Merge pull request #1227 from ggrtk/auto-aspect-ratio

GPU: Add auto aspect ratio and various fixes
This commit is contained in:
Connor McLaughlin 2020-12-17 11:35:48 +10:00 committed by GitHub
commit bd8613b120
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 147 additions and 78 deletions

View File

@ -7,6 +7,7 @@
#include "host_display.h" #include "host_display.h"
#include "host_interface.h" #include "host_interface.h"
#include "interrupt_controller.h" #include "interrupt_controller.h"
#include "settings.h"
#include "stb_image_write.h" #include "stb_image_write.h"
#include "system.h" #include "system.h"
#include "timers.h" #include "timers.h"
@ -161,13 +162,13 @@ bool GPU::DoState(StateWrapper& sw, bool update_display)
sw.Do(&m_crtc_state.display_vram_width); sw.Do(&m_crtc_state.display_vram_width);
sw.Do(&m_crtc_state.display_vram_height); sw.Do(&m_crtc_state.display_vram_height);
sw.Do(&m_crtc_state.horizontal_total); sw.Do(&m_crtc_state.horizontal_total);
sw.Do(&m_crtc_state.horizontal_active_start); sw.Do(&m_crtc_state.horizontal_visible_start);
sw.Do(&m_crtc_state.horizontal_active_end); sw.Do(&m_crtc_state.horizontal_visible_end);
sw.Do(&m_crtc_state.horizontal_display_start); sw.Do(&m_crtc_state.horizontal_display_start);
sw.Do(&m_crtc_state.horizontal_display_end); sw.Do(&m_crtc_state.horizontal_display_end);
sw.Do(&m_crtc_state.vertical_total); sw.Do(&m_crtc_state.vertical_total);
sw.Do(&m_crtc_state.vertical_active_start); sw.Do(&m_crtc_state.vertical_visible_start);
sw.Do(&m_crtc_state.vertical_active_end); sw.Do(&m_crtc_state.vertical_visible_end);
sw.Do(&m_crtc_state.vertical_display_start); sw.Do(&m_crtc_state.vertical_display_start);
sw.Do(&m_crtc_state.vertical_display_end); sw.Do(&m_crtc_state.vertical_display_end);
sw.Do(&m_crtc_state.fractional_ticks); sw.Do(&m_crtc_state.fractional_ticks);
@ -448,10 +449,42 @@ float GPU::ComputeVerticalFrequency() const
float GPU::GetDisplayAspectRatio() const float GPU::GetDisplayAspectRatio() const
{ {
if (g_settings.display_force_4_3_for_24bit && m_GPUSTAT.display_area_color_depth_24) if (g_settings.display_force_4_3_for_24bit && m_GPUSTAT.display_area_color_depth_24)
{
return 4.0f / 3.0f; return 4.0f / 3.0f;
}
else if (g_settings.display_aspect_ratio == DisplayAspectRatio::Auto)
{
const CRTCState& cs = m_crtc_state;
float relative_width = static_cast<float>(cs.horizontal_visible_end - cs.horizontal_visible_start);
float relative_height = static_cast<float>(cs.vertical_visible_end - cs.vertical_visible_start);
if (relative_width <= 0 || relative_height <= 0)
return 4.0f / 3.0f;
if (m_GPUSTAT.pal_mode)
{
relative_width /= static_cast<float>(PAL_HORIZONTAL_ACTIVE_END - PAL_HORIZONTAL_ACTIVE_START);
relative_height /= static_cast<float>(PAL_VERTICAL_ACTIVE_END - PAL_VERTICAL_ACTIVE_START);
}
else else
{
relative_width /= static_cast<float>(NTSC_HORIZONTAL_ACTIVE_END - NTSC_HORIZONTAL_ACTIVE_START);
relative_height /= static_cast<float>(NTSC_VERTICAL_ACTIVE_END - NTSC_VERTICAL_ACTIVE_START);
}
return (relative_width / relative_height) * (4.0f / 3.0f);
}
else if (g_settings.display_aspect_ratio == DisplayAspectRatio::PAR1_1)
{
if (m_crtc_state.display_width == 0 || m_crtc_state.display_height == 0)
return 4.0f / 3.0f;
return static_cast<float>(m_crtc_state.display_width) / static_cast<float>(m_crtc_state.display_height);
}
else
{
return Settings::GetDisplayAspectRatioValue(g_settings.display_aspect_ratio); return Settings::GetDisplayAspectRatioValue(g_settings.display_aspect_ratio);
} }
}
void GPU::UpdateCRTCConfig() void GPU::UpdateCRTCConfig()
{ {
@ -537,54 +570,74 @@ void GPU::UpdateCRTCDisplayParameters()
switch (crop_mode) switch (crop_mode)
{ {
case DisplayCropMode::None: case DisplayCropMode::None:
cs.horizontal_active_start = static_cast<u16>(std::max<int>(0, 487 + g_settings.display_active_start_offset)); cs.horizontal_visible_start = PAL_HORIZONTAL_ACTIVE_START;
cs.horizontal_active_end = static_cast<u16>(std::max<int>(0, 3282 + g_settings.display_active_end_offset)); cs.horizontal_visible_end = PAL_HORIZONTAL_ACTIVE_END;
cs.vertical_active_start = static_cast<u16>(std::max<int>(0, 20 + g_settings.display_line_start_offset)); cs.vertical_visible_start = PAL_VERTICAL_ACTIVE_START;
cs.vertical_active_end = static_cast<u16>(std::max<int>(0, 308 + g_settings.display_line_end_offset)); cs.vertical_visible_end = PAL_VERTICAL_ACTIVE_END;
break; break;
case DisplayCropMode::Overscan: case DisplayCropMode::Overscan:
cs.horizontal_active_start = static_cast<u16>(std::max<int>(0, 628 + g_settings.display_active_start_offset)); cs.horizontal_visible_start = static_cast<u16>(std::max<int>(0, 628 + g_settings.display_active_start_offset));
cs.horizontal_active_end = static_cast<u16>(std::max<int>(0, 3188 + g_settings.display_active_end_offset)); cs.horizontal_visible_end =
cs.vertical_active_start = static_cast<u16>(std::max<int>(0, 30 + g_settings.display_line_start_offset)); static_cast<u16>(std::max<int>(cs.horizontal_visible_start, 3188 + g_settings.display_active_end_offset));
cs.vertical_active_end = static_cast<u16>(std::max<int>(0, 298 + g_settings.display_line_end_offset)); cs.vertical_visible_start = static_cast<u16>(std::max<int>(0, 30 + g_settings.display_line_start_offset));
cs.vertical_visible_end =
static_cast<u16>(std::max<int>(cs.vertical_visible_start, 298 + g_settings.display_line_end_offset));
break; break;
case DisplayCropMode::Borders: case DisplayCropMode::Borders:
default: default:
cs.horizontal_active_start = horizontal_display_start; cs.horizontal_visible_start = horizontal_display_start;
cs.horizontal_active_end = horizontal_display_end; cs.horizontal_visible_end = horizontal_display_end;
cs.vertical_active_start = vertical_display_start; cs.vertical_visible_start = vertical_display_start;
cs.vertical_active_end = vertical_display_end; cs.vertical_visible_end = vertical_display_end;
break; break;
} }
cs.horizontal_visible_start =
std::clamp<u16>(cs.horizontal_visible_start, PAL_HORIZONTAL_ACTIVE_START, PAL_HORIZONTAL_ACTIVE_END);
cs.horizontal_visible_end =
std::clamp<u16>(cs.horizontal_visible_end, cs.horizontal_visible_start, PAL_HORIZONTAL_ACTIVE_END);
cs.vertical_visible_start =
std::clamp<u16>(cs.vertical_visible_start, PAL_VERTICAL_ACTIVE_START, PAL_VERTICAL_ACTIVE_END);
cs.vertical_visible_end =
std::clamp<u16>(cs.vertical_visible_end, cs.vertical_visible_start, PAL_VERTICAL_ACTIVE_END);
} }
else else
{ {
switch (crop_mode) switch (crop_mode)
{ {
case DisplayCropMode::None: case DisplayCropMode::None:
cs.horizontal_active_start = static_cast<u16>(std::max<int>(0, 488 + g_settings.display_active_start_offset)); cs.horizontal_visible_start = NTSC_HORIZONTAL_ACTIVE_START;
cs.horizontal_active_end = static_cast<u16>(std::max<int>(0, 3288 + g_settings.display_active_end_offset)); cs.horizontal_visible_end = NTSC_HORIZONTAL_ACTIVE_END;
cs.vertical_active_start = static_cast<u16>(std::max<int>(0, 16 + g_settings.display_line_start_offset)); cs.vertical_visible_start = NTSC_VERTICAL_ACTIVE_START;
cs.vertical_active_end = static_cast<u16>(std::max<int>(0, 256 + g_settings.display_line_end_offset)); cs.vertical_visible_end = NTSC_VERTICAL_ACTIVE_END;
break; break;
case DisplayCropMode::Overscan: case DisplayCropMode::Overscan:
cs.horizontal_active_start = static_cast<u16>(std::max<int>(0, 608 + g_settings.display_active_start_offset)); cs.horizontal_visible_start = static_cast<u16>(std::max<int>(0, 608 + g_settings.display_active_start_offset));
cs.horizontal_active_end = static_cast<u16>(std::max<int>(0, 3168 + g_settings.display_active_end_offset)); cs.horizontal_visible_end =
cs.vertical_active_start = static_cast<u16>(std::max<int>(0, 24 + g_settings.display_line_start_offset)); static_cast<u16>(std::max<int>(cs.horizontal_visible_start, 3168 + g_settings.display_active_end_offset));
cs.vertical_active_end = static_cast<u16>(std::max<int>(0, 248 + g_settings.display_line_end_offset)); cs.vertical_visible_start = static_cast<u16>(std::max<int>(0, 24 + g_settings.display_line_start_offset));
cs.vertical_visible_end =
static_cast<u16>(std::max<int>(cs.vertical_visible_start, 248 + g_settings.display_line_end_offset));
break; break;
case DisplayCropMode::Borders: case DisplayCropMode::Borders:
default: default:
cs.horizontal_active_start = horizontal_display_start; cs.horizontal_visible_start = horizontal_display_start;
cs.horizontal_active_end = horizontal_display_end; cs.horizontal_visible_end = horizontal_display_end;
cs.vertical_active_start = vertical_display_start; cs.vertical_visible_start = vertical_display_start;
cs.vertical_active_end = vertical_display_end; cs.vertical_visible_end = vertical_display_end;
break; break;
} }
cs.horizontal_visible_start =
std::clamp<u16>(cs.horizontal_visible_start, NTSC_HORIZONTAL_ACTIVE_START, NTSC_HORIZONTAL_ACTIVE_END);
cs.horizontal_visible_end =
std::clamp<u16>(cs.horizontal_visible_end, cs.horizontal_visible_start, NTSC_HORIZONTAL_ACTIVE_END);
cs.vertical_visible_start =
std::clamp<u16>(cs.vertical_visible_start, NTSC_VERTICAL_ACTIVE_START, NTSC_VERTICAL_ACTIVE_END);
cs.vertical_visible_end =
std::clamp<u16>(cs.vertical_visible_end, cs.vertical_visible_start, NTSC_VERTICAL_ACTIVE_END);
} }
// If force-progressive is enabled, we only double the height in 480i mode. This way non-interleaved 480i framebuffers // If force-progressive is enabled, we only double the height in 480i mode. This way non-interleaved 480i framebuffers
@ -593,8 +646,8 @@ void GPU::UpdateCRTCDisplayParameters()
const u8 height_shift = m_force_progressive_scan ? y_shift : BoolToUInt8(m_GPUSTAT.vertical_interlace); const u8 height_shift = m_force_progressive_scan ? y_shift : BoolToUInt8(m_GPUSTAT.vertical_interlace);
// Determine screen size. // Determine screen size.
cs.display_width = (cs.horizontal_active_end - cs.horizontal_active_start) / cs.dot_clock_divider; cs.display_width = (cs.horizontal_visible_end - cs.horizontal_visible_start) / cs.dot_clock_divider;
cs.display_height = (cs.vertical_active_end - cs.vertical_active_start) << height_shift; cs.display_height = (cs.vertical_visible_end - cs.vertical_visible_start) << height_shift;
// Determine number of pixels outputted from VRAM (in general, round to 4-pixel multiple). // Determine number of pixels outputted from VRAM (in general, round to 4-pixel multiple).
// TODO: Verify behavior if values are outside of the active video portion of scanline. // TODO: Verify behavior if values are outside of the active video portion of scanline.
@ -610,17 +663,17 @@ void GPU::UpdateCRTCDisplayParameters()
// Determine if we need to adjust the VRAM rectangle (because the display is starting outside the visible area) or add // Determine if we need to adjust the VRAM rectangle (because the display is starting outside the visible area) or add
// padding. // padding.
u16 horizontal_skip_pixels; u16 horizontal_skip_pixels;
if (horizontal_display_start >= cs.horizontal_active_start) if (horizontal_display_start >= cs.horizontal_visible_start)
{ {
cs.display_origin_left = (horizontal_display_start - cs.horizontal_active_start) / cs.dot_clock_divider; cs.display_origin_left = (horizontal_display_start - cs.horizontal_visible_start) / cs.dot_clock_divider;
cs.display_vram_left = std::min<u16>(m_crtc_state.regs.X, VRAM_WIDTH - 1); cs.display_vram_left = cs.regs.X;
horizontal_skip_pixels = 0; horizontal_skip_pixels = 0;
} }
else else
{ {
horizontal_skip_pixels = (cs.horizontal_active_start - horizontal_display_start) / cs.dot_clock_divider; horizontal_skip_pixels = (cs.horizontal_visible_start - horizontal_display_start) / cs.dot_clock_divider;
cs.display_origin_left = 0; cs.display_origin_left = 0;
cs.display_vram_left = std::min<u16>(m_crtc_state.regs.X + horizontal_skip_pixels, VRAM_WIDTH - 1); cs.display_vram_left = (cs.regs.X + horizontal_skip_pixels) % VRAM_WIDTH;
} }
// apply the crop from the start (usually overscan) // apply the crop from the start (usually overscan)
@ -629,28 +682,29 @@ void GPU::UpdateCRTCDisplayParameters()
// Apply crop from the end by shrinking VRAM rectangle width if display would end outside the visible area. // Apply crop from the end by shrinking VRAM rectangle width if display would end outside the visible area.
cs.display_vram_width = std::min<u16>(cs.display_vram_width, cs.display_width - cs.display_origin_left); cs.display_vram_width = std::min<u16>(cs.display_vram_width, cs.display_width - cs.display_origin_left);
if (vertical_display_start >= cs.vertical_active_start) if (vertical_display_start >= cs.vertical_visible_start)
{ {
cs.display_origin_top = (vertical_display_start - cs.vertical_active_start) << y_shift; cs.display_origin_top = (vertical_display_start - cs.vertical_visible_start) << y_shift;
cs.display_vram_top = m_crtc_state.regs.Y; cs.display_vram_top = cs.regs.Y;
} }
else else
{ {
cs.display_origin_top = 0; cs.display_origin_top = 0;
cs.display_vram_top = m_crtc_state.regs.Y + ((cs.vertical_active_start - vertical_display_start) << y_shift); cs.display_vram_top = (cs.regs.Y + ((cs.vertical_visible_start - vertical_display_start) << y_shift)) % VRAM_HEIGHT;
} }
if (vertical_display_end <= cs.vertical_active_end) if (vertical_display_end <= cs.vertical_visible_end)
{ {
cs.display_vram_height = (vertical_display_end - std::min(vertical_display_end, std::max(vertical_display_start, cs.display_vram_height =
cs.vertical_active_start))) (vertical_display_end -
std::min(vertical_display_end, std::max(vertical_display_start, cs.vertical_visible_start)))
<< height_shift; << height_shift;
} }
else else
{ {
cs.display_vram_height = cs.display_vram_height =
(cs.vertical_active_end - (cs.vertical_visible_end -
std::min(cs.vertical_active_end, std::max(vertical_display_start, cs.vertical_active_start))) std::min(cs.vertical_visible_end, std::max(vertical_display_start, cs.vertical_visible_start)))
<< height_shift; << height_shift;
} }
} }
@ -887,8 +941,8 @@ bool GPU::ConvertScreenCoordinatesToBeamTicksAndLines(s32 window_x, s32 window_y
} }
*out_line = *out_line =
(static_cast<u32>(display_y) >> BoolToUInt8(m_GPUSTAT.vertical_interlace)) + m_crtc_state.vertical_active_start; (static_cast<u32>(display_y) >> BoolToUInt8(m_GPUSTAT.vertical_interlace)) + m_crtc_state.vertical_visible_start;
*out_tick = (static_cast<u32>(display_x) * m_crtc_state.dot_clock_divider) + m_crtc_state.horizontal_active_start; *out_tick = (static_cast<u32>(display_x) * m_crtc_state.dot_clock_divider) + m_crtc_state.horizontal_visible_start;
return true; return true;
} }
@ -1532,9 +1586,9 @@ void GPU::DrawDebugStateWindow()
cs.horizontal_display_start / cs.dot_clock_divider, cs.horizontal_display_end / cs.dot_clock_divider, cs.horizontal_display_start / cs.dot_clock_divider, cs.horizontal_display_end / cs.dot_clock_divider,
cs.vertical_display_start, cs.vertical_display_end); cs.vertical_display_start, cs.vertical_display_end);
ImGui::Text("Cropping: %s", Settings::GetDisplayCropModeName(g_settings.display_crop_mode)); ImGui::Text("Cropping: %s", Settings::GetDisplayCropModeName(g_settings.display_crop_mode));
ImGui::Text("Visible Display Range: %u-%u (%u-%u), %u-%u", cs.horizontal_active_start, cs.horizontal_active_end, ImGui::Text("Visible Display Range: %u-%u (%u-%u), %u-%u", cs.horizontal_visible_start, cs.horizontal_visible_end,
cs.horizontal_active_start / cs.dot_clock_divider, cs.horizontal_active_end / cs.dot_clock_divider, cs.horizontal_visible_start / cs.dot_clock_divider, cs.horizontal_visible_end / cs.dot_clock_divider,
cs.vertical_active_start, cs.vertical_active_end); cs.vertical_visible_start, cs.vertical_visible_end);
ImGui::Text("Display Resolution: %ux%u", cs.display_width, cs.display_height); ImGui::Text("Display Resolution: %ux%u", cs.display_width, cs.display_height);
ImGui::Text("Display Origin: %u, %u", cs.display_origin_left, cs.display_origin_top); ImGui::Text("Display Origin: %u, %u", cs.display_origin_left, cs.display_origin_top);
ImGui::Text("Displayed/Visible VRAM Portion: %ux%u @ (%u, %u)", cs.display_vram_width, cs.display_vram_height, ImGui::Text("Displayed/Visible VRAM Portion: %ux%u @ (%u, %u)", cs.display_vram_width, cs.display_vram_height,

View File

@ -56,6 +56,18 @@ public:
PAL_TOTAL_LINES = 314, PAL_TOTAL_LINES = 314,
}; };
enum : u16
{
NTSC_HORIZONTAL_ACTIVE_START = 488,
NTSC_HORIZONTAL_ACTIVE_END = 3288,
NTSC_VERTICAL_ACTIVE_START = 16,
NTSC_VERTICAL_ACTIVE_END = 256,
PAL_HORIZONTAL_ACTIVE_START = 487,
PAL_HORIZONTAL_ACTIVE_END = 3282,
PAL_VERTICAL_ACTIVE_START = 20,
PAL_VERTICAL_ACTIVE_END = 308,
};
// Base class constructor. // Base class constructor.
GPU(); GPU();
virtual ~GPU(); virtual ~GPU();
@ -89,7 +101,7 @@ public:
} }
void EndDMAWrite(); void EndDMAWrite();
/// Returns false if the DAC is loading any data from VRAM. /// Returns true if no data is being sent from VRAM to the DAC or that no portion of VRAM would be visible on screen.
ALWAYS_INLINE bool IsDisplayDisabled() const ALWAYS_INLINE bool IsDisplayDisabled() const
{ {
return m_GPUSTAT.display_disable || m_crtc_state.display_vram_width == 0 || m_crtc_state.display_vram_height == 0; return m_GPUSTAT.display_disable || m_crtc_state.display_vram_width == 0 || m_crtc_state.display_vram_height == 0;
@ -98,13 +110,13 @@ public:
/// Returns true if scanout should be interlaced. /// Returns true if scanout should be interlaced.
ALWAYS_INLINE bool IsInterlacedDisplayEnabled() const ALWAYS_INLINE bool IsInterlacedDisplayEnabled() const
{ {
return (!m_force_progressive_scan) & m_GPUSTAT.vertical_interlace; return (!m_force_progressive_scan) && m_GPUSTAT.vertical_interlace;
} }
/// Returns true if interlaced rendering is enabled and force progressive scan is disabled. /// Returns true if interlaced rendering is enabled and force progressive scan is disabled.
ALWAYS_INLINE bool IsInterlacedRenderingEnabled() const ALWAYS_INLINE bool IsInterlacedRenderingEnabled() const
{ {
return (!m_force_progressive_scan) & m_GPUSTAT.SkipDrawingToActiveField(); return (!m_force_progressive_scan) && m_GPUSTAT.SkipDrawingToActiveField();
} }
/// Returns the number of pending GPU ticks. /// Returns the number of pending GPU ticks.
@ -475,28 +487,31 @@ protected:
u16 display_width; u16 display_width;
u16 display_height; u16 display_height;
// Top-left corner where the VRAM is displayed. Depending on the CRTC config, this may indicate padding. // Top-left corner in screen coordinates where the outputted portion of VRAM is first visible.
u16 display_origin_left; u16 display_origin_left;
u16 display_origin_top; u16 display_origin_top;
// Rectangle describing the displayed area of VRAM, in coordinates. // Rectangle in VRAM coordinates describing the area of VRAM that is visible on screen.
u16 display_vram_left; u16 display_vram_left;
u16 display_vram_top; u16 display_vram_top;
u16 display_vram_width; u16 display_vram_width;
u16 display_vram_height; u16 display_vram_height;
u16 horizontal_total; // Visible range of the screen, in GPU ticks/lines. Clamped to lie within the active video region.
u16 horizontal_sync_start; // <- not currently saved to state, so we don't have to bump the version u16 horizontal_visible_start;
u16 horizontal_active_start; u16 horizontal_visible_end;
u16 horizontal_active_end; u16 vertical_visible_start;
u16 vertical_visible_end;
u16 horizontal_display_start; u16 horizontal_display_start;
u16 horizontal_display_end; u16 horizontal_display_end;
u16 vertical_total;
u16 vertical_active_start;
u16 vertical_active_end;
u16 vertical_display_start; u16 vertical_display_start;
u16 vertical_display_end; u16 vertical_display_end;
u16 horizontal_total;
u16 horizontal_sync_start; // <- not currently saved to state, so we don't have to bump the version
u16 vertical_total;
TickCount fractional_ticks; TickCount fractional_ticks;
TickCount current_tick_in_scanline; TickCount current_tick_in_scanline;
u32 current_scanline; u32 current_scanline;

View File

@ -655,6 +655,7 @@ static void RTPS(const s16 V[3], u8 shift, bool lm, bool last)
Sx = ((((s64(result) * s64(REGS.IR1)) * s64(7)) / s64(6)) + s64(REGS.OFX)); Sx = ((((s64(result) * s64(REGS.IR1)) * s64(7)) / s64(6)) + s64(REGS.OFX));
break; break;
case DisplayAspectRatio::Auto:
case DisplayAspectRatio::R4_3: case DisplayAspectRatio::R4_3:
case DisplayAspectRatio::PAR1_1: case DisplayAspectRatio::PAR1_1:
default: default:
@ -747,6 +748,7 @@ static void RTPS(const s16 V[3], u8 shift, bool lm, bool last)
precise_x = (precise_x * 7.0f) / 6.0f; precise_x = (precise_x * 7.0f) / 6.0f;
break; break;
case DisplayAspectRatio::Auto:
case DisplayAspectRatio::R4_3: case DisplayAspectRatio::R4_3:
case DisplayAspectRatio::PAR1_1: case DisplayAspectRatio::PAR1_1:
default: default:

View File

@ -138,7 +138,6 @@ void HostDisplay::CalculateDrawRect(s32 window_width, s32 window_height, s32* ou
s32* out_height, s32* out_left_padding, s32* out_top_padding, float* out_scale, s32* out_height, s32* out_left_padding, s32* out_top_padding, float* out_scale,
float* out_y_scale, bool apply_aspect_ratio) const float* out_y_scale, bool apply_aspect_ratio) const
{ {
apply_aspect_ratio = (m_display_aspect_ratio > 0) ? apply_aspect_ratio : false;
const float y_scale = const float y_scale =
apply_aspect_ratio ? apply_aspect_ratio ?
((static_cast<float>(m_display_width) / static_cast<float>(m_display_height)) / m_display_aspect_ratio) : ((static_cast<float>(m_display_width) / static_cast<float>(m_display_height)) / m_display_aspect_ratio) :

View File

@ -625,10 +625,11 @@ const char* Settings::GetDisplayCropModeDisplayName(DisplayCropMode crop_mode)
return s_display_crop_mode_display_names[static_cast<int>(crop_mode)]; return s_display_crop_mode_display_names[static_cast<int>(crop_mode)];
} }
static std::array<const char*, 11> s_display_aspect_ratio_names = { static std::array<const char*, 12> s_display_aspect_ratio_names = {{"Auto (Game Native)", "4:3", "16:9", "16:10",
{"4:3", "16:9", "16:10", "19:9", "21:9", "8:7", "5:4", "3:2", "2:1 (VRAM 1:1)", "1:1", "PAR 1:1"}}; "19:9", "21:9", "8:7", "5:4", "3:2",
static constexpr std::array<float, 11> s_display_aspect_ratio_values = { "2:1 (VRAM 1:1)", "1:1", "PAR 1:1"}};
{4.0f / 3.0f, 16.0f / 9.0f, 16.0f / 10.0f, 19.0f / 9.0f, 21.0f / 9.0f, 8.0f / 7.0f, 5.0f / 4.0f, 3.0f / 2.0f, static constexpr std::array<float, 12> s_display_aspect_ratio_values = {
{-1.0f, 4.0f / 3.0f, 16.0f / 9.0f, 16.0f / 10.0f, 19.0f / 9.0f, 21.0f / 9.0f, 8.0f / 7.0f, 5.0f / 4.0f, 3.0f / 2.0f,
2.0f / 1.0f, 1.0f, -1.0f}}; 2.0f / 1.0f, 1.0f, -1.0f}};
std::optional<DisplayAspectRatio> Settings::ParseDisplayAspectRatio(const char* str) std::optional<DisplayAspectRatio> Settings::ParseDisplayAspectRatio(const char* str)

View File

@ -111,15 +111,11 @@ struct Settings
bool gpu_pgxp_cpu = false; bool gpu_pgxp_cpu = false;
bool gpu_pgxp_preserve_proj_fp = false; bool gpu_pgxp_preserve_proj_fp = false;
DisplayCropMode display_crop_mode = DisplayCropMode::None; DisplayCropMode display_crop_mode = DisplayCropMode::None;
DisplayAspectRatio display_aspect_ratio = DisplayAspectRatio::R4_3; DisplayAspectRatio display_aspect_ratio = DisplayAspectRatio::Auto;
s16 display_active_start_offset = 0; s16 display_active_start_offset = 0;
s16 display_active_end_offset = 0; s16 display_active_end_offset = 0;
s8 display_line_start_offset = 0; s8 display_line_start_offset = 0;
s8 display_line_end_offset = 0; s8 display_line_end_offset = 0;
s8 display_crop_left = 0;
s8 display_crop_right = 0;
s8 display_crop_top = 0;
s8 display_crop_bottom = 0;
bool display_force_4_3_for_24bit = false; bool display_force_4_3_for_24bit = false;
bool gpu_24bit_chroma_smoothing = false; bool gpu_24bit_chroma_smoothing = false;
bool display_linear_filtering = true; bool display_linear_filtering = true;
@ -304,7 +300,7 @@ struct Settings
#endif #endif
static constexpr DisplayCropMode DEFAULT_DISPLAY_CROP_MODE = DisplayCropMode::Overscan; static constexpr DisplayCropMode DEFAULT_DISPLAY_CROP_MODE = DisplayCropMode::Overscan;
static constexpr DisplayAspectRatio DEFAULT_DISPLAY_ASPECT_RATIO = DisplayAspectRatio::R4_3; static constexpr DisplayAspectRatio DEFAULT_DISPLAY_ASPECT_RATIO = DisplayAspectRatio::Auto;
static constexpr ControllerType DEFAULT_CONTROLLER_1_TYPE = ControllerType::DigitalController; static constexpr ControllerType DEFAULT_CONTROLLER_1_TYPE = ControllerType::DigitalController;
static constexpr ControllerType DEFAULT_CONTROLLER_2_TYPE = ControllerType::None; static constexpr ControllerType DEFAULT_CONTROLLER_2_TYPE = ControllerType::None;
static constexpr MemoryCardType DEFAULT_MEMORY_CARD_1_TYPE = MemoryCardType::PerGameTitle; static constexpr MemoryCardType DEFAULT_MEMORY_CARD_1_TYPE = MemoryCardType::PerGameTitle;

View File

@ -85,6 +85,7 @@ enum class DisplayCropMode : u8
enum class DisplayAspectRatio : u8 enum class DisplayAspectRatio : u8
{ {
Auto,
R4_3, R4_3,
R16_9, R16_9,
R16_10, R16_10,

View File

@ -704,7 +704,8 @@ static std::array<retro_core_option_definition, 49> s_option_definitions = {{
{"duckstation_Display.AspectRatio", {"duckstation_Display.AspectRatio",
"Aspect Ratio", "Aspect Ratio",
"Sets the core-provided aspect ratio.", "Sets the core-provided aspect ratio.",
{{"4:3", "4:3"}, {{"Auto", "Auto (Game Native)"},
{"4:3", "4:3"},
{"16:9", "16:9"}, {"16:9", "16:9"},
{"16:10", "16:10"}, {"16:10", "16:10"},
{"19:9", "19:9"}, {"19:9", "19:9"},
@ -715,7 +716,7 @@ static std::array<retro_core_option_definition, 49> s_option_definitions = {{
{"2:1 (VRAM 1:1)", "2:1 (VRAM 1:1)"}, {"2:1 (VRAM 1:1)", "2:1 (VRAM 1:1)"},
{"1:1", "1:1"}, {"1:1", "1:1"},
{"PAR 1:1", "PAR 1:1"}}, {"PAR 1:1", "PAR 1:1"}},
"4:3"}, "Auto"},
{"duckstation_Main.LoadDevicesFromSaveStates", {"duckstation_Main.LoadDevicesFromSaveStates",
"Load Devices From Save States", "Load Devices From Save States",
"Sets whether the contents of devices and memory cards will be loaded when a save state is loaded.", "Sets whether the contents of devices and memory cards will be loaded when a save state is loaded.",

View File

@ -62,9 +62,9 @@ DisplaySettingsWidget::DisplaySettingsWidget(QtHostInterface* host_interface, QW
"renderers. <br>This option is only supported in Direct3D and Vulkan. OpenGL will always use the default " "renderers. <br>This option is only supported in Direct3D and Vulkan. OpenGL will always use the default "
"device.")); "device."));
dialog->registerWidgetHelp( dialog->registerWidgetHelp(
m_ui.displayAspectRatio, tr("Aspect Ratio"), QStringLiteral("4:3"), m_ui.displayAspectRatio, tr("Aspect Ratio"), QStringLiteral("Auto (Game Native)"),
tr("Changes the aspect ratio used to display the console's output to the screen. The default " tr("Changes the aspect ratio used to display the console's output to the screen. The default is Auto (Game Native) "
"is 4:3 which matches a typical TV of the era.")); "which automatically adjusts the aspect ratio to match how a game would be shown on a typical TV of the era."));
dialog->registerWidgetHelp( dialog->registerWidgetHelp(
m_ui.displayCropMode, tr("Crop Mode"), tr("Only Overscan Area"), m_ui.displayCropMode, tr("Crop Mode"), tr("Only Overscan Area"),
tr("Determines how much of the area typically not visible on a consumer TV set to crop/hide. <br>" tr("Determines how much of the area typically not visible on a consumer TV set to crop/hide. <br>"