl.h"
|
|
#include "globals-vixl.h"
|
|
|
|
namespace vixl {
|
|
|
|
// Macros for compile-time format checking.
|
|
#if GCC_VERSION_OR_NEWER(4, 4, 0)
|
|
#define PRINTF_CHECK(format_index, varargs_index) \
|
|
__attribute__((format(gnu_printf, format_index, varargs_index)))
|
|
#else
|
|
#define PRINTF_CHECK(format_index, varargs_index)
|
|
#endif
|
|
|
|
#ifdef __GNUC__
|
|
#define VIXL_HAS_DEPRECATED_WITH_MSG
|
|
#elif defined(__clang__)
|
|
#if __has_extension(attribute_deprecated_with_message)
|
|
#define VIXL_HAS_DEPRECATED_WITH_MSG
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef VIXL_HAS_DEPRECATED_WITH_MSG
|
|
#define VIXL_DEPRECATED(replaced_by, declarator) \
|
|
__attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator
|
|
#else
|
|
#define VIXL_DEPRECATED(replaced_by, declarator) declarator
|
|
#endif
|
|
|
|
#ifdef VIXL_DEBUG
|
|
#define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE()
|
|
#else
|
|
#define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH()
|
|
#endif
|
|
|
|
template <typename T, size_t n>
|
|
size_t ArrayLength(const T (&)[n]) {
|
|
return n;
|
|
}
|
|
|
|
// Check number width.
|
|
// TODO: Refactor these using templates.
|
|
inline bool IsIntN(unsigned n, uint32_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 32));
|
|
uint32_t limit = UINT32_C(1) << (n - 1);
|
|
return x < limit;
|
|
}
|
|
inline bool IsIntN(unsigned n, int32_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 32));
|
|
int32_t limit = INT32_C(1) << (n - 1);
|
|
return (-limit <= x) && (x < limit);
|
|
}
|
|
inline bool IsIntN(unsigned n, uint64_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 64));
|
|
uint64_t limit = UINT64_C(1) << (n - 1);
|
|
return x < limit;
|
|
}
|
|
inline bool IsIntN(unsigned n, int64_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 64));
|
|
int64_t limit = INT64_C(1) << (n - 1);
|
|
return (-limit <= x) && (x < limit);
|
|
}
|
|
VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) {
|
|
return IsIntN(n, x);
|
|
}
|
|
|
|
inline bool IsUintN(unsigned n, uint32_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 32));
|
|
return !(x >> n);
|
|
}
|
|
inline bool IsUintN(unsigned n, int32_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 32));
|
|
// Convert to an unsigned integer to avoid implementation-defined behavior.
|
|
return !(static_cast<uint32_t>(x) >> n);
|
|
}
|
|
inline bool IsUintN(unsigned n, uint64_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 64));
|
|
return !(x >> n);
|
|
}
|
|
inline bool IsUintN(unsigned n, int64_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 64));
|
|
// Convert to an unsigned integer to avoid implementation-defined behavior.
|
|
return !(static_cast<uint64_t>(x) >> n);
|
|
}
|
|
VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) {
|
|
return IsUintN(n, x);
|
|
}
|
|
|
|
inline uint64_t TruncateToUintN(unsigned n, uint64_t x) {
|
|
VIXL_ASSERT((0 < n) && (n < 64));
|
|
return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1);
|
|
}
|
|
VIXL_DEPRECATED("TruncateToUintN",
|
|
inline uint64_t truncate_to_intn(unsigned n, int64_t x)) {
|
|
return TruncateToUintN(n, x);
|
|
}
|
|
|
|
// clang-format off
|
|
#define INT_1_TO_32_LIST(V) \
|
|
V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \
|
|
V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \
|
|
V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \
|
|
V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)
|
|
|
|
#define INT_33_TO_63_LIST(V) \
|
|
V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
|
|
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \
|
|
V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \
|
|
V(57) V(58) V(59) V(60) V(61) V(62) V(63)
|
|
|
|
#define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V)
|
|
|
|
// clang-format on
|
|
|
|
#define DECLARE_IS_INT_N(N) \
|
|
inline bool IsInt##N(int64_t x) { return IsIntN(N, x); } \
|
|
VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \
|
|
return IsIntN(N, x); \
|
|
}
|
|
|
|
#define DECLARE_IS_UINT_N(N) \
|
|
inline bool IsUint##N(int64_t x) { return IsUintN(N, x); } \
|
|
VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \
|
|
return IsUintN(N, x); \
|
|
}
|
|
|
|
#define DECLARE_TRUNCATE_TO_UINT_32(N) \
|
|
inline uint32_t TruncateToUint##N(uint64_t x) { \
|
|
return static_cast<uint32_t>(TruncateToUintN(N, x)); \
|
|
} \
|
|
VIXL_DEPRECATED("TruncateToUint" #N, \
|
|
inline uint32_t truncate_to_int##N(int64_t x)) { \
|
|
return TruncateToUint##N(x); \
|
|
}
|
|
|
|
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
|
|
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
|
|
INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32)
|
|
|
|
#undef DECLARE_IS_INT_N
|
|
#undef DECLARE_IS_UINT_N
|
|
#undef DECLARE_TRUNCATE_TO_INT_N
|
|
|
|
// Bit field extraction.
|
|
inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) {
|
|
VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
|
|
(msb >= lsb));
|
|
if ((msb == 63) && (lsb == 0)) return x;
|
|
return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
|
|
}
|
|
|
|
|
|
inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint32_t x) {
|
|
VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
|
|
(msb >= lsb));
|
|
return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x));
|
|
}
|
|
|
|
|
|
inline int64_t ExtractSignedBitfield64(int msb, int lsb, int64_t x) {
|
|
VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
|
|
(msb >= lsb));
|
|
uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x);
|
|
// If the highest extracted bit is set, sign extend.
|
|
if ((temp >> (msb - lsb)) == 1) {
|
|
temp |= ~UINT64_C(0) << (msb - lsb);
|
|
}
|
|
int64_t result;
|
|
memcpy(&result, &temp, sizeof(result));
|
|
return result;
|
|
}
|
|
|
|
|
|
inline int32_t ExtractSignedBitfield32(int msb, int lsb, int32_t x) {
|
|
VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) &&
|
|
(msb >= lsb));
|
|
uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x));
|
|
int32_t result;
|
|
memcpy(&result, &temp, sizeof(result));
|
|
return result;
|
|
}
|
|
|
|
|
|
inline uint64_t RotateRight(uint64_t value,
|
|
unsigned int rotate,
|
|
unsigned int width) {
|
|
VIXL_ASSERT((width > 0) && (width <= 64));
|
|
uint64_t width_mask = ~UINT64_C(0) >> (64 - width);
|
|
rotate &= 63;
|
|
if (rotate > 0) {
|
|
value &= width_mask;
|
|
value = (value << (width - rotate)) | (value >> rotate);
|
|
}
|
|
return value & width_mask;
|
|
}
|
|
|
|
|
|
// Wrapper class for passing FP16 values through the assembler.
|
|
// This is purely to aid with type checking/casting.
|
|
class Float16 {
|
|
public:
|
|
explicit Float16(double dvalue);
|
|
Float16() : rawbits_(0x0) {}
|
|
friend uint16_t Float16ToRawbits(Float16 value);
|
|
friend Float16 RawbitsToFloat16(uint16_t bits);
|
|
|
|
protected:
|
|
uint16_t rawbits_;
|
|
};
|
|
|
|
// Floating point representation.
|
|
uint16_t Float16ToRawbits(Float16 value);
|
|
|
|
|
|
uint32_t FloatToRawbits(float value);
|
|
VIXL_DEPRECATED("FloatToRawbits",
|
|
inline uint32_t float_to_rawbits(float value)) {
|
|
return FloatToRawbits(value);
|
|
}
|
|
|
|
uint64_t DoubleToRawbits(double value);
|
|
VIXL_DEPRECATED("DoubleToRawbits",
|
|
inline uint64_t double_to_rawbits(double value)) {
|
|
return DoubleToRawbits(value);
|
|
}
|
|
|
|
Float16 RawbitsToFloat16(uint16_t bits);
|
|
|
|
float RawbitsToFloat(uint32_t bits);
|
|
VIXL_DEPRECATED("RawbitsToFloat",
|
|
inline float rawbits_to_float(uint32_t bits)) {
|
|
return RawbitsToFloat(bits);
|
|
}
|
|
|
|
double RawbitsToDouble(uint64_t bits);
|
|
VIXL_DEPRECATED("RawbitsToDouble",
|
|
inline double rawbits_to_double(uint64_t bits)) {
|
|
return RawbitsToDouble(bits);
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// Internal simulation class used solely by the simulator to
|
|
// provide an abstraction layer for any half-precision arithmetic.
|
|
class SimFloat16 : public Float16 {
|
|
public:
|
|
// TODO: We should investigate making this constructor explicit.
|
|
// This is currently difficult to do due to a number of templated
|
|
// functions in the simulator which rely on returning double values.
|
|
SimFloat16(double dvalue) : Float16(dvalue) {} // NOLINT(runtime/explicit)
|
|
SimFloat16(Float16 f) { // NOLINT(runtime/explicit)
|
|
this->rawbits_ = Float16ToRawbits(f);
|
|
}
|
|
SimFloat16() : Float16() {}
|
|
SimFloat16 operator-() const;
|
|
SimFloat16 operator+(SimFloat16 rhs) const;
|
|
SimFloat16 operator-(SimFloat16 rhs) const;
|
|
SimFloat16 operator*(SimFloat16 rhs) const;
|
|
SimFloat16 operator/(SimFloat16 rhs) const;
|
|
bool operator<(SimFloat16 rhs) const;
|
|
bool operator>(SimFloat16 rhs) const;
|
|
bool operator==(SimFloat16 rhs) const;
|
|
bool operator!=(SimFloat16 rhs) const;
|
|
// This is necessary for conversions peformed in (macro asm) Fmov.
|
|
bool operator==(double rhs) const;
|
|
operator double() const;
|
|
};
|
|
} // namespace internal
|
|
|
|
uint32_t Float16Sign(internal::SimFloat16 value);
|
|
|
|
uint32_t Float16Exp(internal::SimFloat16 value);
|
|
|
|
uint32_t Float16Mantissa(internal::SimFloat16 value);
|
|
|
|
uint32_t FloatSign(float value);
|
|
VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) {
|
|
return FloatSign(value);
|
|
}
|
|
|
|
uint32_t FloatExp(float value);
|
|
VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) {
|
|
return FloatExp(value);
|
|
}
|
|
|
|
uint32_t FloatMantissa(float value);
|
|
VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) {
|
|
return FloatMantissa(value);
|
|
}
|
|
|
|
uint32_t DoubleSign(double value);
|
|
VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) {
|
|
return DoubleSign(value);
|
|
}
|
|
|
|
uint32_t DoubleExp(double value);
|
|
VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) {
|
|
return DoubleExp(value);
|
|
}
|
|
|
|
uint64_t DoubleMantissa(double value);
|
|
VIXL_DEPRECATED("DoubleMantissa",
|
|
inline uint64_t double_mantissa(double value)) {
|
|
return DoubleMantissa(value);
|
|
}
|
|
|
|
internal::SimFloat16 Float16Pack(uint16_t sign,
|
|
uint16_t exp,
|
|
uint16_t mantissa);
|
|
|
|
float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa);
|
|
VIXL_DEPRECATED("FloatPack",
|
|
inline float float_pack(uint32_t sign,
|
|
uint32_t exp,
|
|
uint32_t mantissa)) {
|
|
return FloatPack(sign, exp, mantissa);
|
|
}
|
|
|
|
double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa);
|
|
VIXL_DEPRECATED("DoublePack",
|
|
inline double double_pack(uint32_t sign,
|
|
uint32_t exp,
|
|
uint64_t mantissa)) {
|
|
return DoublePack(sign, exp, mantissa);
|
|
}
|
|
|
|
// An fpclassify() function for 16-bit half-precision floats.
|
|
int Float16Classify(Float16 value);
|
|
VIXL_DEPRECATED("Float16Classify", inline int float16classify(uint16_t value)) {
|
|
return Float16Classify(RawbitsToFloat16(value));
|
|
}
|
|
|
|
bool IsZero(Float16 value);
|
|
|
|
inline bool IsNaN(float value) { return std::isnan(value); }
|
|
|
|
inline bool IsNaN(double value) { return std::isnan(value); }
|
|
|
|
inline bool IsNaN(Float16 value) { return Float16Classify(value) == FP_NAN; }
|
|
|
|
inline bool IsInf(float value) { return std::isinf(value); }
|
|
|
|
inline bool IsInf(double value) { return std::isinf(value); }
|
|
|
|
inline bool IsInf(Float16 value) {
|
|
return Float16Classify(value) == FP_INFINITE;
|
|
}
|
|
|
|
|
|
// NaN tests.
|
|
inline bool IsSignallingNaN(double num) {
|
|
const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
|
|
uint64_t raw = DoubleToRawbits(num);
|
|
if (IsNaN(num) && ((raw & kFP64QuietNaNMask) == 0)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
inline bool IsSignallingNaN(float num) {
|
|
const uint32_t kFP32QuietNaNMask = 0x00400000;
|
|
uint32_t raw = FloatToRawbits(num);
|
|
if (IsNaN(num) && ((raw & kFP32QuietNaNMask) == 0)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
inline bool IsSignallingNaN(Float16 num) {
|
|
const uint16_t kFP16QuietNaNMask = 0x0200;
|
|
return IsNaN(num) && ((Float16ToRawbits(num) & kFP16QuietNaNMask) == 0);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
inline bool IsQuietNaN(T num) {
|
|
return IsNaN(num) && !IsSignallingNaN(num);
|
|
}
|
|
|
|
|
|
// Convert the NaN in 'num' to a quiet NaN.
|
|
inline double ToQuietNaN(double num) {
|
|
const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
|
|
VIXL_ASSERT(IsNaN(num));
|
|
return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask);
|
|
}
|
|
|
|
|
|
inline float ToQuietNaN(float num) {
|
|
const uint32_t kFP32QuietNaNMask = 0x00400000;
|
|
VIXL_ASSERT(IsNaN(num));
|
|
return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask);
|
|
}
|
|
|
|
|
|
inline internal::SimFloat16 ToQuietNaN(internal::SimFloat16 num) {
|
|
const uint16_t kFP16QuietNaNMask = 0x0200;
|
|
VIXL_ASSERT(IsNaN(num));
|
|
return internal::SimFloat16(
|
|
RawbitsToFloat16(Float16ToRawbits(num) | kFP16QuietNaNMask));
|
|
}
|
|
|
|
|
|
// Fused multiply-add.
|
|
inline double FusedMultiplyAdd(double op1, double op2, double a) {
|
|
return fma(op1, op2, a);
|
|
}
|
|
|
|
|
|
inline float FusedMultiplyAdd(float op1, float op2, float a) {
|
|
return fmaf(op1, op2, a);
|
|
}
|
|
|
|
|
|
inline uint64_t LowestSetBit(uint64_t value) { return value & static_cast<uint64_t>(-static_cast<int64_t>(value)); }
|
|
|
|
|
|
template <typename T>
|
|
inline int HighestSetBitPosition(T value) {
|
|
VIXL_ASSERT(value != 0);
|
|
return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
|
|
}
|
|
|
|
|
|
template <typename V>
|
|
inline int WhichPowerOf2(V value) {
|
|
VIXL_ASSERT(IsPowerOf2(value));
|
|
return CountTrailingZeros(value);
|
|
}
|
|
|
|
|
|
unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
|
|
|
|
|
|
int BitCount(uint64_t value);
|
|
|
|
|
|
template <typename T>
|
|
T ReverseBits(T value) {
|
|
VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
|
|
(sizeof(value) == 4) || (sizeof(value) == 8));
|
|
T result = 0;
|
|
for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
|
|
result = (result << 1) | (value & 1);
|
|
value >>= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
inline T SignExtend(T val, int bitSize) {
|
|
VIXL_ASSERT(bitSize > 0);
|
|
T mask = (T(2) << (bitSize - 1)) - T(1);
|
|
val &= mask;
|
|
T sign_bits = -((val >> (bitSize - 1)) << bitSize);
|
|
val |= sign_bits;
|
|
return val;
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
T ReverseBytes(T value, int block_bytes_log2) {
|
|
VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
|
|
VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
|
|
// Split the 64-bit value into an 8-bit array, where b[0] is the least
|
|
// significant byte, and b[7] is the most significant.
|
|
uint8_t bytes[8];
|
|
uint64_t mask = UINT64_C(0xff00000000000000);
|
|
for (int i = 7; i >= 0; i--) {
|
|
bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
|
|
mask >>= 8;
|
|
}
|
|
|
|
// Permutation tables for REV instructions.
|
|
// permute_table[0] is used by REV16_x, REV16_w
|
|
// permute_table[1] is used by REV32_x, REV_w
|
|
// permute_table[2] is used by REV_x
|
|
VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
|
|
static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
|
|
{4, 5, 6, 7, 0, 1, 2, 3},
|
|
{0, 1, 2, 3, 4, 5, 6, 7}};
|
|
uint64_t temp = 0;
|
|
for (int i = 0; i < 8; i++) {
|
|
temp <<= 8;
|
|
temp |= bytes[permute_table[block_bytes_log2 - 1][i]];
|
|
}
|
|
|
|
T result;
|
|
VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp));
|
|
memcpy(&result, &temp, sizeof(result));
|
|
return result;
|
|
}
|
|
|
|
template <unsigned MULTIPLE, typename T>
|
|
inline bool IsMultiple(T value) {
|
|
VIXL_ASSERT(IsPowerOf2(MULTIPLE));
|
|
return (value & (MULTIPLE - 1)) == 0;
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool IsMultiple(T value, unsigned multiple) {
|
|
VIXL_ASSERT(IsPowerOf2(multiple));
|
|
return (value & (multiple - 1)) == 0;
|
|
}
|
|
|
|
template <typename T>
|
|
inline bool IsAligned(T pointer, int alignment) {
|
|
VIXL_ASSERT(IsPowerOf2(alignment));
|
|
return (pointer & (alignment - 1)) == 0;
|
|
}
|
|
|
|
// Pointer alignment
|
|
// TODO: rename/refactor to make it specific to instructions.
|
|
template <unsigned ALIGN, typename T>
|
|
inline bool IsAligned(T pointer) {
|
|
VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof)
|
|
// Use C-style casts to get static_cast behaviour for integral types (T), and
|
|
// reinterpret_cast behaviour for other types.
|
|
return IsAligned((intptr_t)(pointer), ALIGN);
|
|
}
|
|
|
|
template <typename T>
|
|
bool IsWordAligned(T pointer) {
|
|
return IsAligned<4>(pointer);
|
|
}
|
|
|
|
// Increment a pointer until it has the specified alignment. The alignment must
|
|
// be a power of two.
|
|
template <class T>
|
|
T AlignUp(T pointer,
|
|
typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
|
|
VIXL_ASSERT(IsPowerOf2(alignment));
|
|
// Use C-style casts to get static_cast behaviour for integral types (T), and
|
|
// reinterpret_cast behaviour for other types.
|
|
|
|
typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
|
|
(typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
|
|
VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
|
|
|
|
size_t mask = alignment - 1;
|
|
T result = (T)((pointer_raw + mask) & ~mask);
|
|
VIXL_ASSERT(result >= pointer);
|
|
|
|
return result;
|
|
}
|
|
|
|
// Decrement a pointer until it has the specified alignment. The alignment must
|
|
// be a power of two.
|
|
template <class T>
|
|
T AlignDown(T pointer,
|
|
typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) {
|
|
VIXL_ASSERT(IsPowerOf2(alignment));
|
|
// Use C-style casts to get static_cast behaviour for integral types (T), and
|
|
// reinterpret_cast behaviour for other types.
|
|
|
|
typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw =
|
|
(typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer;
|
|
VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw));
|
|
|
|
size_t mask = alignment - 1;
|
|
return (T)(pointer_raw & ~mask);
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
inline T ExtractBit(T value, unsigned bit) {
|
|
return (value >> bit) & T(1);
|
|
}
|
|
|
|
template <typename Ts, typename Td>
|
|
inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) {
|
|
return Td((value >> least_significant_bit) & Ts(mask));
|
|
}
|
|
|
|
template <typename Ts, typename Td>
|
|
inline void AssignBit(Td& dst, // NOLINT(runtime/references)
|
|
int bit,
|
|
Ts value) {
|
|
VIXL_ASSERT((value == Ts(0)) || (value == Ts(1)));
|
|
VIXL_ASSERT(bit >= 0);
|
|
VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8));
|
|
Td mask(1);
|
|
dst &= ~(mask << bit);
|
|
dst |= Td(value) << bit;
|
|
}
|
|
|
|
template <typename Td, typename Ts>
|
|
inline void AssignBits(Td& dst, // NOLINT(runtime/references)
|
|
int least_significant_bit,
|
|
Ts mask,
|
|
Ts value) {
|
|
VIXL_ASSERT(least_significant_bit >= 0);
|
|
VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8));
|
|
VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) ==
|
|
Td(mask));
|
|
VIXL_ASSERT((value & mask) == value);
|
|
dst &= ~(Td(mask) << least_significant_bit);
|
|
dst |= Td(value) << least_significant_bit;
|
|
}
|
|
|
|
class VFP {
|
|
public:
|
|
static uint32_t FP32ToImm8(float imm) {
|
|
// bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
|
|
uint32_t bits = FloatToRawbits(imm);
|
|
// bit7: a000.0000
|
|
uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
|
|
// bit6: 0b00.0000
|
|
uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
|
|
// bit5_to_0: 00cd.efgh
|
|
uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
|
|
return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
|
|
}
|
|
static uint32_t FP64ToImm8(double imm) {
|
|
// bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
|
// 0000.0000.0000.0000.0000.0000.0000.0000
|
|
uint64_t bits = DoubleToRawbits(imm);
|
|
// bit7: a000.0000
|
|
uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
|
|
// bit6: 0b00.0000
|
|
uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
|
|
// bit5_to_0: 00cd.efgh
|
|
uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
|
|
|
|
return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
|
|
}
|
|
static float Imm8ToFP32(uint32_t imm8) {
|
|
// Imm8: abcdefgh (8 bits)
|
|
// Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
|
|
// where B is b ^ 1
|
|
uint32_t bits = imm8;
|
|
uint32_t bit7 = (bits >> 7) & 0x1;
|
|
uint32_t bit6 = (bits >> 6) & 0x1;
|
|
uint32_t bit5_to_0 = bits & 0x3f;
|
|
uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
|
|
|
|
return RawbitsToFloat(result);
|
|
}
|
|
static double Imm8ToFP64(uint32_t imm8) {
|
|
// Imm8: abcdefgh (8 bits)
|
|
// Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
|
// 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
|
|
// where B is b ^ 1
|
|
uint32_t bits = imm8;
|
|
uint64_t bit7 = (bits >> 7) & 0x1;
|
|
uint64_t bit6 = (bits >> 6) & 0x1;
|
|
uint64_t bit5_to_0 = bits & 0x3f;
|
|
uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
|
|
return RawbitsToDouble(result);
|
|
}
|
|
static bool IsImmFP32(float imm) {
|
|
// Valid values will have the form:
|
|
// aBbb.bbbc.defg.h000.0000.0000.0000.0000
|
|
uint32_t bits = FloatToRawbits(imm);
|
|
// bits[19..0] are cleared.
|
|
if ((bits & 0x7ffff) != 0) {
|
|
return false;
|
|
}
|
|
|
|
|
|
// bits[29..25] are all set or all cleared.
|
|
uint32_t b_pattern = (bits >> 16) & 0x3e00;
|
|
if (b_pattern != 0 && b_pattern != 0x3e00) {
|
|
return false;
|
|
}
|
|
// bit[30] and bit[29] are opposite.
|
|
if (((bits ^ (bits << 1)) & 0x40000000) == 0) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
static bool IsImmFP64(double imm) {
|
|
// Valid values will have the form:
|
|
// aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
|
// 0000.0000.0000.0000.0000.0000.0000.0000
|
|
uint64_t bits = DoubleToRawbits(imm);
|
|
// bits[47..0] are cleared.
|
|
if ((bits & 0x0000ffffffffffff) != 0) {
|
|
return false;
|
|
}
|
|
// bits[61..54] are all set or all cleared.
|
|
uint32_t b_pattern = (bits >> 48) & 0x3fc0;
|
|
if ((b_pattern != 0) && (b_pattern != 0x3fc0)) {
|
|
return false;
|
|
}
|
|
// bit[62] and bit[61] are opposite.
|
|
if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class BitField {
|
|
// ForEachBitHelper is a functor that will call
|
|
// bool ForEachBitHelper::execute(ElementType id) const
|
|
// and expects a boolean in return whether to continue (if true)
|
|
// or stop (if false)
|
|
// check_set will check if the bits are on (true) or off(false)
|
|
template <typename ForEachBitHelper, bool check_set>
|
|
bool ForEachBit(const ForEachBitHelper& helper) {
|
|
for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) {
|
|
if (bitfield_[i] == check_set)
|
|
if (!helper.execute(i)) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
explicit BitField(unsigned size) : bitfield_(size, 0) {}
|
|
|
|
void Set(int i) {
|
|
VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
|
|
bitfield_[i] = true;
|
|
}
|
|
|
|
void Unset(int i) {
|
|
VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size()));
|
|
bitfield_[i] = true;
|
|
}
|
|
|
|
bool IsSet(int i) const { return bitfield_[i]; }
|
|
|
|
// For each bit not set in the bitfield call the execute functor
|
|
// execute.
|
|
// ForEachBitSetHelper::execute returns true if the iteration through
|
|
// the bits can continue, otherwise it will stop.
|
|
// struct ForEachBitSetHelper {
|
|
// bool execute(int /*id*/) { return false; }
|
|
// };
|
|
template <typename ForEachBitNotSetHelper>
|
|
bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) {
|
|
return ForEachBit<ForEachBitNotSetHelper, false>(helper);
|
|
}
|
|
|
|
// For each bit set in the bitfield call the execute functor
|
|
// execute.
|
|
template <typename ForEachBitSetHelper>
|
|
bool ForEachBitSet(const ForEachBitSetHelper& helper) {
|
|
return ForEachBit<ForEachBitSetHelper, true>(helper);
|
|
}
|
|
|
|
private:
|
|
std::vector<bool> bitfield_;
|
|
};
|
|
|
|
namespace internal {
|
|
|
|
typedef int64_t Int64;
|
|
class Uint64;
|
|
class Uint128;
|
|
|
|
class Uint32 {
|
|
uint32_t data_;
|
|
|
|
public:
|
|
// Unlike uint32_t, Uint32 has a default constructor.
|
|
Uint32() { data_ = 0; }
|
|
explicit Uint32(uint32_t data) : data_(data) {}
|
|
inline explicit Uint32(Uint64 data);
|
|
uint32_t Get() const { return data_; }
|
|
template <int N>
|
|
int32_t GetSigned() const {
|
|
return ExtractSignedBitfield32(N - 1, 0, data_);
|
|
}
|
|
int32_t GetSigned() const { return data_; }
|
|
Uint32 operator~() const { return Uint32(~data_); }
|
|
Uint32 operator-() const { return Uint32(static_cast<uint32_t>(-static_cast<int32_t>(data_))); }
|
|
bool operator==(Uint32 value) const { return data_ == value.data_; }
|
|
bool operator!=(Uint32 value) const { return data_ != value.data_; }
|
|
bool operator>(Uint32 value) const { return data_ > value.data_; }
|
|
Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); }
|
|
Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); }
|
|
Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); }
|
|
Uint32 operator&=(Uint32 value) {
|
|
data_ &= value.data_;
|
|
return *this;
|
|
}
|
|
Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); }
|
|
Uint32 operator^=(Uint32 value) {
|
|
data_ ^= value.data_;
|
|
return *this;
|
|
}
|
|
Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); }
|
|
Uint32 operator|=(Uint32 value) {
|
|
data_ |= value.data_;
|
|
return *this;
|
|
}
|
|
// Unlike uint32_t, the shift functions can accept negative shift and
|
|
// return 0 when the shift is too big.
|
|
Uint32 operator>>(int shift) const {
|
|
if (shift == 0) return *this;
|
|
if (shift < 0) {
|
|
int tmp = -shift;
|
|
if (tmp >= 32) return Uint32(0);
|
|
return Uint32(data_ << tmp);
|
|
}
|
|
int tmp = shift;
|
|
if (tmp >= 32) return Uint32(0);
|
|
return Uint32(data_ >> tmp);
|
|
}
|
|
Uint32 operator<<(int shift) const {
|
|
if (shift == 0) return *this;
|
|
if (shift < 0) {
|
|
int tmp = -shift;
|
|
if (tmp >= 32) return Uint32(0);
|
|
return Uint32(data_ >> tmp);
|
|
}
|
|
int tmp = shift;
|
|
if (tmp >= 32) return Uint32(0);
|
|
return Uint32(data_ << tmp);
|
|
}
|
|
};
|
|
|
|
class Uint64 {
|
|
uint64_t data_;
|
|
|
|
public:
|
|
// Unlike uint64_t, Uint64 has a default constructor.
|
|
Uint64() { data_ = 0; }
|
|
explicit Uint64(uint64_t data) : data_(data) {}
|
|
explicit Uint64(Uint32 data) : data_(data.Get()) {}
|
|
inline explicit Uint64(Uint128 data);
|
|
uint64_t Get() const { return data_; }
|
|
int64_t GetSigned(int N) const {
|
|
return ExtractSignedBitfield64(N - 1, 0, data_);
|
|
}
|
|
int64_t GetSigned() const { return data_; }
|
|
Uint32 ToUint32() const {
|
|
VIXL_ASSERT((data_ >> 32) == 0);
|
|
return Uint32(static_cast<uint32_t>(data_));
|
|
}
|
|
Uint32 GetHigh32() const { return Uint32(data_ >> 32); }
|
|
Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); }
|
|
Uint64 operator~() const { return Uint64(~data_); }
|
|
Uint64 operator-() const { return Uint64(static_cast<uint64_t>(-static_cast<int64_t>(data_))); }
|
|
bool operator==(Uint64 value) const { return data_ == value.data_; }
|
|
bool operator!=(Uint64 value) const { return data_ != value.data_; }
|
|
Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); }
|
|
Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); }
|
|
Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); }
|
|
Uint64 operator&=(Uint64 value) {
|
|
data_ &= value.data_;
|
|
return *this;
|
|
}
|
|
Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); }
|
|
Uint64 operator^=(Uint64 value) {
|
|
data_ ^= value.data_;
|
|
return *this;
|
|
}
|
|
Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); }
|
|
Uint64 operator|=(Uint64 value) {
|
|
data_ |= value.data_;
|
|
return *this;
|
|
}
|
|
// Unlike uint64_t, the shift functions can accept negative shift and
|
|
// return 0 when the shift is too big.
|
|
Uint64 operator>>(int shift) const {
|
|
if (shift == 0) return *this;
|
|
if (shift < 0) {
|
|
int tmp = -shift;
|
|
if (tmp >= 64) return Uint64(0);
|
|
return Uint64(data_ << tmp);
|
|
}
|
|
int tmp = shift;
|
|
if (tmp >= 64) return Uint64(0);
|
|
return Uint64(data_ >> tmp);
|
|
}
|
|
Uint64 operator<<(int shift) const {
|
|
if (shift == 0) return *this;
|
|
if (shift < 0) {
|
|
int tmp = -shift;
|
|
if (tmp >= 64) return Uint64(0);
|
|
return Uint64(data_ >> tmp);
|
|
}
|
|
int tmp = shift;
|
|
if (tmp >= 64) return Uint64(0);
|
|
return Uint64(data_ << tmp);
|
|
}
|
|
};
|
|
|
|
class Uint128 {
|
|
uint64_t data_high_;
|
|
uint64_t data_low_;
|
|
|
|
public:
|
|
Uint128() : data_high_(0), data_low_(0) {}
|
|
explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {}
|
|
explicit Uint128(Uint64 data_low)
|
|
: data_high_(0), data_low_(data_low.Get()) {}
|
|
Uint128(uint64_t data_high, uint64_t data_low)
|
|
: data_high_(data_high), data_low_(data_low) {}
|
|
Uint64 ToUint64() const {
|
|
VIXL_ASSERT(data_high_ == 0);
|
|
return Uint64(data_low_);
|
|
}
|
|
Uint64 GetHigh64() const { return Uint64(data_high_); }
|
|
Uint64 GetLow64() const { return Uint64(data_low_); }
|
|
Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); }
|
|
bool operator==(Uint128 value) const {
|
|
return (data_high_ == value.data_high_) && (data_low_ == value.data_low_);
|
|
}
|
|
Uint128 operator&(Uint128 value) const {
|
|
return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_);
|
|
}
|
|
Uint128 operator&=(Uint128 value) {
|
|
data_high_ &= value.data_high_;
|
|
data_low_ &= value.data_low_;
|
|
return *this;
|
|
}
|
|
Uint128 operator|=(Uint128 value) {
|
|
data_high_ |= value.data_high_;
|
|
data_low_ |= value.data_low_;
|
|
return *this;
|
|
}
|
|
Uint128 operator>>(int shift) const {
|
|
VIXL_ASSERT((shift >= 0) && (shift < 128));
|
|
if (shift == 0) return *this;
|
|
if (shift >= 64) {
|
|
return Uint128(0, data_high_ >> (shift - 64));
|
|
}
|
|
uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift);
|
|
return Uint128(data_high_ >> shift, tmp);
|
|
}
|
|
Uint128 operator<<(int shift) const {
|
|
VIXL_ASSERT((shift >= 0) && (shift < 128));
|
|
if (shift == 0) return *this;
|
|
if (shift >= 64) {
|
|
return Uint128(data_low_ << (shift - 64), 0);
|
|
}
|
|
uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift));
|
|
return Uint128(tmp, data_low_ << shift);
|
|
}
|
|
};
|
|
|
|
Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {}
|
|
Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {}
|
|
|
|
Int64 BitCount(Uint32 value);
|
|
|
|
} // namespace internal
|
|
|
|
// The default NaN values (for FPCR.DN=1).
|
|
extern const double kFP64DefaultNaN;
|
|
extern const float kFP32DefaultNaN;
|
|
extern const Float16 kFP16DefaultNaN;
|
|
|
|
// Floating-point infinity values.
|
|
extern const Float16 kFP16PositiveInfinity;
|
|
extern const Float16 kFP16NegativeInfinity;
|
|
extern const float kFP32PositiveInfinity;
|
|
extern const float kFP32NegativeInfinity;
|
|
extern const double kFP64PositiveInfinity;
|
|
extern const double kFP64NegativeInfinity;
|
|
|
|
// Floating-point zero values.
|
|
extern const Float16 kFP16PositiveZero;
|
|
extern const Float16 kFP16NegativeZero;
|
|
|
|
// AArch64 floating-point specifics. These match IEEE-754.
|
|
const unsigned kDoubleMantissaBits = 52;
|
|
const unsigned kDoubleExponentBits = 11;
|
|
const unsigned kFloatMantissaBits = 23;
|
|
const unsigned kFloatExponentBits = 8;
|
|
const unsigned kFloat16MantissaBits = 10;
|
|
const unsigned kFloat16ExponentBits = 5;
|
|
|
|
enum FPRounding {
|
|
// The first four values are encodable directly by FPCR<RMode>.
|
|
FPTieEven = 0x0,
|
|
FPPositiveInfinity = 0x1,
|
|
FPNegativeInfinity = 0x2,
|
|
FPZero = 0x3,
|
|
|
|
// The final rounding modes are only available when explicitly specified by
|
|
// the instruction (such as with fcvta). It cannot be set in FPCR.
|
|
FPTieAway,
|
|
FPRoundOdd
|
|
};
|
|
|
|
enum UseDefaultNaN { kUseDefaultNaN, kIgnoreDefaultNaN };
|
|
|
|
// Assemble the specified IEEE-754 components into the target type and apply
|
|
// appropriate rounding.
|
|
// sign: 0 = positive, 1 = negative
|
|
// exponent: Unbiased IEEE-754 exponent.
|
|
// mantissa: The mantissa of the input. The top bit (which is not encoded for
|
|
// normal IEEE-754 values) must not be omitted. This bit has the
|
|
// value 'pow(2, exponent)'.
|
|
//
|
|
// The input value is assumed to be a normalized value. That is, the input may
|
|
// not be infinity or NaN. If the source value is subnormal, it must be
|
|
// normalized before calling this function such that the highest set bit in the
|
|
// mantissa has the value 'pow(2, exponent)'.
|
|
//
|
|
// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than
|
|
// calling a templated FPRound.
|
|
template <class T, int ebits, int mbits>
|
|
T FPRound(int64_t sign,
|
|
int64_t exponent,
|
|
uint64_t mantissa,
|
|
FPRounding round_mode) {
|
|
VIXL_ASSERT((sign == 0) || (sign == 1));
|
|
|
|
// Only FPTieEven and FPRoundOdd rounding modes are implemented.
|
|
VIXL_ASSERT((round_mode == FPTieEven) || (round_mode == FPRoundOdd));
|
|
|
|
// Rounding can promote subnormals to normals, and normals to infinities. For
|
|
// example, a double with exponent 127 (FLT_MAX_EXP) would appear to be
|
|
// encodable as a float, but rounding based on the low-order mantissa bits
|
|
// could make it overflow. With ties-to-even rounding, this value would become
|
|
// an infinity.
|
|
|
|
// ---- Rounding Method ----
|
|
//
|
|
// The exponent is irrelevant in the rounding operation, so we treat the
|
|
// lowest-order bit that will fit into the result ('onebit') as having
|
|
// the value '1'. Similarly, the highest-order bit that won't fit into
|
|
// the result ('halfbit') has the value '0.5'. The 'point' sits between
|
|
// 'onebit' and 'halfbit':
|
|
//
|
|
// These bits fit into the result.
|
|
// |---------------------|
|
|
// mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|
// ||
|
|
// / |
|
|
// / halfbit
|
|
// onebit
|
|
//
|
|
// For subnormal outputs, the range of representable bits is smaller and
|
|
// the position of onebit and halfbit depends on the exponent of the
|
|
// input, but the method is otherwise similar.
|
|
//
|
|
// onebit(frac)
|
|
// |
|
|
// | halfbit(frac) halfbit(adjusted)
|
|
// | / /
|
|
// | | |
|
|
// 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00
|
|
// 0b00.0... -> 0b00.0... -> 0b00
|
|
// 0b00.1 (exact) -> 0b00.0111..111 -> 0b00
|
|
// 0b00.1... -> 0b00.1... -> 0b01
|
|
// 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01
|
|
// 0b01.0... -> 0b01.0... -> 0b01
|
|
// 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10
|
|
// 0b01.1... -> 0b01.1... -> 0b10
|
|
// 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10
|
|
// 0b10.0... -> 0b10.0... -> 0b10
|
|
// 0b10.1 (exact) -> 0b10.0111..111 -> 0b10
|
|
// 0b10.1... -> 0b10.1... -> 0b11
|
|
// 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11
|
|
// ... / | / |
|
|
// / | / |
|
|
// / |
|
|
// adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / |
|
|
//
|
|
// mantissa = (mantissa >> shift) + halfbit(adjusted);
|
|
|
|
static const int mantissa_offset = 0;
|
|
static const int exponent_offset = mantissa_offset + mbits;
|
|
static const int sign_offset = exponent_offset + ebits;
|
|
VIXL_ASSERT(sign_offset == (sizeof(T) * 8 - 1));
|
|
|
|
// Bail out early for zero inputs.
|
|
if (mantissa == 0) {
|
|
return static_cast<T>(sign << sign_offset);
|
|
}
|
|
|
|
// If all bits in the exponent are set, the value is infinite or NaN.
|
|
// This is true for all binary IEEE-754 formats.
|
|
static const int infinite_exponent = (1 << ebits) - 1;
|
|
static const int max_normal_exponent = infinite_exponent - 1;
|
|
|
|
// Apply the exponent bias to encode it for the result. Doing this early makes
|
|
// it easy to detect values that will be infinite or subnormal.
|
|
exponent += max_normal_exponent >> 1;
|
|
|
|
if (exponent > max_normal_exponent) {
|
|
// Overflow: the input is too large for the result type to represent.
|
|
if (round_mode == FPTieEven) {
|
|
// FPTieEven rounding mode handles overflows using infinities.
|
|
exponent = infinite_exponent;
|
|
mantissa = 0;
|
|
} else {
|
|
VIXL_ASSERT(round_mode == FPRoundOdd);
|
|
// FPRoundOdd rounding mode handles overflows using the largest magnitude
|
|
// normal number.
|
|
exponent = max_normal_exponent;
|
|
mantissa = (UINT64_C(1) << exponent_offset) - 1;
|
|
}
|
|
return static_cast<T>((sign << sign_offset) |
|
|
(exponent << exponent_offset) |
|
|
(mantissa << mantissa_offset));
|
|
}
|
|
|
|
// Calculate the shift required to move the top mantissa bit to the proper
|
|
// place in the destination type.
|
|
const int highest_significant_bit = 63 - CountLeadingZeros(mantissa);
|
|
int shift = highest_significant_bit - mbits;
|
|
|
|
if (exponent <= 0) {
|
|
// The output will be subnormal (before rounding).
|
|
// For subnormal outputs, the shift must be adjusted by the exponent. The +1
|
|
// is necessary because the exponent of a subnormal value (encoded as 0) is
|
|
// the same as the exponent of the smallest normal value (encoded as 1).
|
|
shift += -exponent + 1;
|
|
|
|
// Handle inputs that would produce a zero output.
|
|
//
|
|
// Shifts higher than highest_significant_bit+1 will always produce a zero
|
|
// result. A shift of exactly highest_significant_bit+1 might produce a
|
|
// non-zero result after rounding.
|
|
if (shift > (highest_significant_bit + 1)) {
|
|
if (round_mode == FPTieEven) {
|
|
// The result will always be +/-0.0.
|
|
return static_cast<T>(sign << sign_offset);
|
|
} else {
|
|
VIXL_ASSERT(round_mode == FPRoundOdd);
|
|
VIXL_ASSERT(mantissa != 0);
|
|
// For FPRoundOdd, if the mantissa is too small to represent and
|
|
// non-zero return the next "odd" value.
|
|
return static_cast<T>((sign << sign_offset) | 1);
|
|
}
|
|
}
|
|
|
|
// Properly encode the exponent for a subnormal output.
|
|
exponent = 0;
|
|
} else {
|
|
// Clear the topmost mantissa bit, since this is not encoded in IEEE-754
|
|
// normal values.
|
|
mantissa &= ~(UINT64_C(1) << highest_significant_bit);
|
|
}
|
|
|
|
// The casts below are only well-defined for unsigned integers.
|
|
VIXL_STATIC_ASSERT(std::numeric_limits<T>::is_integer);
|
|
VIXL_STATIC_ASSERT(!std::numeric_limits<T>::is_signed);
|
|
|
|
if (shift > 0) {
|
|
if (round_mode == FPTieEven) {
|
|
// We have to shift the mantissa to the right. Some precision is lost, so
|
|
// we need to apply rounding.
|
|
uint64_t onebit_mantissa = (mantissa >> (shift)) & 1;
|
|
uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1;
|
|
uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa);
|
|
uint64_t adjusted = mantissa - adjustment;
|
|
T halfbit_adjusted = (adjusted >> (shift - 1)) & 1;
|
|
|
|
T result =
|
|
static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) |
|
|
((mantissa >> shift) << mantissa_offset));
|
|
|
|
// A very large mantissa can overflow during rounding. If this happens,
|
|
// the exponent should be incremented and the mantissa set to 1.0
|
|
// (encoded as 0). Applying halfbit_adjusted after assembling the float
|
|
// has the nice side-effect that this case is handled for free.
|
|
//
|
|
// This also handles cases where a very large finite value overflows to
|
|
// infinity, or where a very large subnormal value overflows to become
|
|
// normal.
|
|
return result + halfbit_adjusted;
|
|
} else {
|
|
VIXL_ASSERT(round_mode == FPRoundOdd);
|
|
// If any bits at position halfbit or below are set, onebit (ie. the
|
|
// bottom bit of the resulting mantissa) must be set.
|
|
uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1);
|
|
if (fractional_bits != 0) {
|
|
mantissa |= UINT64_C(1) << shift;
|
|
}
|
|
|
|
return static_cast<T>((sign << sign_offset) |
|
|
(exponent << exponent_offset) |
|
|
((mantissa >> shift) << mantissa_offset));
|
|
}
|
|
} else {
|
|
// We have to shift the mantissa to the left (or not at all). The input
|
|
// mantissa is exactly representable in the output mantissa, so apply no
|
|
// rounding correction.
|
|
return static_cast<T>((sign << sign_offset) |
|
|
(exponent << exponent_offset) |
|
|
((mantissa << -shift) << mantissa_offset));
|
|
}
|
|
}
|
|
|
|
|
|
// See FPRound for a description of this function.
|
|
inline double FPRoundToDouble(int64_t sign,
|
|
int64_t exponent,
|
|
uint64_t mantissa,
|
|
FPRounding round_mode) {
|
|
uint64_t bits =
|
|
FPRound<uint64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign,
|
|
exponent,
|
|
mantissa,
|
|
round_mode);
|
|
return RawbitsToDouble(bits);
|
|
}
|
|
|
|
|
|
// See FPRound for a description of this function.
|
|
inline Float16 FPRoundToFloat16(int64_t sign,
|
|
int64_t exponent,
|
|
uint64_t mantissa,
|
|
FPRounding round_mode) {
|
|
return RawbitsToFloat16(
|
|
FPRound<uint16_t,
|
|
kFloat16ExponentBits,
|
|
kFloat16MantissaBits>(sign, exponent, mantissa, round_mode));
|
|
}
|
|
|
|
|
|
// See FPRound for a description of this function.
|
|
static inline float FPRoundToFloat(int64_t sign,
|
|
int64_t exponent,
|
|
uint64_t mantissa,
|
|
FPRounding round_mode) {
|
|
uint32_t bits =
|
|
FPRound<uint32_t, kFloatExponentBits, kFloatMantissaBits>(sign,
|
|
exponent,
|
|
mantissa,
|
|
round_mode);
|
|
return RawbitsToFloat(bits);
|
|
}
|
|
|
|
|
|
float FPToFloat(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
|
|
float FPToFloat(double value,
|
|
FPRounding round_mode,
|
|
UseDefaultNaN DN,
|
|
bool* exception = NULL);
|
|
|
|
double FPToDouble(Float16 value, UseDefaultNaN DN, bool* exception = NULL);
|
|
double FPToDouble(float value, UseDefaultNaN DN, bool* exception = NULL);
|
|
|
|
Float16 FPToFloat16(float value,
|
|
FPRounding round_mode,
|
|
UseDefaultNaN DN,
|
|
bool* exception = NULL);
|
|
|
|
Float16 FPToFloat16(double value,
|
|
FPRounding round_mode,
|
|
UseDefaultNaN DN,
|
|
bool* exception = NULL);
|
|
} // namespace vixl
|
|
|
|
#endif // VIXL_UTILS_H
|