dep: Add libjpeg v9f

This commit is contained in:
Stenzek 2024-03-06 21:03:21 +10:00
parent b749c483da
commit e9c4416272
No known key found for this signature in database
66 changed files with 40358 additions and 0 deletions

View File

@ -13,6 +13,7 @@ if(NOT WIN32 AND NOT ANDROID)
find_package(WebP REQUIRED)
find_package(ZLIB REQUIRED)
find_package(PNG REQUIRED)
find_package(JPEG REQUIRED)
find_package(CURL REQUIRED)
if(APPLE)
set(CMAKE_FIND_FRAMEWORK ${FIND_FRAMEWORK_BACKUP})

View File

@ -37,6 +37,7 @@ if(WIN32 OR ANDROID)
add_subdirectory(zlib EXCLUDE_FROM_ALL)
add_subdirectory(zstd EXCLUDE_FROM_ALL)
add_subdirectory(libpng EXCLUDE_FROM_ALL)
add_subdirectory(libjpeg EXCLUDE_FROM_ALL)
endif()
if(ENABLE_CUBEB)

View File

@ -0,0 +1,65 @@
add_library(jpeg
include/jconfig.h
include/jerror.h
include/jmorecfg.h
include/jpegint.h
include/jpeglib.h
src/jaricom.c
src/jcapimin.c
src/jcapistd.c
src/jcarith.c
src/jccoefct.c
src/jccolor.c
src/jcdctmgr.c
src/jchuff.c
src/jcinit.c
src/jcmainct.c
src/jcmarker.c
src/jcmaster.c
src/jcomapi.c
src/jcparam.c
src/jcprepct.c
src/jcsample.c
src/jctrans.c
src/jdapimin.c
src/jdapistd.c
src/jdarith.c
src/jdatadst.c
src/jdatasrc.c
src/jdcoefct.c
src/jdcolor.c
src/jdct.h
src/jddctmgr.c
src/jdhuff.c
src/jdinput.c
src/jdmainct.c
src/jdmarker.c
src/jdmaster.c
src/jdmerge.c
src/jdpostct.c
src/jdsample.c
src/jdtrans.c
src/jerror.c
src/jfdctflt.c
src/jfdctfst.c
src/jfdctint.c
src/jidctflt.c
src/jidctfst.c
src/jidctint.c
src/jinclude.h
src/jmemmgr.c
src/jmemnobs.c
src/jmemsys.h
src/jquant1.c
src/jquant2.c
src/jutils.c
src/jversion.h
src/transupp.c
src/transupp.h
)
target_include_directories(jpeg PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include")
target_include_directories(jpeg PRIVATE "${CMAKE_CURRENT_SOURCE_DIR}/src")
disable_compiler_warnings_for_target(jpeg)
add_library(JPEG::JPEG ALIAS jpeg)

374
dep/libjpeg/README Normal file
View File

@ -0,0 +1,374 @@
The Independent JPEG Group's JPEG software
==========================================
README for release 9f of 14-Jan-2024
====================================
This distribution contains the ninth public release of the Independent JPEG
Group's free JPEG software. You are welcome to redistribute this software and
to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone,
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson,
John Korejwa, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi,
Ge' Weijers, and other members of the Independent JPEG Group.
IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee
(previously known as JPEG, together with ITU-T SG16).
DOCUMENTATION ROADMAP
=====================
This file contains the following sections:
OVERVIEW General description of JPEG and the IJG software.
LEGAL ISSUES Copyright, lack of warranty, terms of distribution.
REFERENCES Where to learn more about JPEG.
ARCHIVE LOCATIONS Where to find newer versions of this software.
ACKNOWLEDGMENTS Special thanks.
FILE FORMAT WARS Software *not* to get.
TO DO Plans for future IJG releases.
Other documentation files in the distribution are:
User documentation:
install.txt How to configure and install the IJG software.
usage.txt Usage instructions for cjpeg, djpeg, jpegtran,
rdjpgcom, and wrjpgcom.
*.1 Unix-style man pages for programs (same info as usage.txt).
wizard.txt Advanced usage instructions for JPEG wizards only.
cdaltui.txt Description of alternate user interface for cjpeg/djpeg.
change.log Version-to-version change highlights.
Programmer and internal documentation:
libjpeg.txt How to use the JPEG library in your own programs.
example.c Sample code for calling the JPEG library.
structure.txt Overview of the JPEG library's internal structure.
filelist.txt Road map of IJG files.
coderules.txt Coding style rules --- please read if you contribute code.
Please read at least the files install.txt and usage.txt. Some information
can also be found in the JPEG FAQ (Frequently Asked Questions) article. See
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.
If you want to understand how the JPEG code works, we suggest reading one or
more of the REFERENCES, then looking at the documentation files (in roughly
the order listed) before diving into the code.
OVERVIEW
========
This package contains C software to implement JPEG image encoding, decoding,
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression
method for full-color and grayscale images.
This software implements JPEG baseline, extended-sequential, and progressive
compression processes. Provision is made for supporting all variants of these
processes, although some uncommon parameter settings aren't implemented yet.
We have made no provision for supporting the hierarchical or lossless
processes defined in the standard.
We provide a set of library routines for reading and writing JPEG image files,
plus two sample applications "cjpeg" and "djpeg", which use the library to
perform conversion between JPEG and some other popular image file formats.
The library is intended to be reused in other applications.
In order to support file conversion and viewing software, we have included
considerable functionality beyond the bare JPEG coding/decoding capability;
for example, the color quantization modules are not strictly part of JPEG
decoding, but they are essential for output to colormapped file formats or
colormapped displays. These extra functions can be compiled out of the
library if not required for a particular application.
We have also included "jpegtran", a utility for lossless transcoding between
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple
applications for inserting and extracting textual comments in JFIF files.
The emphasis in designing this software has been on achieving portability and
flexibility, while also making it fast enough to be useful. In particular,
the software is not intended to be read as a tutorial on JPEG. (See the
REFERENCES section for introductory material.) Rather, it is intended to
be reliable, portable, industrial-strength code. We do not claim to have
achieved that goal in every aspect of the software, but we strive for it.
We welcome the use of this software as a component of commercial products.
No royalty is required, but we do ask for an acknowledgement in product
documentation, as described under LEGAL ISSUES.
LEGAL ISSUES
============
In plain English:
1. We don't promise that this software works. (But if you find any bugs,
please let us know!)
2. You can use this software for whatever you want. You don't have to pay us.
3. You may not pretend that you wrote this software. If you use it in a
program, you must acknowledge somewhere in your documentation that
you've used the IJG code.
In legalese:
The authors make NO WARRANTY or representation, either express or implied,
with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose. This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.
This software is copyright (C) 1991-2024, Thomas G. Lane, Guido Vollbeding.
All Rights Reserved except as specified below.
Permission is hereby granted to use, copy, modify, and distribute this
software (or portions thereof) for any purpose, without fee, subject to these
conditions:
(1) If any part of the source code for this software is distributed, then this
README file must be included, with this copyright and no-warranty notice
unaltered; and any additions, deletions, or changes to the original files
must be clearly indicated in accompanying documentation.
(2) If only executable code is distributed, then the accompanying
documentation must state that "this software is based in part on the work of
the Independent JPEG Group".
(3) Permission for use of this software is granted only if the user accepts
full responsibility for any undesirable consequences; the authors accept
NO LIABILITY for damages of any kind.
These conditions apply to any software derived from or based on the IJG code,
not just to the unmodified library. If you use our work, you ought to
acknowledge us.
Permission is NOT granted for the use of any IJG author's name or company name
in advertising or publicity relating to this software or products derived from
it. This software may be referred to only as "the Independent JPEG Group's
software".
We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are
assumed by the product vendor.
The Unix configuration script "configure" was produced with GNU Autoconf.
It is copyright by the Free Software Foundation but is freely distributable.
The same holds for its supporting scripts (config.guess, config.sub,
ltmain.sh). Another support script, install-sh, is copyright by X Consortium
but is also freely distributable.
REFERENCES
==========
We recommend reading one or more of these references before trying to
understand the innards of the JPEG software.
The best short technical introduction to the JPEG compression algorithm is
Wallace, Gregory K. "The JPEG Still Picture Compression Standard",
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
(Adjacent articles in that issue discuss MPEG motion picture compression,
applications of JPEG, and related topics.) If you don't have the CACM issue
handy, a PDF file containing a revised version of Wallace's article is
available at https://www.ijg.org/files/Wallace.JPEG.pdf. The file (actually
a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
omits the sample images that appeared in CACM, but it includes corrections
and some added material. Note: the Wallace article is copyright ACM and IEEE,
and it may not be used for commercial purposes.
A somewhat less technical, more leisurely introduction to JPEG can be found in
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides
good explanations and example C code for a multitude of compression methods
including JPEG. It is an excellent source if you are comfortable reading C
code but don't know much about data compression in general. The book's JPEG
sample code is far from industrial-strength, but when you are ready to look
at a full implementation, you've got one here...
The best currently available description of JPEG is the textbook "JPEG Still
Image Data Compression Standard" by William B. Pennebaker and Joan L.
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG
standards (DIS 10918-1 and draft DIS 10918-2).
Although this is by far the most detailed and comprehensive exposition of
JPEG publicly available, we point out that it is still missing an explanation
of the most essential properties and algorithms of the underlying DCT
technology.
If you think that you know about DCT-based JPEG after reading this book,
then you are in delusion. The real fundamentals and corresponding potential
of DCT-based JPEG are not publicly known so far, and that is the reason for
all the mistaken developments taking place in the image coding domain.
The original JPEG standard is divided into two parts, Part 1 being the actual
specification, while Part 2 covers compliance testing methods. Part 1 is
titled "Digital Compression and Coding of Continuous-tone Still Images,
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of
Continuous-tone Still Images, Part 2: Compliance testing" and has document
numbers ISO/IEC IS 10918-2, ITU-T T.83.
IJG JPEG 8 introduced an implementation of the JPEG SmartScale extension
which is specified in two documents: A contributed document at ITU and ISO
with title "ITU-T JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced
Image Coding", April 2006, Geneva, Switzerland. The latest version of this
document is Revision 3. And a contributed document ISO/IEC JTC1/SC29/WG1 N
5799 with title "Evolution of JPEG", June/July 2011, Berlin, Germany.
IJG JPEG 9 introduces a reversible color transform for improved lossless
compression which is described in a contributed document ISO/IEC JTC1/SC29/
WG1 N 6080 with title "JPEG 9 Lossless Coding", June/July 2012, Paris, France.
The JPEG standard does not specify all details of an interchangeable file
format. For the omitted details we follow the "JFIF" conventions, version 2.
JFIF version 1 has been adopted as Recommendation ITU-T T.871 (05/2011) :
Information technology - Digital compression and coding of continuous-tone
still images: JPEG File Interchange Format (JFIF). It is available as a
free download in PDF file format from https://www.itu.int/rec/T-REC-T.871.
A PDF file of the older JFIF document is available at
https://www.w3.org/Graphics/JPEG/jfif3.pdf.
The TIFF 6.0 file format specification can be obtained by FTP from
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
(Compression tag 7). Copies of this Note can be obtained from
https://www.ijg.org/files/. It is expected that the next revision
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
uses our library to implement TIFF/JPEG per the Note.
ARCHIVE LOCATIONS
=================
The "official" archive site for this software is www.ijg.org.
The most recent released version can always be found there in
directory "files". This particular version will be archived
in Windows-compatible "zip" archive format as
https://www.ijg.org/files/jpegsr9f.zip, and
in Unix-compatible "tar.gz" archive format as
https://www.ijg.org/files/jpegsrc.v9f.tar.gz.
The JPEG FAQ (Frequently Asked Questions) article is a source of some
general information about JPEG.
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
and other news.answers archive sites, including the official news.answers
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
with body
send usenet/news.answers/jpeg-faq/part1
send usenet/news.answers/jpeg-faq/part2
ACKNOWLEDGMENTS
===============
Thank to Juergen Bruder for providing me with a copy of the common DCT
algorithm article, only to find out that I had come to the same result
in a more direct and comprehensible way with a more generative approach.
Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the
ITU JPEG (Study Group 16) meeting in Geneva, Switzerland.
Thank to Thomas Wiegand and Gary Sullivan for inviting me to the
Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland.
Thank to Thomas Richter and Daniel Lee for inviting me to the
ISO/IEC JTC1/SC29/WG1 (previously known as JPEG, together with ITU-T SG16)
meeting in Berlin, Germany.
Thank to John Korejwa and Massimo Ballerini for inviting me to
fruitful consultations in Boston, MA and Milan, Italy.
Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther
Maier-Gerber, Walter Stoeber, Fred Schmitz, and Norbert Braunagel
for corresponding business development.
Thank to Nico Zschach and Dirk Stelling of the technical support team
at the Digital Images company in Halle for providing me with extra
equipment for configuration tests.
Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful
communication about JPEG configuration in Sigma Photo Pro software.
Thank to Andrew Finkenstadt for hosting the ijg.org site.
Thank to Thomas G. Lane for the original design and development
of this singular software package.
Thank to Lars Goehler, Andreas Heinecke, Sebastian Fuss,
Yvonne Roebert, Andrej Werner, Ulf-Dietrich Braumann,
and Nina Ssymank for support and public relations.
FILE FORMAT WARS
================
The ISO/IEC JTC1/SC29/WG1 standards committee (previously known as JPEG,
together with ITU-T SG16) currently promotes different formats containing
the name "JPEG" which is misleading because these formats are incompatible
with original DCT-based JPEG and are based on faulty technologies.
IJG therefore does not and will not support such momentary mistakes
(see REFERENCES).
There exist also distributions under the name "OpenJPEG" promoting such
kind of formats which is misleading because they don't support original
JPEG images.
We have no sympathy for the promotion of inferior formats. Indeed, one of
the original reasons for developing this free software was to help force
convergence on common, interoperable format standards for JPEG files.
Don't use an incompatible file format!
(In any case, our decoder will remain capable of reading existing JPEG
image files indefinitely.)
The ISO committee pretends to be "responsible for the popular JPEG" in their
public reports which is not true because they don't respond to actual
requirements for the maintenance of the original JPEG specification.
Furthermore, the ISO committee pretends to "ensure interoperability" with
their standards which is not true because their "standards" support only
application-specific and proprietary use cases and contain mathematically
incorrect code.
There are currently different distributions in circulation containing the
name "libjpeg" which is misleading because they don't have the features and
are incompatible with formats supported by actual IJG libjpeg distributions.
One of those fakes is released by members of the ISO committee and just uses
the name of libjpeg for misdirection of people, similar to the abuse of the
name JPEG as described above, while having nothing in common with actual IJG
libjpeg distributions and containing mathematically incorrect code.
The other one claims to be a "derivative" or "fork" of the original libjpeg,
but violates the license conditions as described under LEGAL ISSUES above
and violates basic C programming properties.
We have no sympathy for the release of misleading, incorrect and illegal
distributions derived from obsolete code bases.
Don't use an obsolete code base!
According to the UCC (Uniform Commercial Code) law, IJG has the lawful and
legal right to foreclose on certain standardization bodies and other
institutions or corporations that knowingly perform substantial and
systematic deceptive acts and practices, fraud, theft, and damaging of the
value of the people of this planet without their knowing, willing and
intentional consent.
The titles, ownership, and rights of these institutions and all their assets
are now duly secured and held in trust for the free people of this planet.
People of the planet, on every country, may have a financial interest in
the assets of these former principals, agents, and beneficiaries of the
foreclosed institutions and corporations.
IJG asserts what is: that each man, woman, and child has unalienable value
and rights granted and deposited in them by the Creator and not any one of
the people is subordinate to any artificial principality, corporate fiction
or the special interest of another without their appropriate knowing,
willing and intentional consent made by contract or accommodation agreement.
IJG expresses that which already was.
The people have already determined and demanded that public administration
entities, national governments, and their supporting judicial systems must
be fully transparent, accountable, and liable.
IJG has secured the value for all concerned free people of the planet.
A partial list of foreclosed institutions and corporations ("Hall of Shame")
is currently prepared and will be published later.
TO DO
=====
Version 9 is the second release of a new generation JPEG standard
to overcome the limitations of the original JPEG specification,
and is the first true source reference JPEG codec.
More features are being prepared for coming releases...
Please send bug reports, offers of help, etc. to jpeg-info@ijg.org.

527
dep/libjpeg/change.log Normal file
View File

@ -0,0 +1,527 @@
CHANGE LOG for Independent JPEG Group's JPEG software
Version 9f 14-Jan-2024
-----------------------
Add build system for C++Builder/RAD Studio.
Add build system for Xcode (beside configure).
Add ARM64EC (Emulation Compatible) platform support in the
Visual Studio build.
Version 9e 16-Jan-2022
-----------------------
Include alternate user interface files for cjpeg/djpeg.
jcparam.c: change default chrominance DC quantization factor
for lossless support. Note: Requires rebuild of test images.
rdgif.c, cderror.h: add sanity check for GIF image dimensions.
Thank to Casper Sun for cjpeg potential vulnerability report.
Add ARM and ARM64 platform support in the Visual Studio build.
Version 9d 12-Jan-2020
-----------------------
Optimize the optimal Huffman code table generation to produce
slightly smaller files. Thank to John Korejwa for suggestion.
Note: Requires rebuild of testimgp.jpg.
Decoding Huffman: Use default tables if tables are not defined.
Thank to Simone Azzalin for report (Motion JPEG),
and to Martin Strunz for hint.
Add sanity check in optimal Huffman code table generation.
Thank to Adam Farley for suggestion.
rdtarga.c: use read_byte(), with EOF check, instead of getc()
in read_*_pixel().
Thank to Chijin Zhou for cjpeg potential vulnerability report.
jmemnobs.c: respect the max_memory_to_use setting in
jpeg_mem_available() computation. Thank to Sheng Shu and
Dongdong She for djpeg potential vulnerability report.
jdarith.c, jdhuff.c: avoid left shift of negative value
compiler warning in decode_mcu_AC_refine().
Thank to Indu Bhagat for suggestion.
Add x64 (64-bit) platform support, avoid compiler warnings.
Thank to Jonathan Potter, Feiyun Wang, and Sheng Shu for suggestion.
Adjust libjpeg version specification for pkg-config file.
Thank to Chen Chen for suggestion.
Restore GIF read and write support from libjpeg version 6a.
Thank to Wolfgang Werner (W.W.) Heinz for suggestion.
Improve consistency in raw (downsampled) image data processing mode.
Thank to Zhongyuan Zhou for hint.
Avoid out of bounds array read (AC derived table pointers)
in start pass in jdhuff.c. Thank to Peng Li for report.
Improve code sanity (jdhuff.c).
Thank to Reza Mirzazade farkhani for reports.
Add jpegtran -drop option; add options to the crop extension and wipe
to fill the extra area with content from the source image region,
instead of gray out.
Version 9c 14-Jan-2018
-----------------------
jpegtran: add an option to the -wipe switch to fill the region
with the average of adjacent blocks, instead of gray out.
Thank to Caitlyn Feddock and Maddie Ziegler for inspiration.
Make range extension bits adjustable (in jpegint.h).
Thank to Robin Watts for suggestion.
Provide macros for fflush() and ferror() in jinclude.h in order
to facilitate adaption by applications using an own FILE class.
Thank to Gerhard Huber for suggestion.
Add libjpeg pkg-config file. Thank to Mark Lavi, Vincent Torri,
Patrick McMunn, and Huw Davies for suggestion.
Add sanity checks in cjpeg image reader modules.
Thank to Bingchang, Liu for reports.
Version 9b 17-Jan-2016
-----------------------
Improvements and optimizations in DCT and color calculations.
Normalize range limit array composition and access pattern.
Thank to Sia Furler and Maddie Ziegler for inspiration.
Use merged upsample with scaled DCT sizes larger than 8.
Thank to Taylor Hatala for inspiration.
Check for excessive comment lengths in argument parsing in wrjpgcom.c.
Thank to Julian Cohen for hint.
Add makefile.b32 for use with Borland C++ 32-bit (bcc32).
Thank to Joe Slater for contribution.
Document 'f' specifier for jpegtran -crop specification.
Thank to Michele Martone for suggestion.
Use defined value from header instead of hardwired number in rdswitch.c.
Thank to Robert Sprowson for hint.
Version 9a 19-Jan-2014
-----------------------
Add support for wide gamut color spaces (JFIF version 2).
Improve clarity and accuracy in color conversion modules.
Note: Requires rebuild of test images.
Extend the bit depth support to all values from 8 to 12
(BITS_IN_JSAMPLE configuration option in jmorecfg.h).
jpegtran now supports N bits sample data precision with all N from 8 to 12
in a single instance. Thank to Roland Fassauer for inspiration.
Try to resolve issues with new boolean type definition.
Thank also to v4hn for suggestion.
Enable option to use default Huffman tables for lossless compression
(for hardware solution), and in this case improve lossless RGB compression
with reversible color transform. Thank to Benny Alexandar for hint.
Extend the entropy decoding structure, so that extraneous bytes between
compressed scan data and following marker can be reported correctly.
Thank to Nigel Tao for hint.
Add jpegtran -wipe option and extension for -crop.
Thank to Andrew Senior, David Clunie, and Josef Schmid for suggestion.
Version 9 13-Jan-2013
----------------------
Add cjpeg -rgb1 option to create an RGB JPEG file, and insert
a simple reversible color transform into the processing which
significantly improves the compression.
The recommended command for lossless coding of RGB images is now
cjpeg -rgb1 -block 1 -arithmetic.
As said, this option improves the compression significantly, but
the files are not compatible with JPEG decoders prior to IJG v9
due to the included color transform.
The used color transform and marker signaling is compatible with
other JPEG standards (e.g., JPEG-LS part 2).
Remove the automatic de-ANSI-fication support (Automake 1.12).
Thank also to Nitin A Kamble for suggestion.
Add remark for jpeg_mem_dest() in jdatadst.c.
Thank to Elie-Gregoire Khoury for the hint.
Support files with invalid component identifiers (created
by Adobe PDF). Thank to Robin Watts for the suggestion.
Adapt full buffer case in jcmainct.c for use with scaled DCT.
Thank to Sergii Biloshytskyi for the suggestion.
Add type identifier for declaration of noreturn functions.
Thank to Brett L. Moore for the suggestion.
Correct argument type in format string, avoid compiler warnings.
Thank to Vincent Torri for hint.
Add missing #include directives in configuration checks, avoid
configuration errors. Thank to John Spencer for the hint.
Version 8d 15-Jan-2012
-----------------------
Add cjpeg -rgb option to create RGB JPEG files.
Using this switch suppresses the conversion from RGB
colorspace input to the default YCbCr JPEG colorspace.
This feature allows true lossless JPEG coding of RGB color images.
The recommended command for this purpose is currently
cjpeg -rgb -block 1 -arithmetic.
SmartScale capable decoder (introduced with IJG JPEG 8) required.
Thank to Michael Koch for the initial suggestion.
Add option to disable the region adjustment in the transupp crop code.
Thank to Jeffrey Friedl for the suggestion.
Thank to Richard Jones and Edd Dawson for various minor corrections.
Thank to Akim Demaille for configure.ac cleanup.
Version 8c 16-Jan-2011
-----------------------
Add option to compression library and cjpeg (-block N) to use
different DCT block size.
All N from 1 to 16 are possible. Default is 8 (baseline format).
Larger values produce higher compression,
smaller values produce higher quality.
SmartScale capable decoder (introduced with IJG JPEG 8) required.
Version 8b 16-May-2010
-----------------------
Repair problem in new memory source manager with corrupt JPEG data.
Thank to Ted Campbell and Samuel Chun for the report.
Repair problem in Makefile.am test target.
Thank to anonymous user for the report.
Support MinGW installation with automatic configure.
Thank to Volker Grabsch for the suggestion.
Version 8a 28-Feb-2010
-----------------------
Writing tables-only datastreams via jpeg_write_tables works again.
Support 32-bit BMPs (RGB image with Alpha channel) for read in cjpeg.
Thank to Brett Blackham for the suggestion.
Improve accuracy in floating point IDCT calculation.
Thank to Robert Hooke for the hint.
Version 8 10-Jan-2010
----------------------
jpegtran now supports the same -scale option as djpeg for "lossless" resize.
An implementation of the JPEG SmartScale extension is required for this
feature. A (draft) specification of the JPEG SmartScale extension is
available as a contributed document at ITU and ISO. Revision 2 or later
of the document is required (latest document version is Revision 3).
The SmartScale extension will enable more features beside lossless resize
in future implementations, as described in the document (new compression
options).
Add sanity check in BMP reader module to avoid cjpeg crash for empty input
image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error).
Add data source and destination managers for read from and write to
memory buffers. New API functions jpeg_mem_src and jpeg_mem_dest.
Thank to Roberto Boni from Italy for the suggestion.
Version 7 27-Jun-2009
----------------------
New scaled DCTs implemented.
djpeg now supports scalings N/8 with all N from 1 to 16.
cjpeg now supports scalings 8/N with all N from 1 to 16.
Scaled DCTs with size larger than 8 are now also used for resolving the
common 2x2 chroma subsampling case without additional spatial resampling.
Separate spatial resampling for those kind of files is now only necessary
for N>8 scaling cases.
Furthermore, separate scaled DCT functions are provided for direct resolving
of the common asymmetric subsampling cases (2x1 and 1x2) without additional
spatial resampling.
cjpeg -quality option has been extended for support of separate quality
settings for luminance and chrominance (or in general, for every provided
quantization table slot).
New API function jpeg_default_qtables() and q_scale_factor array in library.
Added -nosmooth option to cjpeg, complementary to djpeg.
New variable "do_fancy_downsampling" in library, complement to fancy
upsampling. Fancy upsampling now uses direct DCT scaling with sizes
larger than 8. The old method is not reversible and has been removed.
Support arithmetic entropy encoding and decoding.
Added files jaricom.c, jcarith.c, jdarith.c.
Straighten the file structure:
Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h.
jpegtran has a new "lossless" cropping feature.
Implement -perfect option in jpegtran, new API function
jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch)
Better error messages for jpegtran fopen failure.
(DP 203_jpegtran_errmsg.dpatch)
Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c:
according to Netpbm, the de facto standard implementation of the PNM formats,
the most significant byte is first. (DP 203_rdppm.dpatch)
Add -raw option to rdjpgcom not to mangle the output.
(DP 205_rdjpgcom_raw.dpatch)
Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch)
Add extern "C" to jpeglib.h.
This avoids the need to put extern "C" { ... } around #include "jpeglib.h"
in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the
configuration prevents this. (DP 202_jpeglib.h_c++.dpatch)
Version 6b 27-Mar-1998
-----------------------
jpegtran has new features for lossless image transformations (rotation
and flipping) as well as "lossless" reduction to grayscale.
jpegtran now copies comments by default; it has a -copy switch to enable
copying all APPn blocks as well, or to suppress comments. (Formerly it
always suppressed comments and APPn blocks.) jpegtran now also preserves
JFIF version and resolution information.
New decompressor library feature: COM and APPn markers found in the input
file can be saved in memory for later use by the application. (Before,
you had to code this up yourself with a custom marker processor.)
There is an unused field "void * client_data" now in compress and decompress
parameter structs; this may be useful in some applications.
JFIF version number information is now saved by the decoder and accepted by
the encoder. jpegtran uses this to copy the source file's version number,
to ensure "jpegtran -copy all" won't create bogus files that contain JFXX
extensions but claim to be version 1.01. Applications that generate their
own JFXX extension markers also (finally) have a supported way to cause the
encoder to emit JFIF version number 1.02.
djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather
than as unknown APP0 markers.
In -verbose mode, djpeg and rdjpgcom will try to print the contents of
APP12 markers as text. Some digital cameras store useful text information
in APP12 markers.
Handling of truncated data streams is more robust: blocks beyond the one in
which the error occurs will be output as uniform gray, or left unchanged
if decoding a progressive JPEG. The appearance no longer depends on the
Huffman tables being used.
Huffman tables are checked for validity much more carefully than before.
To avoid the Unisys LZW patent, djpeg's GIF output capability has been
changed to produce "uncompressed GIFs", and cjpeg's GIF input capability
has been removed altogether. We're not happy about it either, but there
seems to be no good alternative.
The configure script now supports building libjpeg as a shared library
on many flavors of Unix (all the ones that GNU libtool knows how to
build shared libraries for). Use "./configure --enable-shared" to
try this out.
New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio.
Also, a jconfig file and a build script for Metrowerks CodeWarrior
on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there
are miscellaneous other minor improvements in the makefiles.
jmemmac.c now knows how to create temporary files following Mac System 7
conventions.
djpeg's -map switch is now able to read raw-format PPM files reliably.
cjpeg -progressive -restart no longer generates any unnecessary DRI markers.
Multiple calls to jpeg_simple_progression for a single JPEG object
no longer leak memory.
Version 6a 7-Feb-96
--------------------
Library initialization sequence modified to detect version mismatches
and struct field packing mismatches between library and calling application.
This change requires applications to be recompiled, but does not require
any application source code change.
All routine declarations changed to the style "GLOBAL(type) name ...",
that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the
routine's return type as an argument. This makes it possible to add
Microsoft-style linkage keywords to all the routines by changing just
these macros. Note that any application code that was using these macros
will have to be changed.
DCT coefficient quantization tables are now stored in normal array order
rather than zigzag order. Application code that calls jpeg_add_quant_table,
or otherwise manipulates quantization tables directly, will need to be
changed. If you need to make such code work with either older or newer
versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is
recommended.
djpeg's trace capability now dumps DQT tables in natural order, not zigzag
order. This allows the trace output to be made into a "-qtables" file
more easily.
New system-dependent memory manager module for use on Apple Macintosh.
Fix bug in cjpeg's -smooth option: last one or two scanlines would be
duplicates of the prior line unless the image height mod 16 was 1 or 2.
Repair minor problems in VMS, BCC, MC6 makefiles.
New configure script based on latest GNU Autoconf.
Correct the list of include files needed by MetroWerks C for ccommand().
Numerous small documentation updates.
Version 6 2-Aug-95
-------------------
Progressive JPEG support: library can read and write full progressive JPEG
files. A "buffered image" mode supports incremental decoding for on-the-fly
display of progressive images. Simply recompiling an existing IJG-v5-based
decoder with v6 should allow it to read progressive files, though of course
without any special progressive display.
New "jpegtran" application performs lossless transcoding between different
JPEG formats; primarily, it can be used to convert baseline to progressive
JPEG and vice versa. In support of jpegtran, the library now allows lossless
reading and writing of JPEG files as DCT coefficient arrays. This ability
may be of use in other applications.
Notes for programmers:
* We changed jpeg_start_decompress() to be able to suspend; this makes all
decoding modes available to suspending-input applications. However,
existing applications that use suspending input will need to be changed
to check the return value from jpeg_start_decompress(). You don't need to
do anything if you don't use a suspending data source.
* We changed the interface to the virtual array routines: access_virt_array
routines now take a count of the number of rows to access this time. The
last parameter to request_virt_array routines is now interpreted as the
maximum number of rows that may be accessed at once, but not necessarily
the height of every access.
Version 5b 15-Mar-95
---------------------
Correct bugs with grayscale images having v_samp_factor > 1.
jpeg_write_raw_data() now supports output suspension.
Correct bugs in "configure" script for case of compiling in
a directory other than the one containing the source files.
Repair bug in jquant1.c: sometimes didn't use as many colors as it could.
Borland C makefile and jconfig file work under either MS-DOS or OS/2.
Miscellaneous improvements to documentation.
Version 5a 7-Dec-94
--------------------
Changed color conversion roundoff behavior so that grayscale values are
represented exactly. (This causes test image files to change.)
Make ordered dither use 16x16 instead of 4x4 pattern for a small quality
improvement.
New configure script based on latest GNU Autoconf.
Fix configure script to handle CFLAGS correctly.
Rename *.auto files to *.cfg, so that configure script still works if
file names have been truncated for DOS.
Fix bug in rdbmp.c: didn't allow for extra data between header and image.
Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data.
Fix several bugs in rdrle.c.
NEED_SHORT_EXTERNAL_NAMES option was broken.
Revise jerror.h/jerror.c for more flexibility in message table.
Repair oversight in jmemname.c NO_MKTEMP case: file could be there
but unreadable.
Version 5 24-Sep-94
--------------------
Version 5 represents a nearly complete redesign and rewrite of the IJG
software. Major user-visible changes include:
* Automatic configuration simplifies installation for most Unix systems.
* A range of speed vs. image quality tradeoffs are supported.
This includes resizing of an image during decompression: scaling down
by a factor of 1/2, 1/4, or 1/8 is handled very efficiently.
* New programs rdjpgcom and wrjpgcom allow insertion and extraction
of text comments in a JPEG file.
The application programmer's interface to the library has changed completely.
Notable improvements include:
* We have eliminated the use of callback routines for handling the
uncompressed image data. The application now sees the library as a
set of routines that it calls to read or write image data on a
scanline-by-scanline basis.
* The application image data is represented in a conventional interleaved-
pixel format, rather than as a separate array for each color channel.
This can save a copying step in many programs.
* The handling of compressed data has been cleaned up: the application can
supply routines to source or sink the compressed data. It is possible to
suspend processing on source/sink buffer overrun, although this is not
supported in all operating modes.
* All static state has been eliminated from the library, so that multiple
instances of compression or decompression can be active concurrently.
* JPEG abbreviated datastream formats are supported, ie, quantization and
Huffman tables can be stored separately from the image data.
* And not only that, but the documentation of the library has improved
considerably!
The last widely used release before the version 5 rewrite was version 4A of
18-Feb-93. Change logs before that point have been discarded, since they
are not of much interest after the rewrite.

View File

@ -0,0 +1,171 @@
/*
* jconfig.txt
*
* Copyright (C) 1991-1994, Thomas G. Lane.
* Modified 2009-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file documents the configuration options that are required to
* customize the JPEG software for a particular system.
*
* The actual configuration options for a particular installation are stored
* in jconfig.h. On many machines, jconfig.h can be generated automatically
* or copied from one of the "canned" jconfig files that we supply. But if
* you need to generate a jconfig.h file by hand, this file tells you how.
*
* DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING.
* EDIT A COPY NAMED JCONFIG.H.
*/
/*
* These symbols indicate the properties of your machine or compiler.
* #define the symbol if yes, #undef it if no.
*/
/* Does your compiler support function prototypes?
* (If not, you also need to use ansi2knr, see install.txt)
*/
#define HAVE_PROTOTYPES
/* Does your compiler support the declaration "unsigned char" ?
* How about "unsigned short" ?
*/
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* Define "void" as "char" if your compiler doesn't know about type void.
* NOTE: be sure to define void such that "void *" represents the most general
* pointer type, e.g., that returned by malloc().
*/
/* #define void char */
/* Define "const" as empty if your compiler doesn't know the "const" keyword.
*/
/* #define const */
/* Define this if an ordinary "char" type is unsigned.
* If you're not sure, leaving it undefined will work at some cost in speed.
* If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal.
*/
#undef CHAR_IS_UNSIGNED
/* Define this if your system has an ANSI-conforming <stddef.h> file.
*/
#define HAVE_STDDEF_H
/* Define this if your system has an ANSI-conforming <stdlib.h> file.
*/
#define HAVE_STDLIB_H
/* Define this if your system does not have an ANSI/SysV <string.h>,
* but does have a BSD-style <strings.h>.
*/
#undef NEED_BSD_STRINGS
/* Define this if your system does not provide typedef size_t in any of the
* ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in
* <sys/types.h> instead.
*/
#undef NEED_SYS_TYPES_H
/* For 80x86 machines, you need to define NEED_FAR_POINTERS,
* unless you are using a large-data memory model or 80386 flat-memory mode.
* On less brain-damaged CPUs this symbol must not be defined.
* (Defining this symbol causes large data structures to be referenced through
* "far" pointers and to be allocated with a special version of malloc.)
*/
#undef NEED_FAR_POINTERS
/* Define this if your linker needs global names to be unique in less
* than the first 15 characters.
*/
#undef NEED_SHORT_EXTERNAL_NAMES
/* Although a real ANSI C compiler can deal perfectly well with pointers to
* unspecified structures (see "incomplete types" in the spec), a few pre-ANSI
* and pseudo-ANSI compilers get confused. To keep one of these bozos happy,
* define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you
* actually get "missing structure definition" warnings or errors while
* compiling the JPEG code.
*/
#undef INCOMPLETE_TYPES_BROKEN
/* Define "boolean" as unsigned char, not enum, on Windows systems.
*/
#ifdef _WIN32
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */
#endif
/*
* The following options affect code selection within the JPEG library,
* but they don't need to be visible to applications using the library.
* To minimize application namespace pollution, the symbols won't be
* defined unless JPEG_INTERNALS has been defined.
*/
#ifdef JPEG_INTERNALS
/* Define this if your compiler implements ">>" on signed values as a logical
* (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,
* which is the normal and rational definition.
*/
#undef RIGHT_SHIFT_IS_UNSIGNED
#endif /* JPEG_INTERNALS */
/*
* The remaining options do not affect the JPEG library proper,
* but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c).
* Other applications can ignore these.
*/
#ifdef JPEG_CJPEG_DJPEG
/* These defines indicate which image (non-JPEG) file formats are allowed. */
#define BMP_SUPPORTED /* BMP image file format */
#define GIF_SUPPORTED /* GIF image file format */
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED /* Utah RLE image file format */
#define TARGA_SUPPORTED /* Targa image file format */
/* Define this if you want to name both input and output files on the command
* line, rather than using stdout and optionally stdin. You MUST do this if
* your system can't cope with binary I/O to stdin/stdout. See comments at
* head of cjpeg.c or djpeg.c.
*/
#undef TWO_FILE_COMMANDLINE
/* Define this if your system needs explicit cleanup of temporary files.
* This is crucial under MS-DOS, where the temporary "files" may be areas
* of extended memory; on most other systems it's not as important.
*/
#undef NEED_SIGNAL_CATCHER
/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
* This is necessary on systems that distinguish text files from binary files,
* and is harmless on most systems that don't. If you have one of the rare
* systems that complains about the "b" spec, define this symbol.
*/
#undef DONT_USE_B_MODE
/* Define this if you want percent-done progress reports from cjpeg/djpeg.
*/
#undef PROGRESS_REPORT
#endif /* JPEG_CJPEG_DJPEG */

View File

@ -0,0 +1,304 @@
/*
* jerror.h
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* Modified 1997-2018 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file defines the error and message codes for the JPEG library.
* Edit this file to add new codes, or to translate the message strings to
* some other language.
* A set of error-reporting macros are defined too. Some applications using
* the JPEG library may wish to include this file to get the error codes
* and/or the macros.
*/
/*
* To define the enum list of message codes, include this file without
* defining macro JMESSAGE. To create a message string table, include it
* again with a suitable JMESSAGE definition (see jerror.c for an example).
*/
#ifndef JMESSAGE
#ifndef JERROR_H
/* First time through, define the enum list */
#define JMAKE_ENUM_LIST
#else
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
#define JMESSAGE(code,string)
#endif /* JERROR_H */
#endif /* JMESSAGE */
#ifdef JMAKE_ENUM_LIST
typedef enum {
#define JMESSAGE(code,string) code ,
#endif /* JMAKE_ENUM_LIST */
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
/* For maintenance convenience, list is alphabetical by message code name */
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request")
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported")
JMESSAGE(JERR_BAD_DROP_SAMPLING,
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c")
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
JMESSAGE(JERR_BAD_LIB_VERSION,
"Wrong JPEG library version: library is %d, caller expects %d")
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
JMESSAGE(JERR_BAD_PROGRESSION,
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
JMESSAGE(JERR_BAD_PROG_SCRIPT,
"Invalid progressive parameters at scan script entry %d")
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
JMESSAGE(JERR_BAD_STRUCT_SIZE,
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
JMESSAGE(JERR_FILE_READ, "Input file read error")
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
JMESSAGE(JERR_HUFF_CLEN_OUTOFBOUNDS, "Huffman code size table out of bounds")
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
"Cannot transcode due to multiple use of quantization table %d")
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined")
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
JMESSAGE(JERR_QUANT_COMPONENTS,
"Cannot quantize more than %d color components")
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
JMESSAGE(JERR_SOF_BEFORE, "Invalid JPEG file structure: %s before SOF")
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
JMESSAGE(JERR_TFILE_WRITE,
"Write failed on temporary file --- out of disk space?")
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
JMESSAGE(JMSG_VERSION, JVERSION)
JMESSAGE(JTRC_16BIT_TABLES,
"Caution: quantization tables are too coarse for baseline JPEG")
JMESSAGE(JTRC_ADOBE,
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
JMESSAGE(JTRC_EOI, "End Of Image")
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
"Warning: thumbnail image size does not match data length %u")
JMESSAGE(JTRC_JFIF_EXTENSION,
"JFIF extension marker: type 0x%02x, length %u")
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
JMESSAGE(JTRC_RST, "RST%d")
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
"Smoothing not supported with nonstandard sampling ratios")
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
JMESSAGE(JTRC_SOI, "Start of Image")
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
JMESSAGE(JTRC_THUMB_JPEG,
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_PALETTE,
"JFIF extension marker: palette thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_RGB,
"JFIF extension marker: RGB thumbnail image, length %u")
JMESSAGE(JTRC_UNKNOWN_IDS,
"Unrecognized component IDs %d %d %d, assuming YCbCr")
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code")
JMESSAGE(JWRN_BOGUS_PROGRESSION,
"Inconsistent progression sequence for component %d coefficient %d")
JMESSAGE(JWRN_EXTRANEOUS_DATA,
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
JMESSAGE(JWRN_MUST_RESYNC,
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
#ifdef JMAKE_ENUM_LIST
JMSG_LASTMSGCODE
} J_MESSAGE_CODE;
#undef JMAKE_ENUM_LIST
#endif /* JMAKE_ENUM_LIST */
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
#undef JMESSAGE
#ifndef JERROR_H
#define JERROR_H
/* Macros to simplify using the error and trace message stuff */
/* The first parameter is either type of cinfo pointer */
/* Fatal errors (print message and exit) */
#define ERREXIT(cinfo,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT1(cinfo,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT2(cinfo,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT3(cinfo,code,p1,p2,p3) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(cinfo)->err->msg_parm.i[3] = (p4), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(cinfo)->err->msg_parm.i[3] = (p4), \
(cinfo)->err->msg_parm.i[4] = (p5), \
(cinfo)->err->msg_parm.i[5] = (p6), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXITS(cinfo,code,str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define MAKESTMT(stuff) do { stuff } while (0)
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
#define WARNMS(cinfo,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
#define WARNMS1(cinfo,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
#define WARNMS2(cinfo,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
/* Informational/debugging messages */
#define TRACEMS(cinfo,lvl,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS1(cinfo,lvl,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMSS(cinfo,lvl,code,str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#endif /* JERROR_H */

View File

@ -0,0 +1,457 @@
/*
* jmorecfg.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 1997-2022 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains additional configuration options that customize the
* JPEG software for special applications or support machine-dependent
* optimizations. Most users will not need to touch this file.
*/
/*
* Define BITS_IN_JSAMPLE as either
* 8 for 8-bit sample values (the usual setting)
* 9 for 9-bit sample values
* 10 for 10-bit sample values
* 11 for 11-bit sample values
* 12 for 12-bit sample values
* Only 8, 9, 10, 11, and 12 bits sample data precision are supported for
* full-feature DCT processing. Further depths up to 16-bit may be added
* later for the lossless modes of operation.
* Run-time selection and conversion of data precision will be added later
* and are currently not supported, sorry.
* Exception: The transcoding part (jpegtran) supports all settings in a
* single instance, since it operates on the level of DCT coefficients and
* not sample values. The DCT coefficients are of the same type (16 bits)
* in all cases (see below).
*/
#define BITS_IN_JSAMPLE 8 /* use 8, 9, 10, 11, or 12 */
/*
* Maximum number of components (color channels) allowed in JPEG image.
* To meet the letter of the JPEG spec, set this to 255. However, darn
* few applications need more than 4 channels (maybe 5 for CMYK + alpha
* mask). We recommend 10 as a reasonable compromise; use 4 if you are
* really short on memory. (Each allowed component costs a hundred or so
* bytes of storage, whether actually used in an image or not.)
*/
#define MAX_COMPONENTS 10 /* maximum number of image components */
/*
* Basic data types.
* You may need to change these if you have a machine with unusual data
* type sizes; for example, "char" not 8 bits, "short" not 16 bits,
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
* but it had better be at least 16.
*/
/* Representation of a single sample (pixel element value).
* We frequently allocate large arrays of these, so it's important to keep
* them small. But if you have memory to burn and access to char or short
* arrays is very slow on your hardware, you might want to change these.
*/
#if BITS_IN_JSAMPLE == 8
/* JSAMPLE should be the smallest type that will hold the values 0..255.
* You can use a signed char by having GETJSAMPLE mask it with 0xFF.
*/
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#else /* not HAVE_UNSIGNED_CHAR */
typedef char JSAMPLE;
#ifdef CHAR_IS_UNSIGNED
#define GETJSAMPLE(value) ((int) (value))
#else
#define GETJSAMPLE(value) ((int) (value) & 0xFF)
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
#define MAXJSAMPLE 255
#define CENTERJSAMPLE 128
#endif /* BITS_IN_JSAMPLE == 8 */
#if BITS_IN_JSAMPLE == 9
/* JSAMPLE should be the smallest type that will hold the values 0..511.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 511
#define CENTERJSAMPLE 256
#endif /* BITS_IN_JSAMPLE == 9 */
#if BITS_IN_JSAMPLE == 10
/* JSAMPLE should be the smallest type that will hold the values 0..1023.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 1023
#define CENTERJSAMPLE 512
#endif /* BITS_IN_JSAMPLE == 10 */
#if BITS_IN_JSAMPLE == 11
/* JSAMPLE should be the smallest type that will hold the values 0..2047.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 2047
#define CENTERJSAMPLE 1024
#endif /* BITS_IN_JSAMPLE == 11 */
#if BITS_IN_JSAMPLE == 12
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 4095
#define CENTERJSAMPLE 2048
#endif /* BITS_IN_JSAMPLE == 12 */
/* Representation of a DCT frequency coefficient.
* This should be a signed value of at least 16 bits; "short" is usually OK.
* Again, we allocate large arrays of these, but you can change to int
* if you have memory to burn and "short" is really slow.
*/
typedef short JCOEF;
/* Compressed datastreams are represented as arrays of JOCTET.
* These must be EXACTLY 8 bits wide, at least once they are written to
* external storage. Note that when using the stdio data source/destination
* managers, this is also the data type passed to fread/fwrite.
*/
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char JOCTET;
#define GETJOCTET(value) (value)
#else /* not HAVE_UNSIGNED_CHAR */
typedef char JOCTET;
#ifdef CHAR_IS_UNSIGNED
#define GETJOCTET(value) (value)
#else
#define GETJOCTET(value) ((value) & 0xFF)
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
/* These typedefs are used for various table entries and so forth.
* They must be at least as wide as specified; but making them too big
* won't cost a huge amount of memory, so we don't provide special
* extraction code like we did for JSAMPLE. (In other words, these
* typedefs live at a different point on the speed/space tradeoff curve.)
*/
/* UINT8 must hold at least the values 0..255. */
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char UINT8;
#else /* not HAVE_UNSIGNED_CHAR */
#ifdef CHAR_IS_UNSIGNED
typedef char UINT8;
#else /* not CHAR_IS_UNSIGNED */
typedef short UINT8;
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
/* UINT16 must hold at least the values 0..65535. */
#ifdef HAVE_UNSIGNED_SHORT
typedef unsigned short UINT16;
#else /* not HAVE_UNSIGNED_SHORT */
typedef unsigned int UINT16;
#endif /* HAVE_UNSIGNED_SHORT */
/* INT16 must hold at least the values -32768..32767. */
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
typedef short INT16;
#endif
/* INT32 must hold at least signed 32-bit values. */
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */
#ifndef _BASETSD_H /* MinGW is slightly different */
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */
typedef long INT32;
#endif
#endif
#endif
#endif
/* Datatype used for image dimensions. The JPEG standard only supports
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
* "unsigned int" is sufficient on all machines. However, if you need to
* handle larger images and you don't mind deviating from the spec, you
* can change this datatype.
*/
typedef unsigned int JDIMENSION;
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
/* These macros are used in all function definitions and extern declarations.
* You could modify them if you need to change function linkage conventions;
* in particular, you'll need to do that to make the library a Windows DLL.
* Another application is to make all functions global for use with debuggers
* or code profilers that require it.
*/
/* a function called through method pointers: */
#define METHODDEF(type) static type
/* a function used only in its module: */
#define LOCAL(type) static type
/* a function referenced thru EXTERNs: */
#define GLOBAL(type) type
/* a reference to a GLOBAL function: */
#define EXTERN(type) extern type
/* This macro is used to declare a "method", that is, a function pointer.
* We want to supply prototype parameters if the compiler can cope.
* Note that the arglist parameter must be parenthesized!
* Again, you can customize this if you need special linkage keywords.
*/
#ifdef HAVE_PROTOTYPES
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
#else
#define JMETHOD(type,methodname,arglist) type (*methodname) ()
#endif
/* The noreturn type identifier is used to declare functions
* which cannot return.
* Compilers can thus create more optimized code and perform
* better checks for warnings and errors.
* Static analyzer tools can make improved inferences about
* execution paths and are prevented from giving false alerts.
*
* Unfortunately, the proposed specifications of corresponding
* extensions in the Dec 2011 ISO C standard revision (C11),
* GCC, MSVC, etc. are not viable.
* Thus we introduce a user defined type to declare noreturn
* functions at least for clarity. A proper compiler would
* have a suitable noreturn type to match in place of void.
*/
#ifndef HAVE_NORETURN_T
typedef void noreturn_t;
#endif
/* Here is the pseudo-keyword for declaring pointers that must be "far"
* on 80x86 machines. Most of the specialized coding for 80x86 is handled
* by just saying "FAR *" where such a pointer is needed. In a few places
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
*/
#ifndef FAR
#ifdef NEED_FAR_POINTERS
#define FAR far
#else
#define FAR
#endif
#endif
/*
* On a few systems, type boolean and/or its values FALSE, TRUE may appear
* in standard header files. Or you may have conflicts with application-
* specific header files that you want to include together with these files.
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
*/
#ifndef HAVE_BOOLEAN
#if defined FALSE || defined TRUE || defined QGLOBAL_H
/* Qt3 defines FALSE and TRUE as "const" variables in qglobal.h */
typedef int boolean;
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
#else
typedef enum { FALSE = 0, TRUE = 1 } boolean;
#endif
#endif
/*
* The remaining options affect code selection within the JPEG library,
* but they don't need to be visible to most applications using the library.
* To minimize application namespace pollution, the symbols won't be
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
*/
#ifdef JPEG_INTERNALS
#define JPEG_INTERNAL_OPTIONS
#endif
#ifdef JPEG_INTERNAL_OPTIONS
/*
* These defines indicate whether to include various optional functions.
* Undefining some of these symbols will produce a smaller but less capable
* library. Note that you can leave certain source files out of the
* compilation/linking process if you've #undef'd the corresponding symbols.
* (You may HAVE to do that if your compiler doesn't like null source files.)
*/
/* Capability options common to encoder and decoder: */
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
/* Encoder capability options: */
#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN) */
#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW) */
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
/* Note: if you selected more than 8-bit data precision, it is dangerous to
* turn off ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only
* good for 8-bit precision, so arithmetic coding is recommended for higher
* precision. The Huffman encoder normally uses entropy optimization to
* compute usable tables for higher precision. Otherwise, you'll have to
* supply different default Huffman tables.
* The exact same statements apply for progressive JPEG: the default tables
* don't work for progressive mode. (This may get fixed, however.)
*/
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
/* Decoder capability options: */
#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN) */
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? (Requires DCT_ISLOW) */
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
/* more capability options later, no doubt */
/*
* Ordering of RGB data in scanlines passed to or from the application.
* If your application wants to deal with data in the order B,G,R, just
* #define JPEG_USE_RGB_CUSTOM in jconfig.h, or define your own custom
* order in jconfig.h and #define JPEG_HAVE_RGB_CUSTOM.
* You can also deal with formats such as R,G,B,X (one extra byte per pixel)
* by changing RGB_PIXELSIZE.
* Note that changing the offsets will also change
* the order in which colormap data is organized.
* RESTRICTIONS:
* 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
* 2. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
* is not 3 (they don't understand about dummy color components!).
* So you can't use color quantization if you change that value.
*/
#ifndef JPEG_HAVE_RGB_CUSTOM
#ifdef JPEG_USE_RGB_CUSTOM
#define RGB_RED 2 /* Offset of Red in an RGB scanline element */
#define RGB_GREEN 1 /* Offset of Green */
#define RGB_BLUE 0 /* Offset of Blue */
#else
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
#define RGB_GREEN 1 /* Offset of Green */
#define RGB_BLUE 2 /* Offset of Blue */
#endif
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
#endif
/* Definitions for speed-related optimizations. */
/* If your compiler supports inline functions, define INLINE
* as the inline keyword; otherwise define it as empty.
*/
#ifndef INLINE
#ifdef __GNUC__ /* for instance, GNU C knows about inline */
#define INLINE __inline__
#endif
#ifndef INLINE
#define INLINE /* default is to define it as empty */
#endif
#endif
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
* as short on such a machine. MULTIPLIER must be at least 16 bits wide.
*/
#ifndef MULTIPLIER
#define MULTIPLIER int /* type for fastest integer multiply */
#endif
/* FAST_FLOAT should be either float or double, whichever is done faster
* by your compiler. (Note that this type is only used in the floating point
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
* Typically, float is faster in ANSI C compilers, while double is faster in
* pre-ANSI compilers (because they insist on converting to double anyway).
* The code below therefore chooses float if we have ANSI-style prototypes.
*/
#ifndef FAST_FLOAT
#ifdef HAVE_PROTOTYPES
#define FAST_FLOAT float
#else
#define FAST_FLOAT double
#endif
#endif
#endif /* JPEG_INTERNAL_OPTIONS */

View File

@ -0,0 +1,445 @@
/*
* jpegint.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 1997-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file provides common declarations for the various JPEG modules.
* These declarations are considered internal to the JPEG library; most
* applications using the library shouldn't need to include this file.
*/
/* Declarations for both compression & decompression */
typedef enum { /* Operating modes for buffer controllers */
JBUF_PASS_THRU, /* Plain stripwise operation */
/* Remaining modes require a full-image buffer to have been created */
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
} J_BUF_MODE;
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
#define CSTATE_START 100 /* after create_compress */
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
#define DSTATE_START 200 /* after create_decompress */
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
/* Declarations for compression modules */
/* Master control module */
struct jpeg_comp_master {
JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
/* State variables made visible to other modules */
boolean call_pass_startup; /* True if pass_startup must be called */
boolean is_last_pass; /* True during last pass */
};
/* Main buffer control (downsampled-data buffer) */
struct jpeg_c_main_controller {
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(void, process_data, (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail));
};
/* Compression preprocessing (downsampling input buffer control) */
struct jpeg_c_prep_controller {
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf,
JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail));
};
/* Coefficient buffer control */
struct jpeg_c_coef_controller {
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
JSAMPIMAGE input_buf));
};
/* Colorspace conversion */
struct jpeg_color_converter {
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
JMETHOD(void, color_convert, (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows));
};
/* Downsampling */
struct jpeg_downsampler {
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
JMETHOD(void, downsample, (j_compress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
JSAMPIMAGE output_buf,
JDIMENSION out_row_group_index));
boolean need_context_rows; /* TRUE if need rows above & below */
};
/* Forward DCT (also controls coefficient quantization) */
typedef JMETHOD(void, forward_DCT_ptr,
(j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_col, JDIMENSION num_blocks));
struct jpeg_forward_dct {
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
/* It is useful to allow each component to have a separate FDCT method. */
forward_DCT_ptr forward_DCT[MAX_COMPONENTS];
};
/* Entropy encoding */
struct jpeg_entropy_encoder {
JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKARRAY MCU_data));
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
};
/* Marker writing */
struct jpeg_marker_writer {
JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
/* These routines are exported to allow insertion of extra markers */
/* Probably only COM and APPn markers should be written this way */
JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
unsigned int datalen));
JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
};
/* Declarations for decompression modules */
/* Master control module */
struct jpeg_decomp_master {
JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
/* State variables made visible to other modules */
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
};
/* Input control module */
struct jpeg_input_controller {
JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
/* State variables made visible to other modules */
boolean has_multiple_scans; /* True if file has multiple scans */
boolean eoi_reached; /* True when EOI has been consumed */
};
/* Main buffer control (downsampled-data buffer) */
struct jpeg_d_main_controller {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(void, process_data, (j_decompress_ptr cinfo,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
};
/* Coefficient buffer control */
struct jpeg_d_coef_controller {
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
JSAMPIMAGE output_buf));
/* Pointer to array of coefficient virtual arrays, or NULL if none */
jvirt_barray_ptr *coef_arrays;
};
/* Decompression postprocessing (color quantization buffer control) */
struct jpeg_d_post_controller {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf,
JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
};
/* Marker reading & parsing */
struct jpeg_marker_reader {
JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
/* Read markers until SOS or EOI.
* Returns same codes as are defined for jpeg_consume_input:
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
*/
JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
/* Read a restart marker --- exported for use by entropy decoder only */
jpeg_marker_parser_method read_restart_marker;
/* State of marker reader --- nominally internal, but applications
* supplying COM or APPn handlers might like to know the state.
*/
boolean saw_SOI; /* found SOI? */
boolean saw_SOF; /* found SOF? */
int next_restart_num; /* next restart number expected (0-7) */
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
};
/* Entropy decoding */
struct jpeg_entropy_decoder {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data));
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
};
/* Inverse DCT (also performs dequantization) */
typedef JMETHOD(void, inverse_DCT_method_ptr,
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col));
struct jpeg_inverse_dct {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
/* It is useful to allow each component to have a separate IDCT method. */
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
};
/* Upsampling (note that upsampler must also call color converter) */
struct jpeg_upsampler {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
JMETHOD(void, upsample, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf,
JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
boolean need_context_rows; /* TRUE if need rows above & below */
};
/* Colorspace conversion */
struct jpeg_color_deconverter {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows));
};
/* Color quantization or color precision reduction */
struct jpeg_color_quantizer {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPARRAY output_buf,
int num_rows));
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
};
/* Definition of range extension bits for decompression processes.
* See the comments with prepare_range_limit_table (in jdmaster.c)
* for more info.
* The recommended default value for normal applications is 2.
* Applications with special requirements may use a different value.
* For example, Ghostscript wants to use 3 for proper handling of
* wacky images with oversize coefficient values.
*/
#define RANGE_BITS 2
#define RANGE_CENTER (CENTERJSAMPLE << RANGE_BITS)
/* Miscellaneous useful macros */
#undef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#undef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
/* We assume that right shift corresponds to signed division by 2 with
* rounding towards minus infinity. This is correct for typical "arithmetic
* shift" instructions that shift in copies of the sign bit. But some
* C compilers implement >> with an unsigned shift. For these machines you
* must define RIGHT_SHIFT_IS_UNSIGNED.
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
* It is only applied with constant shift counts. SHIFT_TEMPS must be
* included in the variables of any routine using RIGHT_SHIFT.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define SHIFT_TEMPS INT32 shift_temp;
#define RIGHT_SHIFT(x,shft) \
((shift_temp = (x)) < 0 ? \
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
(shift_temp >> (shft)))
#else
#define SHIFT_TEMPS
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
/* Descale and correctly round an INT32 value that's scaled by N bits.
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
* the fudge factor is correct for either sign of X.
*/
#define DESCALE(x,n) RIGHT_SHIFT((x) + ((INT32) 1 << ((n)-1)), n)
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jinit_compress_master jICompress
#define jinit_c_master_control jICMaster
#define jinit_c_main_controller jICMainC
#define jinit_c_prep_controller jICPrepC
#define jinit_c_coef_controller jICCoefC
#define jinit_color_converter jICColor
#define jinit_downsampler jIDownsampler
#define jinit_forward_dct jIFDCT
#define jinit_huff_encoder jIHEncoder
#define jinit_arith_encoder jIAEncoder
#define jinit_marker_writer jIMWriter
#define jinit_master_decompress jIDMaster
#define jinit_d_main_controller jIDMainC
#define jinit_d_coef_controller jIDCoefC
#define jinit_d_post_controller jIDPostC
#define jinit_input_controller jIInCtlr
#define jinit_marker_reader jIMReader
#define jinit_huff_decoder jIHDecoder
#define jinit_arith_decoder jIADecoder
#define jinit_inverse_dct jIIDCT
#define jinit_upsampler jIUpsampler
#define jinit_color_deconverter jIDColor
#define jinit_1pass_quantizer jI1Quant
#define jinit_2pass_quantizer jI2Quant
#define jinit_merged_upsampler jIMUpsampler
#define jinit_memory_mgr jIMemMgr
#define jdiv_round_up jDivRound
#define jround_up jRound
#define jzero_far jZeroFar
#define jcopy_sample_rows jCopySamples
#define jcopy_block_row jCopyBlocks
#define jpeg_zigzag_order jZIGTable
#define jpeg_natural_order jZAGTable
#define jpeg_natural_order7 jZAG7Table
#define jpeg_natural_order6 jZAG6Table
#define jpeg_natural_order5 jZAG5Table
#define jpeg_natural_order4 jZAG4Table
#define jpeg_natural_order3 jZAG3Table
#define jpeg_natural_order2 jZAG2Table
#define jpeg_aritab jAriTab
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
* and coefficient-block arrays. This won't work on 80x86 because the arrays
* are FAR and we're assuming a small-pointer memory model. However, some
* DOS compilers provide far-pointer versions of memcpy() and memset() even
* in the small-model libraries. These will be used if USE_FMEM is defined.
* Otherwise, the routines in jutils.c do it the hard way.
*/
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */
#define FMEMZERO(target,size) MEMZERO(target,size)
#else /* 80x86 case */
#ifdef USE_FMEM
#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
#else
EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
#define FMEMZERO(target,size) jzero_far(target, size)
#endif
#endif
/* Compression module initialization routines */
EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
boolean transcode_only));
EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
/* Decompression module initialization routines */
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
/* Memory manager initialization */
EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
/* Utility routines in jutils.c */
EXTERN(long) jdiv_round_up JPP((long a, long b));
EXTERN(long) jround_up JPP((long a, long b));
EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array,
JSAMPARRAY output_array,
int num_rows, JDIMENSION num_cols));
EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
JDIMENSION num_blocks));
/* Constant tables in jutils.c */
#if 0 /* This table is not actually needed in v6a */
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
#endif
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */
extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */
extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */
extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */
extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */
extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */
/* Arithmetic coding probability estimation tables in jaricom.c */
extern const INT32 jpeg_aritab[];
/* Suppress undefined-structure complaints if necessary. */
#ifdef INCOMPLETE_TYPES_BROKEN
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
struct jvirt_sarray_control { long dummy; };
struct jvirt_barray_control { long dummy; };
#endif
#endif /* INCOMPLETE_TYPES_BROKEN */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,76 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="15.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<Import Project="..\msvc\vsprops\Configurations.props" />
<PropertyGroup Label="Globals">
<ProjectGuid>{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}</ProjectGuid>
</PropertyGroup>
<ItemGroup>
<ClInclude Include="include\jconfig.h" />
<ClInclude Include="include\jerror.h" />
<ClInclude Include="include\jmorecfg.h" />
<ClInclude Include="include\jpegint.h" />
<ClInclude Include="include\jpeglib.h" />
<ClInclude Include="src\jdct.h" />
<ClInclude Include="src\jinclude.h" />
<ClInclude Include="src\jmemsys.h" />
<ClInclude Include="src\jversion.h" />
<ClInclude Include="src\transupp.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="src\jaricom.c" />
<ClCompile Include="src\jcapimin.c" />
<ClCompile Include="src\jcapistd.c" />
<ClCompile Include="src\jcarith.c" />
<ClCompile Include="src\jccoefct.c" />
<ClCompile Include="src\jccolor.c" />
<ClCompile Include="src\jcdctmgr.c" />
<ClCompile Include="src\jchuff.c" />
<ClCompile Include="src\jcinit.c" />
<ClCompile Include="src\jcmainct.c" />
<ClCompile Include="src\jcmarker.c" />
<ClCompile Include="src\jcmaster.c" />
<ClCompile Include="src\jcomapi.c" />
<ClCompile Include="src\jcparam.c" />
<ClCompile Include="src\jcprepct.c" />
<ClCompile Include="src\jcsample.c" />
<ClCompile Include="src\jctrans.c" />
<ClCompile Include="src\jdapimin.c" />
<ClCompile Include="src\jdapistd.c" />
<ClCompile Include="src\jdarith.c" />
<ClCompile Include="src\jdatadst.c" />
<ClCompile Include="src\jdatasrc.c" />
<ClCompile Include="src\jdcoefct.c" />
<ClCompile Include="src\jdcolor.c" />
<ClCompile Include="src\jddctmgr.c" />
<ClCompile Include="src\jdhuff.c" />
<ClCompile Include="src\jdinput.c" />
<ClCompile Include="src\jdmainct.c" />
<ClCompile Include="src\jdmarker.c" />
<ClCompile Include="src\jdmaster.c" />
<ClCompile Include="src\jdmerge.c" />
<ClCompile Include="src\jdpostct.c" />
<ClCompile Include="src\jdsample.c" />
<ClCompile Include="src\jdtrans.c" />
<ClCompile Include="src\jerror.c" />
<ClCompile Include="src\jfdctflt.c" />
<ClCompile Include="src\jfdctfst.c" />
<ClCompile Include="src\jfdctint.c" />
<ClCompile Include="src\jidctflt.c" />
<ClCompile Include="src\jidctfst.c" />
<ClCompile Include="src\jidctint.c" />
<ClCompile Include="src\jmemmgr.c" />
<ClCompile Include="src\jmemnobs.c" />
<ClCompile Include="src\jquant1.c" />
<ClCompile Include="src\jquant2.c" />
<ClCompile Include="src\jutils.c" />
<ClCompile Include="src\transupp.c" />
</ItemGroup>
<Import Project="..\msvc\vsprops\StaticLibrary.props" />
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>TurnOffAllWarnings</WarningLevel>
<AdditionalIncludeDirectories>$(ProjectDir)include;$(ProjectDir)src;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
</ClCompile>
</ItemDefinitionGroup>
<Import Project="..\msvc\vsprops\Targets.props" />
</Project>

View File

@ -0,0 +1,52 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<ClInclude Include="include\pngconf.h" />
<ClInclude Include="include\png.h" />
<ClInclude Include="src\pngdebug.h" />
<ClInclude Include="src\pnginfo.h" />
<ClInclude Include="src\pngpriv.h" />
<ClInclude Include="src\pngstruct.h" />
<ClInclude Include="include\pnglibconf.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="src\png.c" />
<ClCompile Include="src\pngerror.c" />
<ClCompile Include="src\pngget.c" />
<ClCompile Include="src\pngmem.c" />
<ClCompile Include="src\pngpread.c" />
<ClCompile Include="src\pngread.c" />
<ClCompile Include="src\pngrio.c" />
<ClCompile Include="src\pngrtran.c" />
<ClCompile Include="src\pngrutil.c" />
<ClCompile Include="src\pngset.c" />
<ClCompile Include="src\pngtrans.c" />
<ClCompile Include="src\pngwio.c" />
<ClCompile Include="src\pngwrite.c" />
<ClCompile Include="src\pngwtran.c" />
<ClCompile Include="src\pngwutil.c" />
<ClCompile Include="src\intel\intel_init.c">
<Filter>intel</Filter>
</ClCompile>
<ClCompile Include="src\intel\filter_sse2_intrinsics.c">
<Filter>intel</Filter>
</ClCompile>
<ClCompile Include="src\arm\filter_neon_intrinsics.c">
<Filter>arm</Filter>
</ClCompile>
<ClCompile Include="src\arm\palette_neon_intrinsics.c">
<Filter>arm</Filter>
</ClCompile>
<ClCompile Include="src\arm\arm_init.c">
<Filter>arm</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<Filter Include="arm">
<UniqueIdentifier>{9f24e95e-025d-4ed8-8c41-2fb1c7a36026}</UniqueIdentifier>
</Filter>
<Filter Include="intel">
<UniqueIdentifier>{8316b9c1-8c00-4bc8-ace7-c9b864890f2d}</UniqueIdentifier>
</Filter>
</ItemGroup>
</Project>

153
dep/libjpeg/src/jaricom.c Normal file
View File

@ -0,0 +1,153 @@
/*
* jaricom.c
*
* Developed 1997-2011 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains probability estimation tables for common use in
* arithmetic entropy encoding and decoding routines.
*
* This data represents Table D.3 in the JPEG spec (D.2 in the draft),
* ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81, and Table 24
* in the JBIG spec, ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* The following #define specifies the packing of the four components
* into the compact INT32 representation.
* Note that this formula must match the actual arithmetic encoder
* and decoder implementation. The implementation has to be changed
* if this formula is changed.
* The current organization is leaned on Markus Kuhn's JBIG
* implementation (jbig_tab.c).
*/
#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b)
const INT32 jpeg_aritab[113+1] = {
/*
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS
*/
V( 0, 0x5a1d, 1, 1, 1 ),
V( 1, 0x2586, 14, 2, 0 ),
V( 2, 0x1114, 16, 3, 0 ),
V( 3, 0x080b, 18, 4, 0 ),
V( 4, 0x03d8, 20, 5, 0 ),
V( 5, 0x01da, 23, 6, 0 ),
V( 6, 0x00e5, 25, 7, 0 ),
V( 7, 0x006f, 28, 8, 0 ),
V( 8, 0x0036, 30, 9, 0 ),
V( 9, 0x001a, 33, 10, 0 ),
V( 10, 0x000d, 35, 11, 0 ),
V( 11, 0x0006, 9, 12, 0 ),
V( 12, 0x0003, 10, 13, 0 ),
V( 13, 0x0001, 12, 13, 0 ),
V( 14, 0x5a7f, 15, 15, 1 ),
V( 15, 0x3f25, 36, 16, 0 ),
V( 16, 0x2cf2, 38, 17, 0 ),
V( 17, 0x207c, 39, 18, 0 ),
V( 18, 0x17b9, 40, 19, 0 ),
V( 19, 0x1182, 42, 20, 0 ),
V( 20, 0x0cef, 43, 21, 0 ),
V( 21, 0x09a1, 45, 22, 0 ),
V( 22, 0x072f, 46, 23, 0 ),
V( 23, 0x055c, 48, 24, 0 ),
V( 24, 0x0406, 49, 25, 0 ),
V( 25, 0x0303, 51, 26, 0 ),
V( 26, 0x0240, 52, 27, 0 ),
V( 27, 0x01b1, 54, 28, 0 ),
V( 28, 0x0144, 56, 29, 0 ),
V( 29, 0x00f5, 57, 30, 0 ),
V( 30, 0x00b7, 59, 31, 0 ),
V( 31, 0x008a, 60, 32, 0 ),
V( 32, 0x0068, 62, 33, 0 ),
V( 33, 0x004e, 63, 34, 0 ),
V( 34, 0x003b, 32, 35, 0 ),
V( 35, 0x002c, 33, 9, 0 ),
V( 36, 0x5ae1, 37, 37, 1 ),
V( 37, 0x484c, 64, 38, 0 ),
V( 38, 0x3a0d, 65, 39, 0 ),
V( 39, 0x2ef1, 67, 40, 0 ),
V( 40, 0x261f, 68, 41, 0 ),
V( 41, 0x1f33, 69, 42, 0 ),
V( 42, 0x19a8, 70, 43, 0 ),
V( 43, 0x1518, 72, 44, 0 ),
V( 44, 0x1177, 73, 45, 0 ),
V( 45, 0x0e74, 74, 46, 0 ),
V( 46, 0x0bfb, 75, 47, 0 ),
V( 47, 0x09f8, 77, 48, 0 ),
V( 48, 0x0861, 78, 49, 0 ),
V( 49, 0x0706, 79, 50, 0 ),
V( 50, 0x05cd, 48, 51, 0 ),
V( 51, 0x04de, 50, 52, 0 ),
V( 52, 0x040f, 50, 53, 0 ),
V( 53, 0x0363, 51, 54, 0 ),
V( 54, 0x02d4, 52, 55, 0 ),
V( 55, 0x025c, 53, 56, 0 ),
V( 56, 0x01f8, 54, 57, 0 ),
V( 57, 0x01a4, 55, 58, 0 ),
V( 58, 0x0160, 56, 59, 0 ),
V( 59, 0x0125, 57, 60, 0 ),
V( 60, 0x00f6, 58, 61, 0 ),
V( 61, 0x00cb, 59, 62, 0 ),
V( 62, 0x00ab, 61, 63, 0 ),
V( 63, 0x008f, 61, 32, 0 ),
V( 64, 0x5b12, 65, 65, 1 ),
V( 65, 0x4d04, 80, 66, 0 ),
V( 66, 0x412c, 81, 67, 0 ),
V( 67, 0x37d8, 82, 68, 0 ),
V( 68, 0x2fe8, 83, 69, 0 ),
V( 69, 0x293c, 84, 70, 0 ),
V( 70, 0x2379, 86, 71, 0 ),
V( 71, 0x1edf, 87, 72, 0 ),
V( 72, 0x1aa9, 87, 73, 0 ),
V( 73, 0x174e, 72, 74, 0 ),
V( 74, 0x1424, 72, 75, 0 ),
V( 75, 0x119c, 74, 76, 0 ),
V( 76, 0x0f6b, 74, 77, 0 ),
V( 77, 0x0d51, 75, 78, 0 ),
V( 78, 0x0bb6, 77, 79, 0 ),
V( 79, 0x0a40, 77, 48, 0 ),
V( 80, 0x5832, 80, 81, 1 ),
V( 81, 0x4d1c, 88, 82, 0 ),
V( 82, 0x438e, 89, 83, 0 ),
V( 83, 0x3bdd, 90, 84, 0 ),
V( 84, 0x34ee, 91, 85, 0 ),
V( 85, 0x2eae, 92, 86, 0 ),
V( 86, 0x299a, 93, 87, 0 ),
V( 87, 0x2516, 86, 71, 0 ),
V( 88, 0x5570, 88, 89, 1 ),
V( 89, 0x4ca9, 95, 90, 0 ),
V( 90, 0x44d9, 96, 91, 0 ),
V( 91, 0x3e22, 97, 92, 0 ),
V( 92, 0x3824, 99, 93, 0 ),
V( 93, 0x32b4, 99, 94, 0 ),
V( 94, 0x2e17, 93, 86, 0 ),
V( 95, 0x56a8, 95, 96, 1 ),
V( 96, 0x4f46, 101, 97, 0 ),
V( 97, 0x47e5, 102, 98, 0 ),
V( 98, 0x41cf, 103, 99, 0 ),
V( 99, 0x3c3d, 104, 100, 0 ),
V( 100, 0x375e, 99, 93, 0 ),
V( 101, 0x5231, 105, 102, 0 ),
V( 102, 0x4c0f, 106, 103, 0 ),
V( 103, 0x4639, 107, 104, 0 ),
V( 104, 0x415e, 103, 99, 0 ),
V( 105, 0x5627, 105, 106, 1 ),
V( 106, 0x50e7, 108, 107, 0 ),
V( 107, 0x4b85, 109, 103, 0 ),
V( 108, 0x5597, 110, 109, 0 ),
V( 109, 0x504f, 111, 107, 0 ),
V( 110, 0x5a10, 110, 111, 1 ),
V( 111, 0x5522, 112, 109, 0 ),
V( 112, 0x59eb, 112, 111, 1 ),
/*
* This last entry is used for fixed probability estimate of 0.5
* as suggested in Section 10.3 Table 5 of ITU-T Rec. T.851.
*/
V( 113, 0x5a1d, 113, 113, 0 )
};

288
dep/libjpeg/src/jcapimin.c Normal file
View File

@ -0,0 +1,288 @@
/*
* jcapimin.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* Modified 2003-2010 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the compression half
* of the JPEG library. These are the "minimum" API routines that may be
* needed in either the normal full-compression case or the transcoding-only
* case.
*
* Most of the routines intended to be called directly by an application
* are in this file or in jcapistd.c. But also see jcparam.c for
* parameter-setup helper routines, jcomapi.c for routines shared by
* compression and decompression, and jctrans.c for the transcoding case.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Initialization of a JPEG compression object.
* The error manager must already be set up (in case memory manager fails).
*/
GLOBAL(void)
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
{
int i;
/* Guard against version mismatches between library and caller. */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
if (version != JPEG_LIB_VERSION)
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
if (structsize != SIZEOF(struct jpeg_compress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize);
/* For debugging purposes, we zero the whole master structure.
* But the application has already set the err pointer, and may have set
* client_data, so we have to save and restore those fields.
* Note: if application hasn't set client_data, tools like Purify may
* complain here.
*/
{
struct jpeg_error_mgr * err = cinfo->err;
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
cinfo->err = err;
cinfo->client_data = client_data;
}
cinfo->is_decompressor = FALSE;
/* Initialize a memory manager instance for this object */
jinit_memory_mgr((j_common_ptr) cinfo);
/* Zero out pointers to permanent structures. */
cinfo->progress = NULL;
cinfo->dest = NULL;
cinfo->comp_info = NULL;
for (i = 0; i < NUM_QUANT_TBLS; i++) {
cinfo->quant_tbl_ptrs[i] = NULL;
cinfo->q_scale_factor[i] = 100;
}
for (i = 0; i < NUM_HUFF_TBLS; i++) {
cinfo->dc_huff_tbl_ptrs[i] = NULL;
cinfo->ac_huff_tbl_ptrs[i] = NULL;
}
/* Must do it here for emit_dqt in case jpeg_write_tables is used */
cinfo->block_size = DCTSIZE;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
cinfo->script_space = NULL;
cinfo->input_gamma = 1.0; /* in case application forgets */
/* OK, I'm ready */
cinfo->global_state = CSTATE_START;
}
/*
* Destruction of a JPEG compression object
*/
GLOBAL(void)
jpeg_destroy_compress (j_compress_ptr cinfo)
{
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
}
/*
* Abort processing of a JPEG compression operation,
* but don't destroy the object itself.
*/
GLOBAL(void)
jpeg_abort_compress (j_compress_ptr cinfo)
{
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
}
/*
* Forcibly suppress or un-suppress all quantization and Huffman tables.
* Marks all currently defined tables as already written (if suppress)
* or not written (if !suppress). This will control whether they get emitted
* by a subsequent jpeg_start_compress call.
*
* This routine is exported for use by applications that want to produce
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but
* since it is called by jpeg_start_compress, we put it here --- otherwise
* jcparam.o would be linked whether the application used it or not.
*/
GLOBAL(void)
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
{
int i;
JQUANT_TBL * qtbl;
JHUFF_TBL * htbl;
for (i = 0; i < NUM_QUANT_TBLS; i++) {
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
qtbl->sent_table = suppress;
}
for (i = 0; i < NUM_HUFF_TBLS; i++) {
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
htbl->sent_table = suppress;
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
htbl->sent_table = suppress;
}
}
/*
* Finish JPEG compression.
*
* If a multipass operating mode was selected, this may do a great deal of
* work including most of the actual output.
*/
GLOBAL(void)
jpeg_finish_compress (j_compress_ptr cinfo)
{
JDIMENSION iMCU_row;
if (cinfo->global_state == CSTATE_SCANNING ||
cinfo->global_state == CSTATE_RAW_OK) {
/* Terminate first pass */
if (cinfo->next_scanline < cinfo->image_height)
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
(*cinfo->master->finish_pass) (cinfo);
} else if (cinfo->global_state != CSTATE_WRCOEFS)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Perform any remaining passes */
while (! cinfo->master->is_last_pass) {
(*cinfo->master->prepare_for_pass) (cinfo);
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) iMCU_row;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* We bypass the main controller and invoke coef controller directly;
* all work is being done from the coefficient buffer.
*/
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
}
(*cinfo->master->finish_pass) (cinfo);
}
/* Write EOI, do final cleanup */
(*cinfo->marker->write_file_trailer) (cinfo);
(*cinfo->dest->term_destination) (cinfo);
/* We can use jpeg_abort to release memory and reset global_state */
jpeg_abort((j_common_ptr) cinfo);
}
/*
* Write a special marker.
* This is only recommended for writing COM or APPn markers.
* Must be called after jpeg_start_compress() and before
* first call to jpeg_write_scanlines() or jpeg_write_raw_data().
*/
GLOBAL(void)
jpeg_write_marker (j_compress_ptr cinfo, int marker,
const JOCTET *dataptr, unsigned int datalen)
{
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));
if (cinfo->next_scanline != 0 ||
(cinfo->global_state != CSTATE_SCANNING &&
cinfo->global_state != CSTATE_RAW_OK &&
cinfo->global_state != CSTATE_WRCOEFS))
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */
while (datalen--) {
(*write_marker_byte) (cinfo, *dataptr);
dataptr++;
}
}
/* Same, but piecemeal. */
GLOBAL(void)
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
{
if (cinfo->next_scanline != 0 ||
(cinfo->global_state != CSTATE_SCANNING &&
cinfo->global_state != CSTATE_RAW_OK &&
cinfo->global_state != CSTATE_WRCOEFS))
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
}
GLOBAL(void)
jpeg_write_m_byte (j_compress_ptr cinfo, int val)
{
(*cinfo->marker->write_marker_byte) (cinfo, val);
}
/*
* Alternate compression function: just write an abbreviated table file.
* Before calling this, all parameters and a data destination must be set up.
*
* To produce a pair of files containing abbreviated tables and abbreviated
* image data, one would proceed as follows:
*
* initialize JPEG object
* set JPEG parameters
* set destination to table file
* jpeg_write_tables(cinfo);
* set destination to image file
* jpeg_start_compress(cinfo, FALSE);
* write data...
* jpeg_finish_compress(cinfo);
*
* jpeg_write_tables has the side effect of marking all tables written
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress
* will not re-emit the tables unless it is passed write_all_tables=TRUE.
*/
GLOBAL(void)
jpeg_write_tables (j_compress_ptr cinfo)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Initialize the marker writer ... bit of a crock to do it here. */
jinit_marker_writer(cinfo);
/* Write them tables! */
(*cinfo->marker->write_tables_only) (cinfo);
/* And clean up. */
(*cinfo->dest->term_destination) (cinfo);
/*
* In library releases up through v6a, we called jpeg_abort() here to free
* any working memory allocated by the destination manager and marker
* writer. Some applications had a problem with that: they allocated space
* of their own from the library memory manager, and didn't want it to go
* away during write_tables. So now we do nothing. This will cause a
* memory leak if an app calls write_tables repeatedly without doing a full
* compression cycle or otherwise resetting the JPEG object. However, that
* seems less bad than unexpectedly freeing memory in the normal case.
* An app that prefers the old behavior can call jpeg_abort for itself after
* each call to jpeg_write_tables().
*/
}

162
dep/libjpeg/src/jcapistd.c Normal file
View File

@ -0,0 +1,162 @@
/*
* jcapistd.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the compression half
* of the JPEG library. These are the "standard" API routines that are
* used in the normal full-compression case. They are not used by a
* transcoding-only application. Note that if an application links in
* jpeg_start_compress, it will end up linking in the entire compressor.
* We thus must separate this file from jcapimin.c to avoid linking the
* whole compression library into a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Compression initialization.
* Before calling this, all parameters and a data destination must be set up.
*
* We require a write_all_tables parameter as a failsafe check when writing
* multiple datastreams from the same compression object. Since prior runs
* will have left all the tables marked sent_table=TRUE, a subsequent run
* would emit an abbreviated stream (no tables) by default. This may be what
* is wanted, but for safety's sake it should not be the default behavior:
* programmers should have to make a deliberate choice to emit abbreviated
* images. Therefore the documentation and examples should encourage people
* to pass write_all_tables=TRUE; then it will take active thought to do the
* wrong thing.
*/
GLOBAL(void)
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (write_all_tables)
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
jinit_compress_master(cinfo);
/* Set up for the first pass */
(*cinfo->master->prepare_for_pass) (cinfo);
/* Ready for application to drive first pass through jpeg_write_scanlines
* or jpeg_write_raw_data.
*/
cinfo->next_scanline = 0;
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING);
}
/*
* Write some scanlines of data to the JPEG compressor.
*
* The return value will be the number of lines actually written.
* This should be less than the supplied num_lines only in case that
* the data destination module has requested suspension of the compressor,
* or if more than image_height scanlines are passed in.
*
* Note: we warn about excess calls to jpeg_write_scanlines() since
* this likely signals an application programmer error. However,
* excess scanlines passed in the last valid call are *silently* ignored,
* so that the application need not adjust num_lines for end-of-image
* when using a multiple-scanline buffer.
*/
GLOBAL(JDIMENSION)
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION num_lines)
{
JDIMENSION row_ctr, rows_left;
if (cinfo->global_state != CSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height)
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_scanlines. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_scanlines.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Ignore any extra scanlines at bottom of image. */
rows_left = cinfo->image_height - cinfo->next_scanline;
if (num_lines > rows_left)
num_lines = rows_left;
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines);
cinfo->next_scanline += row_ctr;
return row_ctr;
}
/*
* Alternate entry point to write raw data.
* Processes exactly one iMCU row per call, unless suspended.
*/
GLOBAL(JDIMENSION)
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION num_lines)
{
JDIMENSION lines_per_iMCU_row;
if (cinfo->global_state != CSTATE_RAW_OK)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->next_scanline >= cinfo->image_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->next_scanline;
cinfo->progress->pass_limit = (long) cinfo->image_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Give master control module another chance if this is first call to
* jpeg_write_raw_data. This lets output of the frame/scan headers be
* delayed so that application can write COM, etc, markers between
* jpeg_start_compress and jpeg_write_raw_data.
*/
if (cinfo->master->call_pass_startup)
(*cinfo->master->pass_startup) (cinfo);
/* Verify that at least one iMCU row has been passed. */
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
if (num_lines < lines_per_iMCU_row)
ERREXIT(cinfo, JERR_BUFFER_SIZE);
/* Directly compress the row. */
if (! (*cinfo->coef->compress_data) (cinfo, data)) {
/* If compressor did not consume the whole row, suspend processing. */
return 0;
}
/* OK, we processed one iMCU row. */
cinfo->next_scanline += lines_per_iMCU_row;
return lines_per_iMCU_row;
}

945
dep/libjpeg/src/jcarith.c Normal file
View File

@ -0,0 +1,945 @@
/*
* jcarith.c
*
* Developed 1997-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains portable arithmetic entropy encoding routines for JPEG
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
*
* Both sequential and progressive modes are supported in this single module.
*
* Suspension is not currently supported in this module.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Expanded entropy encoder object for arithmetic encoding. */
typedef struct {
struct jpeg_entropy_encoder pub; /* public fields */
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
INT32 a; /* A register, normalized size of coding interval */
INT32 sc; /* counter for stacked 0xFF values which might overflow */
INT32 zc; /* counter for pending 0x00 output values which might *
* be discarded at the end ("Pacman" termination) */
int ct; /* bit shift counter, determines when next byte will be written */
int buffer; /* buffer for most recent output byte != 0xFF */
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
int next_restart_num; /* next restart number to write (0-7) */
/* Pointers to statistics areas (these workspaces have image lifespan) */
unsigned char * dc_stats[NUM_ARITH_TBLS];
unsigned char * ac_stats[NUM_ARITH_TBLS];
/* Statistics bin for coding with fixed probability 0.5 */
unsigned char fixed_bin[4];
} arith_entropy_encoder;
typedef arith_entropy_encoder * arith_entropy_ptr;
/* The following two definitions specify the allocation chunk size
* for the statistics area.
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
*
* We use a compact representation with 1 byte per statistics bin,
* thus the numbers directly represent byte sizes.
* This 1 byte per statistics bin contains the meaning of the MPS
* (more probable symbol) in the highest bit (mask 0x80), and the
* index into the probability estimation state machine table
* in the lower bits (mask 0x7F).
*/
#define DC_STAT_BINS 64
#define AC_STAT_BINS 256
/* NOTE: Uncomment the following #define if you want to use the
* given formula for calculating the AC conditioning parameter Kx
* for spectral selection progressive coding in section G.1.3.2
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
* Although the spec and P&M authors claim that this "has proven
* to give good results for 8 bit precision samples", I'm not
* convinced yet that this is really beneficial.
* Early tests gave only very marginal compression enhancements
* (a few - around 5 or so - bytes even for very large files),
* which would turn out rather negative if we'd suppress the
* DAC (Define Arithmetic Conditioning) marker segments for
* the default parameters in the future.
* Note that currently the marker writing module emits 12-byte
* DAC segments for a full-component scan in a color image.
* This is not worth worrying about IMHO. However, since the
* spec defines the default values to be used if the tables
* are omitted (unlike Huffman tables, which are required
* anyway), one might optimize this behaviour in the future,
* and then it would be disadvantageous to use custom tables if
* they don't provide sufficient gain to exceed the DAC size.
*
* On the other hand, I'd consider it as a reasonable result
* that the conditioning has no significant influence on the
* compression performance. This means that the basic
* statistical model is already rather stable.
*
* Thus, at the moment, we use the default conditioning values
* anyway, and do not use the custom formula.
*
#define CALCULATE_SPECTRAL_CONDITIONING
*/
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
* We assume that int right shift is unsigned if INT32 right shift is,
* which should be safe.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS int ishift_temp;
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
LOCAL(void)
emit_byte (int val, j_compress_ptr cinfo)
/* Write next output byte; we do not support suspension in this module. */
{
struct jpeg_destination_mgr * dest = cinfo->dest;
*dest->next_output_byte++ = (JOCTET) val;
if (--dest->free_in_buffer == 0)
if (! (*dest->empty_output_buffer) (cinfo))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
}
/*
* Finish up at the end of an arithmetic-compressed scan.
*/
METHODDEF(void)
finish_pass (j_compress_ptr cinfo)
{
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
INT32 temp;
/* Section D.1.8: Termination of encoding */
/* Find the e->c in the coding interval with the largest
* number of trailing zero bits */
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
e->c = temp + 0x8000L;
else
e->c = temp;
/* Send remaining bytes to output */
e->c <<= e->ct;
if (e->c & 0xF8000000L) {
/* One final overflow has to be handled */
if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer + 1, cinfo);
if (e->buffer + 1 == 0xFF)
emit_byte(0x00, cinfo);
}
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
e->sc = 0;
} else {
if (e->buffer == 0)
++e->zc;
else if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer, cinfo);
}
if (e->sc) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do {
emit_byte(0xFF, cinfo);
emit_byte(0x00, cinfo);
} while (--e->sc);
}
}
/* Output final bytes only if they are not 0x00 */
if (e->c & 0x7FFF800L) {
if (e->zc) /* output final pending zero bytes */
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte((int) ((e->c >> 19) & 0xFF), cinfo);
if (((e->c >> 19) & 0xFF) == 0xFF)
emit_byte(0x00, cinfo);
if (e->c & 0x7F800L) {
emit_byte((int) ((e->c >> 11) & 0xFF), cinfo);
if (((e->c >> 11) & 0xFF) == 0xFF)
emit_byte(0x00, cinfo);
}
}
}
/*
* The core arithmetic encoding routine (common in JPEG and JBIG).
* This needs to go as fast as possible.
* Machine-dependent optimization facilities
* are not utilized in this portable implementation.
* However, this code should be fairly efficient and
* may be a good base for further optimizations anyway.
*
* Parameter 'val' to be encoded may be 0 or 1 (binary decision).
*
* Note: I've added full "Pacman" termination support to the
* byte output routines, which is equivalent to the optional
* Discard_final_zeros procedure (Figure D.15) in the spec.
* Thus, we always produce the shortest possible output
* stream compliant to the spec (no trailing zero bytes,
* except for FF stuffing).
*
* I've also introduced a new scheme for accessing
* the probability estimation state machine table,
* derived from Markus Kuhn's JBIG implementation.
*/
LOCAL(void)
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
{
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
register unsigned char nl, nm;
register INT32 qe, temp;
register int sv;
/* Fetch values from our compact representation of Table D.3(D.2):
* Qe values and probability estimation state machine
*/
sv = *st;
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */
e->a -= qe;
if (val != (sv >> 7)) {
/* Encode the less probable symbol */
if (e->a >= qe) {
/* If the interval size (qe) for the less probable symbol (LPS)
* is larger than the interval size for the MPS, then exchange
* the two symbols for coding efficiency, otherwise code the LPS
* as usual: */
e->c += e->a;
e->a = qe;
}
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
} else {
/* Encode the more probable symbol */
if (e->a >= 0x8000L)
return; /* A >= 0x8000 -> ready, no renormalization required */
if (e->a < qe) {
/* If the interval size (qe) for the less probable symbol (LPS)
* is larger than the interval size for the MPS, then exchange
* the two symbols for coding efficiency: */
e->c += e->a;
e->a = qe;
}
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
}
/* Renormalization & data output per section D.1.6 */
do {
e->a <<= 1;
e->c <<= 1;
if (--e->ct == 0) {
/* Another byte is ready for output */
temp = e->c >> 19;
if (temp > 0xFF) {
/* Handle overflow over all stacked 0xFF bytes */
if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer + 1, cinfo);
if (e->buffer + 1 == 0xFF)
emit_byte(0x00, cinfo);
}
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
e->sc = 0;
/* Note: The 3 spacer bits in the C register guarantee
* that the new buffer byte can't be 0xFF here
* (see page 160 in the P&M JPEG book). */
/* New output byte, might overflow later */
e->buffer = (int) (temp & 0xFF);
} else if (temp == 0xFF) {
++e->sc; /* stack 0xFF byte (which might overflow later) */
} else {
/* Output all stacked 0xFF bytes, they will not overflow any more */
if (e->buffer == 0)
++e->zc;
else if (e->buffer >= 0) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
emit_byte(e->buffer, cinfo);
}
if (e->sc) {
if (e->zc)
do emit_byte(0x00, cinfo);
while (--e->zc);
do {
emit_byte(0xFF, cinfo);
emit_byte(0x00, cinfo);
} while (--e->sc);
}
/* New output byte (can still overflow) */
e->buffer = (int) (temp & 0xFF);
}
e->c &= 0x7FFFFL;
e->ct += 8;
}
} while (e->a < 0x8000L);
}
/*
* Emit a restart marker & resynchronize predictions.
*/
LOCAL(void)
emit_restart (j_compress_ptr cinfo, int restart_num)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
int ci;
jpeg_component_info * compptr;
finish_pass(cinfo);
emit_byte(0xFF, cinfo);
emit_byte(JPEG_RST0 + restart_num, cinfo);
/* Re-initialize statistics areas */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* DC needs no table for refinement scan */
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
/* Reset DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
entropy->dc_context[ci] = 0;
}
/* AC needs no table when not present */
if (cinfo->Se) {
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
}
}
/* Reset arithmetic encoding variables */
entropy->c = 0;
entropy->a = 0x10000L;
entropy->sc = 0;
entropy->zc = 0;
entropy->ct = 11;
entropy->buffer = -1; /* empty */
}
/*
* MCU encoding for DC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF(boolean)
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
unsigned char *st;
int blkn, ci, tbl;
int v, v2, m;
ISHIFT_TEMPS
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
ci = cinfo->MCU_membership[blkn];
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
/* Compute the DC value after the required point transform by Al.
* This is simply an arithmetic right shift.
*/
m = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al);
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
/* Figure F.4: Encode_DC_DIFF */
if ((v = m - entropy->last_dc_val[ci]) == 0) {
arith_encode(cinfo, st, 0);
entropy->dc_context[ci] = 0; /* zero diff category */
} else {
entropy->last_dc_val[ci] = m;
arith_encode(cinfo, st, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
st += 2; /* Table F.4: SP = S0 + 2 */
entropy->dc_context[ci] = 4; /* small positive diff category */
} else {
v = -v;
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
st += 3; /* Table F.4: SN = S0 + 3 */
entropy->dc_context[ci] = 8; /* small negative diff category */
}
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
arith_encode(cinfo, st, 0);
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] += 8; /* large diff category */
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
}
return TRUE;
}
/*
* MCU encoding for AC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF(boolean)
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int tbl, k, ke;
int v, v2, m;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
natural_order = cinfo->natural_order;
/* Encode the MCU data block */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
/* Establish EOB (end-of-block) index */
ke = cinfo->Se;
do {
/* We must apply the point transform by Al. For AC coefficients this
* is an integer division with rounding towards 0. To do this portably
* in C, we shift after obtaining the absolute value.
*/
if ((v = (*block)[natural_order[ke]]) >= 0) {
if (v >>= cinfo->Al) break;
} else {
v = -v;
if (v >>= cinfo->Al) break;
}
} while (--ke);
/* Figure F.5: Encode_AC_Coefficients */
for (k = cinfo->Ss - 1; k < ke;) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 0); /* EOB decision */
for (;;) {
if ((v = (*block)[natural_order[++k]]) >= 0) {
if (v >>= cinfo->Al) {
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 0);
break;
}
} else {
v = -v;
if (v >>= cinfo->Al) {
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 1);
break;
}
}
arith_encode(cinfo, st + 1, 0);
st += 3;
}
st += 2;
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
if (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
}
arith_encode(cinfo, st, 0);
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
/* Encode EOB decision only if k < cinfo->Se */
if (k < cinfo->Se) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 1);
}
return TRUE;
}
/*
* MCU encoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component,
* although the spec is not very clear on the point.
*/
METHODDEF(boolean)
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
unsigned char *st;
int Al, blkn;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
st = entropy->fixed_bin; /* use fixed probability estimation */
Al = cinfo->Al;
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
/* We simply emit the Al'th bit of the DC coefficient value. */
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
}
return TRUE;
}
/*
* MCU encoding for AC successive approximation refinement scan.
*/
METHODDEF(boolean)
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int tbl, k, ke, kex;
int v;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
natural_order = cinfo->natural_order;
/* Encode the MCU data block */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
/* Section G.1.3.3: Encoding of AC coefficients */
/* Establish EOB (end-of-block) index */
ke = cinfo->Se;
do {
/* We must apply the point transform by Al. For AC coefficients this
* is an integer division with rounding towards 0. To do this portably
* in C, we shift after obtaining the absolute value.
*/
if ((v = (*block)[natural_order[ke]]) >= 0) {
if (v >>= cinfo->Al) break;
} else {
v = -v;
if (v >>= cinfo->Al) break;
}
} while (--ke);
/* Establish EOBx (previous stage end-of-block) index */
for (kex = ke; kex > 0; kex--)
if ((v = (*block)[natural_order[kex]]) >= 0) {
if (v >>= cinfo->Ah) break;
} else {
v = -v;
if (v >>= cinfo->Ah) break;
}
/* Figure G.10: Encode_AC_Coefficients_SA */
for (k = cinfo->Ss - 1; k < ke;) {
st = entropy->ac_stats[tbl] + 3 * k;
if (k >= kex)
arith_encode(cinfo, st, 0); /* EOB decision */
for (;;) {
if ((v = (*block)[natural_order[++k]]) >= 0) {
if (v >>= cinfo->Al) {
if (v >> 1) /* previously nonzero coef */
arith_encode(cinfo, st + 2, (v & 1));
else { /* newly nonzero coef */
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 0);
}
break;
}
} else {
v = -v;
if (v >>= cinfo->Al) {
if (v >> 1) /* previously nonzero coef */
arith_encode(cinfo, st + 2, (v & 1));
else { /* newly nonzero coef */
arith_encode(cinfo, st + 1, 1);
arith_encode(cinfo, entropy->fixed_bin, 1);
}
break;
}
}
arith_encode(cinfo, st + 1, 0);
st += 3;
}
}
/* Encode EOB decision only if k < cinfo->Se */
if (k < cinfo->Se) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 1);
}
return TRUE;
}
/*
* Encode and output one MCU's worth of arithmetic-compressed coefficients.
*/
METHODDEF(boolean)
encode_mcu (j_compress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
const int * natural_order;
JBLOCKROW block;
unsigned char *st;
int tbl, k, ke;
int v, v2, m;
int blkn, ci;
jpeg_component_info * compptr;
/* Emit restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0) {
emit_restart(cinfo, entropy->next_restart_num);
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num++;
entropy->next_restart_num &= 7;
}
entropy->restarts_to_go--;
}
natural_order = cinfo->natural_order;
/* Encode the MCU data blocks */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
tbl = compptr->dc_tbl_no;
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
/* Figure F.4: Encode_DC_DIFF */
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
arith_encode(cinfo, st, 0);
entropy->dc_context[ci] = 0; /* zero diff category */
} else {
entropy->last_dc_val[ci] = (*block)[0];
arith_encode(cinfo, st, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
st += 2; /* Table F.4: SP = S0 + 2 */
entropy->dc_context[ci] = 4; /* small positive diff category */
} else {
v = -v;
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
st += 3; /* Table F.4: SN = S0 + 3 */
entropy->dc_context[ci] = 8; /* small negative diff category */
}
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
arith_encode(cinfo, st, 0);
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] += 8; /* large diff category */
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
if ((ke = cinfo->lim_Se) == 0) continue;
tbl = compptr->ac_tbl_no;
/* Establish EOB (end-of-block) index */
do {
if ((*block)[natural_order[ke]]) break;
} while (--ke);
/* Figure F.5: Encode_AC_Coefficients */
for (k = 0; k < ke;) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 0); /* EOB decision */
while ((v = (*block)[natural_order[++k]]) == 0) {
arith_encode(cinfo, st + 1, 0);
st += 3;
}
arith_encode(cinfo, st + 1, 1);
/* Figure F.6: Encoding nonzero value v */
/* Figure F.7: Encoding the sign of v */
if (v > 0) {
arith_encode(cinfo, entropy->fixed_bin, 0);
} else {
v = -v;
arith_encode(cinfo, entropy->fixed_bin, 1);
}
st += 2;
/* Figure F.8: Encoding the magnitude category of v */
m = 0;
if (v -= 1) {
arith_encode(cinfo, st, 1);
m = 1;
v2 = v;
if (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (v2 >>= 1) {
arith_encode(cinfo, st, 1);
m <<= 1;
st += 1;
}
}
}
arith_encode(cinfo, st, 0);
/* Figure F.9: Encoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
arith_encode(cinfo, st, (m & v) ? 1 : 0);
}
/* Encode EOB decision only if k < cinfo->lim_Se */
if (k < cinfo->lim_Se) {
st = entropy->ac_stats[tbl] + 3 * k;
arith_encode(cinfo, st, 1);
}
}
return TRUE;
}
/*
* Initialize for an arithmetic-compressed scan.
*/
METHODDEF(void)
start_pass (j_compress_ptr cinfo, boolean gather_statistics)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
int ci, tbl;
jpeg_component_info * compptr;
if (gather_statistics)
/* Make sure to avoid that in the master control logic!
* We are fully adaptive here and need no extra
* statistics gathering pass!
*/
ERREXIT(cinfo, JERR_NOT_COMPILED);
/* We assume jcmaster.c already validated the progressive scan parameters. */
/* Select execution routines */
if (cinfo->progressive_mode) {
if (cinfo->Ah == 0) {
if (cinfo->Ss == 0)
entropy->pub.encode_mcu = encode_mcu_DC_first;
else
entropy->pub.encode_mcu = encode_mcu_AC_first;
} else {
if (cinfo->Ss == 0)
entropy->pub.encode_mcu = encode_mcu_DC_refine;
else
entropy->pub.encode_mcu = encode_mcu_AC_refine;
}
} else
entropy->pub.encode_mcu = encode_mcu;
/* Allocate & initialize requested statistics areas */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* DC needs no table for refinement scan */
if (cinfo->Ss == 0 && cinfo->Ah == 0) {
tbl = compptr->dc_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->dc_stats[tbl] == NULL)
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
/* Initialize DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
entropy->dc_context[ci] = 0;
}
/* AC needs no table when not present */
if (cinfo->Se) {
tbl = compptr->ac_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->ac_stats[tbl] == NULL)
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
#ifdef CALCULATE_SPECTRAL_CONDITIONING
if (cinfo->progressive_mode)
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
#endif
}
}
/* Initialize arithmetic encoding variables */
entropy->c = 0;
entropy->a = 0x10000L;
entropy->sc = 0;
entropy->zc = 0;
entropy->ct = 11;
entropy->buffer = -1; /* empty */
/* Initialize restart stuff */
entropy->restarts_to_go = cinfo->restart_interval;
entropy->next_restart_num = 0;
}
/*
* Module initialization routine for arithmetic entropy encoding.
*/
GLOBAL(void)
jinit_arith_encoder (j_compress_ptr cinfo)
{
arith_entropy_ptr entropy;
int i;
entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder));
cinfo->entropy = &entropy->pub;
entropy->pub.start_pass = start_pass;
entropy->pub.finish_pass = finish_pass;
/* Mark tables unallocated */
for (i = 0; i < NUM_ARITH_TBLS; i++) {
entropy->dc_stats[i] = NULL;
entropy->ac_stats[i] = NULL;
}
/* Initialize index for fixed probability estimation */
entropy->fixed_bin[0] = 113;
}

456
dep/libjpeg/src/jccoefct.c Normal file
View File

@ -0,0 +1,456 @@
/*
* jccoefct.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* Modified 2003-2022 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the coefficient buffer controller for compression.
* This controller is the top level of the JPEG compressor proper.
* The coefficient buffer lies between forward-DCT and entropy encoding steps.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* We use a full-image coefficient buffer when doing Huffman optimization,
* and also for writing multiple-scan JPEG files. In all cases, the DCT
* step is run during the first pass, and subsequent passes need only read
* the buffered coefficients.
*/
#ifdef ENTROPY_OPT_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#else
#ifdef C_MULTISCAN_FILES_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#endif
#endif
/* Private buffer controller object */
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* For single-pass compression, it's sufficient to buffer just one MCU
* (although this may prove a bit slow in practice).
* We append a workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks,
* and reuse it for each MCU constructed and sent.
* In multi-pass modes, this array points to the current MCU's blocks
* within the virtual arrays.
*/
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
/* In multi-pass modes, we need a virtual block array for each component. */
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
/* Workspace for single-pass compression (omitted otherwise). */
JBLOCK blk_buffer[C_MAX_BLOCKS_IN_MCU];
} my_coef_controller;
typedef my_coef_controller * my_coef_ptr;
/* Forward declarations */
METHODDEF(boolean) compress_data
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#ifdef FULL_COEF_BUFFER_SUPPORTED
METHODDEF(boolean) compress_first_pass
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
METHODDEF(boolean) compress_output
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#endif
LOCAL(void)
start_iMCU_row (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
/* In an interleaved scan, an MCU row is the same as an iMCU row.
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
* But at the bottom of the image, process only what's left.
*/
if (cinfo->comps_in_scan > 1) {
coef->MCU_rows_per_iMCU_row = 1;
} else {
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
else
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
}
coef->MCU_ctr = 0;
coef->MCU_vert_offset = 0;
}
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
coef->iMCU_row_num = 0;
start_iMCU_row(cinfo);
switch (pass_mode) {
case JBUF_PASS_THRU:
if (coef->whole_image[0] != NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_data;
break;
#ifdef FULL_COEF_BUFFER_SUPPORTED
case JBUF_SAVE_AND_PASS:
if (coef->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_first_pass;
break;
case JBUF_CRANK_DEST:
if (coef->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->pub.compress_data = compress_output;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
}
}
/*
* Process some data in the single-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the image.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf contains a plane for each component in image,
* which we index according to the component's SOF position.
*/
METHODDEF(boolean)
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int ci, xindex, yindex, yoffset, blockcnt;
JBLOCKROW blkp;
JSAMPARRAY input_ptr;
JDIMENSION xpos;
jpeg_component_info *compptr;
forward_DCT_ptr forward_DCT;
/* Loop to write as much as one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
MCU_col_num++) {
/* Determine where data comes from in input_buf and do the DCT thing.
* Each call on forward_DCT processes a horizontal row of DCT blocks as
* wide as an MCU. Dummy blocks at the right or bottom edge are filled in
* specially. The data in them does not matter for image reconstruction,
* so we fill them with values that will encode to the smallest amount of
* data, viz: all zeroes in the AC entries, DC entries equal to previous
* block's DC value. (Thanks to Thomas Kinsman for this idea.)
*/
blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index];
input_ptr = input_buf[compptr->component_index] +
yoffset * compptr->DCT_v_scaled_size;
/* ypos == (yoffset + yindex) * compptr->DCT_v_scaled_size */
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
xpos = MCU_col_num * compptr->MCU_sample_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yoffset + yindex < compptr->last_row_height) {
(*forward_DCT) (cinfo, compptr, input_ptr, blkp,
xpos, (JDIMENSION) blockcnt);
input_ptr += compptr->DCT_v_scaled_size;
blkp += blockcnt;
/* Dummy blocks at right edge */
if ((xindex = compptr->MCU_width - blockcnt) == 0)
continue;
} else {
/* At bottom of image, need a whole row of dummy blocks */
xindex = compptr->MCU_width;
}
/* Fill in any dummy blocks needed in this row */
MEMZERO(blkp, xindex * SIZEOF(JBLOCK));
do {
blkp[0][0] = blkp[-1][0];
blkp++;
} while (--xindex);
}
}
/* Try to write the MCU. In event of a suspension failure, we will
* re-DCT the MCU on restart (a bit inefficient, could be fixed...)
*/
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->MCU_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
#ifdef FULL_COEF_BUFFER_SUPPORTED
/*
* Process some data in the first pass of a multi-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the image.
* This amount of data is read from the source buffer, DCT'd and quantized,
* and saved into the virtual arrays. We also generate suitable dummy blocks
* as needed at the right and lower edges. (The dummy blocks are constructed
* in the virtual arrays, which have been padded appropriately.) This makes
* it possible for subsequent passes not to worry about real vs. dummy blocks.
*
* We must also emit the data to the entropy encoder. This is conveniently
* done by calling compress_output() after we've loaded the current strip
* of the virtual arrays.
*
* NB: input_buf contains a plane for each component in image. All
* components are DCT'd and loaded into the virtual arrays in this pass.
* However, it may be that only a subset of the components are emitted to
* the entropy encoder during this first pass; be careful about looking
* at the scan-dependent variables (MCU dimensions, etc).
*/
METHODDEF(boolean)
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
JDIMENSION blocks_across, MCUs_across, MCUindex;
int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
JCOEF lastDC;
jpeg_component_info *compptr;
JBLOCKARRAY buffer;
JBLOCKROW thisblockrow, lastblockrow;
JSAMPARRAY input_ptr;
forward_DCT_ptr forward_DCT;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Align the virtual buffer for this component. */
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, TRUE);
/* Count non-dummy DCT block rows in this iMCU row. */
if (coef->iMCU_row_num < last_iMCU_row)
block_rows = compptr->v_samp_factor;
else {
/* NB: can't use last_row_height here, since may not be set! */
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (block_rows == 0) block_rows = compptr->v_samp_factor;
}
blocks_across = compptr->width_in_blocks;
h_samp_factor = compptr->h_samp_factor;
/* Count number of dummy blocks to be added at the right margin. */
ndummy = (int) (blocks_across % h_samp_factor);
if (ndummy > 0)
ndummy = h_samp_factor - ndummy;
forward_DCT = cinfo->fdct->forward_DCT[ci];
input_ptr = input_buf[ci];
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call
* on forward_DCT processes a complete horizontal row of DCT blocks.
*/
for (block_row = 0; block_row < block_rows; block_row++) {
thisblockrow = buffer[block_row];
(*forward_DCT) (cinfo, compptr, input_ptr, thisblockrow,
(JDIMENSION) 0, blocks_across);
input_ptr += compptr->DCT_v_scaled_size;
if (ndummy > 0) {
/* Create dummy blocks at the right edge of the image. */
thisblockrow += blocks_across; /* => first dummy block */
FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
lastDC = thisblockrow[-1][0];
for (bi = 0; bi < ndummy; bi++) {
thisblockrow[bi][0] = lastDC;
}
}
}
/* If at end of image, create dummy block rows as needed.
* The tricky part here is that within each MCU, we want the DC values
* of the dummy blocks to match the last real block's DC value.
* This squeezes a few more bytes out of the resulting file...
*/
if (block_row < compptr->v_samp_factor) {
blocks_across += ndummy; /* include lower right corner */
MCUs_across = blocks_across / h_samp_factor;
do {
thisblockrow = buffer[block_row];
lastblockrow = buffer[block_row-1];
FMEMZERO((void FAR *) thisblockrow,
(size_t) blocks_across * SIZEOF(JBLOCK));
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
lastDC = lastblockrow[h_samp_factor-1][0];
for (bi = 0; bi < h_samp_factor; bi++) {
thisblockrow[bi][0] = lastDC;
}
thisblockrow += h_samp_factor; /* advance to next MCU in row */
lastblockrow += h_samp_factor;
}
} while (++block_row < compptr->v_samp_factor);
}
}
/* NB: compress_output will increment iMCU_row_num if successful.
* A suspension return will result in redoing all the work above next time.
*/
/* Emit data to the entropy encoder, sharing code with subsequent passes */
return compress_output(cinfo, input_buf);
}
/*
* Process some data in subsequent passes of a multi-pass case.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the scan.
* The data is obtained from the virtual arrays and fed to the entropy coder.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf is ignored; it is likely to be a NULL pointer.
*/
METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
int ci, xindex, yindex, yoffset;
JDIMENSION start_col;
JBLOCKARRAY blkp;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
JBLOCKROW buffer_ptr;
jpeg_component_info *compptr;
/* Align the virtual buffers for the components used in this scan.
* NB: during first pass, this is safe only because the buffers will
* already be aligned properly, so jmemmgr.c won't need to do any I/O.
*/
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
buffer[ci] = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, FALSE);
}
/* Loop to process one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yoffset + yindex] + start_col;
xindex = compptr->MCU_width;
do {
*blkp++ = buffer_ptr++;
} while (--xindex);
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->MCU_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
#endif /* FULL_COEF_BUFFER_SUPPORTED */
/*
* Initialize coefficient buffer controller.
*/
GLOBAL(void)
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_coef_ptr coef;
if (need_full_buffer) {
#ifdef FULL_COEF_BUFFER_SUPPORTED
/* Allocate a full-image virtual array for each component, */
/* padded to a multiple of samp_factor DCT blocks in each direction. */
int ci;
jpeg_component_info *compptr;
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer));
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) compptr->v_samp_factor);
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
} else {
/* We only need a single-MCU buffer. */
JBLOCKARRAY blkp;
JBLOCKROW buffer_ptr;
int bi;
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
blkp = coef->MCU_buffer;
buffer_ptr = coef->blk_buffer;
bi = C_MAX_BLOCKS_IN_MCU;
do {
*blkp++ = buffer_ptr++;
} while (--bi);
coef->whole_image[0] = NULL; /* flag for no virtual arrays */
}
coef->pub.start_pass = start_pass_coef;
cinfo->coef = &coef->pub;
}

598
dep/libjpeg/src/jccolor.c Normal file
View File

@ -0,0 +1,598 @@
/*
* jccolor.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modified 2011-2023 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains input colorspace conversion routines.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private subobject */
typedef struct {
struct jpeg_color_converter pub; /* public fields */
/* Private state for RGB->YCC conversion */
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */
} my_color_converter;
typedef my_color_converter * my_cconvert_ptr;
/**************** RGB -> YCbCr conversion: most common case **************/
/*
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011),
* previously known as Recommendation CCIR 601-1, except that Cb and Cr
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999.
* sYCC (standard luma-chroma-chroma color space with extended gamut)
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F.
* bg-sRGB and bg-sYCC (big gamut standard color spaces)
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G.
* Note that the derived conversion coefficients given in some of these
* documents are imprecise. The general conversion equations are
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B
* Cb = (B - Y) / (1 - Kb) / K
* Cr = (R - Y) / (1 - Kr) / K
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC,
* the conversion equations to be implemented are therefore
* Y = 0.299 * R + 0.587 * G + 0.114 * B
* Cb = -0.168735892 * R - 0.331264108 * G + 0.5 * B + CENTERJSAMPLE
* Cr = 0.5 * R - 0.418687589 * G - 0.081312411 * B + CENTERJSAMPLE
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
* were not represented exactly. Now we sacrifice exact representation of
* maximum red and maximum blue in order to get exact grayscales.
*
* To avoid floating-point arithmetic, we represent the fractional constants
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
* the products by 2^16, with appropriate rounding, to get the correct answer.
*
* For even more speed, we avoid doing any multiplications in the inner loop
* by precalculating the constants times R,G,B for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 9-bit to 12-bit samples it is still acceptable. It's not very
* reasonable for 16-bit samples, but if you want lossless storage
* you shouldn't be changing colorspace anyway.
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
* in the tables to save adding them separately in the inner loop.
*/
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS)
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/* We allocate one big table and divide it up into eight parts, instead of
* doing eight alloc_small requests. This lets us use a single table base
* address, which can be held in a register in the inner loops on many
* machines (more than can hold all eight addresses, anyway).
*/
#define R_Y_OFF 0 /* offset to R => Y section */
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */
#define R_CB_OFF (3*(MAXJSAMPLE+1))
#define G_CB_OFF (4*(MAXJSAMPLE+1))
#define B_CB_OFF (5*(MAXJSAMPLE+1))
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */
#define G_CR_OFF (6*(MAXJSAMPLE+1))
#define B_CR_OFF (7*(MAXJSAMPLE+1))
#define TABLE_SIZE (8*(MAXJSAMPLE+1))
/*
* Initialize for RGB->YCC colorspace conversion.
*/
METHODDEF(void)
rgb_ycc_start (j_compress_ptr cinfo)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
INT32 * rgb_ycc_tab;
INT32 i;
/* Allocate and fill in the conversion tables. */
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
TABLE_SIZE * SIZEOF(INT32));
for (i = 0; i <= MAXJSAMPLE; i++) {
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.299) * i;
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.587) * i;
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF;
rgb_ycc_tab[i+R_CB_OFF] = (- FIX(0.168735892)) * i;
rgb_ycc_tab[i+G_CB_OFF] = (- FIX(0.331264108)) * i;
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
* This ensures that the maximum output will round to MAXJSAMPLE
* not MAXJSAMPLE+1, and thus that we don't have to range-limit.
*/
rgb_ycc_tab[i+B_CB_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1;
/* B=>Cb and R=>Cr tables are the same
rgb_ycc_tab[i+R_CR_OFF] = (i << (SCALEBITS-1)) + CBCR_OFFSET + ONE_HALF-1;
*/
rgb_ycc_tab[i+G_CR_OFF] = (- FIX(0.418687589)) * i;
rgb_ycc_tab[i+B_CR_OFF] = (- FIX(0.081312411)) * i;
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
*
* Note that we change from the application's interleaved-pixel format
* to our internal noninterleaved, one-plane-per-component format. The
* input buffer is therefore three times as wide as the output buffer.
*
* A starting row offset is provided only for the output buffer. The
* caller can easily adjust the passed input_buf value to accommodate
* any row offset required on that side.
*/
METHODDEF(void)
rgb_ycc_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int r, g, b;
register INT32 * ctab = cconvert->rgb_ycc_tab;
register JSAMPROW inptr;
register JSAMPROW outptr0, outptr1, outptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr[RGB_RED]);
g = GETJSAMPLE(inptr[RGB_GREEN]);
b = GETJSAMPLE(inptr[RGB_BLUE]);
inptr += RGB_PIXELSIZE;
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
* must be too; we do not need an explicit range-limiting operation.
* Hence the value being shifted is never negative, and we don't
* need the general RIGHT_SHIFT macro.
*/
/* Y */
outptr0[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
/* Cb */
outptr1[col] = (JSAMPLE)
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
/* Cr */
outptr2[col] = (JSAMPLE)
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
}
}
}
/**************** Cases other than RGB -> YCbCr **************/
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles RGB->grayscale conversion,
* which is the same as the RGB->Y portion of RGB->YCbCr.
* We assume rgb_ycc_start has been called (we only use the Y tables).
*/
METHODDEF(void)
rgb_gray_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register INT32 y;
register INT32 * ctab = cconvert->rgb_ycc_tab;
register JSAMPROW inptr;
register JSAMPROW outptr;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr = output_buf[0][output_row++];
for (col = 0; col < num_cols; col++) {
y = ctab[R_Y_OFF + GETJSAMPLE(inptr[RGB_RED])];
y += ctab[G_Y_OFF + GETJSAMPLE(inptr[RGB_GREEN])];
y += ctab[B_Y_OFF + GETJSAMPLE(inptr[RGB_BLUE])];
inptr += RGB_PIXELSIZE;
outptr[col] = (JSAMPLE) (y >> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles Adobe-style CMYK->YCCK conversion,
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the
* same conversion as above, while passing K (black) unchanged.
* We assume rgb_ycc_start has been called.
*/
METHODDEF(void)
cmyk_ycck_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int r, g, b;
register INT32 * ctab = cconvert->rgb_ycc_tab;
register JSAMPROW inptr;
register JSAMPROW outptr0, outptr1, outptr2, outptr3;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
outptr3 = output_buf[3][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
/* K passes through as-is */
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */
inptr += 4;
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
* must be too; we do not need an explicit range-limiting operation.
* Hence the value being shifted is never negative, and we don't
* need the general RIGHT_SHIFT macro.
*/
/* Y */
outptr0[col] = (JSAMPLE)
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
>> SCALEBITS);
/* Cb */
outptr1[col] = (JSAMPLE)
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
>> SCALEBITS);
/* Cr */
outptr2[col] = (JSAMPLE)
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
>> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* [R,G,B] to [R-G,G,B-G] conversion with modulo calculation
* (forward reversible color transform).
* This can be seen as an adaption of the general RGB->YCbCr
* conversion equation with Kr = Kb = 0, while replacing the
* normalization by modulo calculation.
*/
METHODDEF(void)
rgb_rgb1_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
register int r, g, b;
register JSAMPROW inptr;
register JSAMPROW outptr0, outptr1, outptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr[RGB_RED]);
g = GETJSAMPLE(inptr[RGB_GREEN]);
b = GETJSAMPLE(inptr[RGB_BLUE]);
inptr += RGB_PIXELSIZE;
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
* (modulo) operator is equivalent to the bitmask operator AND.
*/
outptr0[col] = (JSAMPLE) ((r - g + CENTERJSAMPLE) & MAXJSAMPLE);
outptr1[col] = (JSAMPLE) g;
outptr2[col] = (JSAMPLE) ((b - g + CENTERJSAMPLE) & MAXJSAMPLE);
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles grayscale output with no conversion.
* The source can be either plain grayscale or YCC (since Y == gray).
*/
METHODDEF(void)
grayscale_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
register JSAMPROW inptr;
register JSAMPROW outptr;
register JDIMENSION count;
register int instride = cinfo->input_components;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr = output_buf[0][output_row++];
for (count = num_cols; count > 0; count--) {
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */
inptr += instride;
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* No colorspace conversion, but change from interleaved
* to separate-planes representation.
*/
METHODDEF(void)
rgb_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
register JSAMPROW inptr;
register JSAMPROW outptr0, outptr1, outptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->image_width;
while (--num_rows >= 0) {
inptr = *input_buf++;
outptr0 = output_buf[0][output_row];
outptr1 = output_buf[1][output_row];
outptr2 = output_buf[2][output_row];
output_row++;
for (col = 0; col < num_cols; col++) {
/* We can dispense with GETJSAMPLE() here */
outptr0[col] = inptr[RGB_RED];
outptr1[col] = inptr[RGB_GREEN];
outptr2[col] = inptr[RGB_BLUE];
inptr += RGB_PIXELSIZE;
}
}
}
/*
* Convert some rows of samples to the JPEG colorspace.
* This version handles multi-component colorspaces without conversion.
* We assume input_components == num_components.
*/
METHODDEF(void)
null_convert (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows)
{
register JSAMPROW inptr;
register JSAMPROW outptr;
register JDIMENSION count;
register int num_comps = cinfo->num_components;
JDIMENSION num_cols = cinfo->image_width;
int ci;
while (--num_rows >= 0) {
/* It seems fastest to make a separate pass for each component. */
for (ci = 0; ci < num_comps; ci++) {
inptr = input_buf[0] + ci;
outptr = output_buf[ci][output_row];
for (count = num_cols; count > 0; count--) {
*outptr++ = *inptr; /* don't need GETJSAMPLE() here */
inptr += num_comps;
}
}
input_buf++;
output_row++;
}
}
/*
* Empty method for start_pass.
*/
METHODDEF(void)
null_method (j_compress_ptr cinfo)
{
/* no work needed */
}
/*
* Module initialization routine for input colorspace conversion.
*/
GLOBAL(void)
jinit_color_converter (j_compress_ptr cinfo)
{
my_cconvert_ptr cconvert;
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_converter));
cinfo->cconvert = &cconvert->pub;
/* set start_pass to null method until we find out differently */
cconvert->pub.start_pass = null_method;
/* Make sure input_components agrees with in_color_space */
switch (cinfo->in_color_space) {
case JCS_GRAYSCALE:
if (cinfo->input_components != 1)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
case JCS_RGB:
case JCS_BG_RGB:
#if RGB_PIXELSIZE != 3
if (cinfo->input_components != RGB_PIXELSIZE)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
#endif /* else share code with YCbCr */
case JCS_YCbCr:
case JCS_BG_YCC:
if (cinfo->input_components != 3)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
case JCS_CMYK:
case JCS_YCCK:
if (cinfo->input_components != 4)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
break;
default: /* JCS_UNKNOWN can be anything */
if (cinfo->input_components < 1)
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
}
/* Support color transform only for RGB colorspaces */
if (cinfo->color_transform &&
cinfo->jpeg_color_space != JCS_RGB &&
cinfo->jpeg_color_space != JCS_BG_RGB)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
/* Check num_components, set conversion method based on requested space */
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
if (cinfo->num_components != 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
switch (cinfo->in_color_space) {
case JCS_GRAYSCALE:
case JCS_YCbCr:
case JCS_BG_YCC:
cconvert->pub.color_convert = grayscale_convert;
break;
case JCS_RGB:
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_gray_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_RGB:
case JCS_BG_RGB:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space != cinfo->jpeg_color_space)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
switch (cinfo->color_transform) {
case JCT_NONE:
cconvert->pub.color_convert = rgb_convert;
break;
case JCT_SUBTRACT_GREEN:
cconvert->pub.color_convert = rgb_rgb1_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_YCbCr:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
switch (cinfo->in_color_space) {
case JCS_RGB:
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_ycc_convert;
break;
case JCS_YCbCr:
cconvert->pub.color_convert = null_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_BG_YCC:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
switch (cinfo->in_color_space) {
case JCS_RGB:
/* For conversion from normal RGB input to BG_YCC representation,
* the Cb/Cr values are first computed as usual, and then
* quantized further after DCT processing by a factor of
* 2 in reference to the nominal quantization factor.
*/
/* need quantization scale by factor of 2 after DCT */
cinfo->comp_info[1].component_needed = TRUE;
cinfo->comp_info[2].component_needed = TRUE;
/* compute normal YCC first */
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = rgb_ycc_convert;
break;
case JCS_YCbCr:
/* need quantization scale by factor of 2 after DCT */
cinfo->comp_info[1].component_needed = TRUE;
cinfo->comp_info[2].component_needed = TRUE;
/*FALLTHROUGH*/
case JCS_BG_YCC:
/* Pass through for BG_YCC input */
cconvert->pub.color_convert = null_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_CMYK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
if (cinfo->in_color_space != JCS_CMYK)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
cconvert->pub.color_convert = null_convert;
break;
case JCS_YCCK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
switch (cinfo->in_color_space) {
case JCS_CMYK:
cconvert->pub.start_pass = rgb_ycc_start;
cconvert->pub.color_convert = cmyk_ycck_convert;
break;
case JCS_YCCK:
cconvert->pub.color_convert = null_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
default: /* allow null conversion of JCS_UNKNOWN */
if (cinfo->jpeg_color_space != cinfo->in_color_space ||
cinfo->num_components != cinfo->input_components)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
cconvert->pub.color_convert = null_convert;
}
}

466
dep/libjpeg/src/jcdctmgr.c Normal file
View File

@ -0,0 +1,466 @@
/*
* jcdctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2003-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the forward-DCT management logic.
* This code selects a particular DCT implementation to be used,
* and it performs related housekeeping chores including coefficient
* quantization.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/* Private subobject for this module */
typedef struct {
struct jpeg_forward_dct pub; /* public fields */
/* Pointer to the DCT routine actually in use */
forward_DCT_method_ptr do_dct[MAX_COMPONENTS];
#ifdef DCT_FLOAT_SUPPORTED
/* Same as above for the floating-point case. */
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS];
#endif
} my_fdct_controller;
typedef my_fdct_controller * my_fdct_ptr;
/* The allocated post-DCT divisor tables -- big enough for any
* supported variant and not identical to the quant table entries,
* because of scaling (especially for an unnormalized DCT) --
* are pointed to by dct_table in the per-component comp_info
* structures. Each table is given in normal array order.
*/
typedef union {
DCTELEM int_array[DCTSIZE2];
#ifdef DCT_FLOAT_SUPPORTED
FAST_FLOAT float_array[DCTSIZE2];
#endif
} divisor_table;
/* The current scaled-DCT routines require ISLOW-style divisor tables,
* so be sure to compile that code if either ISLOW or SCALING is requested.
*/
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef DCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif
/*
* Perform forward DCT on one or more blocks of a component.
*
* The input samples are taken from the sample_data[] array starting at
* position start_col, and moving to the right for any additional blocks.
* The quantized coefficients are returned in coef_blocks[].
*/
METHODDEF(void)
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_col, JDIMENSION num_blocks)
/* This version is used for integer DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index];
DCTELEM * divisors = (DCTELEM *) compptr->dct_table;
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
/* Perform the DCT */
(*do_dct) (workspace, sample_data, start_col);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
{ register DCTELEM temp, qval;
register int i;
register JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
qval = divisors[i];
temp = workspace[i];
/* Divide the coefficient value by qval, ensuring proper rounding.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
*
* In most files, at least half of the output values will be zero
* (at default quantization settings, more like three-quarters...)
* so we should ensure that this case is fast. On many machines,
* a comparison is enough cheaper than a divide to make a special test
* a win. Since both inputs will be nonnegative, we need only test
* for a < b to discover whether a/b is 0.
* If your machine's division is fast enough, define FAST_DIVIDE.
*/
#ifdef FAST_DIVIDE
#define DIVIDE_BY(a,b) a /= b
#else
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
#endif
if (temp < 0) {
temp = -temp;
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
temp = -temp;
} else {
temp += qval>>1; /* for rounding */
DIVIDE_BY(temp, qval);
}
output_ptr[i] = (JCOEF) temp;
}
}
}
}
#ifdef DCT_FLOAT_SUPPORTED
METHODDEF(void)
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_col, JDIMENSION num_blocks)
/* This version is used for floating-point DCT implementations. */
{
/* This routine is heavily used, so it's worth coding it tightly. */
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index];
FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table;
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
JDIMENSION bi;
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) {
/* Perform the DCT */
(*do_dct) (workspace, sample_data, start_col);
/* Quantize/descale the coefficients, and store into coef_blocks[] */
{ register FAST_FLOAT temp;
register int i;
register JCOEFPTR output_ptr = coef_blocks[bi];
for (i = 0; i < DCTSIZE2; i++) {
/* Apply the quantization and scaling factor */
temp = workspace[i] * divisors[i];
/* Round to nearest integer.
* Since C does not specify the direction of rounding for negative
* quotients, we have to force the dividend positive for portability.
* The maximum coefficient size is +-16K (for 12-bit data), so this
* code should work for either 16-bit or 32-bit ints.
*/
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
}
}
}
}
#endif /* DCT_FLOAT_SUPPORTED */
/*
* Initialize for a processing pass.
* Verify that all referenced Q-tables are present, and set up
* the divisor table for each one.
* In the current implementation, DCT of all components is done during
* the first pass, even if only some components will be output in the
* first scan. Hence all components should be examined here.
*/
METHODDEF(void)
start_pass_fdctmgr (j_compress_ptr cinfo)
{
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
int ci, qtblno, i;
jpeg_component_info *compptr;
int method = 0;
JQUANT_TBL * qtbl;
DCTELEM * dtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Select the proper DCT routine for this component's scaling */
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
#ifdef DCT_SCALING_SUPPORTED
case ((1 << 8) + 1):
fdct->do_dct[ci] = jpeg_fdct_1x1;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((2 << 8) + 2):
fdct->do_dct[ci] = jpeg_fdct_2x2;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((3 << 8) + 3):
fdct->do_dct[ci] = jpeg_fdct_3x3;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((4 << 8) + 4):
fdct->do_dct[ci] = jpeg_fdct_4x4;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((5 << 8) + 5):
fdct->do_dct[ci] = jpeg_fdct_5x5;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((6 << 8) + 6):
fdct->do_dct[ci] = jpeg_fdct_6x6;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((7 << 8) + 7):
fdct->do_dct[ci] = jpeg_fdct_7x7;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((9 << 8) + 9):
fdct->do_dct[ci] = jpeg_fdct_9x9;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((10 << 8) + 10):
fdct->do_dct[ci] = jpeg_fdct_10x10;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((11 << 8) + 11):
fdct->do_dct[ci] = jpeg_fdct_11x11;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((12 << 8) + 12):
fdct->do_dct[ci] = jpeg_fdct_12x12;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((13 << 8) + 13):
fdct->do_dct[ci] = jpeg_fdct_13x13;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((14 << 8) + 14):
fdct->do_dct[ci] = jpeg_fdct_14x14;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((15 << 8) + 15):
fdct->do_dct[ci] = jpeg_fdct_15x15;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((16 << 8) + 16):
fdct->do_dct[ci] = jpeg_fdct_16x16;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((16 << 8) + 8):
fdct->do_dct[ci] = jpeg_fdct_16x8;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((14 << 8) + 7):
fdct->do_dct[ci] = jpeg_fdct_14x7;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((12 << 8) + 6):
fdct->do_dct[ci] = jpeg_fdct_12x6;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((10 << 8) + 5):
fdct->do_dct[ci] = jpeg_fdct_10x5;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((8 << 8) + 4):
fdct->do_dct[ci] = jpeg_fdct_8x4;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((6 << 8) + 3):
fdct->do_dct[ci] = jpeg_fdct_6x3;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((4 << 8) + 2):
fdct->do_dct[ci] = jpeg_fdct_4x2;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((2 << 8) + 1):
fdct->do_dct[ci] = jpeg_fdct_2x1;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((8 << 8) + 16):
fdct->do_dct[ci] = jpeg_fdct_8x16;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((7 << 8) + 14):
fdct->do_dct[ci] = jpeg_fdct_7x14;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((6 << 8) + 12):
fdct->do_dct[ci] = jpeg_fdct_6x12;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((5 << 8) + 10):
fdct->do_dct[ci] = jpeg_fdct_5x10;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((4 << 8) + 8):
fdct->do_dct[ci] = jpeg_fdct_4x8;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((3 << 8) + 6):
fdct->do_dct[ci] = jpeg_fdct_3x6;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((2 << 8) + 4):
fdct->do_dct[ci] = jpeg_fdct_2x4;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
case ((1 << 8) + 2):
fdct->do_dct[ci] = jpeg_fdct_1x2;
method = JDCT_ISLOW; /* jfdctint uses islow-style table */
break;
#endif
case ((DCTSIZE << 8) + DCTSIZE):
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
fdct->do_dct[ci] = jpeg_fdct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
fdct->do_dct[ci] = jpeg_fdct_ifast;
method = JDCT_IFAST;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
fdct->do_float_dct[ci] = jpeg_fdct_float;
method = JDCT_FLOAT;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
}
break;
default:
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
}
qtblno = compptr->quant_tbl_no;
/* Make sure specified quantization table is present */
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Create divisor table from quant table */
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
/* For LL&M IDCT method, divisors are equal to raw quantization
* coefficients multiplied by 8 (to counteract scaling).
*/
dtbl = (DCTELEM *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] =
((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3);
}
fdct->pub.forward_DCT[ci] = forward_DCT;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
*/
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
dtbl = (DCTELEM *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
dtbl[i] = (DCTELEM)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3);
}
}
fdct->pub.forward_DCT[ci] = forward_DCT;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, divisors are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 8.
* What's actually stored is 1/divisor so that the inner loop can
* use a multiplication rather than a division.
*/
FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fdtbl[i] = (FAST_FLOAT)
(1.0 / ((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] *
(compptr->component_needed ? 16.0 : 8.0)));
i++;
}
}
}
fdct->pub.forward_DCT[ci] = forward_DCT_float;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
}
}
}
/*
* Initialize FDCT manager.
*/
GLOBAL(void)
jinit_forward_dct (j_compress_ptr cinfo)
{
my_fdct_ptr fdct;
int ci;
jpeg_component_info *compptr;
fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_fdct_controller));
cinfo->fdct = &fdct->pub;
fdct->pub.start_pass = start_pass_fdctmgr;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate a divisor table for each component */
compptr->dct_table = (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(divisor_table));
}
}

1656
dep/libjpeg/src/jchuff.c Normal file

File diff suppressed because it is too large Load Diff

249
dep/libjpeg/src/jcinit.c Normal file
View File

@ -0,0 +1,249 @@
/*
* jcinit.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2003-2017 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains initialization logic for the JPEG compressor.
* This routine is in charge of selecting the modules to be executed and
* making an initialization call to each one.
*
* Logically, this code belongs in jcmaster.c. It's split out because
* linking this routine implies linking the entire compression library.
* For a transcoding-only application, we want to be able to use jcmaster.c
* without linking in the whole library.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Compute JPEG image dimensions and related values.
* NOTE: this is exported for possible use by application.
* Hence it mustn't do anything that can't be done twice.
*/
GLOBAL(void)
jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo)
/* Do computations that are needed before master selection phase */
{
/* Sanity check on input image dimensions to prevent overflow in
* following calculations.
* We do check jpeg_width and jpeg_height in initial_setup in jcmaster.c,
* but image_width and image_height can come from arbitrary data,
* and we need some space for multiplication by block_size.
*/
if (((long) cinfo->image_width >> 24) || ((long) cinfo->image_height >> 24))
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
#ifdef DCT_SCALING_SUPPORTED
/* Compute actual JPEG image dimensions and DCT scaling choices. */
if (cinfo->scale_num >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/1 scaling */
cinfo->jpeg_width = cinfo->image_width * cinfo->block_size;
cinfo->jpeg_height = cinfo->image_height * cinfo->block_size;
cinfo->min_DCT_h_scaled_size = 1;
cinfo->min_DCT_v_scaled_size = 1;
} else if (cinfo->scale_num * 2 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/2 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 2L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 2L);
cinfo->min_DCT_h_scaled_size = 2;
cinfo->min_DCT_v_scaled_size = 2;
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/3 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 3L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 3L);
cinfo->min_DCT_h_scaled_size = 3;
cinfo->min_DCT_v_scaled_size = 3;
} else if (cinfo->scale_num * 4 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/4 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 4L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 4L);
cinfo->min_DCT_h_scaled_size = 4;
cinfo->min_DCT_v_scaled_size = 4;
} else if (cinfo->scale_num * 5 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/5 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 5L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 5L);
cinfo->min_DCT_h_scaled_size = 5;
cinfo->min_DCT_v_scaled_size = 5;
} else if (cinfo->scale_num * 6 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/6 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 6L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 6L);
cinfo->min_DCT_h_scaled_size = 6;
cinfo->min_DCT_v_scaled_size = 6;
} else if (cinfo->scale_num * 7 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/7 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 7L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 7L);
cinfo->min_DCT_h_scaled_size = 7;
cinfo->min_DCT_v_scaled_size = 7;
} else if (cinfo->scale_num * 8 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/8 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 8L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 8L);
cinfo->min_DCT_h_scaled_size = 8;
cinfo->min_DCT_v_scaled_size = 8;
} else if (cinfo->scale_num * 9 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/9 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 9L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 9L);
cinfo->min_DCT_h_scaled_size = 9;
cinfo->min_DCT_v_scaled_size = 9;
} else if (cinfo->scale_num * 10 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/10 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 10L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 10L);
cinfo->min_DCT_h_scaled_size = 10;
cinfo->min_DCT_v_scaled_size = 10;
} else if (cinfo->scale_num * 11 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/11 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 11L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 11L);
cinfo->min_DCT_h_scaled_size = 11;
cinfo->min_DCT_v_scaled_size = 11;
} else if (cinfo->scale_num * 12 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/12 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 12L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 12L);
cinfo->min_DCT_h_scaled_size = 12;
cinfo->min_DCT_v_scaled_size = 12;
} else if (cinfo->scale_num * 13 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/13 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 13L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 13L);
cinfo->min_DCT_h_scaled_size = 13;
cinfo->min_DCT_v_scaled_size = 13;
} else if (cinfo->scale_num * 14 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/14 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 14L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 14L);
cinfo->min_DCT_h_scaled_size = 14;
cinfo->min_DCT_v_scaled_size = 14;
} else if (cinfo->scale_num * 15 >= cinfo->scale_denom * cinfo->block_size) {
/* Provide block_size/15 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 15L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 15L);
cinfo->min_DCT_h_scaled_size = 15;
cinfo->min_DCT_v_scaled_size = 15;
} else {
/* Provide block_size/16 scaling */
cinfo->jpeg_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 16L);
cinfo->jpeg_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 16L);
cinfo->min_DCT_h_scaled_size = 16;
cinfo->min_DCT_v_scaled_size = 16;
}
#else /* !DCT_SCALING_SUPPORTED */
/* Hardwire it to "no scaling" */
cinfo->jpeg_width = cinfo->image_width;
cinfo->jpeg_height = cinfo->image_height;
cinfo->min_DCT_h_scaled_size = DCTSIZE;
cinfo->min_DCT_v_scaled_size = DCTSIZE;
#endif /* DCT_SCALING_SUPPORTED */
}
/*
* Master selection of compression modules.
* This is done once at the start of processing an image. We determine
* which modules will be used and give them appropriate initialization calls.
*/
GLOBAL(void)
jinit_compress_master (j_compress_ptr cinfo)
{
long samplesperrow;
JDIMENSION jd_samplesperrow;
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Sanity check on input image dimensions */
if (cinfo->image_height <= 0 || cinfo->image_width <= 0 ||
cinfo->input_components <= 0)
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
/* Width of an input scanline must be representable as JDIMENSION. */
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components;
jd_samplesperrow = (JDIMENSION) samplesperrow;
if ((long) jd_samplesperrow != samplesperrow)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
/* Compute JPEG image dimensions and related values. */
jpeg_calc_jpeg_dimensions(cinfo);
/* Initialize master control (includes parameter checking/processing) */
jinit_c_master_control(cinfo, FALSE /* full compression */);
/* Preprocessing */
if (! cinfo->raw_data_in) {
jinit_color_converter(cinfo);
jinit_downsampler(cinfo);
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
}
/* Forward DCT */
jinit_forward_dct(cinfo);
/* Entropy encoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code)
jinit_arith_encoder(cinfo);
else {
jinit_huff_encoder(cinfo);
}
/* Need a full-image coefficient buffer in any multi-pass mode. */
jinit_c_coef_controller(cinfo,
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);
jinit_marker_writer(cinfo);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Write the datastream header (SOI) immediately.
* Frame and scan headers are postponed till later.
* This lets application insert special markers after the SOI.
*/
(*cinfo->marker->write_file_header) (cinfo);
}

297
dep/libjpeg/src/jcmainct.c Normal file
View File

@ -0,0 +1,297 @@
/*
* jcmainct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2003-2012 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the main buffer controller for compression.
* The main buffer lies between the pre-processor and the JPEG
* compressor proper; it holds downsampled data in the JPEG colorspace.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Note: currently, there is no operating mode in which a full-image buffer
* is needed at this step. If there were, that mode could not be used with
* "raw data" input, since this module is bypassed in that case. However,
* we've left the code here for possible use in special applications.
*/
#undef FULL_MAIN_BUFFER_SUPPORTED
/* Private buffer controller object */
typedef struct {
struct jpeg_c_main_controller pub; /* public fields */
JDIMENSION cur_iMCU_row; /* number of current iMCU row */
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */
boolean suspended; /* remember if we suspended output */
J_BUF_MODE pass_mode; /* current operating mode */
/* If using just a strip buffer, this points to the entire set of buffers
* (we allocate one for each component). In the full-image case, this
* points to the currently accessible strips of the virtual arrays.
*/
JSAMPARRAY buffer[MAX_COMPONENTS];
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/* If using full-image storage, this array holds pointers to virtual-array
* control blocks for each component. Unused if not full-image storage.
*/
jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
#endif
} my_main_controller;
typedef my_main_controller * my_main_ptr;
/* Forward declarations */
METHODDEF(void) process_data_simple_main
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#ifdef FULL_MAIN_BUFFER_SUPPORTED
METHODDEF(void) process_data_buffer_main
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#endif
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
/* Do nothing in raw-data mode. */
if (cinfo->raw_data_in)
return;
mainp->cur_iMCU_row = 0; /* initialize counters */
mainp->rowgroup_ctr = 0;
mainp->suspended = FALSE;
mainp->pass_mode = pass_mode; /* save mode for use by process_data */
switch (pass_mode) {
case JBUF_PASS_THRU:
#ifdef FULL_MAIN_BUFFER_SUPPORTED
if (mainp->whole_image[0] != NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
mainp->pub.process_data = process_data_simple_main;
break;
#ifdef FULL_MAIN_BUFFER_SUPPORTED
case JBUF_SAVE_SOURCE:
case JBUF_CRANK_DEST:
case JBUF_SAVE_AND_PASS:
if (mainp->whole_image[0] == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
mainp->pub.process_data = process_data_buffer_main;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
}
/*
* Process some data.
* This routine handles the simple pass-through mode,
* where we have only a strip buffer.
*/
METHODDEF(void)
process_data_simple_main (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) {
/* Read input data if we haven't filled the main buffer yet */
if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
(*cinfo->prep->pre_process_data) (cinfo,
input_buf, in_row_ctr, in_rows_avail,
mainp->buffer, &mainp->rowgroup_ctr,
(JDIMENSION) cinfo->min_DCT_v_scaled_size);
/* If we don't have a full iMCU row buffered, return to application for
* more data. Note that preprocessor will always pad to fill the iMCU row
* at the bottom of the image.
*/
if (mainp->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size)
return;
/* Send the completed row to the compressor */
if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) {
/* If compressor did not consume the whole row, then we must need to
* suspend processing and return to the application. In this situation
* we pretend we didn't yet consume the last input row; otherwise, if
* it happened to be the last row of the image, the application would
* think we were done.
*/
if (! mainp->suspended) {
(*in_row_ctr)--;
mainp->suspended = TRUE;
}
return;
}
/* We did finish the row. Undo our little suspension hack if a previous
* call suspended; then mark the main buffer empty.
*/
if (mainp->suspended) {
(*in_row_ctr)++;
mainp->suspended = FALSE;
}
mainp->rowgroup_ctr = 0;
mainp->cur_iMCU_row++;
}
}
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/*
* Process some data.
* This routine handles all of the modes that use a full-size buffer.
*/
METHODDEF(void)
process_data_buffer_main (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail)
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
int ci;
jpeg_component_info *compptr;
boolean writing = (mainp->pass_mode != JBUF_CRANK_DEST);
while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) {
/* Realign the virtual buffers if at the start of an iMCU row. */
if (mainp->rowgroup_ctr == 0) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
mainp->buffer[ci] = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, mainp->whole_image[ci], mainp->cur_iMCU_row *
((JDIMENSION) (compptr->v_samp_factor * cinfo->min_DCT_v_scaled_size)),
(JDIMENSION) (compptr->v_samp_factor * cinfo->min_DCT_v_scaled_size),
writing);
}
/* In a read pass, pretend we just read some source data. */
if (! writing) {
*in_row_ctr += (JDIMENSION)
(cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size);
mainp->rowgroup_ctr = (JDIMENSION) cinfo->min_DCT_v_scaled_size;
}
}
/* If a write pass, read input data until the current iMCU row is full. */
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */
if (writing) {
(*cinfo->prep->pre_process_data) (cinfo,
input_buf, in_row_ctr, in_rows_avail,
mainp->buffer, &mainp->rowgroup_ctr,
(JDIMENSION) cinfo->min_DCT_v_scaled_size);
/* Return to application if we need more data to fill the iMCU row. */
if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size)
return;
}
/* Emit data, unless this is a sink-only pass. */
if (mainp->pass_mode != JBUF_SAVE_SOURCE) {
if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) {
/* If compressor did not consume the whole row, then we must need to
* suspend processing and return to the application. In this situation
* we pretend we didn't yet consume the last input row; otherwise, if
* it happened to be the last row of the image, the application would
* think we were done.
*/
if (! mainp->suspended) {
(*in_row_ctr)--;
mainp->suspended = TRUE;
}
return;
}
/* We did finish the row. Undo our little suspension hack if a previous
* call suspended; then mark the main buffer empty.
*/
if (mainp->suspended) {
(*in_row_ctr)++;
mainp->suspended = FALSE;
}
}
/* If get here, we are done with this iMCU row. Mark buffer empty. */
mainp->rowgroup_ctr = 0;
mainp->cur_iMCU_row++;
}
}
#endif /* FULL_MAIN_BUFFER_SUPPORTED */
/*
* Initialize main buffer controller.
*/
GLOBAL(void)
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_main_ptr mainp;
int ci;
jpeg_component_info *compptr;
mainp = (my_main_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_main_controller));
cinfo->main = &mainp->pub;
mainp->pub.start_pass = start_pass_main;
/* We don't need to create a buffer in raw-data mode. */
if (cinfo->raw_data_in)
return;
/* Create the buffer. It holds downsampled data, so each component
* may be of a different size.
*/
if (need_full_buffer) {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
/* Allocate a full-image virtual array for each component */
/* Note we pad the bottom to a multiple of the iMCU height */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
mainp->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
((JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor)) *
((JDIMENSION) cinfo->min_DCT_v_scaled_size),
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
}
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
} else {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
mainp->whole_image[0] = NULL; /* flag for no virtual arrays */
#endif
/* Allocate a strip buffer for each component */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
mainp->buffer[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size));
}
}
}

717
dep/libjpeg/src/jcmarker.c Normal file
View File

@ -0,0 +1,717 @@
/*
* jcmarker.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2003-2019 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains routines to write JPEG datastream markers.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
typedef enum { /* JPEG marker codes */
M_SOF0 = 0xc0,
M_SOF1 = 0xc1,
M_SOF2 = 0xc2,
M_SOF3 = 0xc3,
M_SOF5 = 0xc5,
M_SOF6 = 0xc6,
M_SOF7 = 0xc7,
M_JPG = 0xc8,
M_SOF9 = 0xc9,
M_SOF10 = 0xca,
M_SOF11 = 0xcb,
M_SOF13 = 0xcd,
M_SOF14 = 0xce,
M_SOF15 = 0xcf,
M_DHT = 0xc4,
M_DAC = 0xcc,
M_RST0 = 0xd0,
M_RST1 = 0xd1,
M_RST2 = 0xd2,
M_RST3 = 0xd3,
M_RST4 = 0xd4,
M_RST5 = 0xd5,
M_RST6 = 0xd6,
M_RST7 = 0xd7,
M_SOI = 0xd8,
M_EOI = 0xd9,
M_SOS = 0xda,
M_DQT = 0xdb,
M_DNL = 0xdc,
M_DRI = 0xdd,
M_DHP = 0xde,
M_EXP = 0xdf,
M_APP0 = 0xe0,
M_APP1 = 0xe1,
M_APP2 = 0xe2,
M_APP3 = 0xe3,
M_APP4 = 0xe4,
M_APP5 = 0xe5,
M_APP6 = 0xe6,
M_APP7 = 0xe7,
M_APP8 = 0xe8,
M_APP9 = 0xe9,
M_APP10 = 0xea,
M_APP11 = 0xeb,
M_APP12 = 0xec,
M_APP13 = 0xed,
M_APP14 = 0xee,
M_APP15 = 0xef,
M_JPG0 = 0xf0,
M_JPG8 = 0xf8,
M_JPG13 = 0xfd,
M_COM = 0xfe,
M_TEM = 0x01,
M_ERROR = 0x100
} JPEG_MARKER;
/* Private state */
typedef struct {
struct jpeg_marker_writer pub; /* public fields */
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */
} my_marker_writer;
typedef my_marker_writer * my_marker_ptr;
/*
* Basic output routines.
*
* Note that we do not support suspension while writing a marker.
* Therefore, an application using suspension must ensure that there is
* enough buffer space for the initial markers (typ. 600-700 bytes) before
* calling jpeg_start_compress, and enough space to write the trailing EOI
* (a few bytes) before calling jpeg_finish_compress. Multipass compression
* modes are not supported at all with suspension, so those two are the only
* points where markers will be written.
*/
LOCAL(void)
emit_byte (j_compress_ptr cinfo, int val)
/* Emit a byte */
{
struct jpeg_destination_mgr * dest = cinfo->dest;
*(dest->next_output_byte)++ = (JOCTET) val;
if (--dest->free_in_buffer == 0) {
if (! (*dest->empty_output_buffer) (cinfo))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
}
}
LOCAL(void)
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark)
/* Emit a marker code */
{
emit_byte(cinfo, 0xFF);
emit_byte(cinfo, (int) mark);
}
LOCAL(void)
emit_2bytes (j_compress_ptr cinfo, int value)
/* Emit a 2-byte integer; these are always MSB first in JPEG files */
{
emit_byte(cinfo, (value >> 8) & 0xFF);
emit_byte(cinfo, value & 0xFF);
}
/*
* Routines to write specific marker types.
*/
LOCAL(int)
emit_dqt (j_compress_ptr cinfo, int index)
/* Emit a DQT marker */
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */
{
JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index];
int prec;
int i;
if (qtbl == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index);
prec = 0;
for (i = 0; i <= cinfo->lim_Se; i++) {
if (qtbl->quantval[cinfo->natural_order[i]] > 255)
prec = 1;
}
if (! qtbl->sent_table) {
emit_marker(cinfo, M_DQT);
emit_2bytes(cinfo,
prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2);
emit_byte(cinfo, index + (prec<<4));
for (i = 0; i <= cinfo->lim_Se; i++) {
/* The table entries must be emitted in zigzag order. */
unsigned int qval = qtbl->quantval[cinfo->natural_order[i]];
if (prec)
emit_byte(cinfo, (int) (qval >> 8));
emit_byte(cinfo, (int) (qval & 0xFF));
}
qtbl->sent_table = TRUE;
}
return prec;
}
LOCAL(void)
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac)
/* Emit a DHT marker */
{
JHUFF_TBL * htbl;
int length, i;
if (is_ac) {
htbl = cinfo->ac_huff_tbl_ptrs[index];
index += 0x10; /* output index has AC bit set */
} else {
htbl = cinfo->dc_huff_tbl_ptrs[index];
}
if (htbl == NULL)
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index);
if (! htbl->sent_table) {
emit_marker(cinfo, M_DHT);
length = 0;
for (i = 1; i <= 16; i++)
length += htbl->bits[i];
emit_2bytes(cinfo, length + 2 + 1 + 16);
emit_byte(cinfo, index);
for (i = 1; i <= 16; i++)
emit_byte(cinfo, htbl->bits[i]);
for (i = 0; i < length; i++)
emit_byte(cinfo, htbl->huffval[i]);
htbl->sent_table = TRUE;
}
}
LOCAL(void)
emit_dac (j_compress_ptr cinfo)
/* Emit a DAC marker */
/* Since the useful info is so small, we want to emit all the tables in */
/* one DAC marker. Therefore this routine does its own scan of the table. */
{
#ifdef C_ARITH_CODING_SUPPORTED
char dc_in_use[NUM_ARITH_TBLS];
char ac_in_use[NUM_ARITH_TBLS];
int length, i;
jpeg_component_info *compptr;
for (i = 0; i < NUM_ARITH_TBLS; i++)
dc_in_use[i] = ac_in_use[i] = 0;
for (i = 0; i < cinfo->comps_in_scan; i++) {
compptr = cinfo->cur_comp_info[i];
/* DC needs no table for refinement scan */
if (cinfo->Ss == 0 && cinfo->Ah == 0)
dc_in_use[compptr->dc_tbl_no] = 1;
/* AC needs no table when not present */
if (cinfo->Se)
ac_in_use[compptr->ac_tbl_no] = 1;
}
length = 0;
for (i = 0; i < NUM_ARITH_TBLS; i++)
length += dc_in_use[i] + ac_in_use[i];
if (length) {
emit_marker(cinfo, M_DAC);
emit_2bytes(cinfo, length*2 + 2);
for (i = 0; i < NUM_ARITH_TBLS; i++) {
if (dc_in_use[i]) {
emit_byte(cinfo, i);
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4));
}
if (ac_in_use[i]) {
emit_byte(cinfo, i + 0x10);
emit_byte(cinfo, cinfo->arith_ac_K[i]);
}
}
}
#endif /* C_ARITH_CODING_SUPPORTED */
}
LOCAL(void)
emit_dri (j_compress_ptr cinfo)
/* Emit a DRI marker */
{
emit_marker(cinfo, M_DRI);
emit_2bytes(cinfo, 4); /* fixed length */
emit_2bytes(cinfo, (int) cinfo->restart_interval);
}
LOCAL(void)
emit_lse_ict (j_compress_ptr cinfo)
/* Emit an LSE inverse color transform specification marker */
{
/* Support only 1 transform */
if (cinfo->color_transform != JCT_SUBTRACT_GREEN ||
cinfo->num_components < 3)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
emit_marker(cinfo, M_JPG8);
emit_2bytes(cinfo, 24); /* fixed length */
emit_byte(cinfo, 0x0D); /* ID inverse transform specification */
emit_2bytes(cinfo, MAXJSAMPLE); /* MAXTRANS */
emit_byte(cinfo, 3); /* Nt=3 */
emit_byte(cinfo, cinfo->comp_info[1].component_id);
emit_byte(cinfo, cinfo->comp_info[0].component_id);
emit_byte(cinfo, cinfo->comp_info[2].component_id);
emit_byte(cinfo, 0x80); /* F1: CENTER1=1, NORM1=0 */
emit_2bytes(cinfo, 0); /* A(1,1)=0 */
emit_2bytes(cinfo, 0); /* A(1,2)=0 */
emit_byte(cinfo, 0); /* F2: CENTER2=0, NORM2=0 */
emit_2bytes(cinfo, 1); /* A(2,1)=1 */
emit_2bytes(cinfo, 0); /* A(2,2)=0 */
emit_byte(cinfo, 0); /* F3: CENTER3=0, NORM3=0 */
emit_2bytes(cinfo, 1); /* A(3,1)=1 */
emit_2bytes(cinfo, 0); /* A(3,2)=0 */
}
LOCAL(void)
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code)
/* Emit a SOF marker */
{
int ci;
jpeg_component_info *compptr;
emit_marker(cinfo, code);
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */
/* Make sure image isn't bigger than SOF field can handle */
if ((long) cinfo->jpeg_height > 65535L ||
(long) cinfo->jpeg_width > 65535L)
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535);
emit_byte(cinfo, cinfo->data_precision);
emit_2bytes(cinfo, (int) cinfo->jpeg_height);
emit_2bytes(cinfo, (int) cinfo->jpeg_width);
emit_byte(cinfo, cinfo->num_components);
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
emit_byte(cinfo, compptr->component_id);
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor);
emit_byte(cinfo, compptr->quant_tbl_no);
}
}
LOCAL(void)
emit_sos (j_compress_ptr cinfo)
/* Emit a SOS marker */
{
int i, td, ta;
jpeg_component_info *compptr;
emit_marker(cinfo, M_SOS);
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */
emit_byte(cinfo, cinfo->comps_in_scan);
for (i = 0; i < cinfo->comps_in_scan; i++) {
compptr = cinfo->cur_comp_info[i];
emit_byte(cinfo, compptr->component_id);
/* We emit 0 for unused field(s); this is recommended by the P&M text
* but does not seem to be specified in the standard.
*/
/* DC needs no table for refinement scan */
td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0;
/* AC needs no table when not present */
ta = cinfo->Se ? compptr->ac_tbl_no : 0;
emit_byte(cinfo, (td << 4) + ta);
}
emit_byte(cinfo, cinfo->Ss);
emit_byte(cinfo, cinfo->Se);
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al);
}
LOCAL(void)
emit_pseudo_sos (j_compress_ptr cinfo)
/* Emit a pseudo SOS marker */
{
emit_marker(cinfo, M_SOS);
emit_2bytes(cinfo, 2 + 1 + 3); /* length */
emit_byte(cinfo, 0); /* Ns */
emit_byte(cinfo, 0); /* Ss */
emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */
emit_byte(cinfo, 0); /* Ah/Al */
}
LOCAL(void)
emit_jfif_app0 (j_compress_ptr cinfo)
/* Emit a JFIF-compliant APP0 marker */
{
/*
* Length of APP0 block (2 bytes)
* Block ID (4 bytes - ASCII "JFIF")
* Zero byte (1 byte to terminate the ID string)
* Version Major, Minor (2 bytes - major first)
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm)
* Xdpu (2 bytes - dots per unit horizontal)
* Ydpu (2 bytes - dots per unit vertical)
* Thumbnail X size (1 byte)
* Thumbnail Y size (1 byte)
*/
emit_marker(cinfo, M_APP0);
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */
emit_byte(cinfo, 0x46);
emit_byte(cinfo, 0x49);
emit_byte(cinfo, 0x46);
emit_byte(cinfo, 0);
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */
emit_byte(cinfo, cinfo->JFIF_minor_version);
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */
emit_2bytes(cinfo, (int) cinfo->X_density);
emit_2bytes(cinfo, (int) cinfo->Y_density);
emit_byte(cinfo, 0); /* No thumbnail image */
emit_byte(cinfo, 0);
}
LOCAL(void)
emit_adobe_app14 (j_compress_ptr cinfo)
/* Emit an Adobe APP14 marker */
{
/*
* Length of APP14 block (2 bytes)
* Block ID (5 bytes - ASCII "Adobe")
* Version Number (2 bytes - currently 100)
* Flags0 (2 bytes - currently 0)
* Flags1 (2 bytes - currently 0)
* Color transform (1 byte)
*
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files
* now in circulation seem to use Version = 100, so that's what we write.
*
* We write the color transform byte as 1 if the JPEG color space is
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with
* whether the encoder performed a transformation, which is pretty useless.
*/
emit_marker(cinfo, M_APP14);
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */
emit_byte(cinfo, 0x64);
emit_byte(cinfo, 0x6F);
emit_byte(cinfo, 0x62);
emit_byte(cinfo, 0x65);
emit_2bytes(cinfo, 100); /* Version */
emit_2bytes(cinfo, 0); /* Flags0 */
emit_2bytes(cinfo, 0); /* Flags1 */
switch (cinfo->jpeg_color_space) {
case JCS_YCbCr:
emit_byte(cinfo, 1); /* Color transform = 1 */
break;
case JCS_YCCK:
emit_byte(cinfo, 2); /* Color transform = 2 */
break;
default:
emit_byte(cinfo, 0); /* Color transform = 0 */
}
}
/*
* These routines allow writing an arbitrary marker with parameters.
* The only intended use is to emit COM or APPn markers after calling
* write_file_header and before calling write_frame_header.
* Other uses are not guaranteed to produce desirable results.
* Counting the parameter bytes properly is the caller's responsibility.
*/
METHODDEF(void)
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
/* Emit an arbitrary marker header */
{
if (datalen > (unsigned int) 65533) /* safety check */
ERREXIT(cinfo, JERR_BAD_LENGTH);
emit_marker(cinfo, (JPEG_MARKER) marker);
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */
}
METHODDEF(void)
write_marker_byte (j_compress_ptr cinfo, int val)
/* Emit one byte of marker parameters following write_marker_header */
{
emit_byte(cinfo, val);
}
/*
* Write datastream header.
* This consists of an SOI and optional APPn markers.
* We recommend use of the JFIF marker, but not the Adobe marker,
* when using YCbCr or grayscale data. The JFIF marker is also used
* for other standard JPEG colorspaces. The Adobe marker is helpful
* to distinguish RGB, CMYK, and YCCK colorspaces.
* Note that an application can write additional header markers after
* jpeg_start_compress returns.
*/
METHODDEF(void)
write_file_header (j_compress_ptr cinfo)
{
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
emit_marker(cinfo, M_SOI); /* first the SOI */
/* SOI is defined to reset restart interval to 0 */
marker->last_restart_interval = 0;
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */
emit_jfif_app0(cinfo);
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */
emit_adobe_app14(cinfo);
}
/*
* Write frame header.
* This consists of DQT and SOFn markers,
* a conditional LSE marker and a conditional pseudo SOS marker.
* Note that we do not emit the SOF until we have emitted the DQT(s).
* This avoids compatibility problems with incorrect implementations that
* try to error-check the quant table numbers as soon as they see the SOF.
*/
METHODDEF(void)
write_frame_header (j_compress_ptr cinfo)
{
int ci, prec;
boolean is_baseline;
jpeg_component_info *compptr;
/* Emit DQT for each quantization table.
* Note that emit_dqt() suppresses any duplicate tables.
*/
prec = 0;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
prec += emit_dqt(cinfo, compptr->quant_tbl_no);
}
/* now prec is nonzero iff there are any 16-bit quant tables. */
/* Check for a non-baseline specification.
* Note we assume that Huffman table numbers won't be changed later.
*/
if (cinfo->arith_code || cinfo->progressive_mode ||
cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) {
is_baseline = FALSE;
} else {
is_baseline = TRUE;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1)
is_baseline = FALSE;
}
if (prec && is_baseline) {
is_baseline = FALSE;
/* If it's baseline except for quantizer size, warn the user */
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES);
}
}
/* Emit the proper SOF marker */
if (cinfo->arith_code) {
if (cinfo->progressive_mode)
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */
else
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */
} else {
if (cinfo->progressive_mode)
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */
else if (is_baseline)
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */
else
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */
}
/* Check to emit LSE inverse color transform specification marker */
if (cinfo->color_transform)
emit_lse_ict(cinfo);
/* Check to emit pseudo SOS marker */
if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE)
emit_pseudo_sos(cinfo);
}
/*
* Write scan header.
* This consists of DHT or DAC markers, optional DRI, and SOS.
* Compressed data will be written following the SOS.
*/
METHODDEF(void)
write_scan_header (j_compress_ptr cinfo)
{
my_marker_ptr marker = (my_marker_ptr) cinfo->marker;
int i;
jpeg_component_info *compptr;
if (cinfo->arith_code) {
/* Emit arith conditioning info. We may have some duplication
* if the file has multiple scans, but it's so small it's hardly
* worth worrying about.
*/
emit_dac(cinfo);
} else {
/* Emit Huffman tables.
* Note that emit_dht() suppresses any duplicate tables.
*/
for (i = 0; i < cinfo->comps_in_scan; i++) {
compptr = cinfo->cur_comp_info[i];
/* DC needs no table for refinement scan */
if (cinfo->Ss == 0 && cinfo->Ah == 0)
emit_dht(cinfo, compptr->dc_tbl_no, FALSE);
/* AC needs no table when not present */
if (cinfo->Se)
emit_dht(cinfo, compptr->ac_tbl_no, TRUE);
}
}
/* Emit DRI if required --- note that DRI value could change for each scan.
* We avoid wasting space with unnecessary DRIs, however.
*/
if (cinfo->restart_interval != marker->last_restart_interval) {
emit_dri(cinfo);
marker->last_restart_interval = cinfo->restart_interval;
}
emit_sos(cinfo);
}
/*
* Write datastream trailer.
*/
METHODDEF(void)
write_file_trailer (j_compress_ptr cinfo)
{
emit_marker(cinfo, M_EOI);
}
/*
* Write an abbreviated table-specification datastream.
* This consists of SOI, DQT and DHT tables, and EOI.
* Any table that is defined and not marked sent_table = TRUE will be
* emitted. Note that all tables will be marked sent_table = TRUE at exit.
*/
METHODDEF(void)
write_tables_only (j_compress_ptr cinfo)
{
int i;
emit_marker(cinfo, M_SOI);
for (i = 0; i < NUM_QUANT_TBLS; i++) {
if (cinfo->quant_tbl_ptrs[i] != NULL)
(void) emit_dqt(cinfo, i);
}
if (! cinfo->arith_code) {
for (i = 0; i < NUM_HUFF_TBLS; i++) {
if (cinfo->dc_huff_tbl_ptrs[i] != NULL)
emit_dht(cinfo, i, FALSE);
if (cinfo->ac_huff_tbl_ptrs[i] != NULL)
emit_dht(cinfo, i, TRUE);
}
}
emit_marker(cinfo, M_EOI);
}
/*
* Initialize the marker writer module.
*/
GLOBAL(void)
jinit_marker_writer (j_compress_ptr cinfo)
{
my_marker_ptr marker;
/* Create the subobject */
marker = (my_marker_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_marker_writer));
cinfo->marker = &marker->pub;
/* Initialize method pointers */
marker->pub.write_file_header = write_file_header;
marker->pub.write_frame_header = write_frame_header;
marker->pub.write_scan_header = write_scan_header;
marker->pub.write_file_trailer = write_file_trailer;
marker->pub.write_tables_only = write_tables_only;
marker->pub.write_marker_header = write_marker_header;
marker->pub.write_marker_byte = write_marker_byte;
/* Initialize private state */
marker->last_restart_interval = 0;
}

675
dep/libjpeg/src/jcmaster.c Normal file
View File

@ -0,0 +1,675 @@
/*
* jcmaster.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2003-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains master control logic for the JPEG compressor.
* These routines are concerned with parameter validation, initial setup,
* and inter-pass control (determining the number of passes and the work
* to be done in each pass).
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private state */
typedef enum {
main_pass, /* input data, also do first output step */
huff_opt_pass, /* Huffman code optimization pass */
output_pass /* data output pass */
} c_pass_type;
typedef struct {
struct jpeg_comp_master pub; /* public fields */
c_pass_type pass_type; /* the type of the current pass */
int pass_number; /* # of passes completed */
int total_passes; /* total # of passes needed */
int scan_number; /* current index in scan_info[] */
} my_comp_master;
typedef my_comp_master * my_master_ptr;
/*
* Support routines that do various essential calculations.
*/
LOCAL(void)
initial_setup (j_compress_ptr cinfo)
/* Do computations that are needed before master selection phase */
{
int ci, ssize;
jpeg_component_info *compptr;
/* Sanity check on block_size */
if (cinfo->block_size < 1 || cinfo->block_size > 16)
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size);
/* Derive natural_order from block_size */
switch (cinfo->block_size) {
case 2: cinfo->natural_order = jpeg_natural_order2; break;
case 3: cinfo->natural_order = jpeg_natural_order3; break;
case 4: cinfo->natural_order = jpeg_natural_order4; break;
case 5: cinfo->natural_order = jpeg_natural_order5; break;
case 6: cinfo->natural_order = jpeg_natural_order6; break;
case 7: cinfo->natural_order = jpeg_natural_order7; break;
default: cinfo->natural_order = jpeg_natural_order;
}
/* Derive lim_Se from block_size */
cinfo->lim_Se = cinfo->block_size < DCTSIZE ?
cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1;
/* Sanity check on image dimensions */
if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 ||
cinfo->num_components <= 0)
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
/* Make sure image isn't bigger than I can handle */
if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION ||
(long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION)
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */
if (cinfo->data_precision < 8 || cinfo->data_precision > 12)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Check that number of components won't exceed internal array sizes */
if (cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
/* Compute maximum sampling factors; check factor validity */
cinfo->max_h_samp_factor = 1;
cinfo->max_v_samp_factor = 1;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
ERREXIT(cinfo, JERR_BAD_SAMPLING);
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
compptr->h_samp_factor);
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
compptr->v_samp_factor);
}
/* Compute dimensions of components */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Fill in the correct component_index value; don't rely on application */
compptr->component_index = ci;
/* In selecting the actual DCT scaling for each component, we try to
* scale down the chroma components via DCT scaling rather than downsampling.
* This saves time if the downsampler gets to use 1:1 scaling.
* Note this code adapts subsampling ratios which are powers of 2.
*/
ssize = 1;
#ifdef DCT_SCALING_SUPPORTED
if (! cinfo->raw_data_in)
while (cinfo->min_DCT_h_scaled_size * ssize <=
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) ==
0) {
ssize = ssize * 2;
}
#endif
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
ssize = 1;
#ifdef DCT_SCALING_SUPPORTED
if (! cinfo->raw_data_in)
while (cinfo->min_DCT_v_scaled_size * ssize <=
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) &&
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) ==
0) {
ssize = ssize * 2;
}
#endif
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
/* We don't support DCT ratios larger than 2. */
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
/* Size in DCT blocks */
compptr->width_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor,
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
compptr->height_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor,
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
/* Size in samples */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up((long) cinfo->jpeg_width *
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up((long) cinfo->jpeg_height *
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
/* Don't need quantization scale after DCT,
* until color conversion says otherwise.
*/
compptr->component_needed = FALSE;
}
/* Compute number of fully interleaved MCU rows (number of times that
* main controller will call coefficient controller).
*/
cinfo->total_iMCU_rows = (JDIMENSION)
jdiv_round_up((long) cinfo->jpeg_height,
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
}
#ifdef C_MULTISCAN_FILES_SUPPORTED
LOCAL(void)
validate_script (j_compress_ptr cinfo)
/* Verify that the scan script in cinfo->scan_info[] is valid; also
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode.
*/
{
const jpeg_scan_info * scanptr;
int scanno, ncomps, ci, coefi, thisi;
int Ss, Se, Ah, Al;
boolean component_sent[MAX_COMPONENTS];
#ifdef C_PROGRESSIVE_SUPPORTED
int * last_bitpos_ptr;
int last_bitpos[MAX_COMPONENTS][DCTSIZE2];
/* -1 until that coefficient has been seen; then last Al for it */
#endif
if (cinfo->num_scans <= 0)
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0);
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1;
* for progressive JPEG, no scan can have this.
*/
scanptr = cinfo->scan_info;
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) {
#ifdef C_PROGRESSIVE_SUPPORTED
cinfo->progressive_mode = TRUE;
last_bitpos_ptr = & last_bitpos[0][0];
for (ci = 0; ci < cinfo->num_components; ci++)
for (coefi = 0; coefi < DCTSIZE2; coefi++)
*last_bitpos_ptr++ = -1;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
cinfo->progressive_mode = FALSE;
for (ci = 0; ci < cinfo->num_components; ci++)
component_sent[ci] = FALSE;
}
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) {
/* Validate component indexes */
ncomps = scanptr->comps_in_scan;
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN);
for (ci = 0; ci < ncomps; ci++) {
thisi = scanptr->component_index[ci];
if (thisi < 0 || thisi >= cinfo->num_components)
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
/* Components must appear in SOF order within each scan */
if (ci > 0 && thisi <= scanptr->component_index[ci-1])
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
}
/* Validate progression parameters */
Ss = scanptr->Ss;
Se = scanptr->Se;
Ah = scanptr->Ah;
Al = scanptr->Al;
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that
* seems wrong: the upper bound ought to depend on data precision.
* Perhaps they really meant 0..N+1 for N-bit precision.
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in
* out-of-range reconstructed DC values during the first DC scan,
* which might cause problems for some decoders.
*/
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 ||
Ah < 0 || Ah > (cinfo->data_precision > 8 ? 13 : 10) ||
Al < 0 || Al > (cinfo->data_precision > 8 ? 13 : 10))
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
if (Ss == 0) {
if (Se != 0) /* DC and AC together not OK */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
} else {
if (ncomps != 1) /* AC scans must be for only one component */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
}
for (ci = 0; ci < ncomps; ci++) {
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0];
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
for (coefi = Ss; coefi <= Se; coefi++) {
if (last_bitpos_ptr[coefi] < 0) {
/* first scan of this coefficient */
if (Ah != 0)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
} else {
/* not first scan */
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
}
last_bitpos_ptr[coefi] = Al;
}
}
#endif
} else {
/* For sequential JPEG, all progression parameters must be these: */
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0)
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno);
/* Make sure components are not sent twice */
for (ci = 0; ci < ncomps; ci++) {
thisi = scanptr->component_index[ci];
if (component_sent[thisi])
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno);
component_sent[thisi] = TRUE;
}
}
}
/* Now verify that everything got sent. */
if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
/* For progressive mode, we only check that at least some DC data
* got sent for each component; the spec does not require that all bits
* of all coefficients be transmitted. Would it be wiser to enforce
* transmission of all coefficient bits??
*/
for (ci = 0; ci < cinfo->num_components; ci++) {
if (last_bitpos[ci][0] < 0)
ERREXIT(cinfo, JERR_MISSING_DATA);
}
#endif
} else {
for (ci = 0; ci < cinfo->num_components; ci++) {
if (! component_sent[ci])
ERREXIT(cinfo, JERR_MISSING_DATA);
}
}
}
LOCAL(void)
reduce_script (j_compress_ptr cinfo)
/* Adapt scan script for use with reduced block size;
* assume that script has been validated before.
*/
{
jpeg_scan_info * scanptr;
int idxout, idxin;
/* Circumvent const declaration for this function */
scanptr = (jpeg_scan_info *) cinfo->scan_info;
idxout = 0;
for (idxin = 0; idxin < cinfo->num_scans; idxin++) {
/* After skipping, idxout becomes smaller than idxin */
if (idxin != idxout)
/* Copy rest of data;
* note we stay in given chunk of allocated memory.
*/
scanptr[idxout] = scanptr[idxin];
if (scanptr[idxout].Ss > cinfo->lim_Se)
/* Entire scan out of range - skip this entry */
continue;
if (scanptr[idxout].Se > cinfo->lim_Se)
/* Limit scan to end of block */
scanptr[idxout].Se = cinfo->lim_Se;
idxout++;
}
cinfo->num_scans = idxout;
}
#endif /* C_MULTISCAN_FILES_SUPPORTED */
LOCAL(void)
select_scan_parameters (j_compress_ptr cinfo)
/* Set up the scan parameters for the current scan */
{
int ci;
#ifdef C_MULTISCAN_FILES_SUPPORTED
if (cinfo->scan_info != NULL) {
/* Prepare for current scan --- the script is already validated */
my_master_ptr master = (my_master_ptr) cinfo->master;
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number;
cinfo->comps_in_scan = scanptr->comps_in_scan;
for (ci = 0; ci < scanptr->comps_in_scan; ci++) {
cinfo->cur_comp_info[ci] =
&cinfo->comp_info[scanptr->component_index[ci]];
}
if (cinfo->progressive_mode) {
cinfo->Ss = scanptr->Ss;
cinfo->Se = scanptr->Se;
cinfo->Ah = scanptr->Ah;
cinfo->Al = scanptr->Al;
return;
}
}
else
#endif
{
/* Prepare for single sequential-JPEG scan containing all components */
if (cinfo->num_components > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPS_IN_SCAN);
cinfo->comps_in_scan = cinfo->num_components;
for (ci = 0; ci < cinfo->num_components; ci++) {
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci];
}
}
cinfo->Ss = 0;
cinfo->Se = cinfo->block_size * cinfo->block_size - 1;
cinfo->Ah = 0;
cinfo->Al = 0;
}
LOCAL(void)
per_scan_setup (j_compress_ptr cinfo)
/* Do computations that are needed before processing a JPEG scan */
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */
{
int ci, mcublks, tmp;
jpeg_component_info *compptr;
if (cinfo->comps_in_scan == 1) {
/* Noninterleaved (single-component) scan */
compptr = cinfo->cur_comp_info[0];
/* Overall image size in MCUs */
cinfo->MCUs_per_row = compptr->width_in_blocks;
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
/* For noninterleaved scan, always one block per MCU */
compptr->MCU_width = 1;
compptr->MCU_height = 1;
compptr->MCU_blocks = 1;
compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
compptr->last_col_width = 1;
/* For noninterleaved scans, it is convenient to define last_row_height
* as the number of block rows present in the last iMCU row.
*/
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (tmp == 0) tmp = compptr->v_samp_factor;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
cinfo->blocks_in_MCU = 1;
cinfo->MCU_membership[0] = 0;
} else {
/* Interleaved (multi-component) scan */
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
MAX_COMPS_IN_SCAN);
/* Overall image size in MCUs */
cinfo->MCUs_per_row = (JDIMENSION)
jdiv_round_up((long) cinfo->jpeg_width,
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
cinfo->MCU_rows_in_scan = cinfo->total_iMCU_rows;
cinfo->blocks_in_MCU = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Sampling factors give # of blocks of component in each MCU */
compptr->MCU_width = compptr->h_samp_factor;
compptr->MCU_height = compptr->v_samp_factor;
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
/* Figure number of non-dummy blocks in last MCU column & row */
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
if (tmp == 0) tmp = compptr->MCU_width;
compptr->last_col_width = tmp;
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
if (tmp == 0) tmp = compptr->MCU_height;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
mcublks = compptr->MCU_blocks;
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU)
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
while (mcublks-- > 0) {
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
}
}
}
/* Convert restart specified in rows to actual MCU count. */
/* Note that count must fit in 16 bits, so we provide limiting. */
if (cinfo->restart_in_rows > 0) {
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row;
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L);
}
}
/*
* Per-pass setup.
* This is called at the beginning of each pass. We determine which modules
* will be active during this pass and give them appropriate start_pass calls.
* We also set is_last_pass to indicate whether any more passes will be
* required.
*/
METHODDEF(void)
prepare_for_pass (j_compress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
switch (master->pass_type) {
case main_pass:
/* Initial pass: will collect input data, and do either Huffman
* optimization or data output for the first scan.
*/
select_scan_parameters(cinfo);
per_scan_setup(cinfo);
if (! cinfo->raw_data_in) {
(*cinfo->cconvert->start_pass) (cinfo);
(*cinfo->downsample->start_pass) (cinfo);
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU);
}
(*cinfo->fdct->start_pass) (cinfo);
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding);
(*cinfo->coef->start_pass) (cinfo,
(master->total_passes > 1 ?
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
if (cinfo->optimize_coding) {
/* No immediate data output; postpone writing frame/scan headers */
master->pub.call_pass_startup = FALSE;
} else {
/* Will write frame/scan headers at first jpeg_write_scanlines call */
master->pub.call_pass_startup = TRUE;
}
break;
#ifdef ENTROPY_OPT_SUPPORTED
case huff_opt_pass:
/* Do Huffman optimization for a scan after the first one. */
select_scan_parameters(cinfo);
per_scan_setup(cinfo);
if (cinfo->Ss != 0 || cinfo->Ah == 0) {
(*cinfo->entropy->start_pass) (cinfo, TRUE);
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
master->pub.call_pass_startup = FALSE;
break;
}
/* Special case: Huffman DC refinement scans need no Huffman table
* and therefore we can skip the optimization pass for them.
*/
master->pass_type = output_pass;
master->pass_number++;
/*FALLTHROUGH*/
#endif
case output_pass:
/* Do a data-output pass. */
/* We need not repeat per-scan setup if prior optimization pass did it. */
if (! cinfo->optimize_coding) {
select_scan_parameters(cinfo);
per_scan_setup(cinfo);
}
(*cinfo->entropy->start_pass) (cinfo, FALSE);
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST);
/* We emit frame/scan headers now */
if (master->scan_number == 0)
(*cinfo->marker->write_frame_header) (cinfo);
(*cinfo->marker->write_scan_header) (cinfo);
master->pub.call_pass_startup = FALSE;
break;
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
}
master->pub.is_last_pass = (master->pass_number == master->total_passes-1);
/* Set up progress monitor's pass info if present */
if (cinfo->progress != NULL) {
cinfo->progress->completed_passes = master->pass_number;
cinfo->progress->total_passes = master->total_passes;
}
}
/*
* Special start-of-pass hook.
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE.
* In single-pass processing, we need this hook because we don't want to
* write frame/scan headers during jpeg_start_compress; we want to let the
* application write COM markers etc. between jpeg_start_compress and the
* jpeg_write_scanlines loop.
* In multi-pass processing, this routine is not used.
*/
METHODDEF(void)
pass_startup (j_compress_ptr cinfo)
{
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */
(*cinfo->marker->write_frame_header) (cinfo);
(*cinfo->marker->write_scan_header) (cinfo);
}
/*
* Finish up at end of pass.
*/
METHODDEF(void)
finish_pass_master (j_compress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
/* The entropy coder always needs an end-of-pass call,
* either to analyze statistics or to flush its output buffer.
*/
(*cinfo->entropy->finish_pass) (cinfo);
/* Update state for next pass */
switch (master->pass_type) {
case main_pass:
/* next pass is either output of scan 0 (after optimization)
* or output of scan 1 (if no optimization).
*/
master->pass_type = output_pass;
if (! cinfo->optimize_coding)
master->scan_number++;
break;
case huff_opt_pass:
/* next pass is always output of current scan */
master->pass_type = output_pass;
break;
case output_pass:
/* next pass is either optimization or output of next scan */
if (cinfo->optimize_coding)
master->pass_type = huff_opt_pass;
master->scan_number++;
break;
}
master->pass_number++;
}
/*
* Initialize master compression control.
*/
GLOBAL(void)
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only)
{
my_master_ptr master;
master = (my_master_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_comp_master));
cinfo->master = &master->pub;
master->pub.prepare_for_pass = prepare_for_pass;
master->pub.pass_startup = pass_startup;
master->pub.finish_pass = finish_pass_master;
master->pub.is_last_pass = FALSE;
/* Validate parameters, determine derived values */
initial_setup(cinfo);
if (cinfo->scan_info != NULL) {
#ifdef C_MULTISCAN_FILES_SUPPORTED
validate_script(cinfo);
if (cinfo->block_size < DCTSIZE)
reduce_script(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
cinfo->progressive_mode = FALSE;
cinfo->num_scans = 1;
}
if (cinfo->optimize_coding)
cinfo->arith_code = FALSE; /* disable arithmetic coding */
else if (! cinfo->arith_code &&
(cinfo->progressive_mode ||
(cinfo->block_size > 1 && cinfo->block_size < DCTSIZE)))
/* TEMPORARY HACK ??? */
/* assume default tables no good for progressive or reduced AC mode */
cinfo->optimize_coding = TRUE; /* force Huffman optimization */
/* Initialize my private state */
if (transcode_only) {
/* no main pass in transcoding */
if (cinfo->optimize_coding)
master->pass_type = huff_opt_pass;
else
master->pass_type = output_pass;
} else {
/* for normal compression, first pass is always this type: */
master->pass_type = main_pass;
}
master->scan_number = 0;
master->pass_number = 0;
if (cinfo->optimize_coding)
master->total_passes = cinfo->num_scans * 2;
else
master->total_passes = cinfo->num_scans;
}

244
dep/libjpeg/src/jcomapi.c Normal file
View File

@ -0,0 +1,244 @@
/*
* jcomapi.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* Modified 2019 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface routines that are used for both
* compression and decompression.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Abort processing of a JPEG compression or decompression operation,
* but don't destroy the object itself.
*
* For this, we merely clean up all the nonpermanent memory pools.
* Note that temp files (virtual arrays) are not allowed to belong to
* the permanent pool, so we will be able to close all temp files here.
* Closing a data source or destination, if necessary, is the application's
* responsibility.
*/
GLOBAL(void)
jpeg_abort (j_common_ptr cinfo)
{
int pool;
/* Do nothing if called on a not-initialized or destroyed JPEG object. */
if (cinfo->mem == NULL)
return;
/* Releasing pools in reverse order might help avoid fragmentation
* with some (brain-damaged) malloc libraries.
*/
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
(*cinfo->mem->free_pool) (cinfo, pool);
}
/* Reset overall state for possible reuse of object */
if (cinfo->is_decompressor) {
cinfo->global_state = DSTATE_START;
/* Try to keep application from accessing now-deleted marker list.
* A bit kludgy to do it here, but this is the most central place.
*/
((j_decompress_ptr) cinfo)->marker_list = NULL;
} else {
cinfo->global_state = CSTATE_START;
}
}
/*
* Destruction of a JPEG object.
*
* Everything gets deallocated except the master jpeg_compress_struct itself
* and the error manager struct. Both of these are supplied by the application
* and must be freed, if necessary, by the application. (Often they are on
* the stack and so don't need to be freed anyway.)
* Closing a data source or destination, if necessary, is the application's
* responsibility.
*/
GLOBAL(void)
jpeg_destroy (j_common_ptr cinfo)
{
/* We need only tell the memory manager to release everything. */
/* NB: mem pointer is NULL if memory mgr failed to initialize. */
if (cinfo->mem != NULL)
(*cinfo->mem->self_destruct) (cinfo);
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
cinfo->global_state = 0; /* mark it destroyed */
}
/*
* Convenience routines for allocating quantization and Huffman tables.
* (Would jutils.c be a more reasonable place to put these?)
*/
GLOBAL(JQUANT_TBL *)
jpeg_alloc_quant_table (j_common_ptr cinfo)
{
JQUANT_TBL *tbl;
tbl = (JQUANT_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}
GLOBAL(JHUFF_TBL *)
jpeg_alloc_huff_table (j_common_ptr cinfo)
{
JHUFF_TBL *tbl;
tbl = (JHUFF_TBL *)
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
tbl->sent_table = FALSE; /* make sure this is false in any new table */
return tbl;
}
/*
* Set up the standard Huffman tables (cf. JPEG standard section K.3).
* IMPORTANT: these are only valid for 8-bit data precision!
* (Would jutils.c be a more reasonable place to put this?)
*/
GLOBAL(JHUFF_TBL *)
jpeg_std_huff_table (j_common_ptr cinfo, boolean isDC, int tblno)
{
JHUFF_TBL **htblptr, *htbl;
const UINT8 *bits, *val;
int nsymbols, len;
static const UINT8 bits_dc_luminance[17] =
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
static const UINT8 val_dc_luminance[] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
static const UINT8 bits_dc_chrominance[17] =
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
static const UINT8 val_dc_chrominance[] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
static const UINT8 bits_ac_luminance[17] =
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
static const UINT8 val_ac_luminance[] =
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa };
static const UINT8 bits_ac_chrominance[17] =
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
static const UINT8 val_ac_chrominance[] =
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa };
if (cinfo->is_decompressor) {
if (isDC)
htblptr = ((j_decompress_ptr) cinfo)->dc_huff_tbl_ptrs;
else
htblptr = ((j_decompress_ptr) cinfo)->ac_huff_tbl_ptrs;
} else {
if (isDC)
htblptr = ((j_compress_ptr) cinfo)->dc_huff_tbl_ptrs;
else
htblptr = ((j_compress_ptr) cinfo)->ac_huff_tbl_ptrs;
}
switch (tblno) {
case 0:
if (isDC) {
bits = bits_dc_luminance;
val = val_dc_luminance;
} else {
bits = bits_ac_luminance;
val = val_ac_luminance;
}
break;
case 1:
if (isDC) {
bits = bits_dc_chrominance;
val = val_dc_chrominance;
} else {
bits = bits_ac_chrominance;
val = val_ac_chrominance;
}
break;
default:
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
return NULL; /* avoid compiler warnings for uninitialized variables */
}
if (htblptr[tblno] == NULL)
htblptr[tblno] = jpeg_alloc_huff_table(cinfo);
htbl = htblptr[tblno];
/* Copy the number-of-symbols-of-each-code-length counts */
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
/* Validate the counts. We do this here mainly so we can copy the right
* number of symbols from the val[] array, without risking marching off
* the end of memory. jxhuff.c will do a more thorough test later.
*/
nsymbols = 0;
for (len = 1; len <= 16; len++)
nsymbols += bits[len];
if (nsymbols > 256)
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
if (nsymbols > 0)
MEMCOPY(htbl->huffval, val, nsymbols * SIZEOF(UINT8));
/* Initialize sent_table FALSE so table will be written to JPEG file. */
htbl->sent_table = FALSE;
return htbl;
}

591
dep/libjpeg/src/jcparam.c Normal file
View File

@ -0,0 +1,591 @@
/*
* jcparam.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2003-2022 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains optional default-setting code for the JPEG compressor.
* Applications do not have to use this file, but those that don't use it
* must know a lot more about the innards of the JPEG code.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Quantization table setup routines
*/
GLOBAL(void)
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
const unsigned int *basic_table,
int scale_factor, boolean force_baseline)
/* Define a quantization table equal to the basic_table times
* a scale factor (given as a percentage).
* If force_baseline is TRUE, the computed quantization table entries
* are limited to 1..255 for JPEG baseline compatibility.
*/
{
JQUANT_TBL ** qtblptr;
int i;
long temp;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
if (*qtblptr == NULL)
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
for (i = 0; i < DCTSIZE2; i++) {
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
/* limit the values to the valid range */
if (temp <= 0L) temp = 1L;
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
if (force_baseline && temp > 255L)
temp = 255L; /* limit to baseline range if requested */
(*qtblptr)->quantval[i] = (UINT16) temp;
}
/* Initialize sent_table FALSE so table will be written to JPEG file. */
(*qtblptr)->sent_table = FALSE;
}
/* These are the sample quantization tables given in JPEG spec section K.1.
* NOTE: chrominance DC value is changed from 17 to 16 for lossless support.
* The spec says that the values given produce "good" quality,
* and when divided by 2, "very good" quality.
*/
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99
};
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
16, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 66, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99
};
GLOBAL(void)
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables
* and straight percentage-scaling quality scales.
* This entry point allows different scalings for luminance and chrominance.
*/
{
/* Set up two quantization tables using the specified scaling */
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
cinfo->q_scale_factor[0], force_baseline);
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
cinfo->q_scale_factor[1], force_baseline);
}
GLOBAL(void)
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables
* and a straight percentage-scaling quality scale. In most cases it's better
* to use jpeg_set_quality (below); this entry point is provided for
* applications that insist on a linear percentage scaling.
*/
{
/* Set up two quantization tables using the specified scaling */
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
scale_factor, force_baseline);
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
scale_factor, force_baseline);
}
GLOBAL(int)
jpeg_quality_scaling (int quality)
/* Convert a user-specified quality rating to a percentage scaling factor
* for an underlying quantization table, using our recommended scaling curve.
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
*/
{
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
if (quality <= 0) quality = 1;
if (quality > 100) quality = 100;
/* The basic table is used as-is (scaling 100) for a quality of 50.
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
* to make all the table entries 1 (hence, minimum quantization loss).
* Qualities 1..50 are converted to scaling percentage 5000/Q.
*/
if (quality < 50)
quality = 5000 / quality;
else
quality = 200 - quality*2;
return quality;
}
GLOBAL(void)
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables.
* This is the standard quality-adjusting entry point for typical user
* interfaces; only those who want detailed control over quantization tables
* would use the preceding routines directly.
*/
{
/* Convert user 0-100 rating to percentage scaling */
quality = jpeg_quality_scaling(quality);
/* Set up standard quality tables */
jpeg_set_linear_quality(cinfo, quality, force_baseline);
}
/*
* Reset standard Huffman tables
*/
LOCAL(void)
std_huff_tables (j_compress_ptr cinfo)
{
if (cinfo->dc_huff_tbl_ptrs[0] != NULL)
(void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 0);
if (cinfo->ac_huff_tbl_ptrs[0] != NULL)
(void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 0);
if (cinfo->dc_huff_tbl_ptrs[1] != NULL)
(void) jpeg_std_huff_table((j_common_ptr) cinfo, TRUE, 1);
if (cinfo->ac_huff_tbl_ptrs[1] != NULL)
(void) jpeg_std_huff_table((j_common_ptr) cinfo, FALSE, 1);
}
/*
* Default parameter setup for compression.
*
* Applications that don't choose to use this routine must do their
* own setup of all these parameters. Alternately, you can call this
* to establish defaults and then alter parameters selectively. This
* is the recommended approach since, if we add any new parameters,
* your code will still work (they'll be set to reasonable defaults).
*/
GLOBAL(void)
jpeg_set_defaults (j_compress_ptr cinfo)
{
int i;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Allocate comp_info array large enough for maximum component count.
* Array is made permanent in case application wants to compress
* multiple images at same param settings.
*/
if (cinfo->comp_info == NULL)
cinfo->comp_info = (jpeg_component_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
/* Initialize everything not dependent on the color space */
cinfo->scale_num = 1; /* 1:1 scaling */
cinfo->scale_denom = 1;
cinfo->data_precision = BITS_IN_JSAMPLE;
/* Set up two quantization tables using default quality of 75 */
jpeg_set_quality(cinfo, 75, TRUE);
/* Reset standard Huffman tables */
std_huff_tables(cinfo);
/* Initialize default arithmetic coding conditioning */
for (i = 0; i < NUM_ARITH_TBLS; i++) {
cinfo->arith_dc_L[i] = 0;
cinfo->arith_dc_U[i] = 1;
cinfo->arith_ac_K[i] = 5;
}
/* Default is no multiple-scan output */
cinfo->scan_info = NULL;
cinfo->num_scans = 0;
/* Expect normal source image, not raw downsampled data */
cinfo->raw_data_in = FALSE;
/* The standard Huffman tables are only valid for 8-bit data precision.
* If the precision is higher, use arithmetic coding.
* (Alternatively, using Huffman coding would be possible with forcing
* optimization on so that usable tables will be computed, or by
* supplying default tables that are valid for the desired precision.)
* Otherwise, use Huffman coding by default.
*/
cinfo->arith_code = cinfo->data_precision > 8 ? TRUE : FALSE;
/* By default, don't do extra passes to optimize entropy coding */
cinfo->optimize_coding = FALSE;
/* By default, use the simpler non-cosited sampling alignment */
cinfo->CCIR601_sampling = FALSE;
/* By default, apply fancy downsampling */
cinfo->do_fancy_downsampling = TRUE;
/* No input smoothing */
cinfo->smoothing_factor = 0;
/* DCT algorithm preference */
cinfo->dct_method = JDCT_DEFAULT;
/* No restart markers */
cinfo->restart_interval = 0;
cinfo->restart_in_rows = 0;
/* Fill in default JFIF marker parameters. Note that whether the marker
* will actually be written is determined by jpeg_set_colorspace.
*
* By default, the library emits JFIF version code 1.01.
* An application that wants to emit JFIF 1.02 extension markers should set
* JFIF_minor_version to 2. We could probably get away with just defaulting
* to 1.02, but there may still be some decoders in use that will complain
* about that; saying 1.01 should minimize compatibility problems.
*
* For wide gamut colorspaces (BG_RGB and BG_YCC), the major version will be
* overridden by jpeg_set_colorspace and set to 2.
*/
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
cinfo->JFIF_minor_version = 1;
cinfo->density_unit = 0; /* Pixel size is unknown by default */
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
cinfo->Y_density = 1;
/* No color transform */
cinfo->color_transform = JCT_NONE;
/* Choose JPEG colorspace based on input space, set defaults accordingly */
jpeg_default_colorspace(cinfo);
}
/*
* Select an appropriate JPEG colorspace for in_color_space.
*/
GLOBAL(void)
jpeg_default_colorspace (j_compress_ptr cinfo)
{
switch (cinfo->in_color_space) {
case JCS_UNKNOWN:
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
break;
case JCS_GRAYSCALE:
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
break;
case JCS_RGB:
jpeg_set_colorspace(cinfo, JCS_YCbCr);
break;
case JCS_YCbCr:
jpeg_set_colorspace(cinfo, JCS_YCbCr);
break;
case JCS_CMYK:
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
break;
case JCS_YCCK:
jpeg_set_colorspace(cinfo, JCS_YCCK);
break;
case JCS_BG_RGB:
/* No translation for now -- conversion to BG_YCC not yet supportet */
jpeg_set_colorspace(cinfo, JCS_BG_RGB);
break;
case JCS_BG_YCC:
jpeg_set_colorspace(cinfo, JCS_BG_YCC);
break;
default:
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
}
}
/*
* Set the JPEG colorspace, and choose colorspace-dependent default values.
*/
GLOBAL(void)
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
{
jpeg_component_info * compptr;
int ci;
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
(compptr = &cinfo->comp_info[index], \
compptr->component_id = (id), \
compptr->h_samp_factor = (hsamp), \
compptr->v_samp_factor = (vsamp), \
compptr->quant_tbl_no = (quant), \
compptr->dc_tbl_no = (dctbl), \
compptr->ac_tbl_no = (actbl) )
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
* tables 1 for chrominance components.
*/
cinfo->jpeg_color_space = colorspace;
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
switch (colorspace) {
case JCS_UNKNOWN:
cinfo->num_components = cinfo->input_components;
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
for (ci = 0; ci < cinfo->num_components; ci++) {
SET_COMP(ci, ci, 1,1, 0, 0,0);
}
break;
case JCS_GRAYSCALE:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->num_components = 1;
/* JFIF specifies component ID 1 */
SET_COMP(0, 0x01, 1,1, 0, 0,0);
break;
case JCS_RGB:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
cinfo->num_components = 3;
SET_COMP(0, 0x52 /* 'R' */, 1,1,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
SET_COMP(2, 0x42 /* 'B' */, 1,1,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
break;
case JCS_YCbCr:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->num_components = 3;
/* JFIF specifies component IDs 1,2,3 */
/* We default to 2x2 subsamples of chrominance */
SET_COMP(0, 0x01, 2,2, 0, 0,0);
SET_COMP(1, 0x02, 1,1, 1, 1,1);
SET_COMP(2, 0x03, 1,1, 1, 1,1);
break;
case JCS_CMYK:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
cinfo->num_components = 4;
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
break;
case JCS_YCCK:
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
cinfo->num_components = 4;
SET_COMP(0, 0x01, 2,2, 0, 0,0);
SET_COMP(1, 0x02, 1,1, 1, 1,1);
SET_COMP(2, 0x03, 1,1, 1, 1,1);
SET_COMP(3, 0x04, 2,2, 0, 0,0);
break;
case JCS_BG_RGB:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */
cinfo->num_components = 3;
/* Add offset 0x20 to the normal R/G/B component IDs */
SET_COMP(0, 0x72 /* 'r' */, 1,1,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
SET_COMP(1, 0x67 /* 'g' */, 1,1, 0, 0,0);
SET_COMP(2, 0x62 /* 'b' */, 1,1,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0,
cinfo->color_transform == JCT_SUBTRACT_GREEN ? 1 : 0);
break;
case JCS_BG_YCC:
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
cinfo->JFIF_major_version = 2; /* Set JFIF major version = 2 */
cinfo->num_components = 3;
/* Add offset 0x20 to the normal Cb/Cr component IDs */
/* We default to 2x2 subsamples of chrominance */
SET_COMP(0, 0x01, 2,2, 0, 0,0);
SET_COMP(1, 0x22, 1,1, 1, 1,1);
SET_COMP(2, 0x23, 1,1, 1, 1,1);
break;
default:
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
}
}
#ifdef C_PROGRESSIVE_SUPPORTED
LOCAL(jpeg_scan_info *)
fill_a_scan (jpeg_scan_info * scanptr, int ci,
int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for specified component */
{
scanptr->comps_in_scan = 1;
scanptr->component_index[0] = ci;
scanptr->Ss = Ss;
scanptr->Se = Se;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
return scanptr;
}
LOCAL(jpeg_scan_info *)
fill_scans (jpeg_scan_info * scanptr, int ncomps,
int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for each component */
{
int ci;
for (ci = 0; ci < ncomps; ci++) {
scanptr->comps_in_scan = 1;
scanptr->component_index[0] = ci;
scanptr->Ss = Ss;
scanptr->Se = Se;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
}
return scanptr;
}
LOCAL(jpeg_scan_info *)
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
/* Support routine: generate interleaved DC scan if possible, else N scans */
{
int ci;
if (ncomps <= MAX_COMPS_IN_SCAN) {
/* Single interleaved DC scan */
scanptr->comps_in_scan = ncomps;
for (ci = 0; ci < ncomps; ci++)
scanptr->component_index[ci] = ci;
scanptr->Ss = scanptr->Se = 0;
scanptr->Ah = Ah;
scanptr->Al = Al;
scanptr++;
} else {
/* Noninterleaved DC scan for each component */
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
}
return scanptr;
}
/*
* Create a recommended progressive-JPEG script.
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
*/
GLOBAL(void)
jpeg_simple_progression (j_compress_ptr cinfo)
{
int ncomps = cinfo->num_components;
int nscans;
jpeg_scan_info * scanptr;
/* Safety check to ensure start_compress not called yet. */
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Figure space needed for script. Calculation must match code below! */
if (ncomps == 3 &&
(cinfo->jpeg_color_space == JCS_YCbCr ||
cinfo->jpeg_color_space == JCS_BG_YCC)) {
/* Custom script for YCC color images. */
nscans = 10;
} else {
/* All-purpose script for other color spaces. */
if (ncomps > MAX_COMPS_IN_SCAN)
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
else
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
}
/* Allocate space for script.
* We need to put it in the permanent pool in case the application performs
* multiple compressions without changing the settings. To avoid a memory
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
* object, we try to re-use previously allocated space, and we allocate
* enough space to handle YCC even if initially asked for grayscale.
*/
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
cinfo->script_space_size = MAX(nscans, 10);
cinfo->script_space = (jpeg_scan_info *)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
cinfo->script_space_size * SIZEOF(jpeg_scan_info));
}
scanptr = cinfo->script_space;
cinfo->scan_info = scanptr;
cinfo->num_scans = nscans;
if (ncomps == 3 &&
(cinfo->jpeg_color_space == JCS_YCbCr ||
cinfo->jpeg_color_space == JCS_BG_YCC)) {
/* Custom script for YCC color images. */
/* Initial DC scan */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
/* Initial AC scan: get some luma data out in a hurry */
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
/* Chroma data is too small to be worth expending many scans on */
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
/* Complete spectral selection for luma AC */
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
/* Refine next bit of luma AC */
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
/* Finish DC successive approximation */
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
/* Finish AC successive approximation */
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
/* Luma bottom bit comes last since it's usually largest scan */
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
} else {
/* All-purpose script for other color spaces. */
/* Successive approximation first pass */
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
/* Successive approximation second pass */
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
/* Successive approximation final pass */
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
}
}
#endif /* C_PROGRESSIVE_SUPPORTED */

358
dep/libjpeg/src/jcprepct.c Normal file
View File

@ -0,0 +1,358 @@
/*
* jcprepct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2003-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the compression preprocessing controller.
* This controller manages the color conversion, downsampling,
* and edge expansion steps.
*
* Most of the complexity here is associated with buffering input rows
* as required by the downsampler. See the comments at the head of
* jcsample.c for the downsampler's needs.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* At present, jcsample.c can request context rows only for smoothing.
* In the future, we might also need context rows for CCIR601 sampling
* or other more-complex downsampling procedures. The code to support
* context rows should be compiled only if needed.
*/
#ifdef INPUT_SMOOTHING_SUPPORTED
#define CONTEXT_ROWS_SUPPORTED
#endif
/*
* For the simple (no-context-row) case, we just need to buffer one
* row group's worth of pixels for the downsampling step. At the bottom of
* the image, we pad to a full row group by replicating the last pixel row.
* The downsampler's last output row is then replicated if needed to pad
* out to a full iMCU row.
*
* When providing context rows, we must buffer three row groups' worth of
* pixels. Three row groups are physically allocated, but the row pointer
* arrays are made five row groups high, with the extra pointers above and
* below "wrapping around" to point to the last and first real row groups.
* This allows the downsampler to access the proper context rows.
* At the top and bottom of the image, we create dummy context rows by
* copying the first or last real pixel row. This copying could be avoided
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the
* trouble on the compression side.
*/
/* Private buffer controller object */
typedef struct {
struct jpeg_c_prep_controller pub; /* public fields */
/* Downsampling input buffer. This buffer holds color-converted data
* until we have enough to do a downsample step.
*/
JSAMPARRAY color_buf[MAX_COMPONENTS];
JDIMENSION rows_to_go; /* counts rows remaining in source image */
int next_buf_row; /* index of next row to store in color_buf */
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */
int this_row_group; /* starting row index of group to process */
int next_buf_stop; /* downsample when we reach this index */
#endif
} my_prep_controller;
typedef my_prep_controller * my_prep_ptr;
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
if (pass_mode != JBUF_PASS_THRU)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
/* Initialize total-height counter for detecting bottom of image */
prep->rows_to_go = cinfo->image_height;
/* Mark the conversion buffer empty */
prep->next_buf_row = 0;
#ifdef CONTEXT_ROWS_SUPPORTED
/* Preset additional state variables for context mode.
* These aren't used in non-context mode, so we needn't test which mode.
*/
prep->this_row_group = 0;
/* Set next_buf_stop to stop after two row groups have been read in. */
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor;
#endif
}
/*
* Expand an image vertically from height input_rows to height output_rows,
* by duplicating the bottom row.
*/
LOCAL(void)
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols,
int input_rows, int output_rows)
{
register int row;
for (row = input_rows; row < output_rows; row++) {
jcopy_sample_rows(image_data + input_rows - 1,
image_data + row,
1, num_cols);
}
}
/*
* Process some data in the simple no-context case.
*
* Preprocessor output data is counted in "row groups". A row group
* is defined to be v_samp_factor sample rows of each component.
* Downsampling will produce this much data from each max_v_samp_factor
* input rows.
*/
METHODDEF(void)
pre_process_data (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int numrows, ci;
JDIMENSION inrows;
jpeg_component_info * compptr;
while (*in_row_ctr < in_rows_avail &&
*out_row_group_ctr < out_row_groups_avail) {
/* Do color conversion to fill the conversion buffer. */
inrows = in_rows_avail - *in_row_ctr;
numrows = cinfo->max_v_samp_factor - prep->next_buf_row;
numrows = (int) MIN((JDIMENSION) numrows, inrows);
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
*in_row_ctr += numrows;
prep->next_buf_row += numrows;
prep->rows_to_go -= numrows;
/* If at bottom of image, pad to fill the conversion buffer. */
if (prep->rows_to_go == 0 &&
prep->next_buf_row < cinfo->max_v_samp_factor) {
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, cinfo->max_v_samp_factor);
}
prep->next_buf_row = cinfo->max_v_samp_factor;
}
/* If we've filled the conversion buffer, empty it. */
if (prep->next_buf_row == cinfo->max_v_samp_factor) {
(*cinfo->downsample->downsample) (cinfo,
prep->color_buf, (JDIMENSION) 0,
output_buf, *out_row_group_ctr);
prep->next_buf_row = 0;
(*out_row_group_ctr)++;
}
/* If at bottom of image, pad the output to a full iMCU height.
* Note we assume the caller is providing a one-iMCU-height output buffer!
*/
if (prep->rows_to_go == 0 &&
*out_row_group_ctr < out_row_groups_avail) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
cinfo->min_DCT_v_scaled_size;
expand_bottom_edge(output_buf[ci],
compptr->width_in_blocks * compptr->DCT_h_scaled_size,
(int) (*out_row_group_ctr * numrows),
(int) (out_row_groups_avail * numrows));
}
*out_row_group_ctr = out_row_groups_avail;
break; /* can exit outer loop without test */
}
}
}
#ifdef CONTEXT_ROWS_SUPPORTED
/*
* Process some data in the context case.
*/
METHODDEF(void)
pre_process_context (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int numrows, ci;
int buf_height = cinfo->max_v_samp_factor * 3;
JDIMENSION inrows;
while (*out_row_group_ctr < out_row_groups_avail) {
if (*in_row_ctr < in_rows_avail) {
/* Do color conversion to fill the conversion buffer. */
inrows = in_rows_avail - *in_row_ctr;
numrows = prep->next_buf_stop - prep->next_buf_row;
numrows = (int) MIN((JDIMENSION) numrows, inrows);
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr,
prep->color_buf,
(JDIMENSION) prep->next_buf_row,
numrows);
/* Pad at top of image, if first time through */
if (prep->rows_to_go == cinfo->image_height) {
for (ci = 0; ci < cinfo->num_components; ci++) {
int row;
for (row = 1; row <= cinfo->max_v_samp_factor; row++) {
jcopy_sample_rows(prep->color_buf[ci],
prep->color_buf[ci] - row,
1, cinfo->image_width);
}
}
}
*in_row_ctr += numrows;
prep->next_buf_row += numrows;
prep->rows_to_go -= numrows;
} else {
/* Return for more data, unless we are at the bottom of the image. */
if (prep->rows_to_go != 0)
break;
/* When at bottom of image, pad to fill the conversion buffer. */
if (prep->next_buf_row < prep->next_buf_stop) {
for (ci = 0; ci < cinfo->num_components; ci++) {
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width,
prep->next_buf_row, prep->next_buf_stop);
}
prep->next_buf_row = prep->next_buf_stop;
}
}
/* If we've gotten enough data, downsample a row group. */
if (prep->next_buf_row == prep->next_buf_stop) {
(*cinfo->downsample->downsample) (cinfo,
prep->color_buf,
(JDIMENSION) prep->this_row_group,
output_buf, *out_row_group_ctr);
(*out_row_group_ctr)++;
/* Advance pointers with wraparound as necessary. */
prep->this_row_group += cinfo->max_v_samp_factor;
if (prep->this_row_group >= buf_height)
prep->this_row_group = 0;
if (prep->next_buf_row >= buf_height)
prep->next_buf_row = 0;
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor;
}
}
}
/*
* Create the wrapped-around downsampling input buffer needed for context mode.
*/
LOCAL(void)
create_context_buffer (j_compress_ptr cinfo)
{
my_prep_ptr prep = (my_prep_ptr) cinfo->prep;
int rgroup_height = cinfo->max_v_samp_factor;
int ci, i;
jpeg_component_info * compptr;
JSAMPARRAY true_buffer, fake_buffer;
/* Grab enough space for fake row pointers for all the components;
* we need five row groups' worth of pointers for each component.
*/
fake_buffer = (JSAMPARRAY) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(cinfo->num_components * 5 * rgroup_height) * SIZEOF(JSAMPROW));
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate the actual buffer space (3 row groups) for this component.
* We make the buffer wide enough to allow the downsampler to edge-expand
* horizontally within the buffer, if it so chooses.
*/
true_buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks *
cinfo->min_DCT_h_scaled_size *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) (3 * rgroup_height));
/* Copy true buffer row pointers into the middle of the fake row array */
MEMCOPY(fake_buffer + rgroup_height, true_buffer,
3 * rgroup_height * SIZEOF(JSAMPROW));
/* Fill in the above and below wraparound pointers */
for (i = 0; i < rgroup_height; i++) {
fake_buffer[i] = true_buffer[2 * rgroup_height + i];
fake_buffer[4 * rgroup_height + i] = true_buffer[i];
}
prep->color_buf[ci] = fake_buffer + rgroup_height;
fake_buffer += 5 * rgroup_height; /* point to space for next component */
}
}
#endif /* CONTEXT_ROWS_SUPPORTED */
/*
* Initialize preprocessing controller.
*/
GLOBAL(void)
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
my_prep_ptr prep;
int ci;
jpeg_component_info * compptr;
if (need_full_buffer) /* safety check */
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
prep = (my_prep_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_prep_controller));
cinfo->prep = &prep->pub;
prep->pub.start_pass = start_pass_prep;
/* Allocate the color conversion buffer.
* We make the buffer wide enough to allow the downsampler to edge-expand
* horizontally within the buffer, if it so chooses.
*/
if (cinfo->downsample->need_context_rows) {
/* Set up to provide context rows */
#ifdef CONTEXT_ROWS_SUPPORTED
prep->pub.pre_process_data = pre_process_context;
create_context_buffer(cinfo);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
/* No context, just make it tall enough for one row group */
prep->pub.pre_process_data = pre_process_data;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (((long) compptr->width_in_blocks *
cinfo->min_DCT_h_scaled_size *
cinfo->max_h_samp_factor) / compptr->h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
}
}
}

545
dep/libjpeg/src/jcsample.c Normal file
View File

@ -0,0 +1,545 @@
/*
* jcsample.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modified 2003-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains downsampling routines.
*
* Downsampling input data is counted in "row groups". A row group
* is defined to be max_v_samp_factor pixel rows of each component,
* from which the downsampler produces v_samp_factor sample rows.
* A single row group is processed in each call to the downsampler module.
*
* The downsampler is responsible for edge-expansion of its output data
* to fill an integral number of DCT blocks horizontally. The source buffer
* may be modified if it is helpful for this purpose (the source buffer is
* allocated wide enough to correspond to the desired output width).
* The caller (the prep controller) is responsible for vertical padding.
*
* The downsampler may request "context rows" by setting need_context_rows
* during startup. In this case, the input arrays will contain at least
* one row group's worth of pixels above and below the passed-in data;
* the caller will create dummy rows at image top and bottom by replicating
* the first or last real pixel row.
*
* An excellent reference for image resampling is
* Digital Image Warping, George Wolberg, 1990.
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
*
* The downsampling algorithm used here is a simple average of the source
* pixels covered by the output pixel. The hi-falutin sampling literature
* refers to this as a "box filter". In general the characteristics of a box
* filter are not very good, but for the specific cases we normally use (1:1
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
* nearly so bad. If you intend to use other sampling ratios, you'd be well
* advised to improve this code.
*
* A simple input-smoothing capability is provided. This is mainly intended
* for cleaning up color-dithered GIF input files (if you find it inadequate,
* we suggest using an external filtering program such as pnmconvol). When
* enabled, each input pixel P is replaced by a weighted sum of itself and its
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
* where SF = (smoothing_factor / 1024).
* Currently, smoothing is only supported for 2h2v sampling factors.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Pointer to routine to downsample a single component */
typedef JMETHOD(void, downsample1_ptr,
(j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data));
/* Private subobject */
typedef struct {
struct jpeg_downsampler pub; /* public fields */
/* Downsampling method pointers, one per component */
downsample1_ptr methods[MAX_COMPONENTS];
/* Height of an output row group for each component. */
int rowgroup_height[MAX_COMPONENTS];
/* These arrays save pixel expansion factors so that int_downsample need not
* recompute them each time. They are unused for other downsampling methods.
*/
UINT8 h_expand[MAX_COMPONENTS];
UINT8 v_expand[MAX_COMPONENTS];
} my_downsampler;
typedef my_downsampler * my_downsample_ptr;
/*
* Initialize for a downsampling pass.
*/
METHODDEF(void)
start_pass_downsample (j_compress_ptr cinfo)
{
/* no work for now */
}
/*
* Expand a component horizontally from width input_cols to width output_cols,
* by duplicating the rightmost samples.
*/
LOCAL(void)
expand_right_edge (JSAMPARRAY image_data, int num_rows,
JDIMENSION input_cols, JDIMENSION output_cols)
{
register JSAMPROW ptr;
register JSAMPLE pixval;
register int count;
int row;
int numcols = (int) (output_cols - input_cols);
if (numcols > 0) {
for (row = 0; row < num_rows; row++) {
ptr = image_data[row] + input_cols;
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
for (count = numcols; count > 0; count--)
*ptr++ = pixval;
}
}
}
/*
* Do downsampling for a whole row group (all components).
*
* In this version we simply downsample each component independently.
*/
METHODDEF(void)
sep_downsample (j_compress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
{
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
int ci;
jpeg_component_info * compptr;
JSAMPARRAY in_ptr, out_ptr;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
in_ptr = input_buf[ci] + in_row_index;
out_ptr = output_buf[ci] +
(out_row_group_index * downsample->rowgroup_height[ci]);
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
}
}
/*
* Downsample pixel values of a single component.
* One row group is processed per call.
* This version handles arbitrary integral sampling ratios, without smoothing.
* Note that this version is not actually used for customary sampling ratios.
*/
METHODDEF(void)
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
JSAMPROW inptr, outptr;
INT32 outvalue;
h_expand = downsample->h_expand[compptr->component_index];
v_expand = downsample->v_expand[compptr->component_index];
numpix = h_expand * v_expand;
numpix2 = numpix/2;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * h_expand);
inrow = outrow = 0;
while (inrow < cinfo->max_v_samp_factor) {
outptr = output_data[outrow];
for (outcol = 0, outcol_h = 0; outcol < output_cols;
outcol++, outcol_h += h_expand) {
outvalue = 0;
for (v = 0; v < v_expand; v++) {
inptr = input_data[inrow+v] + outcol_h;
for (h = 0; h < h_expand; h++) {
outvalue += (INT32) GETJSAMPLE(*inptr++);
}
}
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
}
inrow += v_expand;
outrow++;
}
}
/*
* Downsample pixel values of a single component.
* This version handles the special case of a full-size component,
* without smoothing.
*/
METHODDEF(void)
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
/* Copy the data */
jcopy_sample_rows(input_data, output_data,
cinfo->max_v_samp_factor, cinfo->image_width);
/* Edge-expand */
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width,
compptr->width_in_blocks * compptr->DCT_h_scaled_size);
}
/*
* Downsample pixel values of a single component.
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
* without smoothing.
*
* A note about the "bias" calculations: when rounding fractional values to
* integer, we do not want to always round 0.5 up to the next integer.
* If we did that, we'd introduce a noticeable bias towards larger values.
* Instead, this code is arranged so that 0.5 will be rounded up or down at
* alternate pixel locations (a simple ordered dither pattern).
*/
METHODDEF(void)
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow;
JDIMENSION outcol;
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
register JSAMPROW inptr, outptr;
register int bias;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * 2);
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
outptr = output_data[inrow];
inptr = input_data[inrow];
bias = 0; /* bias = 0,1,0,1,... for successive samples */
for (outcol = 0; outcol < output_cols; outcol++) {
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
+ bias) >> 1);
bias ^= 1; /* 0=>1, 1=>0 */
inptr += 2;
}
}
}
/*
* Downsample pixel values of a single component.
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
* without smoothing.
*/
METHODDEF(void)
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow, outrow;
JDIMENSION outcol;
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
register JSAMPROW inptr0, inptr1, outptr;
register int bias;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data, cinfo->max_v_samp_factor,
cinfo->image_width, output_cols * 2);
inrow = outrow = 0;
while (inrow < cinfo->max_v_samp_factor) {
outptr = output_data[outrow];
inptr0 = input_data[inrow];
inptr1 = input_data[inrow+1];
bias = 1; /* bias = 1,2,1,2,... for successive samples */
for (outcol = 0; outcol < output_cols; outcol++) {
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
+ bias) >> 2);
bias ^= 3; /* 1=>2, 2=>1 */
inptr0 += 2; inptr1 += 2;
}
inrow += 2;
outrow++;
}
}
#ifdef INPUT_SMOOTHING_SUPPORTED
/*
* Downsample pixel values of a single component.
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
* with smoothing. One row of context is required.
*/
METHODDEF(void)
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow, outrow;
JDIMENSION colctr;
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
INT32 membersum, neighsum, memberscale, neighscale;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
cinfo->image_width, output_cols * 2);
/* We don't bother to form the individual "smoothed" input pixel values;
* we can directly compute the output which is the average of the four
* smoothed values. Each of the four member pixels contributes a fraction
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
* output. The four corner-adjacent neighbor pixels contribute a fraction
* SF to just one smoothed pixel, or SF/4 to the final output; while the
* eight edge-adjacent neighbors contribute SF to each of two smoothed
* pixels, or SF/2 overall. In order to use integer arithmetic, these
* factors are scaled by 2^16 = 65536.
* Also recall that SF = smoothing_factor / 1024.
*/
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
inrow = outrow = 0;
while (inrow < cinfo->max_v_samp_factor) {
outptr = output_data[outrow];
inptr0 = input_data[inrow];
inptr1 = input_data[inrow+1];
above_ptr = input_data[inrow-1];
below_ptr = input_data[inrow+2];
/* Special case for first column: pretend column -1 is same as column 0 */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
neighsum += neighsum;
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
for (colctr = output_cols - 2; colctr > 0; colctr--) {
/* sum of pixels directly mapped to this output element */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
/* sum of edge-neighbor pixels */
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
/* The edge-neighbors count twice as much as corner-neighbors */
neighsum += neighsum;
/* Add in the corner-neighbors */
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
/* form final output scaled up by 2^16 */
membersum = membersum * memberscale + neighsum * neighscale;
/* round, descale and output it */
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
}
/* Special case for last column */
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
neighsum += neighsum;
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
membersum = membersum * memberscale + neighsum * neighscale;
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
inrow += 2;
outrow++;
}
}
/*
* Downsample pixel values of a single component.
* This version handles the special case of a full-size component,
* with smoothing. One row of context is required.
*/
METHODDEF(void)
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
JSAMPARRAY input_data, JSAMPARRAY output_data)
{
int inrow;
JDIMENSION colctr;
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size;
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
INT32 membersum, neighsum, memberscale, neighscale;
int colsum, lastcolsum, nextcolsum;
/* Expand input data enough to let all the output samples be generated
* by the standard loop. Special-casing padded output would be more
* efficient.
*/
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
cinfo->image_width, output_cols);
/* Each of the eight neighbor pixels contributes a fraction SF to the
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
* Also recall that SF = smoothing_factor / 1024.
*/
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
outptr = output_data[inrow];
inptr = input_data[inrow];
above_ptr = input_data[inrow-1];
below_ptr = input_data[inrow+1];
/* Special case for first column */
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
GETJSAMPLE(*inptr);
membersum = GETJSAMPLE(*inptr++);
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
GETJSAMPLE(*inptr);
neighsum = colsum + (colsum - membersum) + nextcolsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
lastcolsum = colsum; colsum = nextcolsum;
for (colctr = output_cols - 2; colctr > 0; colctr--) {
membersum = GETJSAMPLE(*inptr++);
above_ptr++; below_ptr++;
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
GETJSAMPLE(*inptr);
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
lastcolsum = colsum; colsum = nextcolsum;
}
/* Special case for last column */
membersum = GETJSAMPLE(*inptr);
neighsum = lastcolsum + (colsum - membersum) + colsum;
membersum = membersum * memberscale + neighsum * neighscale;
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
}
}
#endif /* INPUT_SMOOTHING_SUPPORTED */
/*
* Module initialization routine for downsampling.
* Note that we must select a routine for each component.
*/
GLOBAL(void)
jinit_downsampler (j_compress_ptr cinfo)
{
my_downsample_ptr downsample;
int ci;
jpeg_component_info * compptr;
boolean smoothok = TRUE;
int h_in_group, v_in_group, h_out_group, v_out_group;
downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_downsampler));
cinfo->downsample = &downsample->pub;
downsample->pub.start_pass = start_pass_downsample;
downsample->pub.downsample = sep_downsample;
downsample->pub.need_context_rows = FALSE;
if (cinfo->CCIR601_sampling)
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
/* Verify we can handle the sampling factors, and set up method pointers */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Compute size of an "output group" for DCT scaling. This many samples
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels.
*/
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
cinfo->min_DCT_h_scaled_size;
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
cinfo->min_DCT_v_scaled_size;
h_in_group = cinfo->max_h_samp_factor;
v_in_group = cinfo->max_v_samp_factor;
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */
if (h_in_group == h_out_group && v_in_group == v_out_group) {
#ifdef INPUT_SMOOTHING_SUPPORTED
if (cinfo->smoothing_factor) {
downsample->methods[ci] = fullsize_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
} else
#endif
downsample->methods[ci] = fullsize_downsample;
} else if (h_in_group == h_out_group * 2 &&
v_in_group == v_out_group) {
smoothok = FALSE;
downsample->methods[ci] = h2v1_downsample;
} else if (h_in_group == h_out_group * 2 &&
v_in_group == v_out_group * 2) {
#ifdef INPUT_SMOOTHING_SUPPORTED
if (cinfo->smoothing_factor) {
downsample->methods[ci] = h2v2_smooth_downsample;
downsample->pub.need_context_rows = TRUE;
} else
#endif
downsample->methods[ci] = h2v2_downsample;
} else if ((h_in_group % h_out_group) == 0 &&
(v_in_group % v_out_group) == 0) {
smoothok = FALSE;
downsample->methods[ci] = int_downsample;
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group);
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group);
} else
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
}
#ifdef INPUT_SMOOTHING_SUPPORTED
if (cinfo->smoothing_factor && !smoothok)
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
#endif
}

399
dep/libjpeg/src/jctrans.c Normal file
View File

@ -0,0 +1,399 @@
/*
* jctrans.c
*
* Copyright (C) 1995-1998, Thomas G. Lane.
* Modified 2000-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains library routines for transcoding compression,
* that is, writing raw DCT coefficient arrays to an output JPEG file.
* The routines in jcapimin.c will also be needed by a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(void) transencode_master_selection
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
LOCAL(void) transencode_coef_controller
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays));
/*
* Compression initialization for writing raw-coefficient data.
* Before calling this, all parameters and a data destination must be set up.
* Call jpeg_finish_compress() to actually write the data.
*
* The number of passed virtual arrays must match cinfo->num_components.
* Note that the virtual arrays need not be filled or even realized at
* the time write_coefficients is called; indeed, if the virtual arrays
* were requested from this compression object's memory manager, they
* typically will be realized during this routine and filled afterwards.
*/
GLOBAL(void)
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)
{
if (cinfo->global_state != CSTATE_START)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Mark all tables to be written */
jpeg_suppress_tables(cinfo, FALSE);
/* (Re)initialize error mgr and destination modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->dest->init_destination) (cinfo);
/* Perform master selection of active modules */
transencode_master_selection(cinfo, coef_arrays);
/* Wait for jpeg_finish_compress() call */
cinfo->next_scanline = 0; /* so jpeg_write_marker works */
cinfo->global_state = CSTATE_WRCOEFS;
}
/*
* Initialize the compression object with default parameters,
* then copy from the source object all parameters needed for lossless
* transcoding. Parameters that can be varied without loss (such as
* scan script and Huffman optimization) are left in their default states.
*/
GLOBAL(void)
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo,
j_compress_ptr dstinfo)
{
JQUANT_TBL ** qtblptr;
jpeg_component_info *incomp, *outcomp;
JQUANT_TBL *c_quant, *slot_quant;
int tblno, ci, coefi;
/* Safety check to ensure start_compress not called yet. */
if (dstinfo->global_state != CSTATE_START)
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state);
/* Copy fundamental image dimensions */
dstinfo->image_width = srcinfo->image_width;
dstinfo->image_height = srcinfo->image_height;
dstinfo->input_components = srcinfo->num_components;
dstinfo->in_color_space = srcinfo->jpeg_color_space;
dstinfo->jpeg_width = srcinfo->output_width;
dstinfo->jpeg_height = srcinfo->output_height;
dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size;
dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size;
/* Initialize all parameters to default values */
jpeg_set_defaults(dstinfo);
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB.
* Fix it to get the right header markers for the image colorspace.
* Note: Entropy table assignment in jpeg_set_colorspace
* depends on color_transform.
* Adaption is also required for setting the appropriate
* entropy coding mode dependent on image data precision.
*/
dstinfo->color_transform = srcinfo->color_transform;
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space);
dstinfo->data_precision = srcinfo->data_precision;
dstinfo->arith_code = srcinfo->data_precision > 8 ? TRUE : FALSE;
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling;
/* Copy the source's quantization tables. */
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) {
qtblptr = & dstinfo->quant_tbl_ptrs[tblno];
if (*qtblptr == NULL)
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo);
MEMCOPY((*qtblptr)->quantval,
srcinfo->quant_tbl_ptrs[tblno]->quantval,
SIZEOF((*qtblptr)->quantval));
(*qtblptr)->sent_table = FALSE;
}
}
/* Copy the source's per-component info.
* Note we assume jpeg_set_defaults has allocated the dest comp_info array.
*/
dstinfo->num_components = srcinfo->num_components;
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS)
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components,
MAX_COMPONENTS);
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info;
ci < dstinfo->num_components; ci++, incomp++, outcomp++) {
outcomp->component_id = incomp->component_id;
outcomp->h_samp_factor = incomp->h_samp_factor;
outcomp->v_samp_factor = incomp->v_samp_factor;
outcomp->quant_tbl_no = incomp->quant_tbl_no;
/* Make sure saved quantization table for component matches the qtable
* slot. If not, the input file re-used this qtable slot.
* IJG encoder currently cannot duplicate this.
*/
tblno = outcomp->quant_tbl_no;
if (tblno < 0 || tblno >= NUM_QUANT_TBLS ||
srcinfo->quant_tbl_ptrs[tblno] == NULL)
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno);
slot_quant = srcinfo->quant_tbl_ptrs[tblno];
c_quant = incomp->quant_table;
if (c_quant != NULL) {
for (coefi = 0; coefi < DCTSIZE2; coefi++) {
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi])
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno);
}
}
/* Note: we do not copy the source's entropy table assignments;
* instead we rely on jpeg_set_colorspace to have made a suitable choice.
*/
}
/* Also copy JFIF version and resolution information, if available.
* Strictly speaking this isn't "critical" info, but it's nearly
* always appropriate to copy it if available. In particular,
* if the application chooses to copy JFIF 1.02 extension markers from
* the source file, we need to copy the version to make sure we don't
* emit a file that has 1.02 extensions but a claimed version of 1.01.
*/
if (srcinfo->saw_JFIF_marker) {
if (srcinfo->JFIF_major_version == 1 ||
srcinfo->JFIF_major_version == 2) {
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version;
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version;
}
dstinfo->density_unit = srcinfo->density_unit;
dstinfo->X_density = srcinfo->X_density;
dstinfo->Y_density = srcinfo->Y_density;
}
}
LOCAL(void)
jpeg_calc_trans_dimensions (j_compress_ptr cinfo)
/* Do computations that are needed before master selection phase */
{
if (cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size)
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size);
cinfo->block_size = cinfo->min_DCT_h_scaled_size;
}
/*
* Master selection of compression modules for transcoding.
* This substitutes for jcinit.c's initialization of the full compressor.
*/
LOCAL(void)
transencode_master_selection (j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays)
{
/* Do computations that are needed before master selection phase */
jpeg_calc_trans_dimensions(cinfo);
/* Initialize master control (includes parameter checking/processing) */
jinit_c_master_control(cinfo, TRUE /* transcode only */);
/* Entropy encoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code)
jinit_arith_encoder(cinfo);
else {
jinit_huff_encoder(cinfo);
}
/* We need a special coefficient buffer controller. */
transencode_coef_controller(cinfo, coef_arrays);
jinit_marker_writer(cinfo);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Write the datastream header (SOI, JFIF) immediately.
* Frame and scan headers are postponed till later.
* This lets application insert special markers after the SOI.
*/
(*cinfo->marker->write_file_header) (cinfo);
}
/*
* The rest of this file is a special implementation of the coefficient
* buffer controller. This is similar to jccoefct.c, but it handles only
* output from presupplied virtual arrays. Furthermore, we generate any
* dummy padding blocks on-the-fly rather than expecting them to be present
* in the arrays.
*/
/* Private buffer controller object */
typedef struct {
struct jpeg_c_coef_controller pub; /* public fields */
JDIMENSION iMCU_row_num; /* iMCU row # within image */
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* Virtual block array for each component. */
jvirt_barray_ptr * whole_image;
/* Workspace for constructing dummy blocks at right/bottom edges. */
JBLOCK dummy_buffer[C_MAX_BLOCKS_IN_MCU];
} my_coef_controller;
typedef my_coef_controller * my_coef_ptr;
LOCAL(void)
start_iMCU_row (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
/* In an interleaved scan, an MCU row is the same as an iMCU row.
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
* But at the bottom of the image, process only what's left.
*/
if (cinfo->comps_in_scan > 1) {
coef->MCU_rows_per_iMCU_row = 1;
} else {
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
else
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
}
coef->MCU_ctr = 0;
coef->MCU_vert_offset = 0;
}
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
if (pass_mode != JBUF_CRANK_DEST)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
coef->iMCU_row_num = 0;
start_iMCU_row(cinfo);
}
/*
* Process some data.
* We process the equivalent of one fully interleaved MCU row ("iMCU" row)
* per call, ie, v_samp_factor block rows for each component in the scan.
* The data is obtained from the virtual arrays and fed to the entropy coder.
* Returns TRUE if the iMCU row is completed, FALSE if suspended.
*
* NB: input_buf is ignored; it is likely to be a NULL pointer.
*/
METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int blkn, ci, xindex, yindex, yoffset, blockcnt;
JDIMENSION start_col;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];
JBLOCKROW buffer_ptr;
jpeg_component_info *compptr;
/* Align the virtual buffers for the components used in this scan. */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
buffer[ci] = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
coef->iMCU_row_num * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, FALSE);
}
/* Loop to process one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkn = 0; /* index of current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (coef->iMCU_row_num < last_iMCU_row ||
yoffset + yindex < compptr->last_row_height) {
/* Fill in pointers to real blocks in this row */
buffer_ptr = buffer[ci][yoffset + yindex] + start_col;
xindex = blockcnt;
do {
MCU_buffer[blkn++] = buffer_ptr++;
} while (--xindex);
/* Dummy blocks at right edge */
if ((xindex = compptr->MCU_width - blockcnt) == 0)
continue;
} else {
/* At bottom of image, need a whole row of dummy blocks */
xindex = compptr->MCU_width;
}
/* Fill in any dummy blocks needed in this row.
* Dummy blocks are filled in the same way as in jccoefct.c:
* all zeroes in the AC entries, DC entries equal to previous
* block's DC value. The init routine has already zeroed the
* AC entries, so we need only set the DC entries correctly.
*/
buffer_ptr = coef->dummy_buffer + blkn;
do {
buffer_ptr[0][0] = MCU_buffer[blkn-1][0][0];
MCU_buffer[blkn++] = buffer_ptr++;
} while (--xindex);
}
}
/* Try to write the MCU. */
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return FALSE;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->MCU_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
coef->iMCU_row_num++;
start_iMCU_row(cinfo);
return TRUE;
}
/*
* Initialize coefficient buffer controller.
*
* Each passed coefficient array must be the right size for that
* coefficient: width_in_blocks wide and height_in_blocks high,
* with unitheight at least v_samp_factor.
*/
LOCAL(void)
transencode_coef_controller (j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays)
{
my_coef_ptr coef;
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
cinfo->coef = &coef->pub;
coef->pub.start_pass = start_pass_coef;
coef->pub.compress_data = compress_output;
/* Save pointer to virtual arrays */
coef->whole_image = coef_arrays;
/* Pre-zero space for dummy DCT blocks */
MEMZERO(coef->dummy_buffer, SIZEOF(coef->dummy_buffer));
}

412
dep/libjpeg/src/jdapimin.c Normal file
View File

@ -0,0 +1,412 @@
/*
* jdapimin.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* Modified 2009-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the decompression half
* of the JPEG library. These are the "minimum" API routines that may be
* needed in either the normal full-decompression case or the
* transcoding-only case.
*
* Most of the routines intended to be called directly by an application
* are in this file or in jdapistd.c. But also see jcomapi.c for routines
* shared by compression and decompression, and jdtrans.c for the transcoding
* case.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* Initialization of a JPEG decompression object.
* The error manager must already be set up (in case memory manager fails).
*/
GLOBAL(void)
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize)
{
int i;
/* Guard against version mismatches between library and caller. */
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */
if (version != JPEG_LIB_VERSION)
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
if (structsize != SIZEOF(struct jpeg_decompress_struct))
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE,
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize);
/* For debugging purposes, we zero the whole master structure.
* But the application has already set the err pointer, and may have set
* client_data, so we have to save and restore those fields.
* Note: if application hasn't set client_data, tools like Purify may
* complain here.
*/
{
struct jpeg_error_mgr * err = cinfo->err;
void * client_data = cinfo->client_data; /* ignore Purify complaint here */
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
cinfo->err = err;
cinfo->client_data = client_data;
}
cinfo->is_decompressor = TRUE;
/* Initialize a memory manager instance for this object */
jinit_memory_mgr((j_common_ptr) cinfo);
/* Zero out pointers to permanent structures. */
cinfo->progress = NULL;
cinfo->src = NULL;
for (i = 0; i < NUM_QUANT_TBLS; i++)
cinfo->quant_tbl_ptrs[i] = NULL;
for (i = 0; i < NUM_HUFF_TBLS; i++) {
cinfo->dc_huff_tbl_ptrs[i] = NULL;
cinfo->ac_huff_tbl_ptrs[i] = NULL;
}
/* Initialize marker processor so application can override methods
* for COM, APPn markers before calling jpeg_read_header.
*/
cinfo->marker_list = NULL;
jinit_marker_reader(cinfo);
/* And initialize the overall input controller. */
jinit_input_controller(cinfo);
/* OK, I'm ready */
cinfo->global_state = DSTATE_START;
}
/*
* Destruction of a JPEG decompression object
*/
GLOBAL(void)
jpeg_destroy_decompress (j_decompress_ptr cinfo)
{
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
}
/*
* Abort processing of a JPEG decompression operation,
* but don't destroy the object itself.
*/
GLOBAL(void)
jpeg_abort_decompress (j_decompress_ptr cinfo)
{
jpeg_abort((j_common_ptr) cinfo); /* use common routine */
}
/*
* Set default decompression parameters.
*/
LOCAL(void)
default_decompress_parms (j_decompress_ptr cinfo)
{
int cid0, cid1, cid2, cid3;
/* Guess the input colorspace, and set output colorspace accordingly. */
/* Note application may override our guesses. */
switch (cinfo->num_components) {
case 1:
cinfo->jpeg_color_space = JCS_GRAYSCALE;
cinfo->out_color_space = JCS_GRAYSCALE;
break;
case 3:
cid0 = cinfo->comp_info[0].component_id;
cid1 = cinfo->comp_info[1].component_id;
cid2 = cinfo->comp_info[2].component_id;
/* For robust detection of standard colorspaces
* regardless of the presence of special markers,
* check component IDs from SOF marker first.
*/
if (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03)
cinfo->jpeg_color_space = JCS_YCbCr;
else if (cid0 == 0x01 && cid1 == 0x22 && cid2 == 0x23)
cinfo->jpeg_color_space = JCS_BG_YCC;
else if (cid0 == 0x52 && cid1 == 0x47 && cid2 == 0x42)
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
else if (cid0 == 0x72 && cid1 == 0x67 && cid2 == 0x62)
cinfo->jpeg_color_space = JCS_BG_RGB; /* ASCII 'r', 'g', 'b' */
else if (cinfo->saw_JFIF_marker)
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
else if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_RGB;
break;
case 1:
cinfo->jpeg_color_space = JCS_YCbCr;
break;
default:
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
}
} else {
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
}
/* Always guess RGB is proper output colorspace. */
cinfo->out_color_space = JCS_RGB;
break;
case 4:
cid0 = cinfo->comp_info[0].component_id;
cid1 = cinfo->comp_info[1].component_id;
cid2 = cinfo->comp_info[2].component_id;
cid3 = cinfo->comp_info[3].component_id;
/* For robust detection of standard colorspaces
* regardless of the presence of special markers,
* check component IDs from SOF marker first.
*/
if (cid0 == 0x01 && cid1 == 0x02 && cid2 == 0x03 && cid3 == 0x04)
cinfo->jpeg_color_space = JCS_YCCK;
else if (cid0 == 0x43 && cid1 == 0x4D && cid2 == 0x59 && cid3 == 0x4B)
cinfo->jpeg_color_space = JCS_CMYK; /* ASCII 'C', 'M', 'Y', 'K' */
else if (cinfo->saw_Adobe_marker) {
switch (cinfo->Adobe_transform) {
case 0:
cinfo->jpeg_color_space = JCS_CMYK;
break;
case 2:
cinfo->jpeg_color_space = JCS_YCCK;
break;
default:
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
}
} else {
/* Unknown IDs and no special markers, assume straight CMYK. */
cinfo->jpeg_color_space = JCS_CMYK;
}
cinfo->out_color_space = JCS_CMYK;
break;
default:
cinfo->jpeg_color_space = JCS_UNKNOWN;
cinfo->out_color_space = JCS_UNKNOWN;
}
/* Set defaults for other decompression parameters. */
cinfo->scale_num = cinfo->block_size; /* 1:1 scaling */
cinfo->scale_denom = cinfo->block_size;
cinfo->output_gamma = 1.0;
cinfo->buffered_image = FALSE;
cinfo->raw_data_out = FALSE;
cinfo->dct_method = JDCT_DEFAULT;
cinfo->do_fancy_upsampling = TRUE;
cinfo->do_block_smoothing = TRUE;
cinfo->quantize_colors = FALSE;
/* We set these in case application only sets quantize_colors. */
cinfo->dither_mode = JDITHER_FS;
#ifdef QUANT_2PASS_SUPPORTED
cinfo->two_pass_quantize = TRUE;
#else
cinfo->two_pass_quantize = FALSE;
#endif
cinfo->desired_number_of_colors = 256;
cinfo->colormap = NULL;
/* Initialize for no mode change in buffered-image mode. */
cinfo->enable_1pass_quant = FALSE;
cinfo->enable_external_quant = FALSE;
cinfo->enable_2pass_quant = FALSE;
}
/*
* Decompression startup: read start of JPEG datastream to see what's there.
* Need only initialize JPEG object and supply a data source before calling.
*
* This routine will read as far as the first SOS marker (ie, actual start of
* compressed data), and will save all tables and parameters in the JPEG
* object. It will also initialize the decompression parameters to default
* values, and finally return JPEG_HEADER_OK. On return, the application may
* adjust the decompression parameters and then call jpeg_start_decompress.
* (Or, if the application only wanted to determine the image parameters,
* the data need not be decompressed. In that case, call jpeg_abort or
* jpeg_destroy to release any temporary space.)
* If an abbreviated (tables only) datastream is presented, the routine will
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
* re-use the JPEG object to read the abbreviated image datastream(s).
* It is unnecessary (but OK) to call jpeg_abort in this case.
* The JPEG_SUSPENDED return code only occurs if the data source module
* requests suspension of the decompressor. In this case the application
* should load more source data and then re-call jpeg_read_header to resume
* processing.
* If a non-suspending data source is used and require_image is TRUE, then the
* return code need not be inspected since only JPEG_HEADER_OK is possible.
*
* This routine is now just a front end to jpeg_consume_input, with some
* extra error checking.
*/
GLOBAL(int)
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
{
int retcode;
if (cinfo->global_state != DSTATE_START &&
cinfo->global_state != DSTATE_INHEADER)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
retcode = jpeg_consume_input(cinfo);
switch (retcode) {
case JPEG_REACHED_SOS:
retcode = JPEG_HEADER_OK;
break;
case JPEG_REACHED_EOI:
if (require_image) /* Complain if application wanted an image */
ERREXIT(cinfo, JERR_NO_IMAGE);
/* Reset to start state; it would be safer to require the application to
* call jpeg_abort, but we can't change it now for compatibility reasons.
* A side effect is to free any temporary memory (there shouldn't be any).
*/
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
retcode = JPEG_HEADER_TABLES_ONLY;
break;
case JPEG_SUSPENDED:
/* no work */
break;
}
return retcode;
}
/*
* Consume data in advance of what the decompressor requires.
* This can be called at any time once the decompressor object has
* been created and a data source has been set up.
*
* This routine is essentially a state machine that handles a couple
* of critical state-transition actions, namely initial setup and
* transition from header scanning to ready-for-start_decompress.
* All the actual input is done via the input controller's consume_input
* method.
*/
GLOBAL(int)
jpeg_consume_input (j_decompress_ptr cinfo)
{
int retcode = JPEG_SUSPENDED;
/* NB: every possible DSTATE value should be listed in this switch */
switch (cinfo->global_state) {
case DSTATE_START:
/* Start-of-datastream actions: reset appropriate modules */
(*cinfo->inputctl->reset_input_controller) (cinfo);
/* Initialize application's data source module */
(*cinfo->src->init_source) (cinfo);
cinfo->global_state = DSTATE_INHEADER;
/*FALLTHROUGH*/
case DSTATE_INHEADER:
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
/* Set up default parameters based on header data */
default_decompress_parms(cinfo);
/* Set global state: ready for start_decompress */
cinfo->global_state = DSTATE_READY;
}
break;
case DSTATE_READY:
/* Can't advance past first SOS until start_decompress is called */
retcode = JPEG_REACHED_SOS;
break;
case DSTATE_PRELOAD:
case DSTATE_PRESCAN:
case DSTATE_SCANNING:
case DSTATE_RAW_OK:
case DSTATE_BUFIMAGE:
case DSTATE_BUFPOST:
case DSTATE_STOPPING:
retcode = (*cinfo->inputctl->consume_input) (cinfo);
break;
default:
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
return retcode;
}
/*
* Have we finished reading the input file?
*/
GLOBAL(boolean)
jpeg_input_complete (j_decompress_ptr cinfo)
{
/* Check for valid jpeg object */
if (cinfo->global_state < DSTATE_START ||
cinfo->global_state > DSTATE_STOPPING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return cinfo->inputctl->eoi_reached;
}
/*
* Is there more than one scan?
*/
GLOBAL(boolean)
jpeg_has_multiple_scans (j_decompress_ptr cinfo)
{
/* Only valid after jpeg_read_header completes */
if (cinfo->global_state < DSTATE_READY ||
cinfo->global_state > DSTATE_STOPPING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return cinfo->inputctl->has_multiple_scans;
}
/*
* Finish JPEG decompression.
*
* This will normally just verify the file trailer and release temp storage.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_finish_decompress (j_decompress_ptr cinfo)
{
if ((cinfo->global_state == DSTATE_SCANNING ||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
/* Terminate final pass of non-buffered mode */
if (cinfo->output_scanline < cinfo->output_height)
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
(*cinfo->master->finish_output_pass) (cinfo);
cinfo->global_state = DSTATE_STOPPING;
} else if (cinfo->global_state == DSTATE_BUFIMAGE) {
/* Finishing after a buffered-image operation */
cinfo->global_state = DSTATE_STOPPING;
} else if (cinfo->global_state != DSTATE_STOPPING) {
/* STOPPING = repeat call after a suspension, anything else is error */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
/* Read until EOI */
while (! cinfo->inputctl->eoi_reached) {
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
return FALSE; /* Suspend, come back later */
}
/* Do final cleanup */
(*cinfo->src->term_source) (cinfo);
/* We can use jpeg_abort to release memory and reset global_state */
jpeg_abort((j_common_ptr) cinfo);
return TRUE;
}

276
dep/libjpeg/src/jdapistd.c Normal file
View File

@ -0,0 +1,276 @@
/*
* jdapistd.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2002-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains application interface code for the decompression half
* of the JPEG library. These are the "standard" API routines that are
* used in the normal full-decompression case. They are not used by a
* transcoding-only application. Note that if an application links in
* jpeg_start_decompress, it will end up linking in the entire decompressor.
* We thus must separate this file from jdapimin.c to avoid linking the
* whole decompression library into a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));
/*
* Decompression initialization.
* jpeg_read_header must be completed before calling this.
*
* If a multipass operating mode was selected, this will do all but the
* last pass, and thus may take a great deal of time.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_start_decompress (j_decompress_ptr cinfo)
{
if (cinfo->global_state == DSTATE_READY) {
/* First call: initialize master control, select active modules */
jinit_master_decompress(cinfo);
if (cinfo->buffered_image) {
/* No more work here; expecting jpeg_start_output next */
cinfo->global_state = DSTATE_BUFIMAGE;
return TRUE;
}
cinfo->global_state = DSTATE_PRELOAD;
}
if (cinfo->global_state == DSTATE_PRELOAD) {
/* If file has multiple scans, absorb them all into the coef buffer */
if (cinfo->inputctl->has_multiple_scans) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
for (;;) {
int retcode;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL)
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
/* Absorb some more input */
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_SUSPENDED)
return FALSE;
if (retcode == JPEG_REACHED_EOI)
break;
/* Advance progress counter if appropriate */
if (cinfo->progress != NULL &&
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
/* jdmaster underestimated number of scans; ratchet up one scan */
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
}
}
}
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* D_MULTISCAN_FILES_SUPPORTED */
}
cinfo->output_scan_number = cinfo->input_scan_number;
} else if (cinfo->global_state != DSTATE_PRESCAN)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Perform any dummy output passes, and set up for the final pass */
return output_pass_setup(cinfo);
}
/*
* Set up for an output pass, and perform any dummy pass(es) needed.
* Common subroutine for jpeg_start_decompress and jpeg_start_output.
* Entry: global_state = DSTATE_PRESCAN only if previously suspended.
* Exit: If done, returns TRUE and sets global_state for proper output mode.
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
*/
LOCAL(boolean)
output_pass_setup (j_decompress_ptr cinfo)
{
if (cinfo->global_state != DSTATE_PRESCAN) {
/* First call: do pass setup */
(*cinfo->master->prepare_for_output_pass) (cinfo);
cinfo->output_scanline = 0;
cinfo->global_state = DSTATE_PRESCAN;
}
/* Loop over any required dummy passes */
while (cinfo->master->is_dummy_pass) {
#ifdef QUANT_2PASS_SUPPORTED
/* Crank through the dummy pass */
while (cinfo->output_scanline < cinfo->output_height) {
JDIMENSION last_scanline;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Process some data */
last_scanline = cinfo->output_scanline;
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
&cinfo->output_scanline, (JDIMENSION) 0);
if (cinfo->output_scanline == last_scanline)
return FALSE; /* No progress made, must suspend */
}
/* Finish up dummy pass, and set up for another one */
(*cinfo->master->finish_output_pass) (cinfo);
(*cinfo->master->prepare_for_output_pass) (cinfo);
cinfo->output_scanline = 0;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* QUANT_2PASS_SUPPORTED */
}
/* Ready for application to drive output pass through
* jpeg_read_scanlines or jpeg_read_raw_data.
*/
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
return TRUE;
}
/*
* Read some scanlines of data from the JPEG decompressor.
*
* The return value will be the number of lines actually read.
* This may be less than the number requested in several cases,
* including bottom of image, data source suspension, and operating
* modes that emit multiple scanlines at a time.
*
* Note: we warn about excess calls to jpeg_read_scanlines() since
* this likely signals an application programmer error. However,
* an oversize buffer (max_lines > scanlines remaining) is not an error.
*/
GLOBAL(JDIMENSION)
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
JDIMENSION max_lines)
{
JDIMENSION row_ctr;
if (cinfo->global_state != DSTATE_SCANNING)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->output_scanline >= cinfo->output_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Process some data */
row_ctr = 0;
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
cinfo->output_scanline += row_ctr;
return row_ctr;
}
/*
* Alternate entry point to read raw data.
* Processes exactly one iMCU row per call, unless suspended.
*/
GLOBAL(JDIMENSION)
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
JDIMENSION max_lines)
{
JDIMENSION lines_per_iMCU_row;
if (cinfo->global_state != DSTATE_RAW_OK)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->output_scanline >= cinfo->output_height) {
WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
return 0;
}
/* Call progress monitor hook if present */
if (cinfo->progress != NULL) {
cinfo->progress->pass_counter = (long) cinfo->output_scanline;
cinfo->progress->pass_limit = (long) cinfo->output_height;
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
}
/* Verify that at least one iMCU row can be returned. */
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size;
if (max_lines < lines_per_iMCU_row)
ERREXIT(cinfo, JERR_BUFFER_SIZE);
/* Decompress directly into user's buffer. */
if (! (*cinfo->coef->decompress_data) (cinfo, data))
return 0; /* suspension forced, can do nothing more */
/* OK, we processed one iMCU row. */
cinfo->output_scanline += lines_per_iMCU_row;
return lines_per_iMCU_row;
}
/* Additional entry points for buffered-image mode. */
#ifdef D_MULTISCAN_FILES_SUPPORTED
/*
* Initialize for an output pass in buffered-image mode.
*/
GLOBAL(boolean)
jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
{
if (cinfo->global_state != DSTATE_BUFIMAGE &&
cinfo->global_state != DSTATE_PRESCAN)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Limit scan number to valid range */
if (scan_number <= 0)
scan_number = 1;
if (cinfo->inputctl->eoi_reached &&
scan_number > cinfo->input_scan_number)
scan_number = cinfo->input_scan_number;
cinfo->output_scan_number = scan_number;
/* Perform any dummy output passes, and set up for the real pass */
return output_pass_setup(cinfo);
}
/*
* Finish up after an output pass in buffered-image mode.
*
* Returns FALSE if suspended. The return value need be inspected only if
* a suspending data source is used.
*/
GLOBAL(boolean)
jpeg_finish_output (j_decompress_ptr cinfo)
{
if ((cinfo->global_state == DSTATE_SCANNING ||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
/* Terminate this pass. */
/* We do not require the whole pass to have been completed. */
(*cinfo->master->finish_output_pass) (cinfo);
cinfo->global_state = DSTATE_BUFPOST;
} else if (cinfo->global_state != DSTATE_BUFPOST) {
/* BUFPOST = repeat call after a suspension, anything else is error */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
}
/* Read markers looking for SOS or EOI */
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
! cinfo->inputctl->eoi_reached) {
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
return FALSE; /* Suspend, come back later */
}
cinfo->global_state = DSTATE_BUFIMAGE;
return TRUE;
}
#endif /* D_MULTISCAN_FILES_SUPPORTED */

796
dep/libjpeg/src/jdarith.c Normal file
View File

@ -0,0 +1,796 @@
/*
* jdarith.c
*
* Developed 1997-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains portable arithmetic entropy decoding routines for JPEG
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
*
* Both sequential and progressive modes are supported in this single module.
*
* Suspension is not currently supported in this module.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Expanded entropy decoder object for arithmetic decoding. */
typedef struct {
struct jpeg_entropy_decoder pub; /* public fields */
INT32 c; /* C register, base of coding interval + input bit buffer */
INT32 a; /* A register, normalized size of coding interval */
int ct; /* bit shift counter, # of bits left in bit buffer part of C */
/* init: ct = -16 */
/* run: ct = 0..7 */
/* error: ct = -1 */
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
unsigned int restarts_to_go; /* MCUs left in this restart interval */
/* Pointers to statistics areas (these workspaces have image lifespan) */
unsigned char * dc_stats[NUM_ARITH_TBLS];
unsigned char * ac_stats[NUM_ARITH_TBLS];
/* Statistics bin for coding with fixed probability 0.5 */
unsigned char fixed_bin[4];
} arith_entropy_decoder;
typedef arith_entropy_decoder * arith_entropy_ptr;
/* The following two definitions specify the allocation chunk size
* for the statistics area.
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
* 49 statistics bins for DC, and 245 statistics bins for AC coding.
*
* We use a compact representation with 1 byte per statistics bin,
* thus the numbers directly represent byte sizes.
* This 1 byte per statistics bin contains the meaning of the MPS
* (more probable symbol) in the highest bit (mask 0x80), and the
* index into the probability estimation state machine table
* in the lower bits (mask 0x7F).
*/
#define DC_STAT_BINS 64
#define AC_STAT_BINS 256
LOCAL(int)
get_byte (j_decompress_ptr cinfo)
/* Read next input byte; we do not support suspension in this module. */
{
struct jpeg_source_mgr * src = cinfo->src;
if (src->bytes_in_buffer == 0)
if (! (*src->fill_input_buffer) (cinfo))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
src->bytes_in_buffer--;
return GETJOCTET(*src->next_input_byte++);
}
/*
* The core arithmetic decoding routine (common in JPEG and JBIG).
* This needs to go as fast as possible.
* Machine-dependent optimization facilities
* are not utilized in this portable implementation.
* However, this code should be fairly efficient and
* may be a good base for further optimizations anyway.
*
* Return value is 0 or 1 (binary decision).
*
* Note: I've changed the handling of the code base & bit
* buffer register C compared to other implementations
* based on the standards layout & procedures.
* While it also contains both the actual base of the
* coding interval (16 bits) and the next-bits buffer,
* the cut-point between these two parts is floating
* (instead of fixed) with the bit shift counter CT.
* Thus, we also need only one (variable instead of
* fixed size) shift for the LPS/MPS decision, and
* we can do away with any renormalization update
* of C (except for new data insertion, of course).
*
* I've also introduced a new scheme for accessing
* the probability estimation state machine table,
* derived from Markus Kuhn's JBIG implementation.
*/
LOCAL(int)
arith_decode (j_decompress_ptr cinfo, unsigned char *st)
{
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
register unsigned char nl, nm;
register INT32 qe, temp;
register int sv, data;
/* Renormalization & data input per section D.2.6 */
while (e->a < 0x8000L) {
if (--e->ct < 0) {
/* Need to fetch next data byte */
if (cinfo->unread_marker)
data = 0; /* stuff zero data */
else {
data = get_byte(cinfo); /* read next input byte */
if (data == 0xFF) { /* zero stuff or marker code */
do data = get_byte(cinfo);
while (data == 0xFF); /* swallow extra 0xFF bytes */
if (data == 0)
data = 0xFF; /* discard stuffed zero byte */
else {
/* Note: Different from the Huffman decoder, hitting
* a marker while processing the compressed data
* segment is legal in arithmetic coding.
* The convention is to supply zero data
* then until decoding is complete.
*/
cinfo->unread_marker = data;
data = 0;
}
}
}
e->c = (e->c << 8) | data; /* insert data into C register */
if ((e->ct += 8) < 0) /* update bit shift counter */
/* Need more initial bytes */
if (++e->ct == 0)
/* Got 2 initial bytes -> re-init A and exit loop */
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
}
e->a <<= 1;
}
/* Fetch values from our compact representation of Table D.3(D.2):
* Qe values and probability estimation state machine
*/
sv = *st;
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */
temp = e->a - qe;
e->a = temp;
temp <<= e->ct;
if (e->c >= temp) {
e->c -= temp;
/* Conditional LPS (less probable symbol) exchange */
if (e->a < qe) {
e->a = qe;
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
} else {
e->a = qe;
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
sv ^= 0x80; /* Exchange LPS/MPS */
}
} else if (e->a < 0x8000L) {
/* Conditional MPS (more probable symbol) exchange */
if (e->a < qe) {
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
sv ^= 0x80; /* Exchange LPS/MPS */
} else {
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
}
}
return sv >> 7;
}
/*
* Check for a restart marker & resynchronize decoder.
*/
LOCAL(void)
process_restart (j_decompress_ptr cinfo)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
int ci;
jpeg_component_info * compptr;
/* Advance past the RSTn marker */
if (! (*cinfo->marker->read_restart_marker) (cinfo))
ERREXIT(cinfo, JERR_CANT_SUSPEND);
/* Re-initialize statistics areas */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
/* Reset DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
entropy->dc_context[ci] = 0;
}
if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
(cinfo->progressive_mode && cinfo->Ss)) {
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
}
}
/* Reset arithmetic decoding variables */
entropy->c = 0;
entropy->a = 0;
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
/* Reset restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
}
/*
* Arithmetic MCU decoding.
* Each of these routines decodes and returns one MCU's worth of
* arithmetic-compressed coefficients.
* The coefficients are reordered from zigzag order into natural array order,
* but are not dequantized.
*
* The i'th block of the MCU is stored into the block pointed to by
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
*/
/*
* MCU decoding for DC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF(boolean)
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
JBLOCKROW block;
unsigned char *st;
int blkn, ci, tbl, sign;
int v, m;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
/* Figure F.19: Decode_DC_DIFF */
if (arith_decode(cinfo, st) == 0)
entropy->dc_context[ci] = 0;
else {
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
sign = arith_decode(cinfo, st + 1);
st += 2; st += sign;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == (int) 0x8000U) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
else
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
entropy->last_dc_val[ci] += v;
}
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
}
return TRUE;
}
/*
* MCU decoding for AC initial scan (either spectral selection,
* or first pass of successive approximation).
*/
METHODDEF(boolean)
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
JBLOCKROW block;
unsigned char *st;
int tbl, sign, k;
int v, m;
const int * natural_order;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
natural_order = cinfo->natural_order;
/* There is always only one block per MCU */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
/* Figure F.20: Decode_AC_coefficients */
k = cinfo->Ss - 1;
do {
st = entropy->ac_stats[tbl] + 3 * k;
if (arith_decode(cinfo, st)) break; /* EOB flag */
for (;;) {
k++;
if (arith_decode(cinfo, st + 1)) break;
st += 3;
if (k >= cinfo->Se) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
sign = arith_decode(cinfo, entropy->fixed_bin);
st += 2;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
if (arith_decode(cinfo, st)) {
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == (int) 0x8000U) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
}
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
/* Scale and output coefficient in natural (dezigzagged) order */
(*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
} while (k < cinfo->Se);
return TRUE;
}
/*
* MCU decoding for DC successive approximation refinement scan.
* Note: we assume such scans can be multi-component,
* although the spec is not very clear on the point.
*/
METHODDEF(boolean)
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
unsigned char *st;
JCOEF p1;
int blkn;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
st = entropy->fixed_bin; /* use fixed probability estimation */
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
/* Encoded data is simply the next bit of the two's-complement DC value */
if (arith_decode(cinfo, st))
MCU_data[blkn][0][0] |= p1;
}
return TRUE;
}
/*
* MCU decoding for AC successive approximation refinement scan.
*/
METHODDEF(boolean)
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
JBLOCKROW block;
JCOEFPTR thiscoef;
unsigned char *st;
int tbl, k, kex;
JCOEF p1, m1;
const int * natural_order;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
natural_order = cinfo->natural_order;
/* There is always only one block per MCU */
block = MCU_data[0];
tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
m1 = -p1; /* -1 in the bit position being coded */
/* Establish EOBx (previous stage end-of-block) index */
kex = cinfo->Se;
do {
if ((*block)[natural_order[kex]]) break;
} while (--kex);
k = cinfo->Ss - 1;
do {
st = entropy->ac_stats[tbl] + 3 * k;
if (k >= kex)
if (arith_decode(cinfo, st)) break; /* EOB flag */
for (;;) {
thiscoef = *block + natural_order[++k];
if (*thiscoef) { /* previously nonzero coef */
if (arith_decode(cinfo, st + 2)) {
if (*thiscoef < 0)
*thiscoef += m1;
else
*thiscoef += p1;
}
break;
}
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */
if (arith_decode(cinfo, entropy->fixed_bin))
*thiscoef = m1;
else
*thiscoef = p1;
break;
}
st += 3;
if (k >= cinfo->Se) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
} while (k < cinfo->Se);
return TRUE;
}
/*
* Decode one MCU's worth of arithmetic-compressed coefficients.
*/
METHODDEF(boolean)
decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
jpeg_component_info * compptr;
JBLOCKROW block;
unsigned char *st;
int blkn, ci, tbl, sign, k;
int v, m;
const int * natural_order;
/* Process restart marker if needed */
if (cinfo->restart_interval) {
if (entropy->restarts_to_go == 0)
process_restart(cinfo);
entropy->restarts_to_go--;
}
if (entropy->ct == -1) return TRUE; /* if error do nothing */
natural_order = cinfo->natural_order;
/* Outer loop handles each block in the MCU */
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
block = MCU_data[blkn];
ci = cinfo->MCU_membership[blkn];
compptr = cinfo->cur_comp_info[ci];
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
tbl = compptr->dc_tbl_no;
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */
st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
/* Figure F.19: Decode_DC_DIFF */
if (arith_decode(cinfo, st) == 0)
entropy->dc_context[ci] = 0;
else {
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
sign = arith_decode(cinfo, st + 1);
st += 2; st += sign;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == (int) 0x8000U) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
entropy->dc_context[ci] = 0; /* zero diff category */
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
else
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
entropy->last_dc_val[ci] += v;
}
(*block)[0] = (JCOEF) entropy->last_dc_val[ci];
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
if (cinfo->lim_Se == 0) continue;
tbl = compptr->ac_tbl_no;
k = 0;
/* Figure F.20: Decode_AC_coefficients */
do {
st = entropy->ac_stats[tbl] + 3 * k;
if (arith_decode(cinfo, st)) break; /* EOB flag */
for (;;) {
k++;
if (arith_decode(cinfo, st + 1)) break;
st += 3;
if (k >= cinfo->lim_Se) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* spectral overflow */
return TRUE;
}
}
/* Figure F.21: Decoding nonzero value v */
/* Figure F.22: Decoding the sign of v */
sign = arith_decode(cinfo, entropy->fixed_bin);
st += 2;
/* Figure F.23: Decoding the magnitude category of v */
if ((m = arith_decode(cinfo, st)) != 0) {
if (arith_decode(cinfo, st)) {
m <<= 1;
st = entropy->ac_stats[tbl] +
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
while (arith_decode(cinfo, st)) {
if ((m <<= 1) == (int) 0x8000U) {
WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
entropy->ct = -1; /* magnitude overflow */
return TRUE;
}
st += 1;
}
}
}
v = m;
/* Figure F.24: Decoding the magnitude bit pattern of v */
st += 14;
while (m >>= 1)
if (arith_decode(cinfo, st)) v |= m;
v += 1; if (sign) v = -v;
(*block)[natural_order[k]] = (JCOEF) v;
} while (k < cinfo->lim_Se);
}
return TRUE;
}
/*
* Initialize for an arithmetic-compressed scan.
*/
METHODDEF(void)
start_pass (j_decompress_ptr cinfo)
{
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
int ci, tbl;
jpeg_component_info * compptr;
if (cinfo->progressive_mode) {
/* Validate progressive scan parameters */
if (cinfo->Ss == 0) {
if (cinfo->Se != 0)
goto bad;
} else {
/* need not check Ss/Se < 0 since they came from unsigned bytes */
if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
goto bad;
/* AC scans may have only one component */
if (cinfo->comps_in_scan != 1)
goto bad;
}
if (cinfo->Ah != 0) {
/* Successive approximation refinement scan: must have Al = Ah-1. */
if (cinfo->Ah-1 != cinfo->Al)
goto bad;
}
if (cinfo->Al > 13) { /* need not check for < 0 */
bad:
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
}
/* Update progression status, and verify that scan order is legal.
* Note that inter-scan inconsistencies are treated as warnings
* not fatal errors ... not clear if this is right way to behave.
*/
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
if (cinfo->Ah != expected)
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
coef_bit_ptr[coefi] = cinfo->Al;
}
}
/* Select MCU decoding routine */
if (cinfo->Ah == 0) {
if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_first;
else
entropy->pub.decode_mcu = decode_mcu_AC_first;
} else {
if (cinfo->Ss == 0)
entropy->pub.decode_mcu = decode_mcu_DC_refine;
else
entropy->pub.decode_mcu = decode_mcu_AC_refine;
}
} else {
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
* This ought to be an error condition, but we make it a warning.
*/
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
/* Select MCU decoding routine */
entropy->pub.decode_mcu = decode_mcu;
}
/* Allocate & initialize requested statistics areas */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
tbl = compptr->dc_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->dc_stats[tbl] == NULL)
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
/* Initialize DC predictions to 0 */
entropy->last_dc_val[ci] = 0;
entropy->dc_context[ci] = 0;
}
if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
(cinfo->progressive_mode && cinfo->Ss)) {
tbl = compptr->ac_tbl_no;
if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
if (entropy->ac_stats[tbl] == NULL)
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
}
}
/* Initialize arithmetic decoding variables */
entropy->c = 0;
entropy->a = 0;
entropy->ct = -16; /* force reading 2 initial bytes to fill C */
/* Initialize restart counter */
entropy->restarts_to_go = cinfo->restart_interval;
}
/*
* Finish up at the end of an arithmetic-compressed scan.
*/
METHODDEF(void)
finish_pass (j_decompress_ptr cinfo)
{
/* no work necessary here */
}
/*
* Module initialization routine for arithmetic entropy decoding.
*/
GLOBAL(void)
jinit_arith_decoder (j_decompress_ptr cinfo)
{
arith_entropy_ptr entropy;
int i;
entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder));
cinfo->entropy = &entropy->pub;
entropy->pub.start_pass = start_pass;
entropy->pub.finish_pass = finish_pass;
/* Mark tables unallocated */
for (i = 0; i < NUM_ARITH_TBLS; i++) {
entropy->dc_stats[i] = NULL;
entropy->ac_stats[i] = NULL;
}
/* Initialize index for fixed probability estimation */
entropy->fixed_bin[0] = 113;
if (cinfo->progressive_mode) {
/* Create progression status table */
int *coef_bit_ptr, ci;
cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->num_components * DCTSIZE2 * SIZEOF(int));
coef_bit_ptr = & cinfo->coef_bits[0][0];
for (ci = 0; ci < cinfo->num_components; ci++)
for (i = 0; i < DCTSIZE2; i++)
*coef_bit_ptr++ = -1;
}
}

263
dep/libjpeg/src/jdatadst.c Normal file
View File

@ -0,0 +1,263 @@
/*
* jdatadst.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2009-2022 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains compression data destination routines for the case of
* emitting JPEG data to memory or to a file (or any stdio stream).
* While these routines are sufficient for most applications,
* some will want to use a different destination manager.
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of
* JOCTETs into 8-bit-wide elements on external storage. If char is wider
* than 8 bits on your machine, you may need to do some tweaking.
*/
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jerror.h"
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
extern void * malloc JPP((size_t size));
extern void free JPP((void *ptr));
#endif
/* Expanded data destination object for stdio output */
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
FILE * outfile; /* target stream */
JOCTET buffer[OUTPUT_BUF_SIZE]; /* output buffer */
} my_destination_mgr;
typedef my_destination_mgr * my_dest_ptr;
/* Expanded data destination object for memory output */
typedef struct {
struct jpeg_destination_mgr pub; /* public fields */
unsigned char ** outbuffer; /* target buffer */
size_t * outsize;
unsigned char * newbuffer; /* newly allocated buffer */
JOCTET * buffer; /* start of buffer */
size_t bufsize;
} my_mem_destination_mgr;
typedef my_mem_destination_mgr * my_mem_dest_ptr;
/*
* Initialize destination --- called by jpeg_start_compress
* before any data is actually written.
*/
METHODDEF(void)
init_destination (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
dest->pub.next_output_byte = dest->buffer;
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
}
METHODDEF(void)
init_mem_destination (j_compress_ptr cinfo)
{
/* no work necessary here */
}
/*
* Empty the output buffer --- called whenever buffer fills up.
*
* In typical applications, this should write the entire output buffer
* (ignoring the current state of next_output_byte & free_in_buffer),
* reset the pointer & count to the start of the buffer, and return TRUE
* indicating that the buffer has been dumped.
*
* In applications that need to be able to suspend compression due to output
* overrun, a FALSE return indicates that the buffer cannot be emptied now.
* In this situation, the compressor will return to its caller (possibly with
* an indication that it has not accepted all the supplied scanlines). The
* application should resume compression after it has made more room in the
* output buffer. Note that there are substantial restrictions on the use of
* suspension --- see the documentation.
*
* When suspending, the compressor will back up to a convenient restart point
* (typically the start of the current MCU). next_output_byte & free_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point will be regenerated after resumption, so do not
* write it out when emptying the buffer externally.
*/
METHODDEF(boolean)
empty_output_buffer (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
(size_t) OUTPUT_BUF_SIZE)
ERREXIT(cinfo, JERR_FILE_WRITE);
dest->pub.next_output_byte = dest->buffer;
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
return TRUE;
}
METHODDEF(boolean)
empty_mem_output_buffer (j_compress_ptr cinfo)
{
size_t nextsize;
JOCTET * nextbuffer;
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
/* Try to allocate new buffer with double size */
nextsize = dest->bufsize * 2;
nextbuffer = (JOCTET *) malloc(nextsize);
if (nextbuffer == NULL)
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 11);
MEMCOPY(nextbuffer, dest->buffer, dest->bufsize);
if (dest->newbuffer != NULL)
free(dest->newbuffer);
dest->newbuffer = nextbuffer;
dest->pub.next_output_byte = nextbuffer + dest->bufsize;
dest->pub.free_in_buffer = dest->bufsize;
dest->buffer = nextbuffer;
dest->bufsize = nextsize;
return TRUE;
}
/*
* Terminate destination --- called by jpeg_finish_compress
* after all data has been written. Usually needs to flush buffer.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
METHODDEF(void)
term_destination (j_compress_ptr cinfo)
{
my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;
/* Write any data remaining in the buffer */
if (datacount > 0) {
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
ERREXIT(cinfo, JERR_FILE_WRITE);
}
JFFLUSH(dest->outfile);
/* Make sure we wrote the output file OK */
if (JFERROR(dest->outfile))
ERREXIT(cinfo, JERR_FILE_WRITE);
}
METHODDEF(void)
term_mem_destination (j_compress_ptr cinfo)
{
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest;
*dest->outbuffer = dest->buffer;
*dest->outsize = dest->bufsize - dest->pub.free_in_buffer;
}
/*
* Prepare for output to a stdio stream.
* The caller must have already opened the stream,
* and is responsible for closing it after finishing compression.
*/
GLOBAL(void)
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
{
my_dest_ptr dest;
/* The destination object is made permanent so that multiple JPEG images
* can be written to the same file without re-executing jpeg_stdio_dest.
* This makes it dangerous to use this manager and a different destination
* manager serially with the same JPEG object, because their private object
* sizes may be different. Caveat programmer.
*/
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_destination_mgr));
}
dest = (my_dest_ptr) cinfo->dest;
dest->pub.init_destination = init_destination;
dest->pub.empty_output_buffer = empty_output_buffer;
dest->pub.term_destination = term_destination;
dest->outfile = outfile;
}
/*
* Prepare for output to a memory buffer.
* The caller may supply an own initial buffer with appropriate size.
* Otherwise, or when the actual data output exceeds the given size,
* the library adapts the buffer size as necessary.
* The standard library functions malloc/free are used for allocating
* larger memory, so the buffer is available to the application after
* finishing compression, and then the application is responsible for
* freeing the requested memory.
* Note: An initial buffer supplied by the caller is expected to be
* managed by the application. The library does not free such buffer
* when allocating a larger buffer.
*/
GLOBAL(void)
jpeg_mem_dest (j_compress_ptr cinfo,
unsigned char ** outbuffer, size_t * outsize)
{
my_mem_dest_ptr dest;
if (outbuffer == NULL || outsize == NULL) /* sanity check */
ERREXIT(cinfo, JERR_BUFFER_SIZE);
/* The destination object is made permanent so that multiple JPEG images
* can be written to the same buffer without re-executing jpeg_mem_dest.
*/
if (cinfo->dest == NULL) { /* first time for this JPEG object? */
cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_mem_destination_mgr));
}
dest = (my_mem_dest_ptr) cinfo->dest;
dest->pub.init_destination = init_mem_destination;
dest->pub.empty_output_buffer = empty_mem_output_buffer;
dest->pub.term_destination = term_mem_destination;
dest->outbuffer = outbuffer;
dest->outsize = outsize;
dest->newbuffer = NULL;
if (*outbuffer == NULL || *outsize == 0) {
/* Allocate initial buffer */
dest->newbuffer = *outbuffer = (unsigned char *) malloc(OUTPUT_BUF_SIZE);
if (dest->newbuffer == NULL)
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10);
*outsize = OUTPUT_BUF_SIZE;
}
dest->pub.next_output_byte = dest->buffer = *outbuffer;
dest->pub.free_in_buffer = dest->bufsize = *outsize;
}

271
dep/libjpeg/src/jdatasrc.c Normal file
View File

@ -0,0 +1,271 @@
/*
* jdatasrc.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2009-2022 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains decompression data source routines for the case of
* reading JPEG data from memory or from a file (or any stdio stream).
* While these routines are sufficient for most applications,
* some will want to use a different source manager.
* IMPORTANT: we assume that fread() will correctly transcribe an array of
* JOCTETs from 8-bit-wide elements on external storage. If char is wider
* than 8 bits on your machine, you may need to do some tweaking.
*/
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jerror.h"
/* Expanded data source object for stdio input */
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
typedef struct {
struct jpeg_source_mgr pub; /* public fields */
FILE * infile; /* source stream */
JOCTET buffer[INPUT_BUF_SIZE]; /* input buffer */
boolean start_of_file; /* have we gotten any data yet? */
} my_source_mgr;
typedef my_source_mgr * my_src_ptr;
/*
* Initialize source --- called by jpeg_read_header
* before any data is actually read.
*/
METHODDEF(void)
init_source (j_decompress_ptr cinfo)
{
my_src_ptr src = (my_src_ptr) cinfo->src;
/* We reset the empty-input-file flag for each image,
* but we don't clear the input buffer.
* This is correct behavior for reading a series of images from one source.
*/
src->start_of_file = TRUE;
}
METHODDEF(void)
init_mem_source (j_decompress_ptr cinfo)
{
/* no work necessary here */
}
/*
* Fill the input buffer --- called whenever buffer is emptied.
*
* In typical applications, this should read fresh data into the buffer
* (ignoring the current state of next_input_byte & bytes_in_buffer),
* reset the pointer & count to the start of the buffer, and return TRUE
* indicating that the buffer has been reloaded. It is not necessary to
* fill the buffer entirely, only to obtain at least one more byte.
*
* There is no such thing as an EOF return. If the end of the file has been
* reached, the routine has a choice of ERREXIT() or inserting fake data into
* the buffer. In most cases, generating a warning message and inserting a
* fake EOI marker is the best course of action --- this will allow the
* decompressor to output however much of the image is there. However,
* the resulting error message is misleading if the real problem is an empty
* input file, so we handle that case specially.
*
* In applications that need to be able to suspend compression due to input
* not being available yet, a FALSE return indicates that no more data can be
* obtained right now, but more may be forthcoming later. In this situation,
* the decompressor will return to its caller (with an indication of the
* number of scanlines it has read, if any). The application should resume
* decompression after it has loaded more data into the input buffer. Note
* that there are substantial restrictions on the use of suspension --- see
* the documentation.
*
* When suspending, the decompressor will back up to a convenient restart point
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer
* indicate where the restart point will be if the current call returns FALSE.
* Data beyond this point must be rescanned after resumption, so move it to
* the front of the buffer rather than discarding it.
*/
METHODDEF(boolean)
fill_input_buffer (j_decompress_ptr cinfo)
{
my_src_ptr src = (my_src_ptr) cinfo->src;
size_t nbytes;
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE);
if (nbytes <= 0) {
if (src->start_of_file) /* Treat empty input file as fatal error */
ERREXIT(cinfo, JERR_INPUT_EMPTY);
WARNMS(cinfo, JWRN_JPEG_EOF);
/* Insert a fake EOI marker */
src->buffer[0] = (JOCTET) 0xFF;
src->buffer[1] = (JOCTET) JPEG_EOI;
nbytes = 2;
}
src->pub.next_input_byte = src->buffer;
src->pub.bytes_in_buffer = nbytes;
src->start_of_file = FALSE;
return TRUE;
}
METHODDEF(boolean)
fill_mem_input_buffer (j_decompress_ptr cinfo)
{
static const JOCTET mybuffer[4] = {
(JOCTET) 0xFF, (JOCTET) JPEG_EOI, 0, 0
};
/* The whole JPEG data is expected to reside in the supplied memory
* buffer, so any request for more data beyond the given buffer size
* is treated as an error.
*/
WARNMS(cinfo, JWRN_JPEG_EOF);
/* Insert a fake EOI marker */
cinfo->src->next_input_byte = mybuffer;
cinfo->src->bytes_in_buffer = 2;
return TRUE;
}
/*
* Skip data --- used to skip over a potentially large amount of
* uninteresting data (such as an APPn marker).
*
* Writers of suspendable-input applications must note that skip_input_data
* is not granted the right to give a suspension return. If the skip extends
* beyond the data currently in the buffer, the buffer can be marked empty so
* that the next read will cause a fill_input_buffer call that can suspend.
* Arranging for additional bytes to be discarded before reloading the input
* buffer is the application writer's problem.
*/
METHODDEF(void)
skip_input_data (j_decompress_ptr cinfo, long num_bytes)
{
struct jpeg_source_mgr * src = cinfo->src;
size_t nbytes;
/* Just a dumb implementation for now. Could use fseek() except
* it doesn't work on pipes. Not clear that being smart is worth
* any trouble anyway --- large skips are infrequent.
*/
if (num_bytes > 0) {
nbytes = (size_t) num_bytes;
while (nbytes > src->bytes_in_buffer) {
nbytes -= src->bytes_in_buffer;
(void) (*src->fill_input_buffer) (cinfo);
/* note we assume that fill_input_buffer will never return FALSE,
* so suspension need not be handled.
*/
}
src->next_input_byte += nbytes;
src->bytes_in_buffer -= nbytes;
}
}
/*
* An additional method that can be provided by data source modules is the
* resync_to_restart method for error recovery in the presence of RST markers.
* For the moment, this source module just uses the default resync method
* provided by the JPEG library. That method assumes that no backtracking
* is possible.
*/
/*
* Terminate source --- called by jpeg_finish_decompress
* after all data has been read. Often a no-op.
*
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
* application must deal with any cleanup that should happen even
* for error exit.
*/
METHODDEF(void)
term_source (j_decompress_ptr cinfo)
{
/* no work necessary here */
}
/*
* Prepare for input from a stdio stream.
* The caller must have already opened the stream,
* and is responsible for closing it after finishing decompression.
*/
GLOBAL(void)
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)
{
my_src_ptr src;
/* The source object including the input buffer is made permanent so that
* a series of JPEG images can be read from the same file by calling
* jpeg_stdio_src only before the first one. (If we discarded the buffer
* at the end of one image, we'd likely lose the start of the next one.)
* This makes it unsafe to use this manager and a different source
* manager serially with the same JPEG object. Caveat programmer.
*/
if (cinfo->src == NULL) { /* first time for this JPEG object? */
cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_source_mgr));
}
src = (my_src_ptr) cinfo->src;
src->pub.init_source = init_source;
src->pub.fill_input_buffer = fill_input_buffer;
src->pub.skip_input_data = skip_input_data;
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
src->pub.term_source = term_source;
src->infile = infile;
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
src->pub.next_input_byte = NULL; /* until buffer loaded */
}
/*
* Prepare for input from a supplied memory buffer.
* The buffer must contain the whole JPEG data.
*/
GLOBAL(void)
jpeg_mem_src (j_decompress_ptr cinfo,
const unsigned char * inbuffer, size_t insize)
{
struct jpeg_source_mgr * src;
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */
ERREXIT(cinfo, JERR_INPUT_EMPTY);
/* The source object is made permanent so that a series of JPEG images
* can be read from the same buffer by calling jpeg_mem_src only before
* the first one.
*/
if (cinfo->src == NULL) { /* first time for this JPEG object? */
cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(struct jpeg_source_mgr));
}
src = cinfo->src;
src->init_source = init_mem_source;
src->fill_input_buffer = fill_mem_input_buffer;
src->skip_input_data = skip_input_data;
src->resync_to_restart = jpeg_resync_to_restart; /* use default method */
src->term_source = term_source;
src->bytes_in_buffer = insize;
src->next_input_byte = (const JOCTET *) inbuffer;
}

744
dep/libjpeg/src/jdcoefct.c Normal file
View File

@ -0,0 +1,744 @@
/*
* jdcoefct.c
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* Modified 2002-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the coefficient buffer controller for decompression.
* This controller is the top level of the JPEG decompressor proper.
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
*
* In buffered-image mode, this controller is the interface between
* input-oriented processing and output-oriented processing.
* Also, the input side (only) is used when reading a file for transcoding.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Block smoothing is only applicable for progressive JPEG, so: */
#ifndef D_PROGRESSIVE_SUPPORTED
#undef BLOCK_SMOOTHING_SUPPORTED
#endif
/* Private buffer controller object */
typedef struct {
struct jpeg_d_coef_controller pub; /* public fields */
/* These variables keep track of the current location of the input side. */
/* cinfo->input_iMCU_row is also used for this. */
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
int MCU_vert_offset; /* counts MCU rows within iMCU row */
int MCU_rows_per_iMCU_row; /* number of such rows needed */
/* The output side's location is represented by cinfo->output_iMCU_row. */
/* In single-pass modes, it's sufficient to buffer just one MCU.
* We append a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
* and let the entropy decoder write into that workspace each time.
* In multi-pass modes, this array points to the current MCU's blocks
* within the virtual arrays; it is used only by the input side.
*/
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
#ifdef D_MULTISCAN_FILES_SUPPORTED
/* In multi-pass modes, we need a virtual block array for each component. */
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
#endif
#ifdef BLOCK_SMOOTHING_SUPPORTED
/* When doing block smoothing, we latch coefficient Al values here */
int * coef_bits_latch;
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
#endif
/* Workspace for single-pass modes (omitted otherwise). */
JBLOCK blk_buffer[D_MAX_BLOCKS_IN_MCU];
} my_coef_controller;
typedef my_coef_controller * my_coef_ptr;
/* Forward declarations */
METHODDEF(int) decompress_onepass
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
#ifdef D_MULTISCAN_FILES_SUPPORTED
METHODDEF(int) decompress_data
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
#endif
#ifdef BLOCK_SMOOTHING_SUPPORTED
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
METHODDEF(int) decompress_smooth_data
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
#endif
LOCAL(void)
start_iMCU_row (j_decompress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row (input side) */
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
/* In an interleaved scan, an MCU row is the same as an iMCU row.
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
* But at the bottom of the image, process only what's left.
*/
if (cinfo->comps_in_scan > 1) {
coef->MCU_rows_per_iMCU_row = 1;
} else {
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
else
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
}
coef->MCU_ctr = 0;
coef->MCU_vert_offset = 0;
}
/*
* Initialize for an input processing pass.
*/
METHODDEF(void)
start_input_pass (j_decompress_ptr cinfo)
{
cinfo->input_iMCU_row = 0;
start_iMCU_row(cinfo);
}
/*
* Initialize for an output processing pass.
*/
METHODDEF(void)
start_output_pass (j_decompress_ptr cinfo)
{
#ifdef BLOCK_SMOOTHING_SUPPORTED
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
/* If multipass, check to see whether to use block smoothing on this pass */
if (coef->pub.coef_arrays != NULL) {
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
coef->pub.decompress_data = decompress_smooth_data;
else
coef->pub.decompress_data = decompress_data;
}
#endif
cinfo->output_iMCU_row = 0;
}
/*
* Decompress and return some data in the single-pass case.
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
* Input and output must run in lockstep since we have only a one-MCU buffer.
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
*
* NB: output_buf contains a plane for each component in image,
* which we index according to the component's SOF position.
*/
METHODDEF(int)
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
int ci, xindex, yindex, yoffset, useful_width;
JBLOCKROW blkp;
JSAMPARRAY output_ptr;
JDIMENSION start_col, output_col;
jpeg_component_info *compptr;
inverse_DCT_method_ptr inverse_DCT;
/* Loop to process as much as one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
MCU_col_num++) {
blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
if (cinfo->lim_Se) /* can bypass in DC only case */
MEMZERO(blkp, cinfo->blocks_in_MCU * SIZEOF(JBLOCK));
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return JPEG_SUSPENDED;
}
/* Determine where data should go in output_buf and do the IDCT thing.
* We skip dummy blocks at the right and bottom edges (but blkp gets
* incremented past them!).
*/
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Don't bother to IDCT an uninteresting component. */
if (! compptr->component_needed) {
blkp += compptr->MCU_blocks;
continue;
}
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
output_ptr = output_buf[compptr->component_index] +
yoffset * compptr->DCT_v_scaled_size;
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
: compptr->last_col_width;
start_col = MCU_col_num * compptr->MCU_sample_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
if (cinfo->input_iMCU_row < last_iMCU_row ||
yoffset + yindex < compptr->last_row_height) {
output_col = start_col;
for (xindex = 0; xindex < useful_width; xindex++) {
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) (blkp + xindex),
output_ptr, output_col);
output_col += compptr->DCT_h_scaled_size;
}
output_ptr += compptr->DCT_v_scaled_size;
}
blkp += compptr->MCU_width;
}
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->MCU_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
cinfo->output_iMCU_row++;
if (++(cinfo->input_iMCU_row) <= last_iMCU_row) {
start_iMCU_row(cinfo);
return JPEG_ROW_COMPLETED;
}
/* Completed the scan */
(*cinfo->inputctl->finish_input_pass) (cinfo);
return JPEG_SCAN_COMPLETED;
}
/*
* Dummy consume-input routine for single-pass operation.
*/
METHODDEF(int)
dummy_consume_data (j_decompress_ptr cinfo)
{
return JPEG_SUSPENDED; /* Always indicate nothing was done */
}
#ifdef D_MULTISCAN_FILES_SUPPORTED
/*
* Consume input data and store it in the full-image coefficient buffer.
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
* ie, v_samp_factor block rows for each component in the scan.
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
*/
METHODDEF(int)
consume_data (j_decompress_ptr cinfo)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION MCU_col_num; /* index of current MCU within row */
int ci, xindex, yindex, yoffset;
JDIMENSION start_col;
JBLOCKARRAY blkp;
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
JBLOCKROW buffer_ptr;
jpeg_component_info *compptr;
/* Align the virtual buffers for the components used in this scan. */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
buffer[ci] = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
cinfo->input_iMCU_row * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, TRUE);
/* Note: entropy decoder expects buffer to be zeroed,
* but this is handled automatically by the memory manager
* because we requested a pre-zeroed array.
*/
}
/* Loop to process one whole iMCU row */
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
yoffset++) {
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
MCU_col_num++) {
/* Construct list of pointers to DCT blocks belonging to this MCU */
blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
start_col = MCU_col_num * compptr->MCU_width;
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
buffer_ptr = buffer[ci][yoffset + yindex] + start_col;
xindex = compptr->MCU_width;
do {
*blkp++ = buffer_ptr++;
} while (--xindex);
}
}
/* Try to fetch the MCU. */
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
/* Suspension forced; update state counters and exit */
coef->MCU_vert_offset = yoffset;
coef->MCU_ctr = MCU_col_num;
return JPEG_SUSPENDED;
}
}
/* Completed an MCU row, but perhaps not an iMCU row */
coef->MCU_ctr = 0;
}
/* Completed the iMCU row, advance counters for next one */
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
start_iMCU_row(cinfo);
return JPEG_ROW_COMPLETED;
}
/* Completed the scan */
(*cinfo->inputctl->finish_input_pass) (cinfo);
return JPEG_SCAN_COMPLETED;
}
/*
* Decompress and return some data in the multi-pass case.
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
*
* NB: output_buf contains a plane for each component in image.
*/
METHODDEF(int)
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
JDIMENSION block_num;
int ci, block_row, block_rows;
JBLOCKARRAY buffer;
JBLOCKROW buffer_ptr;
JSAMPARRAY output_ptr;
JDIMENSION output_col;
jpeg_component_info *compptr;
inverse_DCT_method_ptr inverse_DCT;
/* Force some input to be done if we are getting ahead of the input. */
while (cinfo->input_scan_number < cinfo->output_scan_number ||
(cinfo->input_scan_number == cinfo->output_scan_number &&
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
return JPEG_SUSPENDED;
}
/* OK, output from the virtual arrays. */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Don't bother to IDCT an uninteresting component. */
if (! compptr->component_needed)
continue;
/* Align the virtual buffer for this component. */
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
cinfo->output_iMCU_row * compptr->v_samp_factor,
(JDIMENSION) compptr->v_samp_factor, FALSE);
/* Count non-dummy DCT block rows in this iMCU row. */
if (cinfo->output_iMCU_row < last_iMCU_row)
block_rows = compptr->v_samp_factor;
else {
/* NB: can't use last_row_height here; it is input-side-dependent! */
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (block_rows == 0) block_rows = compptr->v_samp_factor;
}
inverse_DCT = cinfo->idct->inverse_DCT[ci];
output_ptr = output_buf[ci];
/* Loop over all DCT blocks to be processed. */
for (block_row = 0; block_row < block_rows; block_row++) {
buffer_ptr = buffer[block_row];
output_col = 0;
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
output_ptr, output_col);
buffer_ptr++;
output_col += compptr->DCT_h_scaled_size;
}
output_ptr += compptr->DCT_v_scaled_size;
}
}
if (++(cinfo->output_iMCU_row) <= last_iMCU_row)
return JPEG_ROW_COMPLETED;
return JPEG_SCAN_COMPLETED;
}
#endif /* D_MULTISCAN_FILES_SUPPORTED */
#ifdef BLOCK_SMOOTHING_SUPPORTED
/*
* This code applies interblock smoothing as described by section K.8
* of the JPEG standard: the first 5 AC coefficients are estimated from
* the DC values of a DCT block and its 8 neighboring blocks.
* We apply smoothing only for progressive JPEG decoding, and only if
* the coefficients it can estimate are not yet known to full precision.
*/
/* Natural-order array positions of the first 5 zigzag-order coefficients */
#define Q01_POS 1
#define Q10_POS 8
#define Q20_POS 16
#define Q11_POS 9
#define Q02_POS 2
/*
* Determine whether block smoothing is applicable and safe.
* We also latch the current states of the coef_bits[] entries for the
* AC coefficients; otherwise, if the input side of the decompressor
* advances into a new scan, we might think the coefficients are known
* more accurately than they really are.
*/
LOCAL(boolean)
smoothing_ok (j_decompress_ptr cinfo)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
boolean smoothing_useful = FALSE;
int ci, coefi;
jpeg_component_info *compptr;
JQUANT_TBL * qtable;
int * coef_bits;
int * coef_bits_latch;
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
return FALSE;
/* Allocate latch area if not already done */
if (coef->coef_bits_latch == NULL)
coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->num_components * (SAVED_COEFS * SIZEOF(int)));
coef_bits_latch = coef->coef_bits_latch;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* All components' quantization values must already be latched. */
if ((qtable = compptr->quant_table) == NULL)
return FALSE;
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
if (qtable->quantval[0] == 0 ||
qtable->quantval[Q01_POS] == 0 ||
qtable->quantval[Q10_POS] == 0 ||
qtable->quantval[Q20_POS] == 0 ||
qtable->quantval[Q11_POS] == 0 ||
qtable->quantval[Q02_POS] == 0)
return FALSE;
/* DC values must be at least partly known for all components. */
coef_bits = cinfo->coef_bits[ci];
if (coef_bits[0] < 0)
return FALSE;
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
for (coefi = 1; coefi <= 5; coefi++) {
coef_bits_latch[coefi] = coef_bits[coefi];
if (coef_bits[coefi] != 0)
smoothing_useful = TRUE;
}
coef_bits_latch += SAVED_COEFS;
}
return smoothing_useful;
}
/*
* Variant of decompress_data for use when doing block smoothing.
*/
METHODDEF(int)
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
JDIMENSION block_num, last_block_column;
int ci, block_row, block_rows, access_rows;
JBLOCKARRAY buffer;
JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
JSAMPARRAY output_ptr;
JDIMENSION output_col;
jpeg_component_info *compptr;
inverse_DCT_method_ptr inverse_DCT;
boolean first_row, last_row;
JBLOCK workspace;
int *coef_bits;
JQUANT_TBL *quanttbl;
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
int Al, pred;
/* Force some input to be done if we are getting ahead of the input. */
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
! cinfo->inputctl->eoi_reached) {
if (cinfo->input_scan_number == cinfo->output_scan_number) {
/* If input is working on current scan, we ordinarily want it to
* have completed the current row. But if input scan is DC,
* we want it to keep one row ahead so that next block row's DC
* values are up to date.
*/
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
break;
}
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
return JPEG_SUSPENDED;
}
/* OK, output from the virtual arrays. */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Don't bother to IDCT an uninteresting component. */
if (! compptr->component_needed)
continue;
/* Count non-dummy DCT block rows in this iMCU row. */
if (cinfo->output_iMCU_row < last_iMCU_row) {
block_rows = compptr->v_samp_factor;
access_rows = block_rows * 2; /* this and next iMCU row */
last_row = FALSE;
} else {
/* NB: can't use last_row_height here; it is input-side-dependent! */
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (block_rows == 0) block_rows = compptr->v_samp_factor;
access_rows = block_rows; /* this iMCU row only */
last_row = TRUE;
}
/* Align the virtual buffer for this component. */
if (cinfo->output_iMCU_row > 0) {
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
(JDIMENSION) access_rows, FALSE);
buffer += compptr->v_samp_factor; /* point to current iMCU row */
first_row = FALSE;
} else {
buffer = (*cinfo->mem->access_virt_barray)
((j_common_ptr) cinfo, coef->whole_image[ci],
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
first_row = TRUE;
}
/* Fetch component-dependent info */
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
quanttbl = compptr->quant_table;
Q00 = quanttbl->quantval[0];
Q01 = quanttbl->quantval[Q01_POS];
Q10 = quanttbl->quantval[Q10_POS];
Q20 = quanttbl->quantval[Q20_POS];
Q11 = quanttbl->quantval[Q11_POS];
Q02 = quanttbl->quantval[Q02_POS];
inverse_DCT = cinfo->idct->inverse_DCT[ci];
output_ptr = output_buf[ci];
/* Loop over all DCT blocks to be processed. */
for (block_row = 0; block_row < block_rows; block_row++) {
buffer_ptr = buffer[block_row];
if (first_row && block_row == 0)
prev_block_row = buffer_ptr;
else
prev_block_row = buffer[block_row-1];
if (last_row && block_row == block_rows-1)
next_block_row = buffer_ptr;
else
next_block_row = buffer[block_row+1];
/* We fetch the surrounding DC values using a sliding-register approach.
* Initialize all nine here so as to do the right thing on narrow pics.
*/
DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
DC7 = DC8 = DC9 = (int) next_block_row[0][0];
output_col = 0;
last_block_column = compptr->width_in_blocks - 1;
for (block_num = 0; block_num <= last_block_column; block_num++) {
/* Fetch current DCT block into workspace so we can modify it. */
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
/* Update DC values */
if (block_num < last_block_column) {
DC3 = (int) prev_block_row[1][0];
DC6 = (int) buffer_ptr[1][0];
DC9 = (int) next_block_row[1][0];
}
/* Compute coefficient estimates per K.8.
* An estimate is applied only if coefficient is still zero,
* and is not known to be fully accurate.
*/
/* AC01 */
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
num = 36 * Q00 * (DC4 - DC6);
if (num >= 0) {
pred = (int) (((Q01<<7) + num) / (Q01<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q01<<7) - num) / (Q01<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[1] = (JCOEF) pred;
}
/* AC10 */
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
num = 36 * Q00 * (DC2 - DC8);
if (num >= 0) {
pred = (int) (((Q10<<7) + num) / (Q10<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q10<<7) - num) / (Q10<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[8] = (JCOEF) pred;
}
/* AC20 */
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
if (num >= 0) {
pred = (int) (((Q20<<7) + num) / (Q20<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q20<<7) - num) / (Q20<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[16] = (JCOEF) pred;
}
/* AC11 */
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
if (num >= 0) {
pred = (int) (((Q11<<7) + num) / (Q11<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q11<<7) - num) / (Q11<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[9] = (JCOEF) pred;
}
/* AC02 */
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
if (num >= 0) {
pred = (int) (((Q02<<7) + num) / (Q02<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
} else {
pred = (int) (((Q02<<7) - num) / (Q02<<8));
if (Al > 0 && pred >= (1<<Al))
pred = (1<<Al)-1;
pred = -pred;
}
workspace[2] = (JCOEF) pred;
}
/* OK, do the IDCT */
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
output_ptr, output_col);
/* Advance for next column */
DC1 = DC2; DC2 = DC3;
DC4 = DC5; DC5 = DC6;
DC7 = DC8; DC8 = DC9;
buffer_ptr++, prev_block_row++, next_block_row++;
output_col += compptr->DCT_h_scaled_size;
}
output_ptr += compptr->DCT_v_scaled_size;
}
}
if (++(cinfo->output_iMCU_row) <= last_iMCU_row)
return JPEG_ROW_COMPLETED;
return JPEG_SCAN_COMPLETED;
}
#endif /* BLOCK_SMOOTHING_SUPPORTED */
/*
* Initialize coefficient buffer controller.
*/
GLOBAL(void)
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
{
my_coef_ptr coef;
if (need_full_buffer) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
/* Allocate a full-image virtual array for each component, */
/* padded to a multiple of samp_factor DCT blocks in each direction. */
/* Note we ask for a pre-zeroed array. */
int ci, access_rows;
jpeg_component_info *compptr;
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer));
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
access_rows = compptr->v_samp_factor;
#ifdef BLOCK_SMOOTHING_SUPPORTED
/* If block smoothing could be used, need a bigger window */
if (cinfo->progressive_mode)
access_rows *= 3;
#endif
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
(long) compptr->h_samp_factor),
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
(long) compptr->v_samp_factor),
(JDIMENSION) access_rows);
}
coef->pub.consume_data = consume_data;
coef->pub.decompress_data = decompress_data;
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
/* We only need a single-MCU buffer. */
JBLOCKARRAY blkp;
JBLOCKROW buffer_ptr;
int bi;
coef = (my_coef_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller));
buffer_ptr = coef->blk_buffer;
if (cinfo->lim_Se == 0) /* DC only case: want to bypass later */
MEMZERO(buffer_ptr, SIZEOF(coef->blk_buffer));
blkp = coef->MCU_buffer;
bi = D_MAX_BLOCKS_IN_MCU;
do {
*blkp++ = buffer_ptr++;
} while (--bi);
coef->pub.consume_data = dummy_consume_data;
coef->pub.decompress_data = decompress_onepass;
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
}
coef->pub.start_input_pass = start_input_pass;
coef->pub.start_output_pass = start_output_pass;
#ifdef BLOCK_SMOOTHING_SUPPORTED
coef->coef_bits_latch = NULL;
#endif
cinfo->coef = &coef->pub;
}

769
dep/libjpeg/src/jdcolor.c Normal file
View File

@ -0,0 +1,769 @@
/*
* jdcolor.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2011-2023 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains output colorspace conversion routines.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#if RANGE_BITS < 2
/* Deliberate syntax err */
Sorry, this code requires 2 or more range extension bits.
#endif
/* Private subobject */
typedef struct {
struct jpeg_color_deconverter pub; /* public fields */
/* Private state for YCbCr->RGB and BG_YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
/* Private state for RGB->Y conversion */
INT32 * R_y_tab; /* => table for R to Y conversion */
INT32 * G_y_tab; /* => table for G to Y conversion */
INT32 * B_y_tab; /* => table for B to Y conversion */
} my_color_deconverter;
typedef my_color_deconverter * my_cconvert_ptr;
/*************** YCbCr -> RGB conversion: most common case **************/
/*************** BG_YCC -> RGB conversion: less common case **************/
/*************** RGB -> Y conversion: less common case **************/
/*
* YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011),
* previously known as Recommendation CCIR 601-1, except that Cb and Cr
* are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
* sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999.
* sYCC (standard luma-chroma-chroma color space with extended gamut)
* is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F.
* bg-sRGB and bg-sYCC (big gamut standard color spaces)
* are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G.
* Note that the derived conversion coefficients given in some of these
* documents are imprecise. The general conversion equations are
*
* R = Y + K * (1 - Kr) * Cr
* G = Y - K * (Kb * (1 - Kb) * Cb + Kr * (1 - Kr) * Cr) / (1 - Kr - Kb)
* B = Y + K * (1 - Kb) * Cb
*
* Y = Kr * R + (1 - Kr - Kb) * G + Kb * B
*
* With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993
* from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC,
* the conversion equations to be implemented are therefore
*
* R = Y + 1.402 * Cr
* G = Y - 0.344136286 * Cb - 0.714136286 * Cr
* B = Y + 1.772 * Cb
*
* Y = 0.299 * R + 0.587 * G + 0.114 * B
*
* where Cb and Cr represent the incoming values less CENTERJSAMPLE.
* For bg-sYCC, with K = 4, the equations are
*
* R = Y + 2.804 * Cr
* G = Y - 0.688272572 * Cb - 1.428272572 * Cr
* B = Y + 3.544 * Cb
*
* To avoid floating-point arithmetic, we represent the fractional constants
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide
* the products by 2^16, with appropriate rounding, to get the correct answer.
* Notice that Y, being an integral input, does not contribute any fraction
* so it need not participate in the rounding.
*
* For even more speed, we avoid doing any multiplications in the inner loop
* by precalculating the constants times Cb and Cr for all possible values.
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
* for 9-bit to 12-bit samples it is still acceptable. It's not very
* reasonable for 16-bit samples, but if you want lossless storage
* you shouldn't be changing colorspace anyway.
* The Cr=>R and Cb=>B values can be rounded to integers in advance;
* the values for the G calculation are left scaled up,
* since we must add them together before rounding.
*/
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/*
* Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion.
*/
LOCAL(void)
build_ycc_rgb_table (j_decompress_ptr cinfo)
/* Normal case, sYCC */
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int i;
INT32 x;
SHIFT_TEMPS
cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.402 * x */
cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS);
/* Cb=>B value is nearest int to 1.772 * x */
cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS);
/* Cr=>G value is scaled-up -0.714136286 * x */
cconvert->Cr_g_tab[i] = (- FIX(0.714136286)) * x;
/* Cb=>G value is scaled-up -0.344136286 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
cconvert->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF;
}
}
LOCAL(void)
build_bg_ycc_rgb_table (j_decompress_ptr cinfo)
/* Wide gamut case, bg-sYCC */
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
int i;
INT32 x;
SHIFT_TEMPS
cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 2.804 * x */
cconvert->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS);
/* Cb=>B value is nearest int to 3.544 * x */
cconvert->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS);
/* Cr=>G value is scaled-up -1.428272572 * x */
cconvert->Cr_g_tab[i] = (- FIX(1.428272572)) * x;
/* Cb=>G value is scaled-up -0.688272572 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
cconvert->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF;
}
}
/*
* Convert some rows of samples to the output colorspace.
*
* Note that we change from noninterleaved, one-plane-per-component format
* to interleaved-pixel format. The output buffer is therefore three times
* as wide as the input buffer.
*
* A starting row offset is provided only for the input buffer. The caller
* can easily adjust the passed output_buf value to accommodate any row
* offset required on that side.
*/
METHODDEF(void)
ycc_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int y, cb, cr;
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
register int * Crrtab = cconvert->Cr_r_tab;
register int * Cbbtab = cconvert->Cb_b_tab;
register INT32 * Crgtab = cconvert->Cr_g_tab;
register INT32 * Cbgtab = cconvert->Cb_g_tab;
SHIFT_TEMPS
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
y = GETJSAMPLE(inptr0[col]);
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses,
* for extended gamut (sYCC) and wide gamut (bg-sYCC) encodings.
*/
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
outptr[RGB_GREEN] = range_limit[y +
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
outptr += RGB_PIXELSIZE;
}
}
}
/**************** Cases other than YCC -> RGB ****************/
/*
* Initialize for RGB->grayscale colorspace conversion.
*/
LOCAL(void)
build_rgb_y_table (j_decompress_ptr cinfo)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
INT32 i;
cconvert->R_y_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->G_y_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
cconvert->B_y_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0; i <= MAXJSAMPLE; i++) {
cconvert->R_y_tab[i] = FIX(0.299) * i;
cconvert->G_y_tab[i] = FIX(0.587) * i;
cconvert->B_y_tab[i] = FIX(0.114) * i + ONE_HALF;
}
}
/*
* Convert RGB to grayscale.
*/
METHODDEF(void)
rgb_gray_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register INT32 y;
register INT32 * Rytab = cconvert->R_y_tab;
register INT32 * Gytab = cconvert->G_y_tab;
register INT32 * Bytab = cconvert->B_y_tab;
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
y = Rytab[GETJSAMPLE(inptr0[col])];
y += Gytab[GETJSAMPLE(inptr1[col])];
y += Bytab[GETJSAMPLE(inptr2[col])];
outptr[col] = (JSAMPLE) (y >> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the output colorspace.
* [R-G,G,B-G] to [R,G,B] conversion with modulo calculation
* (inverse color transform).
* This can be seen as an adaption of the general YCbCr->RGB
* conversion equation with Kr = Kb = 0, while replacing the
* normalization by modulo calculation.
*/
METHODDEF(void)
rgb1_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register int r, g, b;
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr0[col]);
g = GETJSAMPLE(inptr1[col]);
b = GETJSAMPLE(inptr2[col]);
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
* (modulo) operator is equivalent to the bitmask operator AND.
*/
outptr[RGB_RED] = (JSAMPLE) ((r + g - CENTERJSAMPLE) & MAXJSAMPLE);
outptr[RGB_GREEN] = (JSAMPLE) g;
outptr[RGB_BLUE] = (JSAMPLE) ((b + g - CENTERJSAMPLE) & MAXJSAMPLE);
outptr += RGB_PIXELSIZE;
}
}
}
/*
* [R-G,G,B-G] to grayscale conversion with modulo calculation
* (inverse color transform).
*/
METHODDEF(void)
rgb1_gray_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int r, g, b;
register INT32 y;
register INT32 * Rytab = cconvert->R_y_tab;
register INT32 * Gytab = cconvert->G_y_tab;
register INT32 * Bytab = cconvert->B_y_tab;
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
r = GETJSAMPLE(inptr0[col]);
g = GETJSAMPLE(inptr1[col]);
b = GETJSAMPLE(inptr2[col]);
/* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD
* (modulo) operator is equivalent to the bitmask operator AND.
*/
y = Rytab[(r + g - CENTERJSAMPLE) & MAXJSAMPLE];
y += Gytab[g];
y += Bytab[(b + g - CENTERJSAMPLE) & MAXJSAMPLE];
outptr[col] = (JSAMPLE) (y >> SCALEBITS);
}
}
}
/*
* Convert some rows of samples to the output colorspace.
* No colorspace change, but conversion from separate-planes
* to interleaved representation.
*/
METHODDEF(void)
rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
/* We can dispense with GETJSAMPLE() here */
outptr[RGB_RED] = inptr0[col];
outptr[RGB_GREEN] = inptr1[col];
outptr[RGB_BLUE] = inptr2[col];
outptr += RGB_PIXELSIZE;
}
}
}
/*
* Color conversion for no colorspace change: just copy the data,
* converting from separate-planes to interleaved representation.
* Note: Omit uninteresting components in output buffer.
*/
METHODDEF(void)
null_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register JSAMPROW outptr;
register JSAMPROW inptr;
register JDIMENSION count;
register int out_comps = cinfo->out_color_components;
JDIMENSION num_cols = cinfo->output_width;
JSAMPROW startptr;
int ci;
jpeg_component_info *compptr;
while (--num_rows >= 0) {
/* It seems fastest to make a separate pass for each component. */
startptr = *output_buf++;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (! compptr->component_needed)
continue; /* skip uninteresting component */
inptr = input_buf[ci][input_row];
outptr = startptr++;
for (count = num_cols; count > 0; count--) {
*outptr = *inptr++; /* don't need GETJSAMPLE() here */
outptr += out_comps;
}
}
input_row++;
}
}
/*
* Color conversion for grayscale: just copy the data.
* This also works for YCC -> grayscale conversion, in which
* we just copy the Y (luminance) component and ignore chrominance.
*/
METHODDEF(void)
grayscale_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
jcopy_sample_rows(input_buf[0] + input_row, output_buf,
num_rows, cinfo->output_width);
}
/*
* Convert grayscale to RGB: just duplicate the graylevel three times.
* This is provided to support applications that don't want to cope
* with grayscale as a separate case.
*/
METHODDEF(void)
gray_rgb_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
register JSAMPROW outptr;
register JSAMPROW inptr;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
inptr = input_buf[0][input_row++];
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
/* We can dispense with GETJSAMPLE() here */
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col];
outptr += RGB_PIXELSIZE;
}
}
}
/*
* Convert some rows of samples to the output colorspace.
* This version handles Adobe-style YCCK->CMYK conversion,
* where we convert YCbCr to R=1-C, G=1-M, and B=1-Y using the
* same conversion as above, while passing K (black) unchanged.
* We assume build_ycc_rgb_table has been called.
*/
METHODDEF(void)
ycck_cmyk_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register int y, cb, cr;
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2, inptr3;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
register int * Crrtab = cconvert->Cr_r_tab;
register int * Cbbtab = cconvert->Cb_b_tab;
register INT32 * Crgtab = cconvert->Cr_g_tab;
register INT32 * Cbgtab = cconvert->Cb_g_tab;
SHIFT_TEMPS
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
inptr3 = input_buf[3][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
y = GETJSAMPLE(inptr0[col]);
cb = GETJSAMPLE(inptr1[col]);
cr = GETJSAMPLE(inptr2[col]);
/* Range-limiting is essential due to noise introduced by DCT losses,
* and for extended gamut encodings (sYCC).
*/
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS)))];
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
/* K passes through unchanged */
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
outptr += 4;
}
}
}
/*
* Convert CMYK to YK part of YCCK for colorless output.
* We assume build_rgb_y_table has been called.
*/
METHODDEF(void)
cmyk_yk_convert (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows)
{
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
register INT32 y;
register INT32 * Rytab = cconvert->R_y_tab;
register INT32 * Gytab = cconvert->G_y_tab;
register INT32 * Bytab = cconvert->B_y_tab;
register JSAMPROW outptr;
register JSAMPROW inptr0, inptr1, inptr2, inptr3;
register JDIMENSION col;
JDIMENSION num_cols = cinfo->output_width;
while (--num_rows >= 0) {
inptr0 = input_buf[0][input_row];
inptr1 = input_buf[1][input_row];
inptr2 = input_buf[2][input_row];
inptr3 = input_buf[3][input_row];
input_row++;
outptr = *output_buf++;
for (col = 0; col < num_cols; col++) {
y = Rytab[MAXJSAMPLE - GETJSAMPLE(inptr0[col])];
y += Gytab[MAXJSAMPLE - GETJSAMPLE(inptr1[col])];
y += Bytab[MAXJSAMPLE - GETJSAMPLE(inptr2[col])];
outptr[0] = (JSAMPLE) (y >> SCALEBITS);
/* K passes through unchanged */
outptr[1] = inptr3[col]; /* don't need GETJSAMPLE here */
outptr += 2;
}
}
}
/*
* Empty method for start_pass.
*/
METHODDEF(void)
start_pass_dcolor (j_decompress_ptr cinfo)
{
/* no work needed */
}
/*
* Module initialization routine for output colorspace conversion.
*/
GLOBAL(void)
jinit_color_deconverter (j_decompress_ptr cinfo)
{
my_cconvert_ptr cconvert;
int ci, i;
cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_deconverter));
cinfo->cconvert = &cconvert->pub;
cconvert->pub.start_pass = start_pass_dcolor;
/* Make sure num_components agrees with jpeg_color_space */
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
if (cinfo->num_components != 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
case JCS_RGB:
case JCS_YCbCr:
case JCS_BG_RGB:
case JCS_BG_YCC:
if (cinfo->num_components != 3)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
case JCS_CMYK:
case JCS_YCCK:
if (cinfo->num_components != 4)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
break;
default: /* JCS_UNKNOWN can be anything */
if (cinfo->num_components < 1)
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
}
/* Support color transform only for RGB colorspaces */
if (cinfo->color_transform &&
cinfo->jpeg_color_space != JCS_RGB &&
cinfo->jpeg_color_space != JCS_BG_RGB)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
/* Set out_color_components and conversion method based on requested space.
* Also adjust the component_needed flags for any unused components,
* so that earlier pipeline stages can avoid useless computation.
*/
switch (cinfo->out_color_space) {
case JCS_GRAYSCALE:
cinfo->out_color_components = 1;
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
case JCS_YCbCr:
case JCS_BG_YCC:
cconvert->pub.color_convert = grayscale_convert;
/* For color->grayscale conversion, only the Y (0) component is needed */
for (ci = 1; ci < cinfo->num_components; ci++)
cinfo->comp_info[ci].component_needed = FALSE;
break;
case JCS_RGB:
switch (cinfo->color_transform) {
case JCT_NONE:
cconvert->pub.color_convert = rgb_gray_convert;
break;
case JCT_SUBTRACT_GREEN:
cconvert->pub.color_convert = rgb1_gray_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
build_rgb_y_table(cinfo);
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_RGB:
cinfo->out_color_components = RGB_PIXELSIZE;
switch (cinfo->jpeg_color_space) {
case JCS_GRAYSCALE:
cconvert->pub.color_convert = gray_rgb_convert;
break;
case JCS_YCbCr:
cconvert->pub.color_convert = ycc_rgb_convert;
build_ycc_rgb_table(cinfo);
break;
case JCS_BG_YCC:
cconvert->pub.color_convert = ycc_rgb_convert;
build_bg_ycc_rgb_table(cinfo);
break;
case JCS_RGB:
switch (cinfo->color_transform) {
case JCT_NONE:
cconvert->pub.color_convert = rgb_convert;
break;
case JCT_SUBTRACT_GREEN:
cconvert->pub.color_convert = rgb1_rgb_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_BG_RGB:
if (cinfo->jpeg_color_space != JCS_BG_RGB)
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
cinfo->out_color_components = RGB_PIXELSIZE;
switch (cinfo->color_transform) {
case JCT_NONE:
cconvert->pub.color_convert = rgb_convert;
break;
case JCT_SUBTRACT_GREEN:
cconvert->pub.color_convert = rgb1_rgb_convert;
break;
default:
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
}
break;
case JCS_CMYK:
if (cinfo->jpeg_color_space != JCS_YCCK)
goto def_label;
cinfo->out_color_components = 4;
cconvert->pub.color_convert = ycck_cmyk_convert;
build_ycc_rgb_table(cinfo);
break;
case JCS_YCCK:
if (cinfo->jpeg_color_space != JCS_CMYK ||
/* Support only YK part of YCCK for colorless output */
! cinfo->comp_info[0].component_needed ||
cinfo->comp_info[1].component_needed ||
cinfo->comp_info[2].component_needed ||
! cinfo->comp_info[3].component_needed)
goto def_label;
cinfo->out_color_components = 2;
/* Need all components on input side */
cinfo->comp_info[1].component_needed = TRUE;
cinfo->comp_info[2].component_needed = TRUE;
cconvert->pub.color_convert = cmyk_yk_convert;
build_rgb_y_table(cinfo);
break;
default: def_label: /* permit null conversion to same output space */
if (cinfo->out_color_space != cinfo->jpeg_color_space)
/* unsupported non-null conversion */
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
i = 0;
for (ci = 0; ci < cinfo->num_components; ci++)
if (cinfo->comp_info[ci].component_needed)
i++; /* count output color components */
cinfo->out_color_components = i;
cconvert->pub.color_convert = null_convert;
}
if (cinfo->quantize_colors)
cinfo->output_components = 1; /* single colormapped output component */
else
cinfo->output_components = cinfo->out_color_components;
}

409
dep/libjpeg/src/jdct.h Normal file
View File

@ -0,0 +1,409 @@
/*
* jdct.h
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2002-2023 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This include file contains common declarations for the forward and
* inverse DCT modules. These declarations are private to the DCT managers
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
* The individual DCT algorithms are kept in separate files to ease
* machine-dependent tuning (e.g., assembly coding).
*/
/*
* A forward DCT routine is given a pointer to an input sample array and
* a pointer to a work area of type DCTELEM[]; the DCT is to be performed
* in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32
* for 12-bit samples. (NOTE: Floating-point DCT implementations use an
* array of type FAST_FLOAT, instead.)
* The input data is to be fetched from the sample array starting at a
* specified column. (Any row offset needed will be applied to the array
* pointer before it is passed to the FDCT code.)
* Note that the number of samples fetched by the FDCT routine is
* DCT_h_scaled_size * DCT_v_scaled_size.
* The DCT outputs are returned scaled up by a factor of 8; they therefore
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
* convention improves accuracy in integer implementations and saves some
* work in floating-point ones.
* Quantization of the output coefficients is done by jcdctmgr.c.
*/
#if BITS_IN_JSAMPLE == 8
typedef int DCTELEM; /* 16 or 32 bits is fine */
#else
typedef INT32 DCTELEM; /* must have 32 bits */
#endif
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data,
JSAMPARRAY sample_data,
JDIMENSION start_col));
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data,
JSAMPARRAY sample_data,
JDIMENSION start_col));
/*
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
* to an output sample array. The routine must dequantize the input data as
* well as perform the IDCT; for dequantization, it uses the multiplier table
* pointed to by compptr->dct_table. The output data is to be placed into the
* sample array starting at a specified column. (Any row offset needed will
* be applied to the array pointer before it is passed to the IDCT code.)
* Note that the number of samples emitted by the IDCT routine is
* DCT_h_scaled_size * DCT_v_scaled_size.
*/
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
/*
* Each IDCT routine has its own ideas about the best dct_table element type.
*/
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
#if BITS_IN_JSAMPLE == 8
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
#else
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
#endif
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
/*
* Each IDCT routine is responsible for range-limiting its results and
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
* be quite far out of range if the input data is corrupt, so a bulletproof
* range-limiting step is required. We use a mask-and-table-lookup method
* to do the combined operations quickly, assuming that RANGE_CENTER
* (defined in jpegint.h) is a power of 2. See the comments with
* prepare_range_limit_table (in jdmaster.c) for more info.
*/
#define RANGE_MASK (RANGE_CENTER * 2 - 1)
#define RANGE_SUBSET (RANGE_CENTER - CENTERJSAMPLE)
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit - RANGE_SUBSET)
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_fdct_islow jFDislow
#define jpeg_fdct_ifast jFDifast
#define jpeg_fdct_float jFDfloat
#define jpeg_fdct_7x7 jFD7x7
#define jpeg_fdct_6x6 jFD6x6
#define jpeg_fdct_5x5 jFD5x5
#define jpeg_fdct_4x4 jFD4x4
#define jpeg_fdct_3x3 jFD3x3
#define jpeg_fdct_2x2 jFD2x2
#define jpeg_fdct_1x1 jFD1x1
#define jpeg_fdct_9x9 jFD9x9
#define jpeg_fdct_10x10 jFD10x10
#define jpeg_fdct_11x11 jFD11x11
#define jpeg_fdct_12x12 jFD12x12
#define jpeg_fdct_13x13 jFD13x13
#define jpeg_fdct_14x14 jFD14x14
#define jpeg_fdct_15x15 jFD15x15
#define jpeg_fdct_16x16 jFD16x16
#define jpeg_fdct_16x8 jFD16x8
#define jpeg_fdct_14x7 jFD14x7
#define jpeg_fdct_12x6 jFD12x6
#define jpeg_fdct_10x5 jFD10x5
#define jpeg_fdct_8x4 jFD8x4
#define jpeg_fdct_6x3 jFD6x3
#define jpeg_fdct_4x2 jFD4x2
#define jpeg_fdct_2x1 jFD2x1
#define jpeg_fdct_8x16 jFD8x16
#define jpeg_fdct_7x14 jFD7x14
#define jpeg_fdct_6x12 jFD6x12
#define jpeg_fdct_5x10 jFD5x10
#define jpeg_fdct_4x8 jFD4x8
#define jpeg_fdct_3x6 jFD3x6
#define jpeg_fdct_2x4 jFD2x4
#define jpeg_fdct_1x2 jFD1x2
#define jpeg_idct_islow jRDislow
#define jpeg_idct_ifast jRDifast
#define jpeg_idct_float jRDfloat
#define jpeg_idct_7x7 jRD7x7
#define jpeg_idct_6x6 jRD6x6
#define jpeg_idct_5x5 jRD5x5
#define jpeg_idct_4x4 jRD4x4
#define jpeg_idct_3x3 jRD3x3
#define jpeg_idct_2x2 jRD2x2
#define jpeg_idct_1x1 jRD1x1
#define jpeg_idct_9x9 jRD9x9
#define jpeg_idct_10x10 jRD10x10
#define jpeg_idct_11x11 jRD11x11
#define jpeg_idct_12x12 jRD12x12
#define jpeg_idct_13x13 jRD13x13
#define jpeg_idct_14x14 jRD14x14
#define jpeg_idct_15x15 jRD15x15
#define jpeg_idct_16x16 jRD16x16
#define jpeg_idct_16x8 jRD16x8
#define jpeg_idct_14x7 jRD14x7
#define jpeg_idct_12x6 jRD12x6
#define jpeg_idct_10x5 jRD10x5
#define jpeg_idct_8x4 jRD8x4
#define jpeg_idct_6x3 jRD6x3
#define jpeg_idct_4x2 jRD4x2
#define jpeg_idct_2x1 jRD2x1
#define jpeg_idct_8x16 jRD8x16
#define jpeg_idct_7x14 jRD7x14
#define jpeg_idct_6x12 jRD6x12
#define jpeg_idct_5x10 jRD5x10
#define jpeg_idct_4x8 jRD4x8
#define jpeg_idct_3x6 jRD3x6
#define jpeg_idct_2x4 jRD2x4
#define jpeg_idct_1x2 jRD1x2
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Extern declarations for the forward and inverse DCT routines. */
EXTERN(void) jpeg_fdct_islow
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_ifast
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_float
JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_7x7
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_6x6
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_5x5
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_4x4
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_3x3
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_2x2
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_1x1
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_9x9
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_10x10
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_11x11
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_12x12
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_13x13
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_14x14
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_15x15
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_16x16
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_16x8
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_14x7
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_12x6
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_10x5
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_8x4
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_6x3
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_4x2
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_2x1
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_8x16
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_7x14
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_6x12
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_5x10
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_4x8
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_3x6
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_2x4
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_fdct_1x2
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col));
EXTERN(void) jpeg_idct_islow
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_ifast
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_float
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_7x7
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_6x6
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_5x5
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_4x4
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_3x3
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_2x2
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_1x1
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_9x9
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_10x10
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_11x11
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_12x12
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_13x13
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_14x14
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_15x15
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_16x16
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_16x8
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_14x7
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_12x6
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_10x5
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_8x4
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_6x3
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_4x2
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_2x1
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_8x16
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_7x14
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_6x12
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_5x10
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_4x8
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_3x6
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_2x4
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_1x2
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
/*
* Macros for handling fixed-point arithmetic; these are used by many
* but not all of the DCT/IDCT modules.
*
* All values are expected to be of type INT32.
* Fractional constants are scaled left by CONST_BITS bits.
* CONST_BITS is defined within each module using these macros,
* and may differ from one module to the next.
*/
#define ONE ((INT32) 1)
#define CONST_SCALE (ONE << CONST_BITS)
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
* thus causing a lot of useless floating-point operations at run time.
*/
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* This macro is used only when the two inputs will actually be no more than
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
* full 32x32 multiply. This provides a useful speedup on many machines.
* Unfortunately there is no way to specify a 16x16->32 multiply portably
* in C, but some C compilers will do the right thing if you provide the
* correct combination of casts.
*/
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
#endif
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
#endif
#ifndef MULTIPLY16C16 /* default definition */
#define MULTIPLY16C16(var,const) ((var) * (const))
#endif
/* Same except both inputs are variables. */
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
#endif
#ifndef MULTIPLY16V16 /* default definition */
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
#endif
/* Like RIGHT_SHIFT, but applies to a DCTELEM.
* We assume that int right shift is unsigned if INT32 right shift is.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS DCTELEM ishift_temp;
#if BITS_IN_JSAMPLE == 8
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
#else
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
#endif
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif

384
dep/libjpeg/src/jddctmgr.c Normal file
View File

@ -0,0 +1,384 @@
/*
* jddctmgr.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2002-2013 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the inverse-DCT management logic.
* This code selects a particular IDCT implementation to be used,
* and it performs related housekeeping chores. No code in this file
* is executed per IDCT step, only during output pass setup.
*
* Note that the IDCT routines are responsible for performing coefficient
* dequantization as well as the IDCT proper. This module sets up the
* dequantization multiplier table needed by the IDCT routine.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/*
* The decompressor input side (jdinput.c) saves away the appropriate
* quantization table for each component at the start of the first scan
* involving that component. (This is necessary in order to correctly
* decode files that reuse Q-table slots.)
* When we are ready to make an output pass, the saved Q-table is converted
* to a multiplier table that will actually be used by the IDCT routine.
* The multiplier table contents are IDCT-method-dependent. To support
* application changes in IDCT method between scans, we can remake the
* multiplier tables if necessary.
* In buffered-image mode, the first output pass may occur before any data
* has been seen for some components, and thus before their Q-tables have
* been saved away. To handle this case, multiplier tables are preset
* to zeroes; the result of the IDCT will be a neutral gray level.
*/
/* Private subobject for this module */
typedef struct {
struct jpeg_inverse_dct pub; /* public fields */
/* This array contains the IDCT method code that each multiplier table
* is currently set up for, or -1 if it's not yet set up.
* The actual multiplier tables are pointed to by dct_table in the
* per-component comp_info structures.
*/
int cur_method[MAX_COMPONENTS];
} my_idct_controller;
typedef my_idct_controller * my_idct_ptr;
/* Allocated multiplier tables: big enough for any supported variant */
typedef union {
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
#ifdef DCT_IFAST_SUPPORTED
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
#endif
#ifdef DCT_FLOAT_SUPPORTED
FLOAT_MULT_TYPE float_array[DCTSIZE2];
#endif
} multiplier_table;
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
* so be sure to compile that code if either ISLOW or SCALING is requested.
*/
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef IDCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif
/*
* Prepare for an output pass.
* Here we select the proper IDCT routine for each component and build
* a matching multiplier table.
*/
METHODDEF(void)
start_pass (j_decompress_ptr cinfo)
{
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
int ci, i;
jpeg_component_info *compptr;
int method = 0;
inverse_DCT_method_ptr method_ptr = NULL;
JQUANT_TBL * qtbl;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Select the proper IDCT routine for this component's scaling */
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
case ((1 << 8) + 1):
method_ptr = jpeg_idct_1x1;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((2 << 8) + 2):
method_ptr = jpeg_idct_2x2;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((3 << 8) + 3):
method_ptr = jpeg_idct_3x3;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((4 << 8) + 4):
method_ptr = jpeg_idct_4x4;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((5 << 8) + 5):
method_ptr = jpeg_idct_5x5;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((6 << 8) + 6):
method_ptr = jpeg_idct_6x6;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((7 << 8) + 7):
method_ptr = jpeg_idct_7x7;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((9 << 8) + 9):
method_ptr = jpeg_idct_9x9;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((10 << 8) + 10):
method_ptr = jpeg_idct_10x10;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((11 << 8) + 11):
method_ptr = jpeg_idct_11x11;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((12 << 8) + 12):
method_ptr = jpeg_idct_12x12;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((13 << 8) + 13):
method_ptr = jpeg_idct_13x13;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((14 << 8) + 14):
method_ptr = jpeg_idct_14x14;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((15 << 8) + 15):
method_ptr = jpeg_idct_15x15;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((16 << 8) + 16):
method_ptr = jpeg_idct_16x16;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((16 << 8) + 8):
method_ptr = jpeg_idct_16x8;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((14 << 8) + 7):
method_ptr = jpeg_idct_14x7;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((12 << 8) + 6):
method_ptr = jpeg_idct_12x6;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((10 << 8) + 5):
method_ptr = jpeg_idct_10x5;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((8 << 8) + 4):
method_ptr = jpeg_idct_8x4;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((6 << 8) + 3):
method_ptr = jpeg_idct_6x3;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((4 << 8) + 2):
method_ptr = jpeg_idct_4x2;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((2 << 8) + 1):
method_ptr = jpeg_idct_2x1;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((8 << 8) + 16):
method_ptr = jpeg_idct_8x16;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((7 << 8) + 14):
method_ptr = jpeg_idct_7x14;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((6 << 8) + 12):
method_ptr = jpeg_idct_6x12;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((5 << 8) + 10):
method_ptr = jpeg_idct_5x10;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((4 << 8) + 8):
method_ptr = jpeg_idct_4x8;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((3 << 8) + 6):
method_ptr = jpeg_idct_3x6;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((2 << 8) + 4):
method_ptr = jpeg_idct_2x4;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
case ((1 << 8) + 2):
method_ptr = jpeg_idct_1x2;
method = JDCT_ISLOW; /* jidctint uses islow-style table */
break;
#endif
case ((DCTSIZE << 8) + DCTSIZE):
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
method_ptr = jpeg_idct_islow;
method = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
method_ptr = jpeg_idct_ifast;
method = JDCT_IFAST;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
method_ptr = jpeg_idct_float;
method = JDCT_FLOAT;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
break;
default:
ERREXIT2(cinfo, JERR_BAD_DCTSIZE,
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size);
break;
}
idct->pub.inverse_DCT[ci] = method_ptr;
/* Create multiplier table from quant table.
* However, we can skip this if the component is uninteresting
* or if we already built the table. Also, if no quant table
* has yet been saved for the component, we leave the
* multiplier table all-zero; we'll be reading zeroes from the
* coefficient controller's buffer anyway.
*/
if (! compptr->component_needed || idct->cur_method[ci] == method)
continue;
qtbl = compptr->quant_table;
if (qtbl == NULL) /* happens if no data yet for component */
continue;
idct->cur_method[ci] = method;
switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
{
/* For LL&M IDCT method, multipliers are equal to raw quantization
* coefficients, but are stored as ints to ensure access efficiency.
*/
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
}
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* For integer operation, the multiplier table is to be scaled by
* IFAST_SCALE_BITS.
*/
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
for (i = 0; i < DCTSIZE2; i++) {
ifmtbl[i] = (IFAST_MULT_TYPE)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
(INT32) aanscales[i]),
CONST_BITS-IFAST_SCALE_BITS);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* We apply a further scale factor of 1/8.
*/
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fmtbl[i] = (FLOAT_MULT_TYPE)
((double) qtbl->quantval[i] *
aanscalefactor[row] * aanscalefactor[col] * 0.125);
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Initialize IDCT manager.
*/
GLOBAL(void)
jinit_inverse_dct (j_decompress_ptr cinfo)
{
my_idct_ptr idct;
int ci;
jpeg_component_info *compptr;
idct = (my_idct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_idct_controller));
cinfo->idct = &idct->pub;
idct->pub.start_pass = start_pass;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Allocate and pre-zero a multiplier table for each component */
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(multiplier_table));
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
/* Mark multiplier table not yet set up for any method */
idct->cur_method[ci] = -1;
}
}

1559
dep/libjpeg/src/jdhuff.c Normal file

File diff suppressed because it is too large Load Diff

657
dep/libjpeg/src/jdinput.c Normal file
View File

@ -0,0 +1,657 @@
/*
* jdinput.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2002-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains input control logic for the JPEG decompressor.
* These routines are concerned with controlling the decompressor's input
* processing (marker reading and coefficient decoding). The actual input
* reading is done in jdmarker.c, jdhuff.c, and jdarith.c.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private state */
typedef struct {
struct jpeg_input_controller pub; /* public fields */
int inheaders; /* Nonzero until first SOS is reached */
} my_input_controller;
typedef my_input_controller * my_inputctl_ptr;
/* Forward declarations */
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));
/*
* Routines to calculate various quantities related to the size of the image.
*/
/*
* Compute output image dimensions and related values.
* NOTE: this is exported for possible use by application.
* Hence it mustn't do anything that can't be done twice.
*/
GLOBAL(void)
jpeg_core_output_dimensions (j_decompress_ptr cinfo)
/* Do computations that are needed before master selection phase.
* This function is used for transcoding and full decompression.
*/
{
#ifdef IDCT_SCALING_SUPPORTED
int ci;
jpeg_component_info *compptr;
/* Compute actual output image dimensions and DCT scaling choices. */
if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) {
/* Provide 1/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 1;
cinfo->min_DCT_v_scaled_size = 1;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) {
/* Provide 2/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 2;
cinfo->min_DCT_v_scaled_size = 2;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) {
/* Provide 3/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 3;
cinfo->min_DCT_v_scaled_size = 3;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) {
/* Provide 4/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 4;
cinfo->min_DCT_v_scaled_size = 4;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) {
/* Provide 5/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 5;
cinfo->min_DCT_v_scaled_size = 5;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) {
/* Provide 6/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 6;
cinfo->min_DCT_v_scaled_size = 6;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) {
/* Provide 7/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 7;
cinfo->min_DCT_v_scaled_size = 7;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) {
/* Provide 8/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 8;
cinfo->min_DCT_v_scaled_size = 8;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) {
/* Provide 9/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 9;
cinfo->min_DCT_v_scaled_size = 9;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) {
/* Provide 10/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 10;
cinfo->min_DCT_v_scaled_size = 10;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) {
/* Provide 11/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 11;
cinfo->min_DCT_v_scaled_size = 11;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) {
/* Provide 12/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 12;
cinfo->min_DCT_v_scaled_size = 12;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) {
/* Provide 13/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 13;
cinfo->min_DCT_v_scaled_size = 13;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) {
/* Provide 14/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 14;
cinfo->min_DCT_v_scaled_size = 14;
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) {
/* Provide 15/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 15;
cinfo->min_DCT_v_scaled_size = 15;
} else {
/* Provide 16/block_size scaling */
cinfo->output_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size);
cinfo->output_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size);
cinfo->min_DCT_h_scaled_size = 16;
cinfo->min_DCT_v_scaled_size = 16;
}
/* Recompute dimensions of components */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size;
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size;
}
#else /* !IDCT_SCALING_SUPPORTED */
/* Hardwire it to "no scaling" */
cinfo->output_width = cinfo->image_width;
cinfo->output_height = cinfo->image_height;
/* initial_setup has already initialized DCT_scaled_size,
* and has computed unscaled downsampled_width and downsampled_height.
*/
#endif /* IDCT_SCALING_SUPPORTED */
}
LOCAL(void)
initial_setup (j_decompress_ptr cinfo)
/* Called once, when first SOS marker is reached */
{
int ci;
jpeg_component_info *compptr;
/* Make sure image isn't bigger than I can handle */
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
/* Only 8 to 12 bits data precision are supported for DCT based JPEG */
if (cinfo->data_precision < 8 || cinfo->data_precision > 12)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Check that number of components won't exceed internal array sizes */
if (cinfo->num_components > MAX_COMPONENTS)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
MAX_COMPONENTS);
/* Compute maximum sampling factors; check factor validity */
cinfo->max_h_samp_factor = 1;
cinfo->max_v_samp_factor = 1;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
ERREXIT(cinfo, JERR_BAD_SAMPLING);
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
compptr->h_samp_factor);
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
compptr->v_samp_factor);
}
/* Derive block_size, natural_order, and lim_Se */
if (cinfo->is_baseline || (cinfo->progressive_mode &&
cinfo->comps_in_scan)) { /* no pseudo SOS marker */
cinfo->block_size = DCTSIZE;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
} else
switch (cinfo->Se) {
case (1*1-1):
cinfo->block_size = 1;
cinfo->natural_order = jpeg_natural_order; /* not needed */
cinfo->lim_Se = cinfo->Se;
break;
case (2*2-1):
cinfo->block_size = 2;
cinfo->natural_order = jpeg_natural_order2;
cinfo->lim_Se = cinfo->Se;
break;
case (3*3-1):
cinfo->block_size = 3;
cinfo->natural_order = jpeg_natural_order3;
cinfo->lim_Se = cinfo->Se;
break;
case (4*4-1):
cinfo->block_size = 4;
cinfo->natural_order = jpeg_natural_order4;
cinfo->lim_Se = cinfo->Se;
break;
case (5*5-1):
cinfo->block_size = 5;
cinfo->natural_order = jpeg_natural_order5;
cinfo->lim_Se = cinfo->Se;
break;
case (6*6-1):
cinfo->block_size = 6;
cinfo->natural_order = jpeg_natural_order6;
cinfo->lim_Se = cinfo->Se;
break;
case (7*7-1):
cinfo->block_size = 7;
cinfo->natural_order = jpeg_natural_order7;
cinfo->lim_Se = cinfo->Se;
break;
case (8*8-1):
cinfo->block_size = 8;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
case (9*9-1):
cinfo->block_size = 9;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
case (10*10-1):
cinfo->block_size = 10;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
case (11*11-1):
cinfo->block_size = 11;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
case (12*12-1):
cinfo->block_size = 12;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
case (13*13-1):
cinfo->block_size = 13;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
case (14*14-1):
cinfo->block_size = 14;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
case (15*15-1):
cinfo->block_size = 15;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
case (16*16-1):
cinfo->block_size = 16;
cinfo->natural_order = jpeg_natural_order;
cinfo->lim_Se = DCTSIZE2-1;
break;
default:
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
}
/* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size.
* In the full decompressor,
* this will be overridden by jpeg_calc_output_dimensions in jdmaster.c;
* but in the transcoder,
* jpeg_calc_output_dimensions is not used, so we must do it here.
*/
cinfo->min_DCT_h_scaled_size = cinfo->block_size;
cinfo->min_DCT_v_scaled_size = cinfo->block_size;
/* Compute dimensions of components */
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
compptr->DCT_h_scaled_size = cinfo->block_size;
compptr->DCT_v_scaled_size = cinfo->block_size;
/* Size in DCT blocks */
compptr->width_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
compptr->height_in_blocks = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
/* downsampled_width and downsampled_height will also be overridden by
* jdmaster.c if we are doing full decompression. The transcoder library
* doesn't use these values, but the calling application might.
*/
/* Size in samples */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
(long) cinfo->max_h_samp_factor);
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
(long) cinfo->max_v_samp_factor);
/* Mark component needed, until color conversion says otherwise */
compptr->component_needed = TRUE;
/* Mark no quantization table yet saved for component */
compptr->quant_table = NULL;
}
/* Compute number of fully interleaved MCU rows. */
cinfo->total_iMCU_rows = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height,
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
/* Decide whether file contains multiple scans */
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
cinfo->inputctl->has_multiple_scans = TRUE;
else
cinfo->inputctl->has_multiple_scans = FALSE;
}
LOCAL(void)
per_scan_setup (j_decompress_ptr cinfo)
/* Do computations that are needed before processing a JPEG scan */
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
{
int ci, mcublks, tmp;
jpeg_component_info *compptr;
if (cinfo->comps_in_scan == 1) {
/* Noninterleaved (single-component) scan */
compptr = cinfo->cur_comp_info[0];
/* Overall image size in MCUs */
cinfo->MCUs_per_row = compptr->width_in_blocks;
cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
/* For noninterleaved scan, always one block per MCU */
compptr->MCU_width = 1;
compptr->MCU_height = 1;
compptr->MCU_blocks = 1;
compptr->MCU_sample_width = compptr->DCT_h_scaled_size;
compptr->last_col_width = 1;
/* For noninterleaved scans, it is convenient to define last_row_height
* as the number of block rows present in the last iMCU row.
*/
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
if (tmp == 0) tmp = compptr->v_samp_factor;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
cinfo->blocks_in_MCU = 1;
cinfo->MCU_membership[0] = 0;
} else {
/* Interleaved (multi-component) scan */
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
MAX_COMPS_IN_SCAN);
/* Overall image size in MCUs */
cinfo->MCUs_per_row = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width,
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
cinfo->MCU_rows_in_scan = cinfo->total_iMCU_rows;
cinfo->blocks_in_MCU = 0;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* Sampling factors give # of blocks of component in each MCU */
compptr->MCU_width = compptr->h_samp_factor;
compptr->MCU_height = compptr->v_samp_factor;
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size;
/* Figure number of non-dummy blocks in last MCU column & row */
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
if (tmp == 0) tmp = compptr->MCU_width;
compptr->last_col_width = tmp;
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
if (tmp == 0) tmp = compptr->MCU_height;
compptr->last_row_height = tmp;
/* Prepare array describing MCU composition */
mcublks = compptr->MCU_blocks;
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
while (mcublks-- > 0) {
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
}
}
}
}
/*
* Save away a copy of the Q-table referenced by each component present
* in the current scan, unless already saved during a prior scan.
*
* In a multiple-scan JPEG file, the encoder could assign different components
* the same Q-table slot number, but change table definitions between scans
* so that each component uses a different Q-table. (The IJG encoder is not
* currently capable of doing this, but other encoders might.) Since we want
* to be able to dequantize all the components at the end of the file, this
* means that we have to save away the table actually used for each component.
* We do this by copying the table at the start of the first scan containing
* the component.
* The JPEG spec prohibits the encoder from changing the contents of a Q-table
* slot between scans of a component using that slot. If the encoder does so
* anyway, this decoder will simply use the Q-table values that were current
* at the start of the first scan for the component.
*
* The decompressor output side looks only at the saved quant tables,
* not at the current Q-table slots.
*/
LOCAL(void)
latch_quant_tables (j_decompress_ptr cinfo)
{
int ci, qtblno;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
/* No work if we already saved Q-table for this component */
if (compptr->quant_table != NULL)
continue;
/* Make sure specified quantization table is present */
qtblno = compptr->quant_tbl_no;
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
/* OK, save away the quantization table */
qtbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(JQUANT_TBL));
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
compptr->quant_table = qtbl;
}
}
/*
* Initialize the input modules to read a scan of compressed data.
* The first call to this is done by jdmaster.c after initializing
* the entire decompressor (during jpeg_start_decompress).
* Subsequent calls come from consume_markers, below.
*/
METHODDEF(void)
start_input_pass (j_decompress_ptr cinfo)
{
per_scan_setup(cinfo);
latch_quant_tables(cinfo);
(*cinfo->entropy->start_pass) (cinfo);
(*cinfo->coef->start_input_pass) (cinfo);
cinfo->inputctl->consume_input = cinfo->coef->consume_data;
}
/*
* Finish up after inputting a compressed-data scan.
* This is called by the coefficient controller after it's read all
* the expected data of the scan.
*/
METHODDEF(void)
finish_input_pass (j_decompress_ptr cinfo)
{
(*cinfo->entropy->finish_pass) (cinfo);
cinfo->inputctl->consume_input = consume_markers;
}
/*
* Read JPEG markers before, between, or after compressed-data scans.
* Change state as necessary when a new scan is reached.
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
*
* The consume_input method pointer points either here or to the
* coefficient controller's consume_data routine, depending on whether
* we are reading a compressed data segment or inter-segment markers.
*
* Note: This function should NOT return a pseudo SOS marker (with zero
* component number) to the caller. A pseudo marker received by
* read_markers is processed and then skipped for other markers.
*/
METHODDEF(int)
consume_markers (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
int val;
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
return JPEG_REACHED_EOI;
for (;;) { /* Loop to pass pseudo SOS marker */
val = (*cinfo->marker->read_markers) (cinfo);
switch (val) {
case JPEG_REACHED_SOS: /* Found SOS */
if (inputctl->inheaders) { /* 1st SOS */
if (inputctl->inheaders == 1)
initial_setup(cinfo);
if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */
inputctl->inheaders = 2;
break;
}
inputctl->inheaders = 0;
/* Note: start_input_pass must be called by jdmaster.c
* before any more input can be consumed. jdapimin.c is
* responsible for enforcing this sequencing.
*/
} else { /* 2nd or later SOS marker */
if (! inputctl->pub.has_multiple_scans)
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */
break;
start_input_pass(cinfo);
}
return val;
case JPEG_REACHED_EOI: /* Found EOI */
inputctl->pub.eoi_reached = TRUE;
if (inputctl->inheaders) { /* Tables-only datastream, apparently */
if (cinfo->marker->saw_SOF)
ERREXIT(cinfo, JERR_SOF_NO_SOS);
} else {
/* Prevent infinite loop in coef ctlr's decompress_data routine
* if user set output_scan_number larger than number of scans.
*/
if (cinfo->output_scan_number > cinfo->input_scan_number)
cinfo->output_scan_number = cinfo->input_scan_number;
}
return val;
case JPEG_SUSPENDED:
return val;
default:
return val;
}
}
}
/*
* Reset state to begin a fresh datastream.
*/
METHODDEF(void)
reset_input_controller (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
inputctl->pub.consume_input = consume_markers;
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
inputctl->pub.eoi_reached = FALSE;
inputctl->inheaders = 1;
/* Reset other modules */
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
(*cinfo->marker->reset_marker_reader) (cinfo);
/* Reset progression state -- would be cleaner if entropy decoder did this */
cinfo->coef_bits = NULL;
}
/*
* Initialize the input controller module.
* This is called only once, when the decompression object is created.
*/
GLOBAL(void)
jinit_input_controller (j_decompress_ptr cinfo)
{
my_inputctl_ptr inputctl;
/* Create subobject in permanent pool */
inputctl = (my_inputctl_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_PERMANENT, SIZEOF(my_input_controller));
cinfo->inputctl = &inputctl->pub;
/* Initialize method pointers */
inputctl->pub.consume_input = consume_markers;
inputctl->pub.reset_input_controller = reset_input_controller;
inputctl->pub.start_input_pass = start_input_pass;
inputctl->pub.finish_input_pass = finish_input_pass;
/* Initialize state: can't use reset_input_controller since we don't
* want to try to reset other modules yet.
*/
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
inputctl->pub.eoi_reached = FALSE;
inputctl->inheaders = 1;
}

511
dep/libjpeg/src/jdmainct.c Normal file
View File

@ -0,0 +1,511 @@
/*
* jdmainct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2002-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the main buffer controller for decompression.
* The main buffer lies between the JPEG decompressor proper and the
* post-processor; it holds downsampled data in the JPEG colorspace.
*
* Note that this code is bypassed in raw-data mode, since the application
* supplies the equivalent of the main buffer in that case.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* In the current system design, the main buffer need never be a full-image
* buffer; any full-height buffers will be found inside the coefficient or
* postprocessing controllers. Nonetheless, the main controller is not
* trivial. Its responsibility is to provide context rows for upsampling/
* rescaling, and doing this in an efficient fashion is a bit tricky.
*
* Postprocessor input data is counted in "row groups". A row group is
* defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
* sample rows of each component. (We require DCT_scaled_size values to be
* chosen such that these numbers are integers. In practice DCT_scaled_size
* values will likely be powers of two, so we actually have the stronger
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
* Upsampling will typically produce max_v_samp_factor pixel rows from each
* row group (times any additional scale factor that the upsampler is
* applying).
*
* The coefficient controller will deliver data to us one iMCU row at a time;
* each iMCU row contains v_samp_factor * DCT_v_scaled_size sample rows, or
* exactly min_DCT_v_scaled_size row groups. (This amount of data corresponds
* to one row of MCUs when the image is fully interleaved.) Note that the
* number of sample rows varies across components, but the number of row
* groups does not. Some garbage sample rows may be included in the last iMCU
* row at the bottom of the image.
*
* Depending on the vertical scaling algorithm used, the upsampler may need
* access to the sample row(s) above and below its current input row group.
* The upsampler is required to set need_context_rows TRUE at global selection
* time if so. When need_context_rows is FALSE, this controller can simply
* obtain one iMCU row at a time from the coefficient controller and dole it
* out as row groups to the postprocessor.
*
* When need_context_rows is TRUE, this controller guarantees that the buffer
* passed to postprocessing contains at least one row group's worth of samples
* above and below the row group(s) being processed. Note that the context
* rows "above" the first passed row group appear at negative row offsets in
* the passed buffer. At the top and bottom of the image, the required
* context rows are manufactured by duplicating the first or last real sample
* row; this avoids having special cases in the upsampling inner loops.
*
* The amount of context is fixed at one row group just because that's a
* convenient number for this controller to work with. The existing
* upsamplers really only need one sample row of context. An upsampler
* supporting arbitrary output rescaling might wish for more than one row
* group of context when shrinking the image; tough, we don't handle that.
* (This is justified by the assumption that downsizing will be handled mostly
* by adjusting the DCT_scaled_size values, so that the actual scale factor at
* the upsample step needn't be much less than one.)
*
* To provide the desired context, we have to retain the last two row groups
* of one iMCU row while reading in the next iMCU row. (The last row group
* can't be processed until we have another row group for its below-context,
* and so we have to save the next-to-last group too for its above-context.)
* We could do this most simply by copying data around in our buffer, but
* that'd be very slow. We can avoid copying any data by creating a rather
* strange pointer structure. Here's how it works. We allocate a workspace
* consisting of M+2 row groups (where M = min_DCT_v_scaled_size is the number
* of row groups per iMCU row). We create two sets of redundant pointers to
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized
* pointer lists look like this:
* M+1 M-1
* master pointer --> 0 master pointer --> 0
* 1 1
* ... ...
* M-3 M-3
* M-2 M
* M-1 M+1
* M M-2
* M+1 M-1
* 0 0
* We read alternate iMCU rows using each master pointer; thus the last two
* row groups of the previous iMCU row remain un-overwritten in the workspace.
* The pointer lists are set up so that the required context rows appear to
* be adjacent to the proper places when we pass the pointer lists to the
* upsampler.
*
* The above pictures describe the normal state of the pointer lists.
* At top and bottom of the image, we diddle the pointer lists to duplicate
* the first or last sample row as necessary (this is cheaper than copying
* sample rows around).
*
* This scheme breaks down if M < 2, ie, min_DCT_v_scaled_size is 1. In that
* situation each iMCU row provides only one row group so the buffering logic
* must be different (eg, we must read two iMCU rows before we can emit the
* first row group). For now, we simply do not support providing context
* rows when min_DCT_v_scaled_size is 1. That combination seems unlikely to
* be worth providing --- if someone wants a 1/8th-size preview, they probably
* want it quick and dirty, so a context-free upsampler is sufficient.
*/
/* Private buffer controller object */
typedef struct {
struct jpeg_d_main_controller pub; /* public fields */
/* Pointer to allocated workspace (M or M+2 row groups). */
JSAMPARRAY buffer[MAX_COMPONENTS];
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
/* Remaining fields are only used in the context case. */
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
/* These are the master pointers to the funny-order pointer lists. */
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
int whichptr; /* indicates which pointer set is now in use */
int context_state; /* process_data state machine status */
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
} my_main_controller;
typedef my_main_controller * my_main_ptr;
/* context_state values: */
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
/* Forward declarations */
METHODDEF(void) process_data_simple_main
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
METHODDEF(void) process_data_context_main
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
#ifdef QUANT_2PASS_SUPPORTED
METHODDEF(void) process_data_crank_post
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
#endif
LOCAL(void)
alloc_funny_pointers (j_decompress_ptr cinfo)
/* Allocate space for the funny pointer lists.
* This is done only once, not once per pass.
*/
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
int ci, rgroup;
int M = cinfo->min_DCT_v_scaled_size;
jpeg_component_info *compptr;
JSAMPARRAY xbuf;
/* Get top-level space for component array pointers.
* We alloc both arrays with one call to save a few cycles.
*/
mainp->xbuffer[0] = (JSAMPIMAGE) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (! compptr->component_needed)
continue; /* skip uninteresting component */
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
/* Get space for pointer lists --- M+4 row groups in each list.
* We alloc both pointer lists with one call to save a few cycles.
*/
xbuf = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo,
JPOOL_IMAGE, 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
xbuf += rgroup; /* want one row group at negative offsets */
mainp->xbuffer[0][ci] = xbuf;
xbuf += rgroup * (M + 4);
mainp->xbuffer[1][ci] = xbuf;
}
}
LOCAL(void)
make_funny_pointers (j_decompress_ptr cinfo)
/* Create the funny pointer lists discussed in the comments above.
* The actual workspace is already allocated (in mainp->buffer),
* and the space for the pointer lists is allocated too.
* This routine just fills in the curiously ordered lists.
* This will be repeated at the beginning of each pass.
*/
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
int ci, i, rgroup;
int M = cinfo->min_DCT_v_scaled_size;
jpeg_component_info *compptr;
JSAMPARRAY buf, xbuf0, xbuf1;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (! compptr->component_needed)
continue; /* skip uninteresting component */
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
xbuf0 = mainp->xbuffer[0][ci];
xbuf1 = mainp->xbuffer[1][ci];
/* First copy the workspace pointers as-is */
buf = mainp->buffer[ci];
for (i = 0; i < rgroup * (M + 2); i++) {
xbuf0[i] = xbuf1[i] = buf[i];
}
/* In the second list, put the last four row groups in swapped order */
for (i = 0; i < rgroup * 2; i++) {
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
}
/* The wraparound pointers at top and bottom will be filled later
* (see set_wraparound_pointers, below). Initially we want the "above"
* pointers to duplicate the first actual data line. This only needs
* to happen in xbuffer[0].
*/
for (i = 0; i < rgroup; i++) {
xbuf0[i - rgroup] = xbuf0[0];
}
}
}
LOCAL(void)
set_wraparound_pointers (j_decompress_ptr cinfo)
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
* This changes the pointer list state from top-of-image to the normal state.
*/
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
int ci, i, rgroup;
int M = cinfo->min_DCT_v_scaled_size;
jpeg_component_info *compptr;
JSAMPARRAY xbuf0, xbuf1;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (! compptr->component_needed)
continue; /* skip uninteresting component */
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
xbuf0 = mainp->xbuffer[0][ci];
xbuf1 = mainp->xbuffer[1][ci];
for (i = 0; i < rgroup; i++) {
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
xbuf0[rgroup*(M+2) + i] = xbuf0[i];
xbuf1[rgroup*(M+2) + i] = xbuf1[i];
}
}
}
LOCAL(void)
set_bottom_pointers (j_decompress_ptr cinfo)
/* Change the pointer lists to duplicate the last sample row at the bottom
* of the image. whichptr indicates which xbuffer holds the final iMCU row.
* Also sets rowgroups_avail to indicate number of nondummy row groups in row.
*/
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
int ci, i, rgroup, iMCUheight, rows_left;
jpeg_component_info *compptr;
JSAMPARRAY xbuf;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (! compptr->component_needed)
continue; /* skip uninteresting component */
/* Count sample rows in one iMCU row and in one row group */
iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size;
rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size;
/* Count nondummy sample rows remaining for this component */
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
if (rows_left == 0) rows_left = iMCUheight;
/* Count nondummy row groups. Should get same answer for each component,
* so we need only do it once.
*/
if (ci == 0) {
mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
}
/* Duplicate the last real sample row rgroup*2 times; this pads out the
* last partial rowgroup and ensures at least one full rowgroup of context.
*/
xbuf = mainp->xbuffer[mainp->whichptr][ci];
for (i = 0; i < rgroup * 2; i++) {
xbuf[rows_left + i] = xbuf[rows_left-1];
}
}
}
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
switch (pass_mode) {
case JBUF_PASS_THRU:
if (cinfo->upsample->need_context_rows) {
mainp->pub.process_data = process_data_context_main;
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
mainp->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
mainp->context_state = CTX_PREPARE_FOR_IMCU;
mainp->iMCU_row_ctr = 0;
mainp->buffer_full = FALSE; /* Mark buffer empty */
} else {
/* Simple case with no context needed */
mainp->pub.process_data = process_data_simple_main;
mainp->rowgroup_ctr = mainp->rowgroups_avail; /* Mark buffer empty */
}
break;
#ifdef QUANT_2PASS_SUPPORTED
case JBUF_CRANK_DEST:
/* For last pass of 2-pass quantization, just crank the postprocessor */
mainp->pub.process_data = process_data_crank_post;
break;
#endif
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
}
}
/*
* Process some data.
* This handles the simple case where no context is required.
*/
METHODDEF(void)
process_data_simple_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
/* Read input data if we haven't filled the main buffer yet */
if (mainp->rowgroup_ctr >= mainp->rowgroups_avail) {
if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer))
return; /* suspension forced, can do nothing more */
mainp->rowgroup_ctr = 0; /* OK, we have an iMCU row to work with */
}
/* Note: at the bottom of the image, we may pass extra garbage row groups
* to the postprocessor. The postprocessor has to check for bottom
* of image anyway (at row resolution), so no point in us doing it too.
*/
/* Feed the postprocessor */
(*cinfo->post->post_process_data) (cinfo, mainp->buffer,
&mainp->rowgroup_ctr, mainp->rowgroups_avail,
output_buf, out_row_ctr, out_rows_avail);
}
/*
* Process some data.
* This handles the case where context rows must be provided.
*/
METHODDEF(void)
process_data_context_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
{
my_main_ptr mainp = (my_main_ptr) cinfo->main;
/* Read input data if we haven't filled the main buffer yet */
if (! mainp->buffer_full) {
if (! (*cinfo->coef->decompress_data) (cinfo,
mainp->xbuffer[mainp->whichptr]))
return; /* suspension forced, can do nothing more */
mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
mainp->iMCU_row_ctr++; /* count rows received */
}
/* Postprocessor typically will not swallow all the input data it is handed
* in one call (due to filling the output buffer first). Must be prepared
* to exit and restart. This switch lets us keep track of how far we got.
* Note that each case falls through to the next on successful completion.
*/
switch (mainp->context_state) {
case CTX_POSTPONED_ROW:
/* Call postprocessor using previously set pointers for postponed row */
(*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
&mainp->rowgroup_ctr, mainp->rowgroups_avail,
output_buf, out_row_ctr, out_rows_avail);
if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
return; /* Need to suspend */
mainp->context_state = CTX_PREPARE_FOR_IMCU;
if (*out_row_ctr >= out_rows_avail)
return; /* Postprocessor exactly filled output buf */
/*FALLTHROUGH*/
case CTX_PREPARE_FOR_IMCU:
/* Prepare to process first M-1 row groups of this iMCU row */
mainp->rowgroup_ctr = 0;
mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1);
/* Check for bottom of image: if so, tweak pointers to "duplicate"
* the last sample row, and adjust rowgroups_avail to ignore padding rows.
*/
if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows)
set_bottom_pointers(cinfo);
mainp->context_state = CTX_PROCESS_IMCU;
/*FALLTHROUGH*/
case CTX_PROCESS_IMCU:
/* Call postprocessor using previously set pointers */
(*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr],
&mainp->rowgroup_ctr, mainp->rowgroups_avail,
output_buf, out_row_ctr, out_rows_avail);
if (mainp->rowgroup_ctr < mainp->rowgroups_avail)
return; /* Need to suspend */
/* After the first iMCU, change wraparound pointers to normal state */
if (mainp->iMCU_row_ctr == 1)
set_wraparound_pointers(cinfo);
/* Prepare to load new iMCU row using other xbuffer list */
mainp->whichptr ^= 1; /* 0=>1 or 1=>0 */
mainp->buffer_full = FALSE;
/* Still need to process last row group of this iMCU row, */
/* which is saved at index M+1 of the other xbuffer */
mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1);
mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2);
mainp->context_state = CTX_POSTPONED_ROW;
}
}
/*
* Process some data.
* Final pass of two-pass quantization: just call the postprocessor.
* Source data will be the postprocessor controller's internal buffer.
*/
#ifdef QUANT_2PASS_SUPPORTED
METHODDEF(void)
process_data_crank_post (j_decompress_ptr cinfo, JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
{
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
(JDIMENSION *) NULL, (JDIMENSION) 0,
output_buf, out_row_ctr, out_rows_avail);
}
#endif /* QUANT_2PASS_SUPPORTED */
/*
* Initialize main buffer controller.
*/
GLOBAL(void)
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
{
my_main_ptr mainp;
int ci, rgroup, ngroups;
jpeg_component_info *compptr;
mainp = (my_main_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_main_controller));
cinfo->main = &mainp->pub;
mainp->pub.start_pass = start_pass_main;
if (need_full_buffer) /* shouldn't happen */
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
/* Allocate the workspace.
* ngroups is the number of row groups we need.
*/
if (cinfo->upsample->need_context_rows) {
if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */
ERREXIT(cinfo, JERR_NOTIMPL);
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
ngroups = cinfo->min_DCT_v_scaled_size + 2;
} else {
/* There are always min_DCT_v_scaled_size row groups in an iMCU row. */
ngroups = cinfo->min_DCT_v_scaled_size;
mainp->rowgroups_avail = (JDIMENSION) ngroups;
}
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (! compptr->component_needed)
continue; /* skip uninteresting component */
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */
mainp->buffer[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size),
(JDIMENSION) (rgroup * ngroups));
}
}

1505
dep/libjpeg/src/jdmarker.c Normal file

File diff suppressed because it is too large Load Diff

532
dep/libjpeg/src/jdmaster.c Normal file
View File

@ -0,0 +1,532 @@
/*
* jdmaster.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* Modified 2002-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains master control logic for the JPEG decompressor.
* These routines are concerned with selecting the modules to be executed
* and with determining the number of passes and the work to be done in each
* pass.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private state */
typedef struct {
struct jpeg_decomp_master pub; /* public fields */
int pass_number; /* # of passes completed */
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
/* Saved references to initialized quantizer modules,
* in case we need to switch modes.
*/
struct jpeg_color_quantizer * quantizer_1pass;
struct jpeg_color_quantizer * quantizer_2pass;
} my_decomp_master;
typedef my_decomp_master * my_master_ptr;
/*
* Determine whether merged upsample/color conversion should be used.
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
*/
LOCAL(boolean)
use_merged_upsample (j_decompress_ptr cinfo)
{
#ifdef UPSAMPLE_MERGING_SUPPORTED
/* Merging is the equivalent of plain box-filter upsampling. */
/* The following condition is only needed if fancy shall select
* a different upsampling method. In our current implementation
* fancy only affects the DCT scaling, thus we can use fancy
* upsampling and merged upsample simultaneously, in particular
* with scaled DCT sizes larger than the default DCTSIZE.
*/
#if 0
if (cinfo->do_fancy_upsampling)
return FALSE;
#endif
if (cinfo->CCIR601_sampling)
return FALSE;
/* jdmerge.c only supports YCC=>RGB color conversion */
if ((cinfo->jpeg_color_space != JCS_YCbCr &&
cinfo->jpeg_color_space != JCS_BG_YCC) ||
cinfo->num_components != 3 ||
cinfo->out_color_space != JCS_RGB ||
cinfo->out_color_components != RGB_PIXELSIZE ||
cinfo->color_transform)
return FALSE;
/* and it only handles 2h1v or 2h2v sampling ratios */
if (cinfo->comp_info[0].h_samp_factor != 2 ||
cinfo->comp_info[1].h_samp_factor != 1 ||
cinfo->comp_info[2].h_samp_factor != 1 ||
cinfo->comp_info[0].v_samp_factor > 2 ||
cinfo->comp_info[1].v_samp_factor != 1 ||
cinfo->comp_info[2].v_samp_factor != 1)
return FALSE;
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size ||
cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size ||
cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size)
return FALSE;
/* ??? also need to test for upsample-time rescaling, when & if supported */
return TRUE; /* by golly, it'll work... */
#else
return FALSE;
#endif
}
/*
* Compute output image dimensions and related values.
* NOTE: this is exported for possible use by application.
* Hence it mustn't do anything that can't be done twice.
* Also note that it may be called before the master module is initialized!
*/
GLOBAL(void)
jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
/* Do computations that are needed before master selection phase.
* This function is used for full decompression.
*/
{
int ci, i;
jpeg_component_info *compptr;
/* Prevent application from calling me at wrong times */
if (cinfo->global_state != DSTATE_READY)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
/* Compute core output image dimensions and DCT scaling choices. */
jpeg_core_output_dimensions(cinfo);
#ifdef IDCT_SCALING_SUPPORTED
/* In selecting the actual DCT scaling for each component, we try to
* scale up the chroma components via IDCT scaling rather than upsampling.
* This saves time if the upsampler gets to use 1:1 scaling.
* Note this code adapts subsampling ratios which are powers of 2.
*/
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
int ssize = 1;
if (! cinfo->raw_data_out)
while (cinfo->min_DCT_h_scaled_size * ssize <=
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) ==
0) {
ssize = ssize * 2;
}
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize;
ssize = 1;
if (! cinfo->raw_data_out)
while (cinfo->min_DCT_v_scaled_size * ssize <=
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) &&
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) ==
0) {
ssize = ssize * 2;
}
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize;
/* We don't support IDCT ratios larger than 2. */
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2)
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2;
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2)
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2;
/* Recompute downsampled dimensions of components;
* application needs to know these if using raw downsampled data.
*/
/* Size in samples, after IDCT scaling */
compptr->downsampled_width = (JDIMENSION)
jdiv_round_up((long) cinfo->image_width *
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size),
(long) (cinfo->max_h_samp_factor * cinfo->block_size));
compptr->downsampled_height = (JDIMENSION)
jdiv_round_up((long) cinfo->image_height *
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size),
(long) (cinfo->max_v_samp_factor * cinfo->block_size));
}
#endif /* IDCT_SCALING_SUPPORTED */
/* Report number of components in selected colorspace. */
/* This should correspond to the actual code in the color conversion module. */
switch (cinfo->out_color_space) {
case JCS_GRAYSCALE:
cinfo->out_color_components = 1;
break;
case JCS_RGB:
case JCS_BG_RGB:
cinfo->out_color_components = RGB_PIXELSIZE;
break;
default: /* YCCK <=> CMYK conversion or same colorspace as in file */
i = 0;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++)
if (compptr->component_needed)
i++; /* count output color components */
cinfo->out_color_components = i;
}
cinfo->output_components = (cinfo->quantize_colors ? 1 :
cinfo->out_color_components);
/* See if upsampler will want to emit more than one row at a time */
if (use_merged_upsample(cinfo))
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
else
cinfo->rec_outbuf_height = 1;
}
/*
* Several decompression processes need to range-limit values to the range
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
* due to noise introduced by quantization, roundoff error, etc. These
* processes are inner loops and need to be as fast as possible. On most
* machines, particularly CPUs with pipelines or instruction prefetch,
* a (subscript-check-less) C table lookup
* x = sample_range_limit[x];
* is faster than explicit tests
* if (x < 0) x = 0;
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
* These processes all use a common table prepared by the routine below.
*
* For most steps we can mathematically guarantee that the initial value
* of x is within 2*(MAXJSAMPLE+1) of the legal range, so a table running
* from -2*(MAXJSAMPLE+1) to 3*MAXJSAMPLE+2 is sufficient. But for the
* initial limiting step (just after the IDCT), a wildly out-of-range value
* is possible if the input data is corrupt. To avoid any chance of indexing
* off the end of memory and getting a bad-pointer trap, we perform the
* post-IDCT limiting thus:
* x = (sample_range_limit - SUBSET)[(x + CENTER) & MASK];
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
* samples. Under normal circumstances this is more than enough range and
* a correct output will be generated; with bogus input data the mask will
* cause wraparound, and we will safely generate a bogus-but-in-range output.
* For the post-IDCT step, we want to convert the data from signed to unsigned
* representation by adding CENTERJSAMPLE at the same time that we limit it.
* This is accomplished with SUBSET = CENTER - CENTERJSAMPLE.
*
* Note that the table is allocated in near data space on PCs; it's small
* enough and used often enough to justify this.
*/
LOCAL(void)
prepare_range_limit_table (j_decompress_ptr cinfo)
/* Allocate and fill in the sample_range_limit table */
{
JSAMPLE * table;
int i;
table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo,
JPOOL_IMAGE, (RANGE_CENTER * 2 + MAXJSAMPLE + 1) * SIZEOF(JSAMPLE));
/* First segment of range limit table: limit[x] = 0 for x < 0 */
MEMZERO(table, RANGE_CENTER * SIZEOF(JSAMPLE));
table += RANGE_CENTER; /* allow negative subscripts of table */
cinfo->sample_range_limit = table;
/* Main part of range limit table: limit[x] = x */
for (i = 0; i <= MAXJSAMPLE; i++)
table[i] = (JSAMPLE) i;
/* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */
for (; i <= MAXJSAMPLE + RANGE_CENTER; i++)
table[i] = MAXJSAMPLE;
}
/*
* Master selection of decompression modules.
* This is done once at jpeg_start_decompress time. We determine
* which modules will be used and give them appropriate initialization calls.
* We also initialize the decompressor input side to begin consuming data.
*
* Since jpeg_read_header has finished, we know what is in the SOF
* and (first) SOS markers. We also have all the application parameter
* settings.
*/
LOCAL(void)
master_selection (j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
boolean use_c_buffer;
long samplesperrow;
JDIMENSION jd_samplesperrow;
/* For now, precision must match compiled-in value... */
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Initialize dimensions and other stuff */
jpeg_calc_output_dimensions(cinfo);
prepare_range_limit_table(cinfo);
/* Sanity check on image dimensions */
if (cinfo->output_height <= 0 || cinfo->output_width <= 0 ||
cinfo->out_color_components <= 0)
ERREXIT(cinfo, JERR_EMPTY_IMAGE);
/* Width of an output scanline must be representable as JDIMENSION. */
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
jd_samplesperrow = (JDIMENSION) samplesperrow;
if ((long) jd_samplesperrow != samplesperrow)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
/* Initialize my private state */
master->pass_number = 0;
master->using_merged_upsample = use_merged_upsample(cinfo);
/* Color quantizer selection */
master->quantizer_1pass = NULL;
master->quantizer_2pass = NULL;
/* No mode changes if not using buffered-image mode. */
if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
cinfo->enable_1pass_quant = FALSE;
cinfo->enable_external_quant = FALSE;
cinfo->enable_2pass_quant = FALSE;
}
if (cinfo->quantize_colors) {
if (cinfo->raw_data_out)
ERREXIT(cinfo, JERR_NOTIMPL);
/* 2-pass quantizer only works in 3-component color space. */
if (cinfo->out_color_components != 3) {
cinfo->enable_1pass_quant = TRUE;
cinfo->enable_external_quant = FALSE;
cinfo->enable_2pass_quant = FALSE;
cinfo->colormap = NULL;
} else if (cinfo->colormap != NULL) {
cinfo->enable_external_quant = TRUE;
} else if (cinfo->two_pass_quantize) {
cinfo->enable_2pass_quant = TRUE;
} else {
cinfo->enable_1pass_quant = TRUE;
}
if (cinfo->enable_1pass_quant) {
#ifdef QUANT_1PASS_SUPPORTED
jinit_1pass_quantizer(cinfo);
master->quantizer_1pass = cinfo->cquantize;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
}
/* We use the 2-pass code to map to external colormaps. */
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
#ifdef QUANT_2PASS_SUPPORTED
jinit_2pass_quantizer(cinfo);
master->quantizer_2pass = cinfo->cquantize;
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
}
/* If both quantizers are initialized, the 2-pass one is left active;
* this is necessary for starting with quantization to an external map.
*/
}
/* Post-processing: in particular, color conversion first */
if (! cinfo->raw_data_out) {
if (master->using_merged_upsample) {
#ifdef UPSAMPLE_MERGING_SUPPORTED
jinit_merged_upsampler(cinfo); /* does color conversion too */
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
} else {
jinit_color_deconverter(cinfo);
jinit_upsampler(cinfo);
}
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
}
/* Inverse DCT */
jinit_inverse_dct(cinfo);
/* Entropy decoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code)
jinit_arith_decoder(cinfo);
else {
jinit_huff_decoder(cinfo);
}
/* Initialize principal buffer controllers. */
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
jinit_d_coef_controller(cinfo, use_c_buffer);
if (! cinfo->raw_data_out)
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Initialize input side of decompressor to consume first scan. */
(*cinfo->inputctl->start_input_pass) (cinfo);
#ifdef D_MULTISCAN_FILES_SUPPORTED
/* If jpeg_start_decompress will read the whole file, initialize
* progress monitoring appropriately. The input step is counted
* as one pass.
*/
if (cinfo->progress != NULL && ! cinfo->buffered_image &&
cinfo->inputctl->has_multiple_scans) {
int nscans;
/* Estimate number of scans to set pass_limit. */
if (cinfo->progressive_mode) {
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
nscans = 2 + 3 * cinfo->num_components;
} else {
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
nscans = cinfo->num_components;
}
cinfo->progress->pass_counter = 0L;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
cinfo->progress->completed_passes = 0;
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
/* Count the input pass as done */
master->pass_number++;
}
#endif /* D_MULTISCAN_FILES_SUPPORTED */
}
/*
* Per-pass setup.
* This is called at the beginning of each output pass. We determine which
* modules will be active during this pass and give them appropriate
* start_pass calls. We also set is_dummy_pass to indicate whether this
* is a "real" output pass or a dummy pass for color quantization.
* (In the latter case, jdapistd.c will crank the pass to completion.)
*/
METHODDEF(void)
prepare_for_output_pass (j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
if (master->pub.is_dummy_pass) {
#ifdef QUANT_2PASS_SUPPORTED
/* Final pass of 2-pass quantization */
master->pub.is_dummy_pass = FALSE;
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
#else
ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* QUANT_2PASS_SUPPORTED */
} else {
if (cinfo->quantize_colors && cinfo->colormap == NULL) {
/* Select new quantization method */
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
cinfo->cquantize = master->quantizer_2pass;
master->pub.is_dummy_pass = TRUE;
} else if (cinfo->enable_1pass_quant) {
cinfo->cquantize = master->quantizer_1pass;
} else {
ERREXIT(cinfo, JERR_MODE_CHANGE);
}
}
(*cinfo->idct->start_pass) (cinfo);
(*cinfo->coef->start_output_pass) (cinfo);
if (! cinfo->raw_data_out) {
if (! master->using_merged_upsample)
(*cinfo->cconvert->start_pass) (cinfo);
(*cinfo->upsample->start_pass) (cinfo);
if (cinfo->quantize_colors)
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
(*cinfo->post->start_pass) (cinfo,
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
}
}
/* Set up progress monitor's pass info if present */
if (cinfo->progress != NULL) {
cinfo->progress->completed_passes = master->pass_number;
cinfo->progress->total_passes = master->pass_number +
(master->pub.is_dummy_pass ? 2 : 1);
/* In buffered-image mode, we assume one more output pass if EOI not
* yet reached, but no more passes if EOI has been reached.
*/
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
}
}
}
/*
* Finish up at end of an output pass.
*/
METHODDEF(void)
finish_output_pass (j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
if (cinfo->quantize_colors)
(*cinfo->cquantize->finish_pass) (cinfo);
master->pass_number++;
}
#ifdef D_MULTISCAN_FILES_SUPPORTED
/*
* Switch to a new external colormap between output passes.
*/
GLOBAL(void)
jpeg_new_colormap (j_decompress_ptr cinfo)
{
my_master_ptr master = (my_master_ptr) cinfo->master;
/* Prevent application from calling me at wrong times */
if (cinfo->global_state != DSTATE_BUFIMAGE)
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
if (cinfo->quantize_colors && cinfo->enable_external_quant &&
cinfo->colormap != NULL) {
/* Select 2-pass quantizer for external colormap use */
cinfo->cquantize = master->quantizer_2pass;
/* Notify quantizer of colormap change */
(*cinfo->cquantize->new_color_map) (cinfo);
master->pub.is_dummy_pass = FALSE; /* just in case */
} else
ERREXIT(cinfo, JERR_MODE_CHANGE);
}
#endif /* D_MULTISCAN_FILES_SUPPORTED */
/*
* Initialize master decompression control and select active modules.
* This is performed at the start of jpeg_start_decompress.
*/
GLOBAL(void)
jinit_master_decompress (j_decompress_ptr cinfo)
{
my_master_ptr master;
master = (my_master_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_decomp_master));
cinfo->master = &master->pub;
master->pub.prepare_for_output_pass = prepare_for_output_pass;
master->pub.finish_output_pass = finish_output_pass;
master->pub.is_dummy_pass = FALSE;
master_selection(cinfo);
}

437
dep/libjpeg/src/jdmerge.c Normal file
View File

@ -0,0 +1,437 @@
/*
* jdmerge.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2013-2022 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains code for merged upsampling/color conversion.
*
* This file combines functions from jdsample.c and jdcolor.c;
* read those files first to understand what's going on.
*
* When the chroma components are to be upsampled by simple replication
* (ie, box filtering), we can save some work in color conversion by
* calculating all the output pixels corresponding to a pair of chroma
* samples at one time. In the conversion equations
* R = Y + K1 * Cr
* G = Y + K2 * Cb + K3 * Cr
* B = Y + K4 * Cb
* only the Y term varies among the group of pixels corresponding to a pair
* of chroma samples, so the rest of the terms can be calculated just once.
* At typical sampling ratios, this eliminates half or three-quarters
* of the multiplications needed for color conversion.
*
* This file currently provides implementations for the following cases:
* YCC => RGB color conversion only (YCbCr or BG_YCC).
* Sampling ratios of 2h1v or 2h2v.
* No scaling needed at upsample time.
* Corner-aligned (non-CCIR601) sampling alignment.
* Other special cases could be added, but in most applications these
* are the only common cases. (For uncommon cases we fall back on
* the more general code in jdsample.c and jdcolor.c.)
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#ifdef UPSAMPLE_MERGING_SUPPORTED
#if RANGE_BITS < 2
/* Deliberate syntax err */
Sorry, this code requires 2 or more range extension bits.
#endif
/* Private subobject */
typedef struct {
struct jpeg_upsampler pub; /* public fields */
/* Pointer to routine to do actual upsampling/conversion of one row group */
JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf));
/* Private state for YCC->RGB conversion */
int * Cr_r_tab; /* => table for Cr to R conversion */
int * Cb_b_tab; /* => table for Cb to B conversion */
INT32 * Cr_g_tab; /* => table for Cr to G conversion */
INT32 * Cb_g_tab; /* => table for Cb to G conversion */
/* For 2:1 vertical sampling, we produce two output rows at a time.
* We need a "spare" row buffer to hold the second output row if the
* application provides just a one-row buffer; we also use the spare
* to discard the dummy last row if the image height is odd.
*/
JSAMPROW spare_row;
boolean spare_full; /* T if spare buffer is occupied */
JDIMENSION out_row_width; /* samples per output row */
JDIMENSION rows_to_go; /* counts rows remaining in image */
} my_upsampler;
typedef my_upsampler * my_upsample_ptr;
#define SCALEBITS 16 /* speediest right-shift on some machines */
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
/*
* Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion.
* This is taken directly from jdcolor.c; see that file for more info.
*/
LOCAL(void)
build_ycc_rgb_table (j_decompress_ptr cinfo)
/* Normal case, sYCC */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int i;
INT32 x;
SHIFT_TEMPS
upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 1.402 * x */
upsample->Cr_r_tab[i] = (int) DESCALE(FIX(1.402) * x, SCALEBITS);
/* Cb=>B value is nearest int to 1.772 * x */
upsample->Cb_b_tab[i] = (int) DESCALE(FIX(1.772) * x, SCALEBITS);
/* Cr=>G value is scaled-up -0.714136286 * x */
upsample->Cr_g_tab[i] = (- FIX(0.714136286)) * x;
/* Cb=>G value is scaled-up -0.344136286 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
upsample->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF;
}
}
LOCAL(void)
build_bg_ycc_rgb_table (j_decompress_ptr cinfo)
/* Wide gamut case, bg-sYCC */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int i;
INT32 x;
SHIFT_TEMPS
upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int));
upsample->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
upsample->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32));
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
/* Cr=>R value is nearest int to 2.804 * x */
upsample->Cr_r_tab[i] = (int) DESCALE(FIX(2.804) * x, SCALEBITS);
/* Cb=>B value is nearest int to 3.544 * x */
upsample->Cb_b_tab[i] = (int) DESCALE(FIX(3.544) * x, SCALEBITS);
/* Cr=>G value is scaled-up -1.428272572 * x */
upsample->Cr_g_tab[i] = (- FIX(1.428272572)) * x;
/* Cb=>G value is scaled-up -0.688272572 * x */
/* We also add in ONE_HALF so that need not do it in inner loop */
upsample->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF;
}
}
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_merged_upsample (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Mark the spare buffer empty */
upsample->spare_full = FALSE;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* The control routine just handles the row buffering considerations.
*/
METHODDEF(void)
merged_2v_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
/* 2:1 vertical sampling case: may need a spare row. */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
JSAMPROW work_ptrs[2];
JDIMENSION num_rows; /* number of rows returned to caller */
if (upsample->spare_full) {
/* If we have a spare row saved from a previous cycle, just return it. */
jcopy_sample_rows(& upsample->spare_row, output_buf + *out_row_ctr,
1, upsample->out_row_width);
num_rows = 1;
upsample->spare_full = FALSE;
} else {
/* Figure number of rows to return to caller. */
num_rows = 2;
/* Not more than the distance to the end of the image. */
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
/* Create output pointer array for upsampler. */
work_ptrs[0] = output_buf[*out_row_ctr];
if (num_rows > 1) {
work_ptrs[1] = output_buf[*out_row_ctr + 1];
} else {
work_ptrs[1] = upsample->spare_row;
upsample->spare_full = TRUE;
}
/* Now do the upsampling. */
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
}
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (! upsample->spare_full)
(*in_row_group_ctr)++;
}
METHODDEF(void)
merged_1v_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
/* 1:1 vertical sampling case: much easier, never need a spare row. */
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Just do the upsampling. */
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
output_buf + *out_row_ctr);
/* Adjust counts */
(*out_row_ctr)++;
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by the control routines to do
* the actual upsampling/conversion. One row group is processed per call.
*
* Note: since we may be writing directly into application-supplied buffers,
* we have to be honest about the output width; we can't assume the buffer
* has been rounded up to an even width.
*/
/*
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
*/
METHODDEF(void)
h2v1_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
register int y, cred, cgreen, cblue;
int cb, cr;
register JSAMPROW outptr;
JSAMPROW inptr0, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr0 = input_buf[0][in_row_group_ctr];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr = output_buf[0];
/* Loop for each pair of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
cred = Crrtab[cr];
/* Fetch 2 Y values and emit 2 pixels */
y = GETJSAMPLE(*inptr0++);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
outptr += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr0++);
outptr[RGB_RED] = range_limit[y + cred];
outptr[RGB_GREEN] = range_limit[y + cgreen];
outptr[RGB_BLUE] = range_limit[y + cblue];
outptr += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
y = GETJSAMPLE(*inptr0);
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
outptr[RGB_GREEN] = range_limit[y +
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
SCALEBITS))];
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
}
}
/*
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
*/
METHODDEF(void)
h2v2_merged_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
JSAMPARRAY output_buf)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
register int y, cred, cgreen, cblue;
int cb, cr;
register JSAMPROW outptr0, outptr1;
JSAMPROW inptr00, inptr01, inptr1, inptr2;
JDIMENSION col;
/* copy these pointers into registers if possible */
register JSAMPLE * range_limit = cinfo->sample_range_limit;
int * Crrtab = upsample->Cr_r_tab;
int * Cbbtab = upsample->Cb_b_tab;
INT32 * Crgtab = upsample->Cr_g_tab;
INT32 * Cbgtab = upsample->Cb_g_tab;
SHIFT_TEMPS
inptr00 = input_buf[0][in_row_group_ctr*2];
inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
inptr1 = input_buf[1][in_row_group_ctr];
inptr2 = input_buf[2][in_row_group_ctr];
outptr0 = output_buf[0];
outptr1 = output_buf[1];
/* Loop for each group of output pixels */
for (col = cinfo->output_width >> 1; col > 0; col--) {
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
cr = GETJSAMPLE(*inptr2++);
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
cred = Crrtab[cr];
/* Fetch 4 Y values and emit 4 pixels */
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr00++);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
outptr0 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
y = GETJSAMPLE(*inptr01++);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
outptr1 += RGB_PIXELSIZE;
}
/* If image width is odd, do the last output column separately */
if (cinfo->output_width & 1) {
cb = GETJSAMPLE(*inptr1);
cr = GETJSAMPLE(*inptr2);
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
cblue = Cbbtab[cb];
cred = Crrtab[cr];
y = GETJSAMPLE(*inptr00);
outptr0[RGB_RED] = range_limit[y + cred];
outptr0[RGB_GREEN] = range_limit[y + cgreen];
outptr0[RGB_BLUE] = range_limit[y + cblue];
y = GETJSAMPLE(*inptr01);
outptr1[RGB_RED] = range_limit[y + cred];
outptr1[RGB_GREEN] = range_limit[y + cgreen];
outptr1[RGB_BLUE] = range_limit[y + cblue];
}
}
/*
* Module initialization routine for merged upsampling/color conversion.
*
* NB: this is called under the conditions determined by use_merged_upsample()
* in jdmaster.c. That routine MUST correspond to the actual capabilities
* of this module; no safety checks are made here.
*/
GLOBAL(void)
jinit_merged_upsampler (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample;
upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler));
cinfo->upsample = &upsample->pub;
upsample->pub.start_pass = start_pass_merged_upsample;
upsample->pub.need_context_rows = FALSE;
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;
if (cinfo->max_v_samp_factor == 2) {
upsample->pub.upsample = merged_2v_upsample;
upsample->upmethod = h2v2_merged_upsample;
/* Allocate a spare row buffer */
upsample->spare_row = (JSAMPROW) (*cinfo->mem->alloc_large)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(size_t) upsample->out_row_width * SIZEOF(JSAMPLE));
} else {
upsample->pub.upsample = merged_1v_upsample;
upsample->upmethod = h2v1_merged_upsample;
/* No spare row needed */
upsample->spare_row = NULL;
}
if (cinfo->jpeg_color_space == JCS_BG_YCC)
build_bg_ycc_rgb_table(cinfo);
else
build_ycc_rgb_table(cinfo);
}
#endif /* UPSAMPLE_MERGING_SUPPORTED */

290
dep/libjpeg/src/jdpostct.c Normal file
View File

@ -0,0 +1,290 @@
/*
* jdpostct.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the decompression postprocessing controller.
* This controller manages the upsampling, color conversion, and color
* quantization/reduction steps; specifically, it controls the buffering
* between upsample/color conversion and color quantization/reduction.
*
* If no color quantization/reduction is required, then this module has no
* work to do, and it just hands off to the upsample/color conversion code.
* An integrated upsample/convert/quantize process would replace this module
* entirely.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Private buffer controller object */
typedef struct {
struct jpeg_d_post_controller pub; /* public fields */
/* Color quantization source buffer: this holds output data from
* the upsample/color conversion step to be passed to the quantizer.
* For two-pass color quantization, we need a full-image buffer;
* for one-pass operation, a strip buffer is sufficient.
*/
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
JDIMENSION strip_height; /* buffer size in rows */
/* for two-pass mode only: */
JDIMENSION starting_row; /* row # of first row in current strip */
JDIMENSION next_row; /* index of next row to fill/empty in strip */
} my_post_controller;
typedef my_post_controller * my_post_ptr;
/* Forward declarations */
METHODDEF(void) post_process_1pass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
#ifdef QUANT_2PASS_SUPPORTED
METHODDEF(void) post_process_prepass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
METHODDEF(void) post_process_2pass
JPP((j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
#endif
/*
* Initialize for a processing pass.
*/
METHODDEF(void)
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
switch (pass_mode) {
case JBUF_PASS_THRU:
if (cinfo->quantize_colors) {
/* Single-pass processing with color quantization. */
post->pub.post_process_data = post_process_1pass;
/* We could be doing buffered-image output before starting a 2-pass
* color quantization; in that case, jinit_d_post_controller did not
* allocate a strip buffer. Use the virtual-array buffer as workspace.
*/
if (post->buffer == NULL) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
(JDIMENSION) 0, post->strip_height, TRUE);
}
} else {
/* For single-pass processing without color quantization,
* I have no work to do; just call the upsampler directly.
*/
post->pub.post_process_data = cinfo->upsample->upsample;
}
break;
#ifdef QUANT_2PASS_SUPPORTED
case JBUF_SAVE_AND_PASS:
/* First pass of 2-pass quantization */
if (post->whole_image == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
post->pub.post_process_data = post_process_prepass;
break;
case JBUF_CRANK_DEST:
/* Second pass of 2-pass quantization */
if (post->whole_image == NULL)
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
post->pub.post_process_data = post_process_2pass;
break;
#endif /* QUANT_2PASS_SUPPORTED */
default:
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
break;
}
post->starting_row = post->next_row = 0;
}
/*
* Process some data in the one-pass (strip buffer) case.
* This is used for color precision reduction as well as one-pass quantization.
*/
METHODDEF(void)
post_process_1pass (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION num_rows, max_rows;
/* Fill the buffer, but not more than what we can dump out in one go. */
/* Note we rely on the upsampler to detect bottom of image. */
max_rows = out_rows_avail - *out_row_ctr;
if (max_rows > post->strip_height)
max_rows = post->strip_height;
num_rows = 0;
(*cinfo->upsample->upsample) (cinfo,
input_buf, in_row_group_ctr, in_row_groups_avail,
post->buffer, &num_rows, max_rows);
/* Quantize and emit data. */
(*cinfo->cquantize->color_quantize) (cinfo,
post->buffer, output_buf + *out_row_ctr, (int) num_rows);
*out_row_ctr += num_rows;
}
#ifdef QUANT_2PASS_SUPPORTED
/*
* Process some data in the first pass of 2-pass quantization.
*/
METHODDEF(void)
post_process_prepass (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION old_next_row, num_rows;
/* Reposition virtual buffer if at start of strip. */
if (post->next_row == 0) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
post->starting_row, post->strip_height, TRUE);
}
/* Upsample some data (up to a strip height's worth). */
old_next_row = post->next_row;
(*cinfo->upsample->upsample) (cinfo,
input_buf, in_row_group_ctr, in_row_groups_avail,
post->buffer, &post->next_row, post->strip_height);
/* Allow quantizer to scan new data. No data is emitted, */
/* but we advance out_row_ctr so outer loop can tell when we're done. */
if (post->next_row > old_next_row) {
num_rows = post->next_row - old_next_row;
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
(JSAMPARRAY) NULL, (int) num_rows);
*out_row_ctr += num_rows;
}
/* Advance if we filled the strip. */
if (post->next_row >= post->strip_height) {
post->starting_row += post->strip_height;
post->next_row = 0;
}
}
/*
* Process some data in the second pass of 2-pass quantization.
*/
METHODDEF(void)
post_process_2pass (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_post_ptr post = (my_post_ptr) cinfo->post;
JDIMENSION num_rows, max_rows;
/* Reposition virtual buffer if at start of strip. */
if (post->next_row == 0) {
post->buffer = (*cinfo->mem->access_virt_sarray)
((j_common_ptr) cinfo, post->whole_image,
post->starting_row, post->strip_height, FALSE);
}
/* Determine number of rows to emit. */
num_rows = post->strip_height - post->next_row; /* available in strip */
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
if (num_rows > max_rows)
num_rows = max_rows;
/* We have to check bottom of image here, can't depend on upsampler. */
max_rows = cinfo->output_height - post->starting_row;
if (num_rows > max_rows)
num_rows = max_rows;
/* Quantize and emit data. */
(*cinfo->cquantize->color_quantize) (cinfo,
post->buffer + post->next_row, output_buf + *out_row_ctr,
(int) num_rows);
*out_row_ctr += num_rows;
/* Advance if we filled the strip. */
post->next_row += num_rows;
if (post->next_row >= post->strip_height) {
post->starting_row += post->strip_height;
post->next_row = 0;
}
}
#endif /* QUANT_2PASS_SUPPORTED */
/*
* Initialize postprocessing controller.
*/
GLOBAL(void)
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
{
my_post_ptr post;
post = (my_post_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_post_controller));
cinfo->post = (struct jpeg_d_post_controller *) post;
post->pub.start_pass = start_pass_dpost;
post->whole_image = NULL; /* flag for no virtual arrays */
post->buffer = NULL; /* flag for no strip buffer */
/* Create the quantization buffer, if needed */
if (cinfo->quantize_colors) {
/* The buffer strip height is max_v_samp_factor, which is typically
* an efficient number of rows for upsampling to return.
* (In the presence of output rescaling, we might want to be smarter?)
*/
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
if (need_full_buffer) {
/* Two-pass color quantization: need full-image storage. */
/* We round up the number of rows to a multiple of the strip height. */
#ifdef QUANT_2PASS_SUPPORTED
post->whole_image = (*cinfo->mem->request_virt_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
cinfo->output_width * cinfo->out_color_components,
(JDIMENSION) jround_up((long) cinfo->output_height,
(long) post->strip_height),
post->strip_height);
#else
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif /* QUANT_2PASS_SUPPORTED */
} else {
/* One-pass color quantization: just make a strip buffer. */
post->buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
cinfo->output_width * cinfo->out_color_components,
post->strip_height);
}
}
}

341
dep/libjpeg/src/jdsample.c Normal file
View File

@ -0,0 +1,341 @@
/*
* jdsample.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modified 2002-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains upsampling routines.
*
* Upsampling input data is counted in "row groups". A row group
* is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size)
* sample rows of each component. Upsampling will normally produce
* max_v_samp_factor pixel rows from each row group (but this could vary
* if the upsampler is applying a scale factor of its own).
*
* An excellent reference for image resampling is
* Digital Image Warping, George Wolberg, 1990.
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Pointer to routine to upsample a single component */
typedef JMETHOD(void, upsample1_ptr,
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr));
/* Private subobject */
typedef struct {
struct jpeg_upsampler pub; /* public fields */
/* Color conversion buffer. When using separate upsampling and color
* conversion steps, this buffer holds one upsampled row group until it
* has been color converted and output.
* Note: we do not allocate any storage for component(s) which are full-size,
* ie do not need rescaling. The corresponding entry of color_buf[] is
* simply set to point to the input data array, thereby avoiding copying.
*/
JSAMPARRAY color_buf[MAX_COMPONENTS];
/* Per-component upsampling method pointers */
upsample1_ptr methods[MAX_COMPONENTS];
int next_row_out; /* counts rows emitted from color_buf */
JDIMENSION rows_to_go; /* counts rows remaining in image */
/* Height of an input row group for each component. */
int rowgroup_height[MAX_COMPONENTS];
/* These arrays save pixel expansion factors so that int_expand need not
* recompute them each time. They are unused for other upsampling methods.
*/
UINT8 h_expand[MAX_COMPONENTS];
UINT8 v_expand[MAX_COMPONENTS];
} my_upsampler;
typedef my_upsampler * my_upsample_ptr;
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_upsample (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Mark the conversion buffer empty */
upsample->next_row_out = cinfo->max_v_samp_factor;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* In this version we upsample each component independently.
* We upsample one row group into the conversion buffer, then apply
* color conversion a row at a time.
*/
METHODDEF(void)
sep_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int ci;
jpeg_component_info * compptr;
JDIMENSION num_rows;
/* Fill the conversion buffer, if it's empty */
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Don't bother to upsample an uninteresting component. */
if (! compptr->component_needed)
continue;
/* Invoke per-component upsample method. Notice we pass a POINTER
* to color_buf[ci], so that fullsize_upsample can change it.
*/
(*upsample->methods[ci]) (cinfo, compptr,
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
upsample->color_buf + ci);
}
upsample->next_row_out = 0;
}
/* Color-convert and emit rows */
/* How many we have in the buffer: */
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
/* Not more than the distance to the end of the image. Need this test
* in case the image height is not a multiple of max_v_samp_factor:
*/
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
(JDIMENSION) upsample->next_row_out,
output_buf + *out_row_ctr,
(int) num_rows);
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
upsample->next_row_out += num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by sep_upsample to upsample pixel values
* of a single component. One row group is processed per call.
*/
/*
* For full-size components, we just make color_buf[ci] point at the
* input buffer, and thus avoid copying any data. Note that this is
* safe only because sep_upsample doesn't declare the input row group
* "consumed" until we are done color converting and emitting it.
*/
METHODDEF(void)
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)
{
*output_data_ptr = input_data;
}
/*
* This version handles any integral sampling ratios.
* This is not used for typical JPEG files, so it need not be fast.
* Nor, for that matter, is it particularly accurate: the algorithm is
* simple replication of the input pixel onto the corresponding output
* pixels. The hi-falutin sampling literature refers to this as a
* "box filter". A box filter tends to introduce visible artifacts,
* so if you are actually going to use 3:1 or 4:1 sampling ratios
* you would be well advised to improve this code.
*/
METHODDEF(void)
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
JSAMPARRAY output_data, output_end;
register JSAMPROW inptr, outptr;
register JSAMPLE invalue;
register int h;
JSAMPROW outend;
int h_expand, v_expand;
h_expand = upsample->h_expand[compptr->component_index];
v_expand = upsample->v_expand[compptr->component_index];
output_data = *output_data_ptr;
output_end = output_data + cinfo->max_v_samp_factor;
for (; output_data < output_end; output_data += v_expand) {
/* Generate one output row with proper horizontal expansion */
inptr = *input_data++;
outptr = *output_data;
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
for (h = h_expand; h > 0; h--) {
*outptr++ = invalue;
}
}
/* Generate any additional output rows by duplicating the first one */
if (v_expand > 1) {
jcopy_sample_rows(output_data, output_data + 1,
v_expand - 1, cinfo->output_width);
}
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
register JSAMPROW inptr, outptr;
register JSAMPLE invalue;
JSAMPROW outend;
int outrow;
for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) {
inptr = input_data[outrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
*outptr++ = invalue;
*outptr++ = invalue;
}
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPIMAGE output_data_ptr)
{
JSAMPARRAY output_data, output_end;
register JSAMPROW inptr, outptr;
register JSAMPLE invalue;
JSAMPROW outend;
output_data = *output_data_ptr;
output_end = output_data + cinfo->max_v_samp_factor;
for (; output_data < output_end; output_data += 2) {
inptr = *input_data++;
outptr = *output_data;
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
*outptr++ = invalue;
*outptr++ = invalue;
}
jcopy_sample_rows(output_data, output_data + 1,
1, cinfo->output_width);
}
}
/*
* Module initialization routine for upsampling.
*/
GLOBAL(void)
jinit_upsampler (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample;
int ci;
jpeg_component_info * compptr;
int h_in_group, v_in_group, h_out_group, v_out_group;
upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_upsampler));
cinfo->upsample = &upsample->pub;
upsample->pub.start_pass = start_pass_upsample;
upsample->pub.upsample = sep_upsample;
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
if (cinfo->CCIR601_sampling) /* this isn't supported */
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
/* Verify we can handle the sampling factors, select per-component methods,
* and create storage as needed.
*/
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Don't bother to upsample an uninteresting component. */
if (! compptr->component_needed)
continue;
/* Compute size of an "input group" after IDCT scaling. This many samples
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
*/
h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) /
cinfo->min_DCT_h_scaled_size;
v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) /
cinfo->min_DCT_v_scaled_size;
h_out_group = cinfo->max_h_samp_factor;
v_out_group = cinfo->max_v_samp_factor;
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
if (h_in_group == h_out_group && v_in_group == v_out_group) {
/* Fullsize components can be processed without any work. */
upsample->methods[ci] = fullsize_upsample;
continue; /* don't need to allocate buffer */
}
if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) {
/* Special case for 2h1v upsampling */
upsample->methods[ci] = h2v1_upsample;
} else if (h_in_group * 2 == h_out_group &&
v_in_group * 2 == v_out_group) {
/* Special case for 2h2v upsampling */
upsample->methods[ci] = h2v2_upsample;
} else if ((h_out_group % h_in_group) == 0 &&
(v_out_group % v_in_group) == 0) {
/* Generic integral-factors upsampling method */
upsample->methods[ci] = int_upsample;
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
} else
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) jround_up((long) cinfo->output_width,
(long) cinfo->max_h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
}
}

140
dep/libjpeg/src/jdtrans.c Normal file
View File

@ -0,0 +1,140 @@
/*
* jdtrans.c
*
* Copyright (C) 1995-1997, Thomas G. Lane.
* Modified 2000-2009 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains library routines for transcoding decompression,
* that is, reading raw DCT coefficient arrays from an input JPEG file.
* The routines in jdapimin.c will also be needed by a transcoder.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Forward declarations */
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));
/*
* Read the coefficient arrays from a JPEG file.
* jpeg_read_header must be completed before calling this.
*
* The entire image is read into a set of virtual coefficient-block arrays,
* one per component. The return value is a pointer to the array of
* virtual-array descriptors. These can be manipulated directly via the
* JPEG memory manager, or handed off to jpeg_write_coefficients().
* To release the memory occupied by the virtual arrays, call
* jpeg_finish_decompress() when done with the data.
*
* An alternative usage is to simply obtain access to the coefficient arrays
* during a buffered-image-mode decompression operation. This is allowed
* after any jpeg_finish_output() call. The arrays can be accessed until
* jpeg_finish_decompress() is called. (Note that any call to the library
* may reposition the arrays, so don't rely on access_virt_barray() results
* to stay valid across library calls.)
*
* Returns NULL if suspended. This case need be checked only if
* a suspending data source is used.
*/
GLOBAL(jvirt_barray_ptr *)
jpeg_read_coefficients (j_decompress_ptr cinfo)
{
if (cinfo->global_state == DSTATE_READY) {
/* First call: initialize active modules */
transdecode_master_selection(cinfo);
cinfo->global_state = DSTATE_RDCOEFS;
}
if (cinfo->global_state == DSTATE_RDCOEFS) {
/* Absorb whole file into the coef buffer */
for (;;) {
int retcode;
/* Call progress monitor hook if present */
if (cinfo->progress != NULL)
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
/* Absorb some more input */
retcode = (*cinfo->inputctl->consume_input) (cinfo);
if (retcode == JPEG_SUSPENDED)
return NULL;
if (retcode == JPEG_REACHED_EOI)
break;
/* Advance progress counter if appropriate */
if (cinfo->progress != NULL &&
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
/* startup underestimated number of scans; ratchet up one scan */
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
}
}
}
/* Set state so that jpeg_finish_decompress does the right thing */
cinfo->global_state = DSTATE_STOPPING;
}
/* At this point we should be in state DSTATE_STOPPING if being used
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
* to the coefficients during a full buffered-image-mode decompression.
*/
if ((cinfo->global_state == DSTATE_STOPPING ||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
return cinfo->coef->coef_arrays;
}
/* Oops, improper usage */
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
return NULL; /* keep compiler happy */
}
/*
* Master selection of decompression modules for transcoding.
* This substitutes for jdmaster.c's initialization of the full decompressor.
*/
LOCAL(void)
transdecode_master_selection (j_decompress_ptr cinfo)
{
/* This is effectively a buffered-image operation. */
cinfo->buffered_image = TRUE;
/* Compute output image dimensions and related values. */
jpeg_core_output_dimensions(cinfo);
/* Entropy decoding: either Huffman or arithmetic coding. */
if (cinfo->arith_code)
jinit_arith_decoder(cinfo);
else {
jinit_huff_decoder(cinfo);
}
/* Always get a full-image coefficient buffer. */
jinit_d_coef_controller(cinfo, TRUE);
/* We can now tell the memory manager to allocate virtual arrays. */
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
/* Initialize input side of decompressor to consume first scan. */
(*cinfo->inputctl->start_input_pass) (cinfo);
/* Initialize progress monitoring. */
if (cinfo->progress != NULL) {
int nscans;
/* Estimate number of scans to set pass_limit. */
if (cinfo->progressive_mode) {
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
nscans = 2 + 3 * cinfo->num_components;
} else if (cinfo->inputctl->has_multiple_scans) {
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
nscans = cinfo->num_components;
} else {
nscans = 1;
}
cinfo->progress->pass_counter = 0L;
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
cinfo->progress->completed_passes = 0;
cinfo->progress->total_passes = 1;
}
}

253
dep/libjpeg/src/jerror.c Normal file
View File

@ -0,0 +1,253 @@
/*
* jerror.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* Modified 2012-2015 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains simple error-reporting and trace-message routines.
* These are suitable for Unix-like systems and others where writing to
* stderr is the right thing to do. Many applications will want to replace
* some or all of these routines.
*
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
* you get a Windows-specific hack to display error messages in a dialog box.
* It ain't much, but it beats dropping error messages into the bit bucket,
* which is what happens to output to stderr under most Windows C compilers.
*
* These routines are used by both the compression and decompression code.
*/
#ifdef USE_WINDOWS_MESSAGEBOX
#include <windows.h>
#endif
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jversion.h"
#include "jerror.h"
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
#define EXIT_FAILURE 1
#endif
/*
* Create the message string table.
* We do this from the master message list in jerror.h by re-reading
* jerror.h with a suitable definition for macro JMESSAGE.
* The message table is made an external symbol just in case any applications
* want to refer to it directly.
*/
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_std_message_table jMsgTable
#endif
#define JMESSAGE(code,string) string ,
const char * const jpeg_std_message_table[] = {
#include "jerror.h"
NULL
};
/*
* Error exit handler: must not return to caller.
*
* Applications may override this if they want to get control back after
* an error. Typically one would longjmp somewhere instead of exiting.
* The setjmp buffer can be made a private field within an expanded error
* handler object. Note that the info needed to generate an error message
* is stored in the error object, so you can generate the message now or
* later, at your convenience.
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
* or jpeg_destroy) at some point.
*/
METHODDEF(noreturn_t)
error_exit (j_common_ptr cinfo)
{
/* Always display the message */
(*cinfo->err->output_message) (cinfo);
/* Let the memory manager delete any temp files before we die */
jpeg_destroy(cinfo);
exit(EXIT_FAILURE);
}
/*
* Actual output of an error or trace message.
* Applications may override this method to send JPEG messages somewhere
* other than stderr.
*
* On Windows, printing to stderr is generally completely useless,
* so we provide optional code to produce an error-dialog popup.
* Most Windows applications will still prefer to override this routine,
* but if they don't, it'll do something at least marginally useful.
*
* NOTE: to use the library in an environment that doesn't support the
* C stdio library, you may have to delete the call to fprintf() entirely,
* not just not use this routine.
*/
METHODDEF(void)
output_message (j_common_ptr cinfo)
{
char buffer[JMSG_LENGTH_MAX];
/* Create the message */
(*cinfo->err->format_message) (cinfo, buffer);
#ifdef USE_WINDOWS_MESSAGEBOX
/* Display it in a message dialog box */
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
MB_OK | MB_ICONERROR);
#else
/* Send it to stderr, adding a newline */
fprintf(stderr, "%s\n", buffer);
#endif
}
/*
* Decide whether to emit a trace or warning message.
* msg_level is one of:
* -1: recoverable corrupt-data warning, may want to abort.
* 0: important advisory messages (always display to user).
* 1: first level of tracing detail.
* 2,3,...: successively more detailed tracing messages.
* An application might override this method if it wanted to abort on warnings
* or change the policy about which messages to display.
*/
METHODDEF(void)
emit_message (j_common_ptr cinfo, int msg_level)
{
struct jpeg_error_mgr * err = cinfo->err;
if (msg_level < 0) {
/* It's a warning message. Since corrupt files may generate many warnings,
* the policy implemented here is to show only the first warning,
* unless trace_level >= 3.
*/
if (err->num_warnings == 0 || err->trace_level >= 3)
(*err->output_message) (cinfo);
/* Always count warnings in num_warnings. */
err->num_warnings++;
} else {
/* It's a trace message. Show it if trace_level >= msg_level. */
if (err->trace_level >= msg_level)
(*err->output_message) (cinfo);
}
}
/*
* Format a message string for the most recent JPEG error or message.
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
* characters. Note that no '\n' character is added to the string.
* Few applications should need to override this method.
*/
METHODDEF(void)
format_message (j_common_ptr cinfo, char * buffer)
{
struct jpeg_error_mgr * err = cinfo->err;
int msg_code = err->msg_code;
const char * msgtext = NULL;
const char * msgptr;
char ch;
boolean isstring;
/* Look up message string in proper table */
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
msgtext = err->jpeg_message_table[msg_code];
} else if (err->addon_message_table != NULL &&
msg_code >= err->first_addon_message &&
msg_code <= err->last_addon_message) {
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
}
/* Defend against bogus message number */
if (msgtext == NULL) {
err->msg_parm.i[0] = msg_code;
msgtext = err->jpeg_message_table[0];
}
/* Check for string parameter, as indicated by %s in the message text */
isstring = FALSE;
msgptr = msgtext;
while ((ch = *msgptr++) != '\0') {
if (ch == '%') {
if (*msgptr == 's') isstring = TRUE;
break;
}
}
/* Format the message into the passed buffer */
if (isstring)
sprintf(buffer, msgtext, err->msg_parm.s);
else
sprintf(buffer, msgtext,
err->msg_parm.i[0], err->msg_parm.i[1],
err->msg_parm.i[2], err->msg_parm.i[3],
err->msg_parm.i[4], err->msg_parm.i[5],
err->msg_parm.i[6], err->msg_parm.i[7]);
}
/*
* Reset error state variables at start of a new image.
* This is called during compression startup to reset trace/error
* processing to default state, without losing any application-specific
* method pointers. An application might possibly want to override
* this method if it has additional error processing state.
*/
METHODDEF(void)
reset_error_mgr (j_common_ptr cinfo)
{
cinfo->err->num_warnings = 0;
/* trace_level is not reset since it is an application-supplied parameter */
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
}
/*
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
* Typical call is:
* struct jpeg_compress_struct cinfo;
* struct jpeg_error_mgr err;
*
* cinfo.err = jpeg_std_error(&err);
* after which the application may override some of the methods.
*/
GLOBAL(struct jpeg_error_mgr *)
jpeg_std_error (struct jpeg_error_mgr * err)
{
err->error_exit = error_exit;
err->emit_message = emit_message;
err->output_message = output_message;
err->format_message = format_message;
err->reset_error_mgr = reset_error_mgr;
err->trace_level = 0; /* default = no tracing */
err->num_warnings = 0; /* no warnings emitted yet */
err->msg_code = 0; /* may be useful as a flag for "no error" */
/* Initialize message table pointers */
err->jpeg_message_table = jpeg_std_message_table;
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
err->addon_message_table = NULL;
err->first_addon_message = 0; /* for safety */
err->last_addon_message = 0;
return err;
}

176
dep/libjpeg/src/jfdctflt.c Normal file
View File

@ -0,0 +1,176 @@
/*
* jfdctflt.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2003-2017 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a floating-point implementation of the
* forward DCT (Discrete Cosine Transform).
*
* This implementation should be more accurate than either of the integer
* DCT implementations. However, it may not give the same results on all
* machines because of differences in roundoff behavior. Speed will depend
* on the hardware's floating point capacity.
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with a fixed-point
* implementation, accuracy is lost due to imprecise representation of the
* scaled quantization values. However, that problem does not arise if
* we use floating point arithmetic.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_FLOAT_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
#endif
/*
* Perform the forward DCT on one block of samples.
*
* cK represents cos(K*pi/16).
*/
GLOBAL(void)
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
{
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
FAST_FLOAT *dataptr;
JSAMPROW elemptr;
int ctr;
/* Pass 1: process rows. */
dataptr = data;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
elemptr = sample_data[ctr] + start_col;
/* Load data into workspace */
tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Apply unsigned->signed conversion. */
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
dataptr[4] = tmp10 - tmp11;
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
dataptr[2] = tmp13 + z1; /* phase 5 */
dataptr[6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[5] = z13 + z2; /* phase 6 */
dataptr[3] = z13 - z2;
dataptr[1] = z11 + z4;
dataptr[7] = z11 - z4;
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
dataptr[DCTSIZE*4] = tmp10 - tmp11;
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
dataptr[DCTSIZE*6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
dataptr[DCTSIZE*3] = z13 - z2;
dataptr[DCTSIZE*1] = z11 + z4;
dataptr[DCTSIZE*7] = z11 - z4;
dataptr++; /* advance pointer to next column */
}
}
#endif /* DCT_FLOAT_SUPPORTED */

232
dep/libjpeg/src/jfdctfst.c Normal file
View File

@ -0,0 +1,232 @@
/*
* jfdctfst.c
*
* Copyright (C) 1994-1996, Thomas G. Lane.
* Modified 2003-2017 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a fast, not so accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with fixed-point math,
* accuracy is lost due to imprecise representation of the scaled
* quantization values. The smaller the quantization table entry, the less
* precise the scaled value, so this implementation does worse with high-
* quality-setting files than with low-quality ones.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
#endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jfdctint.c for more details. However, we choose to descale
* (right shift) multiplication products as soon as they are formed,
* rather than carrying additional fractional bits into subsequent additions.
* This compromises accuracy slightly, but it lets us save a few shifts.
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
* everywhere except in the multiplications proper; this saves a good deal
* of work on 16-bit-int machines.
*
* Again to save a few shifts, the intermediate results between pass 1 and
* pass 2 are not upscaled, but are represented only to integral precision.
*
* A final compromise is to represent the multiplicative constants to only
* 8 fractional bits, rather than 13. This saves some shifting work on some
* machines, and may also reduce the cost of multiplication (since there
* are fewer one-bits in the constants).
*/
#define CONST_BITS 8
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 8
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
#else
#define FIX_0_382683433 FIX(0.382683433)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_707106781 FIX(0.707106781)
#define FIX_1_306562965 FIX(1.306562965)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly
* rounded result half the time...
*/
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
/*
* Perform the forward DCT on one block of samples.
*
* cK represents cos(K*pi/16).
*/
GLOBAL(void)
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z1, z2, z3, z4, z5, z11, z13;
DCTELEM *dataptr;
JSAMPROW elemptr;
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
dataptr = data;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
elemptr = sample_data[ctr] + start_col;
/* Load data into workspace */
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Apply unsigned->signed conversion. */
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
dataptr[4] = tmp10 - tmp11;
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
dataptr[2] = tmp13 + z1; /* phase 5 */
dataptr[6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[5] = z13 + z2; /* phase 6 */
dataptr[3] = z13 - z2;
dataptr[1] = z11 + z4;
dataptr[7] = z11 - z4;
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
/* Even part */
tmp10 = tmp0 + tmp3; /* phase 2 */
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
dataptr[DCTSIZE*4] = tmp10 - tmp11;
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
dataptr[DCTSIZE*6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
z11 = tmp7 + z3; /* phase 5 */
z13 = tmp7 - z3;
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
dataptr[DCTSIZE*3] = z13 - z2;
dataptr[DCTSIZE*1] = z11 + z4;
dataptr[DCTSIZE*7] = z11 - z4;
dataptr++; /* advance pointer to next column */
}
}
#endif /* DCT_IFAST_SUPPORTED */

4415
dep/libjpeg/src/jfdctint.c Normal file

File diff suppressed because it is too large Load Diff

238
dep/libjpeg/src/jidctflt.c Normal file
View File

@ -0,0 +1,238 @@
/*
* jidctflt.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* Modified 2010-2017 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a floating-point implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* This implementation should be more accurate than either of the integer
* IDCT implementations. However, it may not give the same results on all
* machines because of differences in roundoff behavior. Speed will depend
* on the hardware's floating point capacity.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with a fixed-point
* implementation, accuracy is lost due to imprecise representation of the
* scaled quantization values. However, that problem does not arise if
* we use floating point arithmetic.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_FLOAT_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a float result.
*/
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*
* cK represents cos(K*pi/16).
*/
GLOBAL(void)
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
FAST_FLOAT z5, z10, z11, z12, z13;
JCOEFPTR inptr;
FLOAT_MULT_TYPE * quantptr;
FAST_FLOAT * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 - tmp5;
wsptr[DCTSIZE*0] = tmp0 + tmp7;
wsptr[DCTSIZE*7] = tmp0 - tmp7;
wsptr[DCTSIZE*1] = tmp1 + tmp6;
wsptr[DCTSIZE*6] = tmp1 - tmp6;
wsptr[DCTSIZE*2] = tmp2 + tmp5;
wsptr[DCTSIZE*5] = tmp2 - tmp5;
wsptr[DCTSIZE*3] = tmp3 + tmp4;
wsptr[DCTSIZE*4] = tmp3 - tmp4;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* And testing floats for zero is relatively expensive, so we don't bother.
*/
/* Even part */
/* Prepare range-limit and float->int conversion */
z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5));
tmp10 = z5 + wsptr[4];
tmp11 = z5 - wsptr[4];
tmp13 = wsptr[2] + wsptr[6];
tmp12 = (wsptr[2] - wsptr[6]) *
((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = wsptr[5] + wsptr[3];
z10 = wsptr[5] - wsptr[3];
z11 = wsptr[1] + wsptr[7];
z12 = wsptr[1] - wsptr[7];
tmp7 = z11 + z13; /* phase 5 */
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 - tmp5;
/* Final output stage: float->int conversion and range-limit */
outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK];
outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK];
outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK];
outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK];
outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK];
outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK];
outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK];
outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_FLOAT_SUPPORTED */

351
dep/libjpeg/src/jidctfst.c Normal file
View File

@ -0,0 +1,351 @@
/*
* jidctfst.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* Modified 2015-2017 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a fast, not so accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with fixed-point math,
* accuracy is lost due to imprecise representation of the scaled
* quantization values. The smaller the quantization table entry, the less
* precise the scaled value, so this implementation does worse with high-
* quality-setting files than with low-quality ones.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
#endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jidctint.c for more details. However, we choose to descale
* (right shift) multiplication products as soon as they are formed,
* rather than carrying additional fractional bits into subsequent additions.
* This compromises accuracy slightly, but it lets us save a few shifts.
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
* everywhere except in the multiplications proper; this saves a good deal
* of work on 16-bit-int machines.
*
* The dequantized coefficients are not integers because the AA&N scaling
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
* so that the first and second IDCT rounds have the same input scaling.
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
* avoid a descaling shift; this compromises accuracy rather drastically
* for small quantization table entries, but it saves a lot of shifts.
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
* so we use a much larger scaling factor to preserve accuracy.
*
* A final compromise is to represent the multiplicative constants to only
* 8 fractional bits, rather than 13. This saves some shifting work on some
* machines, and may also reduce the cost of multiplication (since there
* are fewer one-bits in the constants).
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 8
#define PASS1_BITS 2
#else
#define CONST_BITS 8
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 8
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
#else
#define FIX_1_082392200 FIX(1.082392200)
#define FIX_1_414213562 FIX(1.414213562)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_613125930 FIX(2.613125930)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly
* rounded result half the time...
*/
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
* multiplication will do. For 12-bit data, the multiplier table is
* declared INT32, so a 32-bit multiply will be used.
*/
#if BITS_IN_JSAMPLE == 8
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
#else
#define DEQUANTIZE(coef,quantval) \
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
#endif
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*
* cK represents cos(K*pi/16).
*/
GLOBAL(void)
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z5, z10, z11, z12, z13;
JCOEFPTR inptr;
IFAST_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS /* for DESCALE */
ISHIFT_TEMPS /* for IRIGHT_SHIFT */
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 - tmp5;
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4);
wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array.
* Note that we must descale the results by a factor of 8 == 2**3,
* and also undo the PASS1_BITS scaling.
*/
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Add range center and fudge factor for final descale and range-limit. */
z5 = (DCTELEM) wsptr[0] +
((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) +
(1 << (PASS1_BITS+2)));
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = z5 + (DCTELEM) wsptr[4];
tmp11 = z5 - (DCTELEM) wsptr[4];
tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6];
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6],
FIX_1_414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */
tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 - tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_IFAST_SUPPORTED */

5240
dep/libjpeg/src/jidctint.c Normal file

File diff suppressed because it is too large Load Diff

157
dep/libjpeg/src/jinclude.h Normal file
View File

@ -0,0 +1,157 @@
/*
* jinclude.h
*
* Copyright (C) 1991-1994, Thomas G. Lane.
* Modified 2017-2022 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file exists to provide a single place to fix any problems with
* including the wrong system include files. (Common problems are taken
* care of by the standard jconfig symbols, but on really weird systems
* you may have to edit this file.)
*
* NOTE: this file is NOT intended to be included by applications using
* the JPEG library. Most applications need only include jpeglib.h.
*/
/* Include auto-config file to find out which system include files we need. */
#include "jconfig.h" /* auto configuration options */
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
/*
* We need the NULL macro and size_t typedef.
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
* pull in <sys/types.h> as well.
* Note that the core JPEG library does not require <stdio.h>;
* only the default error handler and data source/destination modules do.
* But we must pull it in because of the references to FILE in jpeglib.h.
* You can remove those references if you want to compile without <stdio.h>.
*/
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef NEED_SYS_TYPES_H
#include <sys/types.h>
#endif
#include <stdio.h>
/*
* We need memory copying and zeroing functions, plus strncpy().
* ANSI and System V implementations declare these in <string.h>.
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
* Some systems may declare memset and memcpy in <memory.h>.
*
* NOTE: we assume the size parameters to these functions are of type size_t.
* Change the casts in these macros if not!
*/
#ifdef NEED_BSD_STRINGS
#include <strings.h>
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
#else /* not BSD, assume ANSI/SysV string lib */
#include <string.h>
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
#endif
/*
* In ANSI C, and indeed any rational implementation, size_t is also the
* type returned by sizeof(). However, it seems there are some irrational
* implementations out there, in which sizeof() returns an int even though
* size_t is defined as long or unsigned long. To ensure consistent results
* we always use this SIZEOF() macro in place of using sizeof() directly.
*/
#define SIZEOF(object) ((size_t) sizeof(object))
/*
* The modules that use fread() and fwrite() always invoke them through
* these macros. On some systems you may need to twiddle the argument casts.
* CAUTION: argument order is different from underlying functions!
*
* Furthermore, macros are provided for fflush() and ferror() in order
* to facilitate adaption by applications using an own FILE class.
*
* You can define your own custom file I/O functions in jconfig.h and
* #define JPEG_HAVE_FILE_IO_CUSTOM there to prevent redefinition here.
*
* You can #define JPEG_USE_FILE_IO_CUSTOM in jconfig.h to use custom file
* I/O functions implemented in Delphi VCL (Visual Component Library)
* in Vcl.Imaging.jpeg.pas for the TJPEGImage component utilizing
* the Delphi RTL (Run-Time Library) TMemoryStream component:
*
* procedure jpeg_stdio_src(var cinfo: jpeg_decompress_struct;
* input_file: TStream); external;
*
* procedure jpeg_stdio_dest(var cinfo: jpeg_compress_struct;
* output_file: TStream); external;
*
* function jfread(var buf; recsize, reccount: Integer; S: TStream): Integer;
* begin
* Result := S.Read(buf, recsize * reccount);
* end;
*
* function jfwrite(const buf; recsize, reccount: Integer; S: TStream): Integer;
* begin
* Result := S.Write(buf, recsize * reccount);
* end;
*
* function jfflush(S: TStream): Integer;
* begin
* Result := 0;
* end;
*
* function jferror(S: TStream): Integer;
* begin
* Result := 0;
* end;
*
* TMemoryStream of Delphi RTL has the distinctive feature to provide dynamic
* memory buffer management with a file/stream-based interface, particularly for
* the write (output) operation, which is easier to apply compared with direct
* implementations as given in jdatadst.c for memory destination. Those direct
* implementations of dynamic memory write tend to be more difficult to use,
* so providing an option like TMemoryStream may be a useful alternative.
*
* The CFile/CMemFile classes of the Microsoft Foundation Class (MFC) Library
* may be used in a similar fashion.
*/
#ifndef JPEG_HAVE_FILE_IO_CUSTOM
#ifdef JPEG_USE_FILE_IO_CUSTOM
extern size_t jfread(void * __ptr, size_t __size, size_t __n, FILE * __stream);
extern size_t jfwrite(const void * __ptr, size_t __size, size_t __n, FILE * __stream);
extern int jfflush(FILE * __stream);
extern int jferror(FILE * __fp);
#define JFREAD(file,buf,sizeofbuf) \
((size_t) jfread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
#define JFWRITE(file,buf,sizeofbuf) \
((size_t) jfwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
#define JFFLUSH(file) jfflush(file)
#define JFERROR(file) jferror(file)
#else
#define JFREAD(file,buf,sizeofbuf) \
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
#define JFWRITE(file,buf,sizeofbuf) \
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
#define JFFLUSH(file) fflush(file)
#define JFERROR(file) ferror(file)
#endif
#endif

1115
dep/libjpeg/src/jmemmgr.c Normal file

File diff suppressed because it is too large Load Diff

113
dep/libjpeg/src/jmemnobs.c Normal file
View File

@ -0,0 +1,113 @@
/*
* jmemnobs.c
*
* Copyright (C) 1992-1996, Thomas G. Lane.
* Modified 2019 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file provides a really simple implementation of the system-
* dependent portion of the JPEG memory manager. This implementation
* assumes that no backing-store files are needed: all required space
* can be obtained from malloc().
* This is very portable in the sense that it'll compile on almost anything,
* but you'd better have lots of main memory (or virtual memory) if you want
* to process big images.
* Note that the max_memory_to_use option is respected by this implementation.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h" /* import the system-dependent declarations */
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
extern void * malloc JPP((size_t size));
extern void free JPP((void *ptr));
#endif
/*
* Memory allocation and freeing are controlled by the regular library
* routines malloc() and free().
*/
GLOBAL(void *)
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
{
return (void *) malloc(sizeofobject);
}
GLOBAL(void)
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
{
free(object);
}
/*
* "Large" objects are treated the same as "small" ones.
* NB: although we include FAR keywords in the routine declarations,
* this file won't actually work in 80x86 small/medium model; at least,
* you probably won't be able to process useful-size images in only 64KB.
*/
GLOBAL(void FAR *)
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
{
return (void FAR *) malloc(sizeofobject);
}
GLOBAL(void)
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
{
free(object);
}
/*
* This routine computes the total memory space available for allocation.
*/
GLOBAL(long)
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
long max_bytes_needed, long already_allocated)
{
if (cinfo->mem->max_memory_to_use)
return cinfo->mem->max_memory_to_use - already_allocated;
/* Here we say, "we got all you want bud!" */
return max_bytes_needed;
}
/*
* Backing store (temporary file) management.
* Since jpeg_mem_available always promised the moon,
* this should never be called and we can just error out.
*/
GLOBAL(void)
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
long total_bytes_needed)
{
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
}
/*
* These routines take care of any system-dependent initialization and
* cleanup required. Here, there isn't any.
*/
GLOBAL(long)
jpeg_mem_init (j_common_ptr cinfo)
{
return 0; /* just set max_memory_to_use to 0 */
}
GLOBAL(void)
jpeg_mem_term (j_common_ptr cinfo)
{
/* no work */
}

198
dep/libjpeg/src/jmemsys.h Normal file
View File

@ -0,0 +1,198 @@
/*
* jmemsys.h
*
* Copyright (C) 1992-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This include file defines the interface between the system-independent
* and system-dependent portions of the JPEG memory manager. No other
* modules need include it. (The system-independent portion is jmemmgr.c;
* there are several different versions of the system-dependent portion.)
*
* This file works as-is for the system-dependent memory managers supplied
* in the IJG distribution. You may need to modify it if you write a
* custom memory manager. If system-dependent changes are needed in
* this file, the best method is to #ifdef them based on a configuration
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
* and USE_MAC_MEMMGR.
*/
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_get_small jGetSmall
#define jpeg_free_small jFreeSmall
#define jpeg_get_large jGetLarge
#define jpeg_free_large jFreeLarge
#define jpeg_mem_available jMemAvail
#define jpeg_open_backing_store jOpenBackStore
#define jpeg_mem_init jMemInit
#define jpeg_mem_term jMemTerm
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/*
* These two functions are used to allocate and release small chunks of
* memory. (Typically the total amount requested through jpeg_get_small is
* no more than 20K or so; this will be requested in chunks of a few K each.)
* Behavior should be the same as for the standard library functions malloc
* and free; in particular, jpeg_get_small must return NULL on failure.
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
* size of the object being freed, just in case it's needed.
* On an 80x86 machine using small-data memory model, these manage near heap.
*/
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
size_t sizeofobject));
/*
* These two functions are used to allocate and release large chunks of
* memory (up to the total free space designated by jpeg_mem_available).
* The interface is the same as above, except that on an 80x86 machine,
* far pointers are used. On most other machines these are identical to
* the jpeg_get/free_small routines; but we keep them separate anyway,
* in case a different allocation strategy is desirable for large chunks.
*/
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
size_t sizeofobject));
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
size_t sizeofobject));
/*
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
* matter, but that case should never come into play). This macro is needed
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
* On those machines, we expect that jconfig.h will provide a proper value.
* On machines with 32-bit flat address spaces, any large constant may be used.
*
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
* size_t and will be a multiple of sizeof(align_type).
*/
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
#define MAX_ALLOC_CHUNK 1000000000L
#endif
/*
* This routine computes the total space still available for allocation by
* jpeg_get_large. If more space than this is needed, backing store will be
* used. NOTE: any memory already allocated must not be counted.
*
* There is a minimum space requirement, corresponding to the minimum
* feasible buffer sizes; jmemmgr.c will request that much space even if
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
* all working storage in memory, is also passed in case it is useful.
* Finally, the total space already allocated is passed. If no better
* method is available, cinfo->mem->max_memory_to_use - already_allocated
* is often a suitable calculation.
*
* It is OK for jpeg_mem_available to underestimate the space available
* (that'll just lead to more backing-store access than is really necessary).
* However, an overestimate will lead to failure. Hence it's wise to subtract
* a slop factor from the true available space. 5% should be enough.
*
* On machines with lots of virtual memory, any large constant may be returned.
* Conversely, zero may be returned to always use the minimum amount of memory.
*/
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
long min_bytes_needed,
long max_bytes_needed,
long already_allocated));
/*
* This structure holds whatever state is needed to access a single
* backing-store object. The read/write/close method pointers are called
* by jmemmgr.c to manipulate the backing-store object; all other fields
* are private to the system-dependent backing store routines.
*/
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
typedef unsigned short XMSH; /* type of extended-memory handles */
typedef unsigned short EMSH; /* type of expanded-memory handles */
typedef union {
short file_handle; /* DOS file handle if it's a temp file */
XMSH xms_handle; /* handle if it's a chunk of XMS */
EMSH ems_handle; /* handle if it's a chunk of EMS */
} handle_union;
#endif /* USE_MSDOS_MEMMGR */
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
#include <Files.h>
#endif /* USE_MAC_MEMMGR */
typedef struct backing_store_struct * backing_store_ptr;
typedef struct backing_store_struct {
/* Methods for reading/writing/closing this backing-store object */
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
backing_store_ptr info,
void FAR * buffer_address,
long file_offset, long byte_count));
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
backing_store_ptr info,
void FAR * buffer_address,
long file_offset, long byte_count));
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
backing_store_ptr info));
/* Private fields for system-dependent backing-store management */
#ifdef USE_MSDOS_MEMMGR
/* For the MS-DOS manager (jmemdos.c), we need: */
handle_union handle; /* reference to backing-store storage object */
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
#else
#ifdef USE_MAC_MEMMGR
/* For the Mac manager (jmemmac.c), we need: */
short temp_file; /* file reference number to temp file */
FSSpec tempSpec; /* the FSSpec for the temp file */
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
#else
/* For a typical implementation with temp files, we need: */
FILE * temp_file; /* stdio reference to temp file */
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
#endif
#endif
} backing_store_info;
/*
* Initial opening of a backing-store object. This must fill in the
* read/write/close pointers in the object. The read/write routines
* may take an error exit if the specified maximum file size is exceeded.
* (If jpeg_mem_available always returns a large value, this routine can
* just take an error exit.)
*/
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
backing_store_ptr info,
long total_bytes_needed));
/*
* These routines take care of any system-dependent initialization and
* cleanup required. jpeg_mem_init will be called before anything is
* allocated (and, therefore, nothing in cinfo is of use except the error
* manager pointer). It should return a suitable default value for
* max_memory_to_use; this may subsequently be overridden by the surrounding
* application. (Note that max_memory_to_use is only important if
* jpeg_mem_available chooses to consult it ... no one else will.)
* jpeg_mem_term may assume that all requested memory has been freed and that
* all opened backing-store objects have been closed.
*/
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));

851
dep/libjpeg/src/jquant1.c Normal file
View File

@ -0,0 +1,851 @@
/*
* jquant1.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modified 2011-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains 1-pass color quantization (color mapping) routines.
* These routines provide mapping to a fixed color map using equally spaced
* color values. Optional Floyd-Steinberg or ordered dithering is available.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#ifdef QUANT_1PASS_SUPPORTED
/*
* The main purpose of 1-pass quantization is to provide a fast, if not very
* high quality, colormapped output capability. A 2-pass quantizer usually
* gives better visual quality; however, for quantized grayscale output this
* quantizer is perfectly adequate. Dithering is highly recommended with this
* quantizer, though you can turn it off if you really want to.
*
* In 1-pass quantization the colormap must be chosen in advance of seeing the
* image. We use a map consisting of all combinations of Ncolors[i] color
* values for the i'th component. The Ncolors[] values are chosen so that
* their product, the total number of colors, is no more than that requested.
* (In most cases, the product will be somewhat less.)
*
* Since the colormap is orthogonal, the representative value for each color
* component can be determined without considering the other components;
* then these indexes can be combined into a colormap index by a standard
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
* can be precalculated and stored in the lookup table colorindex[].
* colorindex[i][j] maps pixel value j in component i to the nearest
* representative value (grid plane) for that component; this index is
* multiplied by the array stride for component i, so that the
* index of the colormap entry closest to a given pixel value is just
* sum( colorindex[component-number][pixel-component-value] )
* Aside from being fast, this scheme allows for variable spacing between
* representative values with no additional lookup cost.
*
* If gamma correction has been applied in color conversion, it might be wise
* to adjust the color grid spacing so that the representative colors are
* equidistant in linear space. At this writing, gamma correction is not
* implemented by jdcolor, so nothing is done here.
*/
/* Declarations for ordered dithering.
*
* We use a standard 16x16 ordered dither array. The basic concept of ordered
* dithering is described in many references, for instance Dale Schumacher's
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
* In place of Schumacher's comparisons against a "threshold" value, we add a
* "dither" value to the input pixel and then round the result to the nearest
* output value. The dither value is equivalent to (0.5 - threshold) times
* the distance between output values. For ordered dithering, we assume that
* the output colors are equally spaced; if not, results will probably be
* worse, since the dither may be too much or too little at a given point.
*
* The normal calculation would be to form pixel value + dither, range-limit
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
* We can skip the separate range-limiting step by extending the colorindex
* table in both directions.
*/
#define ODITHER_SIZE 16 /* dimension of dither matrix */
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
/* Bayer's order-4 dither array. Generated by the code given in
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
* The values in this array must range from 0 to ODITHER_CELLS-1.
*/
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
};
/* Declarations for Floyd-Steinberg dithering.
*
* Errors are accumulated into the array fserrors[], at a resolution of
* 1/16th of a pixel count. The error at a given pixel is propagated
* to its not-yet-processed neighbors using the standard F-S fractions,
* ... (here) 7/16
* 3/16 5/16 1/16
* We work left-to-right on even rows, right-to-left on odd rows.
*
* We can get away with a single array (holding one row's worth of errors)
* by using it to store the current row's errors at pixel columns not yet
* processed, but the next row's errors at columns already processed. We
* need only a few extra variables to hold the errors immediately around the
* current column. (If we are lucky, those variables are in registers, but
* even if not, they're probably cheaper to access than array elements are.)
*
* The fserrors[] array is indexed [component#][position].
* We provide (#columns + 2) entries per component; the extra entry at each
* end saves us from special-casing the first and last pixels.
*
* Note: on a wide image, we might not have enough room in a PC's near data
* segment to hold the error array; so it is allocated with alloc_large.
*/
#if BITS_IN_JSAMPLE == 8
typedef INT16 FSERROR; /* 16 bits should be enough */
typedef int LOCFSERROR; /* use 'int' for calculation temps */
#else
typedef INT32 FSERROR; /* may need more than 16 bits */
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
#endif
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
/* Private subobject */
#define MAX_Q_COMPS 4 /* max components I can handle */
typedef struct {
struct jpeg_color_quantizer pub; /* public fields */
/* Initially allocated colormap is saved here */
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
int sv_actual; /* number of entries in use */
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
/* colorindex[i][j] = index of color closest to pixel value j in component i,
* premultiplied as described above. Since colormap indexes must fit into
* JSAMPLEs, the entries of this array will too.
*/
boolean is_padded; /* is the colorindex padded for odither? */
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
/* Variables for ordered dithering */
int row_index; /* cur row's vertical index in dither matrix */
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
/* Variables for Floyd-Steinberg dithering */
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
boolean on_odd_row; /* flag to remember which row we are on */
} my_cquantizer;
typedef my_cquantizer * my_cquantize_ptr;
/*
* Policy-making subroutines for create_colormap and create_colorindex.
* These routines determine the colormap to be used. The rest of the module
* only assumes that the colormap is orthogonal.
*
* * select_ncolors decides how to divvy up the available colors
* among the components.
* * output_value defines the set of representative values for a component.
* * largest_input_value defines the mapping from input values to
* representative values for a component.
* Note that the latter two routines may impose different policies for
* different components, though this is not currently done.
*/
LOCAL(int)
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
/* Determine allocation of desired colors to components, */
/* and fill in Ncolors[] array to indicate choice. */
/* Return value is total number of colors (product of Ncolors[] values). */
{
int nc = cinfo->out_color_components; /* number of color components */
int max_colors = cinfo->desired_number_of_colors;
int total_colors, iroot, i, j;
boolean changed;
long temp;
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
/* We can allocate at least the nc'th root of max_colors per component. */
/* Compute floor(nc'th root of max_colors). */
iroot = 1;
do {
iroot++;
temp = iroot; /* set temp = iroot ** nc */
for (i = 1; i < nc; i++)
temp *= iroot;
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
iroot--; /* now iroot = floor(root) */
/* Must have at least 2 color values per component */
if (iroot < 2)
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
/* Initialize to iroot color values for each component */
total_colors = 1;
for (i = 0; i < nc; i++) {
Ncolors[i] = iroot;
total_colors *= iroot;
}
/* We may be able to increment the count for one or more components without
* exceeding max_colors, though we know not all can be incremented.
* Sometimes, the first component can be incremented more than once!
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
* In RGB colorspace, try to increment G first, then R, then B.
*/
do {
changed = FALSE;
for (i = 0; i < nc; i++) {
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
/* calculate new total_colors if Ncolors[j] is incremented */
temp = total_colors / Ncolors[j];
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
if (temp > (long) max_colors)
break; /* won't fit, done with this pass */
Ncolors[j]++; /* OK, apply the increment */
total_colors = (int) temp;
changed = TRUE;
}
} while (changed);
return total_colors;
}
LOCAL(int)
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
/* Return j'th output value, where j will range from 0 to maxj */
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
{
/* We always provide values 0 and MAXJSAMPLE for each component;
* any additional values are equally spaced between these limits.
* (Forcing the upper and lower values to the limits ensures that
* dithering can't produce a color outside the selected gamut.)
*/
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
}
LOCAL(int)
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
/* Return largest input value that should map to j'th output value */
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
{
/* Breakpoints are halfway between values returned by output_value */
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
}
/*
* Create the colormap.
*/
LOCAL(void)
create_colormap (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
JSAMPARRAY colormap; /* Created colormap */
int total_colors; /* Number of distinct output colors */
int i,j,k, nci, blksize, blkdist, ptr, val;
/* Select number of colors for each component */
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
/* Report selected color counts */
if (cinfo->out_color_components == 3)
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
total_colors, cquantize->Ncolors[0],
cquantize->Ncolors[1], cquantize->Ncolors[2]);
else
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
/* Allocate and fill in the colormap. */
/* The colors are ordered in the map in standard row-major order, */
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
/* blksize is number of adjacent repeated entries for a component */
/* blkdist is distance between groups of identical entries for a component */
blkdist = total_colors;
for (i = 0; i < cinfo->out_color_components; i++) {
/* fill in colormap entries for i'th color component */
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
blksize = blkdist / nci;
for (j = 0; j < nci; j++) {
/* Compute j'th output value (out of nci) for component */
val = output_value(cinfo, i, j, nci-1);
/* Fill in all colormap entries that have this value of this component */
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
/* fill in blksize entries beginning at ptr */
for (k = 0; k < blksize; k++)
colormap[i][ptr+k] = (JSAMPLE) val;
}
}
blkdist = blksize; /* blksize of this color is blkdist of next */
}
/* Save the colormap in private storage,
* where it will survive color quantization mode changes.
*/
cquantize->sv_colormap = colormap;
cquantize->sv_actual = total_colors;
}
/*
* Create the color index table.
*/
LOCAL(void)
create_colorindex (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
JSAMPROW indexptr;
int i,j,k, nci, blksize, val, pad;
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
* This is not necessary in the other dithering modes. However, we
* flag whether it was done in case user changes dithering mode.
*/
if (cinfo->dither_mode == JDITHER_ORDERED) {
pad = MAXJSAMPLE*2;
cquantize->is_padded = TRUE;
} else {
pad = 0;
cquantize->is_padded = FALSE;
}
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (MAXJSAMPLE+1 + pad),
(JDIMENSION) cinfo->out_color_components);
/* blksize is number of adjacent repeated entries for a component */
blksize = cquantize->sv_actual;
for (i = 0; i < cinfo->out_color_components; i++) {
/* fill in colorindex entries for i'th color component */
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
blksize = blksize / nci;
/* adjust colorindex pointers to provide padding at negative indexes. */
if (pad)
cquantize->colorindex[i] += MAXJSAMPLE;
/* in loop, val = index of current output value, */
/* and k = largest j that maps to current val */
indexptr = cquantize->colorindex[i];
val = 0;
k = largest_input_value(cinfo, i, 0, nci-1);
for (j = 0; j <= MAXJSAMPLE; j++) {
while (j > k) /* advance val if past boundary */
k = largest_input_value(cinfo, i, ++val, nci-1);
/* premultiply so that no multiplication needed in main processing */
indexptr[j] = (JSAMPLE) (val * blksize);
}
/* Pad at both ends if necessary */
if (pad)
for (j = 1; j <= MAXJSAMPLE; j++) {
indexptr[-j] = indexptr[0];
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
}
}
}
/*
* Create an ordered-dither array for a component having ncolors
* distinct output values.
*/
LOCAL(ODITHER_MATRIX_PTR)
make_odither_array (j_decompress_ptr cinfo, int ncolors)
{
ODITHER_MATRIX_PTR odither;
int j,k;
INT32 num,den;
odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(ODITHER_MATRIX));
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
* Hence the dither value for the matrix cell with fill order f
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
* On 16-bit-int machine, be careful to avoid overflow.
*/
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
for (j = 0; j < ODITHER_SIZE; j++) {
for (k = 0; k < ODITHER_SIZE; k++) {
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
* MAXJSAMPLE;
/* Ensure round towards zero despite C's lack of consistency
* about rounding negative values in integer division...
*/
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
}
}
return odither;
}
/*
* Create the ordered-dither tables.
* Components having the same number of representative colors may
* share a dither table.
*/
LOCAL(void)
create_odither_tables (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
ODITHER_MATRIX_PTR odither;
int i, j, nci;
for (i = 0; i < cinfo->out_color_components; i++) {
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
odither = NULL; /* search for matching prior component */
for (j = 0; j < i; j++) {
if (nci == cquantize->Ncolors[j]) {
odither = cquantize->odither[j];
break;
}
}
if (odither == NULL) /* need a new table? */
odither = make_odither_array(cinfo, nci);
cquantize->odither[i] = odither;
}
}
/*
* Map some rows of pixels to the output colormapped representation.
*/
METHODDEF(void)
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* General case, no dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
JSAMPARRAY colorindex = cquantize->colorindex;
register int pixcode, ci;
register JSAMPROW ptrin, ptrout;
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
register int nc = cinfo->out_color_components;
for (row = 0; row < num_rows; row++) {
ptrin = input_buf[row];
ptrout = output_buf[row];
for (col = width; col > 0; col--) {
pixcode = 0;
for (ci = 0; ci < nc; ci++) {
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
}
*ptrout++ = (JSAMPLE) pixcode;
}
}
}
METHODDEF(void)
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* Fast path for out_color_components==3, no dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register int pixcode;
register JSAMPROW ptrin, ptrout;
JSAMPROW colorindex0 = cquantize->colorindex[0];
JSAMPROW colorindex1 = cquantize->colorindex[1];
JSAMPROW colorindex2 = cquantize->colorindex[2];
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
for (row = 0; row < num_rows; row++) {
ptrin = input_buf[row];
ptrout = output_buf[row];
for (col = width; col > 0; col--) {
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
*ptrout++ = (JSAMPLE) pixcode;
}
}
}
METHODDEF(void)
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* General case, with ordered dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register JSAMPROW input_ptr;
register JSAMPROW output_ptr;
JSAMPROW colorindex_ci;
int * dither; /* points to active row of dither matrix */
int row_index, col_index; /* current indexes into dither matrix */
int nc = cinfo->out_color_components;
int ci;
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
for (row = 0; row < num_rows; row++) {
/* Initialize output values to 0 so can process components separately */
FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE));
row_index = cquantize->row_index;
for (ci = 0; ci < nc; ci++) {
input_ptr = input_buf[row] + ci;
output_ptr = output_buf[row];
colorindex_ci = cquantize->colorindex[ci];
dither = cquantize->odither[ci][row_index];
col_index = 0;
for (col = width; col > 0; col--) {
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
* select output value, accumulate into output code for this pixel.
* Range-limiting need not be done explicitly, as we have extended
* the colorindex table to produce the right answers for out-of-range
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
* required amount of padding.
*/
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
input_ptr += nc;
output_ptr++;
col_index = (col_index + 1) & ODITHER_MASK;
}
}
/* Advance row index for next row */
row_index = (row_index + 1) & ODITHER_MASK;
cquantize->row_index = row_index;
}
}
METHODDEF(void)
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* Fast path for out_color_components==3, with ordered dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register int pixcode;
register JSAMPROW input_ptr;
register JSAMPROW output_ptr;
JSAMPROW colorindex0 = cquantize->colorindex[0];
JSAMPROW colorindex1 = cquantize->colorindex[1];
JSAMPROW colorindex2 = cquantize->colorindex[2];
int * dither0; /* points to active row of dither matrix */
int * dither1;
int * dither2;
int row_index, col_index; /* current indexes into dither matrix */
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
for (row = 0; row < num_rows; row++) {
row_index = cquantize->row_index;
input_ptr = input_buf[row];
output_ptr = output_buf[row];
dither0 = cquantize->odither[0][row_index];
dither1 = cquantize->odither[1][row_index];
dither2 = cquantize->odither[2][row_index];
col_index = 0;
for (col = width; col > 0; col--) {
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
dither0[col_index]]);
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
dither1[col_index]]);
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
dither2[col_index]]);
*output_ptr++ = (JSAMPLE) pixcode;
col_index = (col_index + 1) & ODITHER_MASK;
}
row_index = (row_index + 1) & ODITHER_MASK;
cquantize->row_index = row_index;
}
}
METHODDEF(void)
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* General case, with Floyd-Steinberg dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register LOCFSERROR cur; /* current error or pixel value */
LOCFSERROR belowerr; /* error for pixel below cur */
LOCFSERROR bpreverr; /* error for below/prev col */
LOCFSERROR bnexterr; /* error for below/next col */
LOCFSERROR delta;
register FSERRPTR errorptr; /* => fserrors[] at column before current */
register JSAMPROW input_ptr;
register JSAMPROW output_ptr;
JSAMPROW colorindex_ci;
JSAMPROW colormap_ci;
int pixcode;
int nc = cinfo->out_color_components;
int dir; /* 1 for left-to-right, -1 for right-to-left */
int dirnc; /* dir * nc */
int ci;
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
JSAMPLE *range_limit = cinfo->sample_range_limit;
SHIFT_TEMPS
for (row = 0; row < num_rows; row++) {
/* Initialize output values to 0 so can process components separately */
FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE));
for (ci = 0; ci < nc; ci++) {
input_ptr = input_buf[row] + ci;
output_ptr = output_buf[row];
if (cquantize->on_odd_row) {
/* work right to left in this row */
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
output_ptr += width-1;
dir = -1;
dirnc = -nc;
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
} else {
/* work left to right in this row */
dir = 1;
dirnc = nc;
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
}
colorindex_ci = cquantize->colorindex[ci];
colormap_ci = cquantize->sv_colormap[ci];
/* Preset error values: no error propagated to first pixel from left */
cur = 0;
/* and no error propagated to row below yet */
belowerr = bpreverr = 0;
for (col = width; col > 0; col--) {
/* cur holds the error propagated from the previous pixel on the
* current line. Add the error propagated from the previous line
* to form the complete error correction term for this pixel, and
* round the error term (which is expressed * 16) to an integer.
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
* for either sign of the error value.
* Note: errorptr points to *previous* column's array entry.
*/
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
* The maximum error is +- MAXJSAMPLE; this sets the required size
* of the range_limit array.
*/
cur += GETJSAMPLE(*input_ptr);
cur = GETJSAMPLE(range_limit[cur]);
/* Select output value, accumulate into output code for this pixel */
pixcode = GETJSAMPLE(colorindex_ci[cur]);
*output_ptr += (JSAMPLE) pixcode;
/* Compute actual representation error at this pixel */
/* Note: we can do this even though we don't have the final */
/* pixel code, because the colormap is orthogonal. */
cur -= GETJSAMPLE(colormap_ci[pixcode]);
/* Compute error fractions to be propagated to adjacent pixels.
* Add these into the running sums, and simultaneously shift the
* next-line error sums left by 1 column.
*/
bnexterr = cur;
delta = cur * 2;
cur += delta; /* form error * 3 */
errorptr[0] = (FSERROR) (bpreverr + cur);
cur += delta; /* form error * 5 */
bpreverr = belowerr + cur;
belowerr = bnexterr;
cur += delta; /* form error * 7 */
/* At this point cur contains the 7/16 error value to be propagated
* to the next pixel on the current line, and all the errors for the
* next line have been shifted over. We are therefore ready to move on.
*/
input_ptr += dirnc; /* advance input ptr to next column */
output_ptr += dir; /* advance output ptr to next column */
errorptr += dir; /* advance errorptr to current column */
}
/* Post-loop cleanup: we must unload the final error value into the
* final fserrors[] entry. Note we need not unload belowerr because
* it is for the dummy column before or after the actual array.
*/
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
}
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
}
}
/*
* Allocate workspace for Floyd-Steinberg errors.
*/
LOCAL(void)
alloc_fs_workspace (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
size_t arraysize;
int i;
arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR);
for (i = 0; i < cinfo->out_color_components; i++) {
cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large)
((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
}
}
/*
* Initialize for one-pass color quantization.
*/
METHODDEF(void)
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
size_t arraysize;
int i;
/* Install my colormap. */
cinfo->colormap = cquantize->sv_colormap;
cinfo->actual_number_of_colors = cquantize->sv_actual;
/* Initialize for desired dithering mode. */
switch (cinfo->dither_mode) {
case JDITHER_NONE:
if (cinfo->out_color_components == 3)
cquantize->pub.color_quantize = color_quantize3;
else
cquantize->pub.color_quantize = color_quantize;
break;
case JDITHER_ORDERED:
if (cinfo->out_color_components == 3)
cquantize->pub.color_quantize = quantize3_ord_dither;
else
cquantize->pub.color_quantize = quantize_ord_dither;
cquantize->row_index = 0; /* initialize state for ordered dither */
/* If user changed to ordered dither from another mode,
* we must recreate the color index table with padding.
* This will cost extra space, but probably isn't very likely.
*/
if (! cquantize->is_padded)
create_colorindex(cinfo);
/* Create ordered-dither tables if we didn't already. */
if (cquantize->odither[0] == NULL)
create_odither_tables(cinfo);
break;
case JDITHER_FS:
cquantize->pub.color_quantize = quantize_fs_dither;
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
/* Allocate Floyd-Steinberg workspace if didn't already. */
if (cquantize->fserrors[0] == NULL)
alloc_fs_workspace(cinfo);
/* Initialize the propagated errors to zero. */
arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR);
for (i = 0; i < cinfo->out_color_components; i++)
FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize);
break;
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
}
}
/*
* Finish up at the end of the pass.
*/
METHODDEF(void)
finish_pass_1_quant (j_decompress_ptr cinfo)
{
/* no work in 1-pass case */
}
/*
* Switch to a new external colormap between output passes.
* Shouldn't get to this module!
*/
METHODDEF(void)
new_color_map_1_quant (j_decompress_ptr cinfo)
{
ERREXIT(cinfo, JERR_MODE_CHANGE);
}
/*
* Module initialization routine for 1-pass color quantization.
*/
GLOBAL(void)
jinit_1pass_quantizer (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize;
cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer));
cinfo->cquantize = &cquantize->pub;
cquantize->pub.start_pass = start_pass_1_quant;
cquantize->pub.finish_pass = finish_pass_1_quant;
cquantize->pub.new_color_map = new_color_map_1_quant;
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
/* Make sure my internal arrays won't overflow */
if (cinfo->out_color_components > MAX_Q_COMPS)
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
/* Make sure colormap indexes can be represented by JSAMPLEs */
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
/* Create the colormap and color index table. */
create_colormap(cinfo);
create_colorindex(cinfo);
/* Allocate Floyd-Steinberg workspace now if requested.
* We do this now since it is FAR storage and may affect the memory
* manager's space calculations. If the user changes to FS dither
* mode in a later pass, we will allocate the space then, and will
* possibly overrun the max_memory_to_use setting.
*/
if (cinfo->dither_mode == JDITHER_FS)
alloc_fs_workspace(cinfo);
}
#endif /* QUANT_1PASS_SUPPORTED */

1311
dep/libjpeg/src/jquant2.c Normal file

File diff suppressed because it is too large Load Diff

224
dep/libjpeg/src/jutils.c Normal file
View File

@ -0,0 +1,224 @@
/*
* jutils.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modified 2009-2020 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains tables and miscellaneous utility routines needed
* for both compression and decompression.
* Note we prefix all global names with "j" to minimize conflicts with
* a surrounding application.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
* of a DCT block read in natural order (left to right, top to bottom).
*/
#if 0 /* This table is not actually needed in v6a */
const int jpeg_zigzag_order[DCTSIZE2] = {
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63
};
#endif
/*
* jpeg_natural_order[i] is the natural-order position of the i'th element
* of zigzag order.
*
* When reading corrupted data, the Huffman decoders could attempt
* to reference an entry beyond the end of this array (if the decoded
* zero run length reaches past the end of the block). To prevent
* wild stores without adding an inner-loop test, we put some extra
* "63"s after the real entries. This will cause the extra coefficient
* to be stored in location 63 of the block, not somewhere random.
* The worst case would be a run-length of 15, which means we need 16
* fake entries.
*/
const int jpeg_natural_order[DCTSIZE2+16] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
const int jpeg_natural_order7[7*7+16] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 14, 21, 28, 35,
42, 49, 50, 43, 36, 29, 22, 30,
37, 44, 51, 52, 45, 38, 46, 53,
54,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
const int jpeg_natural_order6[6*6+16] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 41, 34, 27,
20, 13, 21, 28, 35, 42, 43, 36,
29, 37, 44, 45,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
const int jpeg_natural_order5[5*5+16] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 12,
19, 26, 33, 34, 27, 20, 28, 35,
36,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
const int jpeg_natural_order4[4*4+16] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 25, 18, 11, 19, 26, 27,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
const int jpeg_natural_order3[3*3+16] = {
0, 1, 8, 16, 9, 2, 10, 17,
18,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
const int jpeg_natural_order2[2*2+16] = {
0, 1, 8, 9,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
/*
* Arithmetic utilities
*/
GLOBAL(long)
jdiv_round_up (long a, long b)
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
/* Assumes a >= 0, b > 0 */
{
return (a + b - 1L) / b;
}
GLOBAL(long)
jround_up (long a, long b)
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
/* Assumes a >= 0, b > 0 */
{
a += b - 1L;
return a - (a % b);
}
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
* and coefficient-block arrays. This won't work on 80x86 because the arrays
* are FAR and we're assuming a small-pointer memory model. However, some
* DOS compilers provide far-pointer versions of memcpy() and memset() even
* in the small-model libraries. These will be used if USE_FMEM is defined.
* Otherwise, the routines below do it the hard way. (The performance cost
* is not all that great, because these routines aren't very heavily used.)
*/
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macro */
#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
#else /* 80x86 case, define if we can */
#ifdef USE_FMEM
#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
#else
/* This function is for use by the FMEMZERO macro defined in jpegint.h.
* Do not call this function directly, use the FMEMZERO macro instead.
*/
GLOBAL(void)
jzero_far (void FAR * target, size_t bytestozero)
/* Zero out a chunk of FAR memory. */
/* This might be sample-array data, block-array data, or alloc_large data. */
{
register char FAR * ptr = (char FAR *) target;
register size_t count;
for (count = bytestozero; count > 0; count--) {
*ptr++ = 0;
}
}
#endif
#endif
GLOBAL(void)
jcopy_sample_rows (JSAMPARRAY input_array,
JSAMPARRAY output_array,
int num_rows, JDIMENSION num_cols)
/* Copy some rows of samples from one place to another.
* num_rows rows are copied from *input_array++ to *output_array++;
* these areas may overlap for duplication.
* The source and destination arrays must be at least as wide as num_cols.
*/
{
register JSAMPROW inptr, outptr;
#ifdef FMEMCOPY
register size_t count = (size_t) num_cols * SIZEOF(JSAMPLE);
#else
register JDIMENSION count;
#endif
register int row;
for (row = num_rows; row > 0; row--) {
inptr = *input_array++;
outptr = *output_array++;
#ifdef FMEMCOPY
FMEMCOPY(outptr, inptr, count);
#else
for (count = num_cols; count > 0; count--)
*outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
#endif
}
}
GLOBAL(void)
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
JDIMENSION num_blocks)
/* Copy a row of coefficient blocks from one place to another. */
{
#ifdef FMEMCOPY
FMEMCOPY(output_row, input_row, (size_t) num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
#else
register JCOEFPTR inptr, outptr;
register long count;
inptr = (JCOEFPTR) input_row;
outptr = (JCOEFPTR) output_row;
for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
*outptr++ = *inptr++;
}
#endif
}

View File

@ -0,0 +1,14 @@
/*
* jversion.h
*
* Copyright (C) 1991-2024, Thomas G. Lane, Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains software version identification.
*/
#define JVERSION "9f 14-Jan-2024"
#define JCOPYRIGHT "Copyright (C) 2024, Thomas G. Lane, Guido Vollbeding"

2433
dep/libjpeg/src/transupp.c Normal file

File diff suppressed because it is too large Load Diff

230
dep/libjpeg/src/transupp.h Normal file
View File

@ -0,0 +1,230 @@
/*
* transupp.h
*
* Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains declarations for image transformation routines and
* other utility code used by the jpegtran sample application. These are
* NOT part of the core JPEG library. But we keep these routines separate
* from jpegtran.c to ease the task of maintaining jpegtran-like programs
* that have other user interfaces.
*
* NOTE: all the routines declared here have very specific requirements
* about when they are to be executed during the reading and writing of the
* source and destination files. See the comments in transupp.c, or see
* jpegtran.c for an example of correct usage.
*/
/* If you happen not to want the image transform support, disable it here */
#ifndef TRANSFORMS_SUPPORTED
#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
#endif
/*
* Although rotating and flipping data expressed as DCT coefficients is not
* hard, there is an asymmetry in the JPEG format specification for images
* whose dimensions aren't multiples of the iMCU size. The right and bottom
* image edges are padded out to the next iMCU boundary with junk data; but
* no padding is possible at the top and left edges. If we were to flip
* the whole image including the pad data, then pad garbage would become
* visible at the top and/or left, and real pixels would disappear into the
* pad margins --- perhaps permanently, since encoders & decoders may not
* bother to preserve DCT blocks that appear to be completely outside the
* nominal image area. So, we have to exclude any partial iMCUs from the
* basic transformation.
*
* Transpose is the only transformation that can handle partial iMCUs at the
* right and bottom edges completely cleanly. flip_h can flip partial iMCUs
* at the bottom, but leaves any partial iMCUs at the right edge untouched.
* Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
* The other transforms are defined as combinations of these basic transforms
* and process edge blocks in a way that preserves the equivalence.
*
* The "trim" option causes untransformable partial iMCUs to be dropped;
* this is not strictly lossless, but it usually gives the best-looking
* result for odd-size images. Note that when this option is active,
* the expected mathematical equivalences between the transforms may not hold.
* (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
* followed by -rot 180 -trim trims both edges.)
*
* We also offer a lossless-crop option, which discards data outside a given
* image region but losslessly preserves what is inside. Like the rotate and
* flip transforms, lossless crop is restricted by the current JPEG format: the
* upper left corner of the selected region must fall on an iMCU boundary. If
* this does not hold for the given crop parameters, we silently move the upper
* left corner up and/or left to make it so, simultaneously increasing the
* region dimensions to keep the lower right crop corner unchanged. (Thus, the
* output image covers at least the requested region, but may cover more.)
* The adjustment of the region dimensions may be optionally disabled.
*
* A complementary lossless-wipe option is provided to discard (gray out) data
* inside a given image region while losslessly preserving what is outside.
* Another option is lossless-drop, which replaces data at a given image
* position by another image. Both source images must have the same
* subsampling values. It is best if they also have the same quantization,
* otherwise quantization adaption occurs. The trim option can be used with
* the drop option to requantize the drop file to the source file.
*
* We also provide a lossless-resize option, which is kind of a lossless-crop
* operation in the DCT coefficient block domain - it discards higher-order
* coefficients and losslessly preserves lower-order coefficients of a
* sub-block.
*
* Rotate/flip transform, resize, and crop can be requested together in a
* single invocation. The crop is applied last --- that is, the crop region
* is specified in terms of the destination image after transform/resize.
*
* We also offer a "force to grayscale" option, which simply discards the
* chrominance channels of a YCbCr image. This is lossless in the sense that
* the luminance channel is preserved exactly. It's not the same kind of
* thing as the rotate/flip transformations, but it's convenient to handle it
* as part of this package, mainly because the transformation routines have to
* be aware of the option to know how many components to work on.
*/
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jtransform_parse_crop_spec jTrParCrop
#define jtransform_request_workspace jTrRequest
#define jtransform_adjust_parameters jTrAdjust
#define jtransform_execute_transform jTrExec
#define jtransform_perfect_transform jTrPerfect
#define jcopy_markers_setup jCMrkSetup
#define jcopy_markers_execute jCMrkExec
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/*
* Codes for supported types of image transformations.
*/
typedef enum {
JXFORM_NONE, /* no transformation */
JXFORM_FLIP_H, /* horizontal flip */
JXFORM_FLIP_V, /* vertical flip */
JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
JXFORM_ROT_90, /* 90-degree clockwise rotation */
JXFORM_ROT_180, /* 180-degree rotation */
JXFORM_ROT_270, /* 270-degree clockwise (or 90 ccw) */
JXFORM_WIPE, /* wipe */
JXFORM_DROP /* drop */
} JXFORM_CODE;
/*
* Codes for crop parameters, which can individually be unspecified,
* positive or negative for xoffset or yoffset,
* positive or force or reflect for width or height.
*/
typedef enum {
JCROP_UNSET,
JCROP_POS,
JCROP_NEG,
JCROP_FORCE,
JCROP_REFLECT
} JCROP_CODE;
/*
* Transform parameters struct.
* NB: application must not change any elements of this struct after
* calling jtransform_request_workspace.
*/
typedef struct {
/* Options: set by caller */
JXFORM_CODE transform; /* image transform operator */
boolean perfect; /* if TRUE, fail if partial MCUs are requested */
boolean trim; /* if TRUE, trim partial MCUs as needed */
boolean force_grayscale; /* if TRUE, convert color image to grayscale */
boolean crop; /* if TRUE, crop or wipe source image, or drop */
/* Crop parameters: application need not set these unless crop is TRUE.
* These can be filled in by jtransform_parse_crop_spec().
*/
JDIMENSION crop_width; /* Width of selected region */
JCROP_CODE crop_width_set; /* (force disables adjustment) */
JDIMENSION crop_height; /* Height of selected region */
JCROP_CODE crop_height_set; /* (force disables adjustment) */
JDIMENSION crop_xoffset; /* X offset of selected region */
JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */
JDIMENSION crop_yoffset; /* Y offset of selected region */
JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */
/* Drop parameters: set by caller for drop request */
j_decompress_ptr drop_ptr;
jvirt_barray_ptr * drop_coef_arrays;
/* Internal workspace: caller should not touch these */
int num_components; /* # of components in workspace */
jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */
JDIMENSION output_width; /* cropped destination dimensions */
JDIMENSION output_height;
JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */
JDIMENSION y_crop_offset;
JDIMENSION drop_width; /* drop/wipe dimensions measured in iMCUs */
JDIMENSION drop_height;
int iMCU_sample_width; /* destination iMCU size */
int iMCU_sample_height;
} jpeg_transform_info;
#if TRANSFORMS_SUPPORTED
/* Parse a crop specification (written in X11 geometry style) */
EXTERN(boolean) jtransform_parse_crop_spec
JPP((jpeg_transform_info *info, const char *spec));
/* Request any required workspace */
EXTERN(boolean) jtransform_request_workspace
JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info));
/* Adjust output image parameters */
EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
jvirt_barray_ptr *src_coef_arrays,
jpeg_transform_info *info));
/* Execute the actual transformation, if any */
EXTERN(void) jtransform_execute_transform
JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
jvirt_barray_ptr *src_coef_arrays,
jpeg_transform_info *info));
/* Determine whether lossless transformation is perfectly
* possible for a specified image and transformation.
*/
EXTERN(boolean) jtransform_perfect_transform
JPP((JDIMENSION image_width, JDIMENSION image_height,
int MCU_width, int MCU_height,
JXFORM_CODE transform));
/* jtransform_execute_transform used to be called
* jtransform_execute_transformation, but some compilers complain about
* routine names that long. This macro is here to avoid breaking any
* old source code that uses the original name...
*/
#define jtransform_execute_transformation jtransform_execute_transform
#endif /* TRANSFORMS_SUPPORTED */
/*
* Support for copying optional markers from source to destination file.
*/
typedef enum {
JCOPYOPT_NONE, /* copy no optional markers */
JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
JCOPYOPT_ALL /* copy all optional markers */
} JCOPY_OPTION;
#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
/* Setup decompression object to save desired markers in memory */
EXTERN(void) jcopy_markers_setup
JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option));
/* Copy markers saved in the given source object to the destination object */
EXTERN(void) jcopy_markers_execute
JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
JCOPY_OPTION option));

View File

@ -77,6 +77,8 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "rapidyaml", "dep\rapidyaml\
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libpng", "dep\libpng\libpng.vcxproj", "{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libjpeg", "dep\libjpeg\libjpeg.vcxproj", "{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|ARM64 = Debug|ARM64
@ -1099,6 +1101,38 @@ Global
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|ARM64.Build.0 = ReleaseLTCG-Clang|ARM64
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|x64.ActiveCfg = ReleaseLTCG-Clang|x64
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5}.ReleaseLTCG-Clang|x64.Build.0 = ReleaseLTCG-Clang|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|ARM64.ActiveCfg = Debug|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|ARM64.Build.0 = Debug|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|x64.ActiveCfg = Debug|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug|x64.Build.0 = Debug|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|ARM64.ActiveCfg = Debug-Clang|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|ARM64.Build.0 = Debug-Clang|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|x64.ActiveCfg = Debug-Clang|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Debug-Clang|x64.Build.0 = Debug-Clang|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|ARM64.ActiveCfg = DebugFast|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|ARM64.Build.0 = DebugFast|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|x64.ActiveCfg = DebugFast|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast|x64.Build.0 = DebugFast|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|ARM64.ActiveCfg = DebugFast-Clang|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|ARM64.Build.0 = DebugFast-Clang|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|x64.ActiveCfg = DebugFast-Clang|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.DebugFast-Clang|x64.Build.0 = DebugFast-Clang|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|ARM64.ActiveCfg = Release|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|ARM64.Build.0 = Release|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|x64.ActiveCfg = Release|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release|x64.Build.0 = Release|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|ARM64.ActiveCfg = Release-Clang|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|ARM64.Build.0 = Release-Clang|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|x64.ActiveCfg = Release-Clang|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.Release-Clang|x64.Build.0 = Release-Clang|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|ARM64.ActiveCfg = ReleaseLTCG|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|ARM64.Build.0 = ReleaseLTCG|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|x64.ActiveCfg = ReleaseLTCG|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG|x64.Build.0 = ReleaseLTCG|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|ARM64.ActiveCfg = ReleaseLTCG-Clang|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|ARM64.Build.0 = ReleaseLTCG-Clang|ARM64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|x64.ActiveCfg = ReleaseLTCG-Clang|x64
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2}.ReleaseLTCG-Clang|x64.Build.0 = ReleaseLTCG-Clang|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
@ -1129,6 +1163,7 @@ Global
{27B8D4BB-4F01-4432-BC14-9BF6CA458EEE} = {BA490C0E-497D-4634-A21E-E65012006385}
{1AD23A8A-4C20-434C-AE6B-0E07759EEB1E} = {BA490C0E-497D-4634-A21E-E65012006385}
{9FD2ABCD-2DCD-4302-BE5C-DF0BA8431FA5} = {BA490C0E-497D-4634-A21E-E65012006385}
{EC3B6685-0B6E-4767-84AB-39B75EEAD2E2} = {BA490C0E-497D-4634-A21E-E65012006385}
EndGlobalSection
GlobalSection(ExtensibilityGlobals) = postSolution
SolutionGuid = {26E40B32-7C1D-48D0-95F4-1A500E054028}

View File

@ -33,6 +33,7 @@ QT=6.6.0
MOLTENVK=1.2.6
ZSTD=1.5.5
PNG=1.6.43
JPEG=9f
WEBP=1.3.2
mkdir -p deps-build
@ -48,6 +49,7 @@ cat > SHASUMS <<EOF
b6a3d179aa9c41275ed0e35e502e5e3fd347dbe5117a0435a26868b231cd6246 v$MOLTENVK.tar.gz
9c4396cc829cfae319a6e2615202e82aad41372073482fce286fac78646d3ee4 zstd-$ZSTD.tar.gz
6a5ca0652392a2d7c9db2ae5b40210843c0bbc081cbd410825ab00cc59f14a6c libpng-$PNG.tar.xz
04705c110cb2469caa79fb71fba3d7bf834914706e9641a4589485c1f832565b jpegsrc.v$JPEG.tar.gz
2a499607df669e40258e53d0ade8035ba4ec0175244869d1025d460562aa09b4 libwebp-$WEBP.tar.gz
039d53312acb5897a9054bd38c9ccbdab72500b71fdccdb3f4f0844b0dd39e0e qtbase-everywhere-src-$QT.tar.xz
e1542cb50176e237809895c6549598c08587c63703d100be54ac2d806834e384 qtimageformats-everywhere-src-$QT.tar.xz
@ -62,6 +64,7 @@ curl -L \
-O "https://github.com/facebook/zstd/releases/download/v$ZSTD/zstd-$ZSTD.tar.gz" \
-O "https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-$WEBP.tar.gz" \
-O "https://downloads.sourceforge.net/project/libpng/libpng16/$PNG/libpng-$PNG.tar.xz" \
-O "https://ijg.org/files/jpegsrc.v$JPEG.tar.gz" \
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtbase-everywhere-src-$QT.tar.xz" \
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qtsvg-everywhere-src-$QT.tar.xz" \
-O "https://download.qt.io/official_releases/qt/${QT%.*}/$QT/submodules/qttools-everywhere-src-$QT.tar.xz" \
@ -203,6 +206,24 @@ merge_binaries $(realpath build) $(realpath build-arm64)
make -C build install
cd ..
echo "Installing libjpeg..."
rm -fr "jpeg-$JPEG"
tar xf "jpegsrc.v$JPEG.tar.gz"
cd "jpeg-$JPEG"
mkdir build
cd build
../configure --prefix="$INSTALLDIR" --disable-static --enable-shared --host="x86_64-apple-darwin" CFLAGS="-arch x86_64"
make "-j$NPROCS"
cd ..
mkdir build-arm64
cd build-arm64
../configure --prefix="$INSTALLDIR" --disable-static --enable-shared --host="aarch64-apple-darwin" CFLAGS="-arch arm64"
make "-j$NPROCS"
cd ..
merge_binaries $(realpath build) $(realpath build-arm64)
make -C build install
cd ..
echo "Installing WebP..."
tar xf "libwebp-$WEBP.tar.gz"
cd "libwebp-$WEBP"