dep: Add fast_float
This commit is contained in:
parent
591ac15612
commit
81383afc50
|
@ -17,6 +17,7 @@ add_subdirectory(soundtouch)
|
|||
add_subdirectory(tinyxml2)
|
||||
add_subdirectory(googletest)
|
||||
add_subdirectory(cpuinfo)
|
||||
add_subdirectory(fast_float)
|
||||
|
||||
if(ENABLE_CUBEB)
|
||||
add_subdirectory(cubeb)
|
||||
|
|
|
@ -0,0 +1,2 @@
|
|||
Daniel Lemire
|
||||
João Paulo Magalhaes
|
|
@ -0,0 +1,3 @@
|
|||
add_library(fast_float INTERFACE)
|
||||
target_include_directories(fast_float INTERFACE "${CMAKE_CURRENT_SOURCE_DIR}/include")
|
||||
|
|
@ -0,0 +1,6 @@
|
|||
Eugene Golushkov
|
||||
Maksim Kita
|
||||
Marcin Wojdyr
|
||||
Neal Richardson
|
||||
Tim Paine
|
||||
Fabio Pellacini
|
|
@ -0,0 +1,190 @@
|
|||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
Copyright 2021 The fast_float authors
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
|
@ -0,0 +1,27 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2021 The fast_float authors
|
||||
|
||||
Permission is hereby granted, free of charge, to any
|
||||
person obtaining a copy of this software and associated
|
||||
documentation files (the "Software"), to deal in the
|
||||
Software without restriction, including without
|
||||
limitation the rights to use, copy, modify, merge,
|
||||
publish, distribute, sublicense, and/or sell copies of
|
||||
the Software, and to permit persons to whom the Software
|
||||
is furnished to do so, subject to the following
|
||||
conditions:
|
||||
|
||||
The above copyright notice and this permission notice
|
||||
shall be included in all copies or substantial portions
|
||||
of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
|
||||
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
|
||||
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
|
||||
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||||
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
||||
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
||||
DEALINGS IN THE SOFTWARE.
|
|
@ -0,0 +1,247 @@
|
|||
## fast_float number parsing library: 4x faster than strtod
|
||||
|
||||
The fast_float library provides fast header-only implementations for the C++ from_chars
|
||||
functions for `float` and `double` types. These functions convert ASCII strings representing
|
||||
decimal values (e.g., `1.3e10`) into binary types. We provide exact rounding (including
|
||||
round to even). In our experience, these `fast_float` functions many times faster than comparable number-parsing functions from existing C++ standard libraries.
|
||||
|
||||
Specifically, `fast_float` provides the following two functions with a C++17-like syntax (the library itself only requires C++11):
|
||||
|
||||
```C++
|
||||
from_chars_result from_chars(const char* first, const char* last, float& value, ...);
|
||||
from_chars_result from_chars(const char* first, const char* last, double& value, ...);
|
||||
```
|
||||
|
||||
The return type (`from_chars_result`) is defined as the struct:
|
||||
```C++
|
||||
struct from_chars_result {
|
||||
const char* ptr;
|
||||
std::errc ec;
|
||||
};
|
||||
```
|
||||
|
||||
It parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
|
||||
a locale-independent format equivalent to the C++17 from_chars function.
|
||||
The resulting floating-point value is the closest floating-point values (using either float or double),
|
||||
using the "round to even" convention for values that would otherwise fall right in-between two values.
|
||||
That is, we provide exact parsing according to the IEEE standard.
|
||||
|
||||
|
||||
Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
|
||||
parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
|
||||
`ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
|
||||
|
||||
The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
|
||||
|
||||
It will parse infinity and nan values.
|
||||
|
||||
Example:
|
||||
|
||||
``` C++
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::string input = "3.1416 xyz ";
|
||||
double result;
|
||||
auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
|
||||
the type `fast_float::chars_format`. It is a bitset value: we check whether
|
||||
`fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
|
||||
to determine whether we allow the fixed point and scientific notation respectively.
|
||||
The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
|
||||
|
||||
The library seeks to follow the C++17 (see [20.19.3](http://eel.is/c++draft/charconv.from.chars).(7.1)) specification.
|
||||
* The `from_chars` function does not skip leading white-space characters.
|
||||
* [A leading `+` sign](https://en.cppreference.com/w/cpp/utility/from_chars) is forbidden.
|
||||
* It is generally impossible to represent a decimal value exactly as binary floating-point number (`float` and `double` types). We seek the nearest value. We round to an even mantissa when we are in-between two binary floating-point numbers.
|
||||
|
||||
Furthermore, we have the following restrictions:
|
||||
* We only support `float` and `double` types at this time.
|
||||
* We only support the decimal format: we do not support hexadecimal strings.
|
||||
* For values that are either very large or very small (e.g., `1e9999`), we represent it using the infinity or negative infinity value.
|
||||
|
||||
We support Visual Studio, macOS, Linux, freeBSD. We support big and little endian. We support 32-bit and 64-bit systems.
|
||||
|
||||
We assume that the rounding mode is set to nearest (`std::fegetround() == FE_TONEAREST`).
|
||||
|
||||
## Using commas as decimal separator
|
||||
|
||||
|
||||
The C++ standard stipulate that `from_chars` has to be locale-independent. In
|
||||
particular, the decimal separator has to be the period (`.`). However,
|
||||
some users still want to use the `fast_float` library with in a locale-dependent
|
||||
manner. Using a separate function called `from_chars_advanced`, we allow the users
|
||||
to pass a `parse_options` instance which contains a custom decimal separator (e.g.,
|
||||
the comma). You may use it as follows.
|
||||
|
||||
```C++
|
||||
#include "fast_float/fast_float.h"
|
||||
#include <iostream>
|
||||
|
||||
int main() {
|
||||
const std::string input = "3,1416 xyz ";
|
||||
double result;
|
||||
fast_float::parse_options options{fast_float::chars_format::general, ','};
|
||||
auto answer = fast_float::from_chars_advanced(input.data(), input.data()+input.size(), result, options);
|
||||
if((answer.ec != std::errc()) || ((result != 3.1416))) { std::cerr << "parsing failure\n"; return EXIT_FAILURE; }
|
||||
std::cout << "parsed the number " << result << std::endl;
|
||||
return EXIT_SUCCESS;
|
||||
}
|
||||
```
|
||||
|
||||
You can parse delimited numbers:
|
||||
```C++
|
||||
const std::string input = "234532.3426362,7869234.9823,324562.645";
|
||||
double result;
|
||||
auto answer = fast_float::from_chars(input.data(), input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) {
|
||||
// check error
|
||||
}
|
||||
// we have result == 234532.3426362.
|
||||
if(answer.ptr[0] != ',') {
|
||||
// unexpected delimiter
|
||||
}
|
||||
answer = fast_float::from_chars(answer.ptr + 1, input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) {
|
||||
// check error
|
||||
}
|
||||
// we have result == 7869234.9823.
|
||||
if(answer.ptr[0] != ',') {
|
||||
// unexpected delimiter
|
||||
}
|
||||
answer = fast_float::from_chars(answer.ptr + 1, input.data()+input.size(), result);
|
||||
if(answer.ec != std::errc()) {
|
||||
// check error
|
||||
}
|
||||
// we have result == 324562.645.
|
||||
```
|
||||
|
||||
|
||||
## Relation With Other Work
|
||||
|
||||
The fast_float library is part of:
|
||||
|
||||
- GCC (as of version 12): the `from_chars` function in GCC relies on fast_float.
|
||||
- [WebKit](https://github.com/WebKit/WebKit), the engine behind Safari (Apple's web browser)
|
||||
|
||||
|
||||
The fastfloat algorithm is part of the [LLVM standard libraries](https://github.com/llvm/llvm-project/commit/87c016078ad72c46505461e4ff8bfa04819fe7ba).
|
||||
|
||||
There is a [derived implementation part of AdaCore](https://github.com/AdaCore/VSS).
|
||||
|
||||
|
||||
The fast_float library provides a performance similar to that of the [fast_double_parser](https://github.com/lemire/fast_double_parser) library but using an updated algorithm reworked from the ground up, and while offering an API more in line with the expectations of C++ programmers. The fast_double_parser library is part of the [Microsoft LightGBM machine-learning framework](https://github.com/microsoft/LightGBM).
|
||||
|
||||
## Reference
|
||||
|
||||
- Daniel Lemire, [Number Parsing at a Gigabyte per Second](https://arxiv.org/abs/2101.11408), Software: Practice and Experience 51 (8), 2021.
|
||||
|
||||
## Other programming languages
|
||||
|
||||
- [There is an R binding](https://github.com/eddelbuettel/rcppfastfloat) called `rcppfastfloat`.
|
||||
- [There is a Rust port of the fast_float library](https://github.com/aldanor/fast-float-rust/) called `fast-float-rust`.
|
||||
- [There is a Java port of the fast_float library](https://github.com/wrandelshofer/FastDoubleParser) called `FastDoubleParser`. It used for important systems such as [Jackson](https://github.com/FasterXML/jackson-core).
|
||||
- [There is a C# port of the fast_float library](https://github.com/CarlVerret/csFastFloat) called `csFastFloat`.
|
||||
|
||||
|
||||
## Users
|
||||
|
||||
The fast_float library is used by [Apache Arrow](https://github.com/apache/arrow/pull/8494) where it multiplied the number parsing speed by two or three times. It is also used by [Yandex ClickHouse](https://github.com/ClickHouse/ClickHouse) and by [Google Jsonnet](https://github.com/google/jsonnet).
|
||||
|
||||
|
||||
## How fast is it?
|
||||
|
||||
It can parse random floating-point numbers at a speed of 1 GB/s on some systems. We find that it is often twice as fast as the best available competitor, and many times faster than many standard-library implementations.
|
||||
|
||||
<img src="http://lemire.me/blog/wp-content/uploads/2020/11/fastfloat_speed.png" width="400">
|
||||
|
||||
```
|
||||
$ ./build/benchmarks/benchmark
|
||||
# parsing random integers in the range [0,1)
|
||||
volume = 2.09808 MB
|
||||
netlib : 271.18 MB/s (+/- 1.2 %) 12.93 Mfloat/s
|
||||
doubleconversion : 225.35 MB/s (+/- 1.2 %) 10.74 Mfloat/s
|
||||
strtod : 190.94 MB/s (+/- 1.6 %) 9.10 Mfloat/s
|
||||
abseil : 430.45 MB/s (+/- 2.2 %) 20.52 Mfloat/s
|
||||
fastfloat : 1042.38 MB/s (+/- 9.9 %) 49.68 Mfloat/s
|
||||
```
|
||||
|
||||
See https://github.com/lemire/simple_fastfloat_benchmark for our benchmarking code.
|
||||
|
||||
|
||||
## Video
|
||||
|
||||
[![Go Systems 2020](http://img.youtube.com/vi/AVXgvlMeIm4/0.jpg)](http://www.youtube.com/watch?v=AVXgvlMeIm4)<br />
|
||||
|
||||
## Using as a CMake dependency
|
||||
|
||||
This library is header-only by design. The CMake file provides the `fast_float` target
|
||||
which is merely a pointer to the `include` directory.
|
||||
|
||||
If you drop the `fast_float` repository in your CMake project, you should be able to use
|
||||
it in this manner:
|
||||
|
||||
```cmake
|
||||
add_subdirectory(fast_float)
|
||||
target_link_libraries(myprogram PUBLIC fast_float)
|
||||
```
|
||||
|
||||
Or you may want to retrieve the dependency automatically if you have a sufficiently recent version of CMake (3.11 or better at least):
|
||||
|
||||
```cmake
|
||||
FetchContent_Declare(
|
||||
fast_float
|
||||
GIT_REPOSITORY https://github.com/lemire/fast_float.git
|
||||
GIT_TAG tags/v1.1.2
|
||||
GIT_SHALLOW TRUE)
|
||||
|
||||
FetchContent_MakeAvailable(fast_float)
|
||||
target_link_libraries(myprogram PUBLIC fast_float)
|
||||
|
||||
```
|
||||
|
||||
You should change the `GIT_TAG` line so that you recover the version you wish to use.
|
||||
|
||||
## Using as single header
|
||||
|
||||
The script `script/amalgamate.py` may be used to generate a single header
|
||||
version of the library if so desired.
|
||||
Just run the script from the root directory of this repository.
|
||||
You can customize the license type and output file if desired as described in
|
||||
the command line help.
|
||||
|
||||
You may directly download automatically generated single-header files:
|
||||
|
||||
https://github.com/fastfloat/fast_float/releases/download/v3.4.0/fast_float.h
|
||||
|
||||
## Credit
|
||||
|
||||
Though this work is inspired by many different people, this work benefited especially from exchanges with
|
||||
Michael Eisel, who motivated the original research with his key insights, and with Nigel Tao who provided
|
||||
invaluable feedback. Rémy Oudompheng first implemented a fast path we use in the case of long digits.
|
||||
|
||||
The library includes code adapted from Google Wuffs (written by Nigel Tao) which was originally published
|
||||
under the Apache 2.0 license.
|
||||
|
||||
## License
|
||||
|
||||
<sup>
|
||||
Licensed under either of <a href="LICENSE-APACHE">Apache License, Version
|
||||
2.0</a> or <a href="LICENSE-MIT">MIT license</a> at your option.
|
||||
</sup>
|
||||
|
||||
<br>
|
||||
|
||||
<sub>
|
||||
Unless you explicitly state otherwise, any contribution intentionally submitted
|
||||
for inclusion in this repository by you, as defined in the Apache-2.0 license,
|
||||
shall be dual licensed as above, without any additional terms or conditions.
|
||||
</sub>
|
|
@ -0,0 +1,227 @@
|
|||
#ifndef FASTFLOAT_ASCII_NUMBER_H
|
||||
#define FASTFLOAT_ASCII_NUMBER_H
|
||||
|
||||
#include <cctype>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <iterator>
|
||||
|
||||
#include "float_common.h"
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
// Next function can be micro-optimized, but compilers are entirely
|
||||
// able to optimize it well.
|
||||
fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; }
|
||||
|
||||
fastfloat_really_inline uint64_t byteswap(uint64_t val) {
|
||||
return (val & 0xFF00000000000000) >> 56
|
||||
| (val & 0x00FF000000000000) >> 40
|
||||
| (val & 0x0000FF0000000000) >> 24
|
||||
| (val & 0x000000FF00000000) >> 8
|
||||
| (val & 0x00000000FF000000) << 8
|
||||
| (val & 0x0000000000FF0000) << 24
|
||||
| (val & 0x000000000000FF00) << 40
|
||||
| (val & 0x00000000000000FF) << 56;
|
||||
}
|
||||
|
||||
fastfloat_really_inline uint64_t read_u64(const char *chars) {
|
||||
uint64_t val;
|
||||
::memcpy(&val, chars, sizeof(uint64_t));
|
||||
#if FASTFLOAT_IS_BIG_ENDIAN == 1
|
||||
// Need to read as-if the number was in little-endian order.
|
||||
val = byteswap(val);
|
||||
#endif
|
||||
return val;
|
||||
}
|
||||
|
||||
fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) {
|
||||
#if FASTFLOAT_IS_BIG_ENDIAN == 1
|
||||
// Need to read as-if the number was in little-endian order.
|
||||
val = byteswap(val);
|
||||
#endif
|
||||
::memcpy(chars, &val, sizeof(uint64_t));
|
||||
}
|
||||
|
||||
// credit @aqrit
|
||||
fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) {
|
||||
const uint64_t mask = 0x000000FF000000FF;
|
||||
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
|
||||
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
|
||||
val -= 0x3030303030303030;
|
||||
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
|
||||
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
|
||||
return uint32_t(val);
|
||||
}
|
||||
|
||||
fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept {
|
||||
return parse_eight_digits_unrolled(read_u64(chars));
|
||||
}
|
||||
|
||||
// credit @aqrit
|
||||
fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
|
||||
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
|
||||
0x8080808080808080));
|
||||
}
|
||||
|
||||
fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept {
|
||||
return is_made_of_eight_digits_fast(read_u64(chars));
|
||||
}
|
||||
|
||||
typedef span<const char> byte_span;
|
||||
|
||||
struct parsed_number_string {
|
||||
int64_t exponent{0};
|
||||
uint64_t mantissa{0};
|
||||
const char *lastmatch{nullptr};
|
||||
bool negative{false};
|
||||
bool valid{false};
|
||||
bool too_many_digits{false};
|
||||
// contains the range of the significant digits
|
||||
byte_span integer{}; // non-nullable
|
||||
byte_span fraction{}; // nullable
|
||||
};
|
||||
|
||||
// Assuming that you use no more than 19 digits, this will
|
||||
// parse an ASCII string.
|
||||
fastfloat_really_inline
|
||||
parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept {
|
||||
const chars_format fmt = options.format;
|
||||
const char decimal_point = options.decimal_point;
|
||||
|
||||
parsed_number_string answer;
|
||||
answer.valid = false;
|
||||
answer.too_many_digits = false;
|
||||
answer.negative = (*p == '-');
|
||||
if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
|
||||
++p;
|
||||
if (p == pend) {
|
||||
return answer;
|
||||
}
|
||||
if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
|
||||
return answer;
|
||||
}
|
||||
}
|
||||
const char *const start_digits = p;
|
||||
|
||||
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
|
||||
|
||||
while ((p != pend) && is_integer(*p)) {
|
||||
// a multiplication by 10 is cheaper than an arbitrary integer
|
||||
// multiplication
|
||||
i = 10 * i +
|
||||
uint64_t(*p - '0'); // might overflow, we will handle the overflow later
|
||||
++p;
|
||||
}
|
||||
const char *const end_of_integer_part = p;
|
||||
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
|
||||
answer.integer = byte_span(start_digits, size_t(digit_count));
|
||||
int64_t exponent = 0;
|
||||
if ((p != pend) && (*p == decimal_point)) {
|
||||
++p;
|
||||
const char* before = p;
|
||||
// can occur at most twice without overflowing, but let it occur more, since
|
||||
// for integers with many digits, digit parsing is the primary bottleneck.
|
||||
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
|
||||
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
|
||||
p += 8;
|
||||
}
|
||||
while ((p != pend) && is_integer(*p)) {
|
||||
uint8_t digit = uint8_t(*p - '0');
|
||||
++p;
|
||||
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
|
||||
}
|
||||
exponent = before - p;
|
||||
answer.fraction = byte_span(before, size_t(p - before));
|
||||
digit_count -= exponent;
|
||||
}
|
||||
// we must have encountered at least one integer!
|
||||
if (digit_count == 0) {
|
||||
return answer;
|
||||
}
|
||||
int64_t exp_number = 0; // explicit exponential part
|
||||
if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) {
|
||||
const char * location_of_e = p;
|
||||
++p;
|
||||
bool neg_exp = false;
|
||||
if ((p != pend) && ('-' == *p)) {
|
||||
neg_exp = true;
|
||||
++p;
|
||||
} else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
|
||||
++p;
|
||||
}
|
||||
if ((p == pend) || !is_integer(*p)) {
|
||||
if(!(fmt & chars_format::fixed)) {
|
||||
// We are in error.
|
||||
return answer;
|
||||
}
|
||||
// Otherwise, we will be ignoring the 'e'.
|
||||
p = location_of_e;
|
||||
} else {
|
||||
while ((p != pend) && is_integer(*p)) {
|
||||
uint8_t digit = uint8_t(*p - '0');
|
||||
if (exp_number < 0x10000000) {
|
||||
exp_number = 10 * exp_number + digit;
|
||||
}
|
||||
++p;
|
||||
}
|
||||
if(neg_exp) { exp_number = - exp_number; }
|
||||
exponent += exp_number;
|
||||
}
|
||||
} else {
|
||||
// If it scientific and not fixed, we have to bail out.
|
||||
if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
|
||||
}
|
||||
answer.lastmatch = p;
|
||||
answer.valid = true;
|
||||
|
||||
// If we frequently had to deal with long strings of digits,
|
||||
// we could extend our code by using a 128-bit integer instead
|
||||
// of a 64-bit integer. However, this is uncommon.
|
||||
//
|
||||
// We can deal with up to 19 digits.
|
||||
if (digit_count > 19) { // this is uncommon
|
||||
// It is possible that the integer had an overflow.
|
||||
// We have to handle the case where we have 0.0000somenumber.
|
||||
// We need to be mindful of the case where we only have zeroes...
|
||||
// E.g., 0.000000000...000.
|
||||
const char *start = start_digits;
|
||||
while ((start != pend) && (*start == '0' || *start == decimal_point)) {
|
||||
if(*start == '0') { digit_count --; }
|
||||
start++;
|
||||
}
|
||||
if (digit_count > 19) {
|
||||
answer.too_many_digits = true;
|
||||
// Let us start again, this time, avoiding overflows.
|
||||
// We don't need to check if is_integer, since we use the
|
||||
// pre-tokenized spans from above.
|
||||
i = 0;
|
||||
p = answer.integer.ptr;
|
||||
const char* int_end = p + answer.integer.len();
|
||||
const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
|
||||
while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
|
||||
i = i * 10 + uint64_t(*p - '0');
|
||||
++p;
|
||||
}
|
||||
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
|
||||
exponent = end_of_integer_part - p + exp_number;
|
||||
} else { // We have a value with a fractional component.
|
||||
p = answer.fraction.ptr;
|
||||
const char* frac_end = p + answer.fraction.len();
|
||||
while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
|
||||
i = i * 10 + uint64_t(*p - '0');
|
||||
++p;
|
||||
}
|
||||
exponent = answer.fraction.ptr - p + exp_number;
|
||||
}
|
||||
// We have now corrected both exponent and i, to a truncated value
|
||||
}
|
||||
}
|
||||
answer.exponent = exponent;
|
||||
answer.mantissa = i;
|
||||
return answer;
|
||||
}
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
|
@ -0,0 +1,590 @@
|
|||
#ifndef FASTFLOAT_BIGINT_H
|
||||
#define FASTFLOAT_BIGINT_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <climits>
|
||||
#include <cstring>
|
||||
|
||||
#include "float_common.h"
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
// the limb width: we want efficient multiplication of double the bits in
|
||||
// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
|
||||
// extract the high and low parts efficiently. this is every 64-bit
|
||||
// architecture except for sparc, which emulates 128-bit multiplication.
|
||||
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
|
||||
// doing `8 * sizeof(limb)`.
|
||||
#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
|
||||
#define FASTFLOAT_64BIT_LIMB 1
|
||||
typedef uint64_t limb;
|
||||
constexpr size_t limb_bits = 64;
|
||||
#else
|
||||
#define FASTFLOAT_32BIT_LIMB
|
||||
typedef uint32_t limb;
|
||||
constexpr size_t limb_bits = 32;
|
||||
#endif
|
||||
|
||||
typedef span<limb> limb_span;
|
||||
|
||||
// number of bits in a bigint. this needs to be at least the number
|
||||
// of bits required to store the largest bigint, which is
|
||||
// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
|
||||
// ~3600 bits, so we round to 4000.
|
||||
constexpr size_t bigint_bits = 4000;
|
||||
constexpr size_t bigint_limbs = bigint_bits / limb_bits;
|
||||
|
||||
// vector-like type that is allocated on the stack. the entire
|
||||
// buffer is pre-allocated, and only the length changes.
|
||||
template <uint16_t size>
|
||||
struct stackvec {
|
||||
limb data[size];
|
||||
// we never need more than 150 limbs
|
||||
uint16_t length{0};
|
||||
|
||||
stackvec() = default;
|
||||
stackvec(const stackvec &) = delete;
|
||||
stackvec &operator=(const stackvec &) = delete;
|
||||
stackvec(stackvec &&) = delete;
|
||||
stackvec &operator=(stackvec &&other) = delete;
|
||||
|
||||
// create stack vector from existing limb span.
|
||||
stackvec(limb_span s) {
|
||||
FASTFLOAT_ASSERT(try_extend(s));
|
||||
}
|
||||
|
||||
limb& operator[](size_t index) noexcept {
|
||||
FASTFLOAT_DEBUG_ASSERT(index < length);
|
||||
return data[index];
|
||||
}
|
||||
const limb& operator[](size_t index) const noexcept {
|
||||
FASTFLOAT_DEBUG_ASSERT(index < length);
|
||||
return data[index];
|
||||
}
|
||||
// index from the end of the container
|
||||
const limb& rindex(size_t index) const noexcept {
|
||||
FASTFLOAT_DEBUG_ASSERT(index < length);
|
||||
size_t rindex = length - index - 1;
|
||||
return data[rindex];
|
||||
}
|
||||
|
||||
// set the length, without bounds checking.
|
||||
void set_len(size_t len) noexcept {
|
||||
length = uint16_t(len);
|
||||
}
|
||||
constexpr size_t len() const noexcept {
|
||||
return length;
|
||||
}
|
||||
constexpr bool is_empty() const noexcept {
|
||||
return length == 0;
|
||||
}
|
||||
constexpr size_t capacity() const noexcept {
|
||||
return size;
|
||||
}
|
||||
// append item to vector, without bounds checking
|
||||
void push_unchecked(limb value) noexcept {
|
||||
data[length] = value;
|
||||
length++;
|
||||
}
|
||||
// append item to vector, returning if item was added
|
||||
bool try_push(limb value) noexcept {
|
||||
if (len() < capacity()) {
|
||||
push_unchecked(value);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// add items to the vector, from a span, without bounds checking
|
||||
void extend_unchecked(limb_span s) noexcept {
|
||||
limb* ptr = data + length;
|
||||
::memcpy((void*)ptr, (const void*)s.ptr, sizeof(limb) * s.len());
|
||||
set_len(len() + s.len());
|
||||
}
|
||||
// try to add items to the vector, returning if items were added
|
||||
bool try_extend(limb_span s) noexcept {
|
||||
if (len() + s.len() <= capacity()) {
|
||||
extend_unchecked(s);
|
||||
return true;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// resize the vector, without bounds checking
|
||||
// if the new size is longer than the vector, assign value to each
|
||||
// appended item.
|
||||
void resize_unchecked(size_t new_len, limb value) noexcept {
|
||||
if (new_len > len()) {
|
||||
size_t count = new_len - len();
|
||||
limb* first = data + len();
|
||||
limb* last = first + count;
|
||||
::std::fill(first, last, value);
|
||||
set_len(new_len);
|
||||
} else {
|
||||
set_len(new_len);
|
||||
}
|
||||
}
|
||||
// try to resize the vector, returning if the vector was resized.
|
||||
bool try_resize(size_t new_len, limb value) noexcept {
|
||||
if (new_len > capacity()) {
|
||||
return false;
|
||||
} else {
|
||||
resize_unchecked(new_len, value);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
// check if any limbs are non-zero after the given index.
|
||||
// this needs to be done in reverse order, since the index
|
||||
// is relative to the most significant limbs.
|
||||
bool nonzero(size_t index) const noexcept {
|
||||
while (index < len()) {
|
||||
if (rindex(index) != 0) {
|
||||
return true;
|
||||
}
|
||||
index++;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
// normalize the big integer, so most-significant zero limbs are removed.
|
||||
void normalize() noexcept {
|
||||
while (len() > 0 && rindex(0) == 0) {
|
||||
length--;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t empty_hi64(bool& truncated) noexcept {
|
||||
truncated = false;
|
||||
return 0;
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept {
|
||||
truncated = false;
|
||||
int shl = leading_zeroes(r0);
|
||||
return r0 << shl;
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept {
|
||||
int shl = leading_zeroes(r0);
|
||||
if (shl == 0) {
|
||||
truncated = r1 != 0;
|
||||
return r0;
|
||||
} else {
|
||||
int shr = 64 - shl;
|
||||
truncated = (r1 << shl) != 0;
|
||||
return (r0 << shl) | (r1 >> shr);
|
||||
}
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept {
|
||||
return uint64_hi64(r0, truncated);
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept {
|
||||
uint64_t x0 = r0;
|
||||
uint64_t x1 = r1;
|
||||
return uint64_hi64((x0 << 32) | x1, truncated);
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept {
|
||||
uint64_t x0 = r0;
|
||||
uint64_t x1 = r1;
|
||||
uint64_t x2 = r2;
|
||||
return uint64_hi64(x0, (x1 << 32) | x2, truncated);
|
||||
}
|
||||
|
||||
// add two small integers, checking for overflow.
|
||||
// we want an efficient operation. for msvc, where
|
||||
// we don't have built-in intrinsics, this is still
|
||||
// pretty fast.
|
||||
fastfloat_really_inline
|
||||
limb scalar_add(limb x, limb y, bool& overflow) noexcept {
|
||||
limb z;
|
||||
|
||||
// gcc and clang
|
||||
#if defined(__has_builtin)
|
||||
#if __has_builtin(__builtin_add_overflow)
|
||||
overflow = __builtin_add_overflow(x, y, &z);
|
||||
return z;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// generic, this still optimizes correctly on MSVC.
|
||||
z = x + y;
|
||||
overflow = z < x;
|
||||
return z;
|
||||
}
|
||||
|
||||
// multiply two small integers, getting both the high and low bits.
|
||||
fastfloat_really_inline
|
||||
limb scalar_mul(limb x, limb y, limb& carry) noexcept {
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
#if defined(__SIZEOF_INT128__)
|
||||
// GCC and clang both define it as an extension.
|
||||
__uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
|
||||
carry = limb(z >> limb_bits);
|
||||
return limb(z);
|
||||
#else
|
||||
// fallback, no native 128-bit integer multiplication with carry.
|
||||
// on msvc, this optimizes identically, somehow.
|
||||
value128 z = full_multiplication(x, y);
|
||||
bool overflow;
|
||||
z.low = scalar_add(z.low, carry, overflow);
|
||||
z.high += uint64_t(overflow); // cannot overflow
|
||||
carry = z.high;
|
||||
return z.low;
|
||||
#endif
|
||||
#else
|
||||
uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
|
||||
carry = limb(z >> limb_bits);
|
||||
return limb(z);
|
||||
#endif
|
||||
}
|
||||
|
||||
// add scalar value to bigint starting from offset.
|
||||
// used in grade school multiplication
|
||||
template <uint16_t size>
|
||||
inline bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept {
|
||||
size_t index = start;
|
||||
limb carry = y;
|
||||
bool overflow;
|
||||
while (carry != 0 && index < vec.len()) {
|
||||
vec[index] = scalar_add(vec[index], carry, overflow);
|
||||
carry = limb(overflow);
|
||||
index += 1;
|
||||
}
|
||||
if (carry != 0) {
|
||||
FASTFLOAT_TRY(vec.try_push(carry));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// add scalar value to bigint.
|
||||
template <uint16_t size>
|
||||
fastfloat_really_inline bool small_add(stackvec<size>& vec, limb y) noexcept {
|
||||
return small_add_from(vec, y, 0);
|
||||
}
|
||||
|
||||
// multiply bigint by scalar value.
|
||||
template <uint16_t size>
|
||||
inline bool small_mul(stackvec<size>& vec, limb y) noexcept {
|
||||
limb carry = 0;
|
||||
for (size_t index = 0; index < vec.len(); index++) {
|
||||
vec[index] = scalar_mul(vec[index], y, carry);
|
||||
}
|
||||
if (carry != 0) {
|
||||
FASTFLOAT_TRY(vec.try_push(carry));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// add bigint to bigint starting from index.
|
||||
// used in grade school multiplication
|
||||
template <uint16_t size>
|
||||
bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept {
|
||||
// the effective x buffer is from `xstart..x.len()`, so exit early
|
||||
// if we can't get that current range.
|
||||
if (x.len() < start || y.len() > x.len() - start) {
|
||||
FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
|
||||
}
|
||||
|
||||
bool carry = false;
|
||||
for (size_t index = 0; index < y.len(); index++) {
|
||||
limb xi = x[index + start];
|
||||
limb yi = y[index];
|
||||
bool c1 = false;
|
||||
bool c2 = false;
|
||||
xi = scalar_add(xi, yi, c1);
|
||||
if (carry) {
|
||||
xi = scalar_add(xi, 1, c2);
|
||||
}
|
||||
x[index + start] = xi;
|
||||
carry = c1 | c2;
|
||||
}
|
||||
|
||||
// handle overflow
|
||||
if (carry) {
|
||||
FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// add bigint to bigint.
|
||||
template <uint16_t size>
|
||||
fastfloat_really_inline bool large_add_from(stackvec<size>& x, limb_span y) noexcept {
|
||||
return large_add_from(x, y, 0);
|
||||
}
|
||||
|
||||
// grade-school multiplication algorithm
|
||||
template <uint16_t size>
|
||||
bool long_mul(stackvec<size>& x, limb_span y) noexcept {
|
||||
limb_span xs = limb_span(x.data, x.len());
|
||||
stackvec<size> z(xs);
|
||||
limb_span zs = limb_span(z.data, z.len());
|
||||
|
||||
if (y.len() != 0) {
|
||||
limb y0 = y[0];
|
||||
FASTFLOAT_TRY(small_mul(x, y0));
|
||||
for (size_t index = 1; index < y.len(); index++) {
|
||||
limb yi = y[index];
|
||||
stackvec<size> zi;
|
||||
if (yi != 0) {
|
||||
// re-use the same buffer throughout
|
||||
zi.set_len(0);
|
||||
FASTFLOAT_TRY(zi.try_extend(zs));
|
||||
FASTFLOAT_TRY(small_mul(zi, yi));
|
||||
limb_span zis = limb_span(zi.data, zi.len());
|
||||
FASTFLOAT_TRY(large_add_from(x, zis, index));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
x.normalize();
|
||||
return true;
|
||||
}
|
||||
|
||||
// grade-school multiplication algorithm
|
||||
template <uint16_t size>
|
||||
bool large_mul(stackvec<size>& x, limb_span y) noexcept {
|
||||
if (y.len() == 1) {
|
||||
FASTFLOAT_TRY(small_mul(x, y[0]));
|
||||
} else {
|
||||
FASTFLOAT_TRY(long_mul(x, y));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// big integer type. implements a small subset of big integer
|
||||
// arithmetic, using simple algorithms since asymptotically
|
||||
// faster algorithms are slower for a small number of limbs.
|
||||
// all operations assume the big-integer is normalized.
|
||||
struct bigint {
|
||||
// storage of the limbs, in little-endian order.
|
||||
stackvec<bigint_limbs> vec;
|
||||
|
||||
bigint(): vec() {}
|
||||
bigint(const bigint &) = delete;
|
||||
bigint &operator=(const bigint &) = delete;
|
||||
bigint(bigint &&) = delete;
|
||||
bigint &operator=(bigint &&other) = delete;
|
||||
|
||||
bigint(uint64_t value): vec() {
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
vec.push_unchecked(value);
|
||||
#else
|
||||
vec.push_unchecked(uint32_t(value));
|
||||
vec.push_unchecked(uint32_t(value >> 32));
|
||||
#endif
|
||||
vec.normalize();
|
||||
}
|
||||
|
||||
// get the high 64 bits from the vector, and if bits were truncated.
|
||||
// this is to get the significant digits for the float.
|
||||
uint64_t hi64(bool& truncated) const noexcept {
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
if (vec.len() == 0) {
|
||||
return empty_hi64(truncated);
|
||||
} else if (vec.len() == 1) {
|
||||
return uint64_hi64(vec.rindex(0), truncated);
|
||||
} else {
|
||||
uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
|
||||
truncated |= vec.nonzero(2);
|
||||
return result;
|
||||
}
|
||||
#else
|
||||
if (vec.len() == 0) {
|
||||
return empty_hi64(truncated);
|
||||
} else if (vec.len() == 1) {
|
||||
return uint32_hi64(vec.rindex(0), truncated);
|
||||
} else if (vec.len() == 2) {
|
||||
return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
|
||||
} else {
|
||||
uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
|
||||
truncated |= vec.nonzero(3);
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// compare two big integers, returning the large value.
|
||||
// assumes both are normalized. if the return value is
|
||||
// negative, other is larger, if the return value is
|
||||
// positive, this is larger, otherwise they are equal.
|
||||
// the limbs are stored in little-endian order, so we
|
||||
// must compare the limbs in ever order.
|
||||
int compare(const bigint& other) const noexcept {
|
||||
if (vec.len() > other.vec.len()) {
|
||||
return 1;
|
||||
} else if (vec.len() < other.vec.len()) {
|
||||
return -1;
|
||||
} else {
|
||||
for (size_t index = vec.len(); index > 0; index--) {
|
||||
limb xi = vec[index - 1];
|
||||
limb yi = other.vec[index - 1];
|
||||
if (xi > yi) {
|
||||
return 1;
|
||||
} else if (xi < yi) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// shift left each limb n bits, carrying over to the new limb
|
||||
// returns true if we were able to shift all the digits.
|
||||
bool shl_bits(size_t n) noexcept {
|
||||
// Internally, for each item, we shift left by n, and add the previous
|
||||
// right shifted limb-bits.
|
||||
// For example, we transform (for u8) shifted left 2, to:
|
||||
// b10100100 b01000010
|
||||
// b10 b10010001 b00001000
|
||||
FASTFLOAT_DEBUG_ASSERT(n != 0);
|
||||
FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
|
||||
|
||||
size_t shl = n;
|
||||
size_t shr = limb_bits - shl;
|
||||
limb prev = 0;
|
||||
for (size_t index = 0; index < vec.len(); index++) {
|
||||
limb xi = vec[index];
|
||||
vec[index] = (xi << shl) | (prev >> shr);
|
||||
prev = xi;
|
||||
}
|
||||
|
||||
limb carry = prev >> shr;
|
||||
if (carry != 0) {
|
||||
return vec.try_push(carry);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// move the limbs left by `n` limbs.
|
||||
bool shl_limbs(size_t n) noexcept {
|
||||
FASTFLOAT_DEBUG_ASSERT(n != 0);
|
||||
if (n + vec.len() > vec.capacity()) {
|
||||
return false;
|
||||
} else if (!vec.is_empty()) {
|
||||
// move limbs
|
||||
limb* dst = vec.data + n;
|
||||
const limb* src = vec.data;
|
||||
::memmove(dst, src, sizeof(limb) * vec.len());
|
||||
// fill in empty limbs
|
||||
limb* first = vec.data;
|
||||
limb* last = first + n;
|
||||
::std::fill(first, last, 0);
|
||||
vec.set_len(n + vec.len());
|
||||
return true;
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// move the limbs left by `n` bits.
|
||||
bool shl(size_t n) noexcept {
|
||||
size_t rem = n % limb_bits;
|
||||
size_t div = n / limb_bits;
|
||||
if (rem != 0) {
|
||||
FASTFLOAT_TRY(shl_bits(rem));
|
||||
}
|
||||
if (div != 0) {
|
||||
FASTFLOAT_TRY(shl_limbs(div));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// get the number of leading zeros in the bigint.
|
||||
int ctlz() const noexcept {
|
||||
if (vec.is_empty()) {
|
||||
return 0;
|
||||
} else {
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
return leading_zeroes(vec.rindex(0));
|
||||
#else
|
||||
// no use defining a specialized leading_zeroes for a 32-bit type.
|
||||
uint64_t r0 = vec.rindex(0);
|
||||
return leading_zeroes(r0 << 32);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// get the number of bits in the bigint.
|
||||
int bit_length() const noexcept {
|
||||
int lz = ctlz();
|
||||
return int(limb_bits * vec.len()) - lz;
|
||||
}
|
||||
|
||||
bool mul(limb y) noexcept {
|
||||
return small_mul(vec, y);
|
||||
}
|
||||
|
||||
bool add(limb y) noexcept {
|
||||
return small_add(vec, y);
|
||||
}
|
||||
|
||||
// multiply as if by 2 raised to a power.
|
||||
bool pow2(uint32_t exp) noexcept {
|
||||
return shl(exp);
|
||||
}
|
||||
|
||||
// multiply as if by 5 raised to a power.
|
||||
bool pow5(uint32_t exp) noexcept {
|
||||
// multiply by a power of 5
|
||||
static constexpr uint32_t large_step = 135;
|
||||
static constexpr uint64_t small_power_of_5[] = {
|
||||
1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL,
|
||||
1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL,
|
||||
6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL,
|
||||
3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL,
|
||||
2384185791015625UL, 11920928955078125UL, 59604644775390625UL,
|
||||
298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL,
|
||||
};
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
constexpr static limb large_power_of_5[] = {
|
||||
1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
|
||||
10482974169319127550UL, 198276706040285095UL};
|
||||
#else
|
||||
constexpr static limb large_power_of_5[] = {
|
||||
4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
|
||||
1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
|
||||
#endif
|
||||
size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
|
||||
limb_span large = limb_span(large_power_of_5, large_length);
|
||||
while (exp >= large_step) {
|
||||
FASTFLOAT_TRY(large_mul(vec, large));
|
||||
exp -= large_step;
|
||||
}
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
uint32_t small_step = 27;
|
||||
limb max_native = 7450580596923828125UL;
|
||||
#else
|
||||
uint32_t small_step = 13;
|
||||
limb max_native = 1220703125U;
|
||||
#endif
|
||||
while (exp >= small_step) {
|
||||
FASTFLOAT_TRY(small_mul(vec, max_native));
|
||||
exp -= small_step;
|
||||
}
|
||||
if (exp != 0) {
|
||||
FASTFLOAT_TRY(small_mul(vec, limb(small_power_of_5[exp])));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// multiply as if by 10 raised to a power.
|
||||
bool pow10(uint32_t exp) noexcept {
|
||||
FASTFLOAT_TRY(pow5(exp));
|
||||
return pow2(exp);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
|
@ -0,0 +1,194 @@
|
|||
#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
|
||||
#define FASTFLOAT_DECIMAL_TO_BINARY_H
|
||||
|
||||
#include "float_common.h"
|
||||
#include "fast_table.h"
|
||||
#include <cfloat>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating
|
||||
// the result, with the "high" part corresponding to the most significant bits and the
|
||||
// low part corresponding to the least significant bits.
|
||||
//
|
||||
template <int bit_precision>
|
||||
fastfloat_really_inline
|
||||
value128 compute_product_approximation(int64_t q, uint64_t w) {
|
||||
const int index = 2 * int(q - powers::smallest_power_of_five);
|
||||
// For small values of q, e.g., q in [0,27], the answer is always exact because
|
||||
// The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]);
|
||||
// gives the exact answer.
|
||||
value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]);
|
||||
static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]");
|
||||
constexpr uint64_t precision_mask = (bit_precision < 64) ?
|
||||
(uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
|
||||
: uint64_t(0xFFFFFFFFFFFFFFFF);
|
||||
if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower)
|
||||
// regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed.
|
||||
value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]);
|
||||
firstproduct.low += secondproduct.high;
|
||||
if(secondproduct.high > firstproduct.low) {
|
||||
firstproduct.high++;
|
||||
}
|
||||
}
|
||||
return firstproduct;
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
/**
|
||||
* For q in (0,350), we have that
|
||||
* f = (((152170 + 65536) * q ) >> 16);
|
||||
* is equal to
|
||||
* floor(p) + q
|
||||
* where
|
||||
* p = log(5**q)/log(2) = q * log(5)/log(2)
|
||||
*
|
||||
* For negative values of q in (-400,0), we have that
|
||||
* f = (((152170 + 65536) * q ) >> 16);
|
||||
* is equal to
|
||||
* -ceil(p) + q
|
||||
* where
|
||||
* p = log(5**-q)/log(2) = -q * log(5)/log(2)
|
||||
*/
|
||||
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
|
||||
return (((152170 + 65536) * q) >> 16) + 63;
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
// create an adjusted mantissa, biased by the invalid power2
|
||||
// for significant digits already multiplied by 10 ** q.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline
|
||||
adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
|
||||
int hilz = int(w >> 63) ^ 1;
|
||||
adjusted_mantissa answer;
|
||||
answer.mantissa = w << hilz;
|
||||
int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias);
|
||||
return answer;
|
||||
}
|
||||
|
||||
// w * 10 ** q, without rounding the representation up.
|
||||
// the power2 in the exponent will be adjusted by invalid_am_bias.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline
|
||||
adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept {
|
||||
int lz = leading_zeroes(w);
|
||||
w <<= lz;
|
||||
value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
|
||||
return compute_error_scaled<binary>(q, product.high, lz);
|
||||
}
|
||||
|
||||
// w * 10 ** q
|
||||
// The returned value should be a valid ieee64 number that simply need to be packed.
|
||||
// However, in some very rare cases, the computation will fail. In such cases, we
|
||||
// return an adjusted_mantissa with a negative power of 2: the caller should recompute
|
||||
// in such cases.
|
||||
template <typename binary>
|
||||
fastfloat_really_inline
|
||||
adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
|
||||
adjusted_mantissa answer;
|
||||
if ((w == 0) || (q < binary::smallest_power_of_ten())) {
|
||||
answer.power2 = 0;
|
||||
answer.mantissa = 0;
|
||||
// result should be zero
|
||||
return answer;
|
||||
}
|
||||
if (q > binary::largest_power_of_ten()) {
|
||||
// we want to get infinity:
|
||||
answer.power2 = binary::infinite_power();
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
// At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five].
|
||||
|
||||
// We want the most significant bit of i to be 1. Shift if needed.
|
||||
int lz = leading_zeroes(w);
|
||||
w <<= lz;
|
||||
|
||||
// The required precision is binary::mantissa_explicit_bits() + 3 because
|
||||
// 1. We need the implicit bit
|
||||
// 2. We need an extra bit for rounding purposes
|
||||
// 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift)
|
||||
|
||||
value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
|
||||
if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further
|
||||
// In some very rare cases, this could happen, in which case we might need a more accurate
|
||||
// computation that what we can provide cheaply. This is very, very unlikely.
|
||||
//
|
||||
const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0,
|
||||
// and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation.
|
||||
if(!inside_safe_exponent) {
|
||||
return compute_error_scaled<binary>(q, product.high, lz);
|
||||
}
|
||||
}
|
||||
// The "compute_product_approximation" function can be slightly slower than a branchless approach:
|
||||
// value128 product = compute_product(q, w);
|
||||
// but in practice, we can win big with the compute_product_approximation if its additional branch
|
||||
// is easily predicted. Which is best is data specific.
|
||||
int upperbit = int(product.high >> 63);
|
||||
|
||||
answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
|
||||
|
||||
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent());
|
||||
if (answer.power2 <= 0) { // we have a subnormal?
|
||||
// Here have that answer.power2 <= 0 so -answer.power2 >= 0
|
||||
if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure.
|
||||
answer.power2 = 0;
|
||||
answer.mantissa = 0;
|
||||
// result should be zero
|
||||
return answer;
|
||||
}
|
||||
// next line is safe because -answer.power2 + 1 < 64
|
||||
answer.mantissa >>= -answer.power2 + 1;
|
||||
// Thankfully, we can't have both "round-to-even" and subnormals because
|
||||
// "round-to-even" only occurs for powers close to 0.
|
||||
answer.mantissa += (answer.mantissa & 1); // round up
|
||||
answer.mantissa >>= 1;
|
||||
// There is a weird scenario where we don't have a subnormal but just.
|
||||
// Suppose we start with 2.2250738585072013e-308, we end up
|
||||
// with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
|
||||
// whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
|
||||
// up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
|
||||
// subnormal, but we can only know this after rounding.
|
||||
// So we only declare a subnormal if we are smaller than the threshold.
|
||||
answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1;
|
||||
return answer;
|
||||
}
|
||||
|
||||
// usually, we round *up*, but if we fall right in between and and we have an
|
||||
// even basis, we need to round down
|
||||
// We are only concerned with the cases where 5**q fits in single 64-bit word.
|
||||
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) &&
|
||||
((answer.mantissa & 3) == 1) ) { // we may fall between two floats!
|
||||
// To be in-between two floats we need that in doing
|
||||
// answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
|
||||
// ... we dropped out only zeroes. But if this happened, then we can go back!!!
|
||||
if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) {
|
||||
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
|
||||
}
|
||||
}
|
||||
|
||||
answer.mantissa += (answer.mantissa & 1); // round up
|
||||
answer.mantissa >>= 1;
|
||||
if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
|
||||
answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
|
||||
answer.power2++; // undo previous addition
|
||||
}
|
||||
|
||||
answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
|
||||
if (answer.power2 >= binary::infinite_power()) { // infinity
|
||||
answer.power2 = binary::infinite_power();
|
||||
answer.mantissa = 0;
|
||||
}
|
||||
return answer;
|
||||
}
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
|
@ -0,0 +1,407 @@
|
|||
#ifndef FASTFLOAT_DIGIT_COMPARISON_H
|
||||
#define FASTFLOAT_DIGIT_COMPARISON_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
#include <iterator>
|
||||
|
||||
#include "float_common.h"
|
||||
#include "bigint.h"
|
||||
#include "ascii_number.h"
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
// 1e0 to 1e19
|
||||
constexpr static uint64_t powers_of_ten_uint64[] = {
|
||||
1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
|
||||
1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
|
||||
100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
|
||||
1000000000000000000UL, 10000000000000000000UL};
|
||||
|
||||
// calculate the exponent, in scientific notation, of the number.
|
||||
// this algorithm is not even close to optimized, but it has no practical
|
||||
// effect on performance: in order to have a faster algorithm, we'd need
|
||||
// to slow down performance for faster algorithms, and this is still fast.
|
||||
fastfloat_really_inline int32_t scientific_exponent(parsed_number_string& num) noexcept {
|
||||
uint64_t mantissa = num.mantissa;
|
||||
int32_t exponent = int32_t(num.exponent);
|
||||
while (mantissa >= 10000) {
|
||||
mantissa /= 10000;
|
||||
exponent += 4;
|
||||
}
|
||||
while (mantissa >= 100) {
|
||||
mantissa /= 100;
|
||||
exponent += 2;
|
||||
}
|
||||
while (mantissa >= 10) {
|
||||
mantissa /= 10;
|
||||
exponent += 1;
|
||||
}
|
||||
return exponent;
|
||||
}
|
||||
|
||||
// this converts a native floating-point number to an extended-precision float.
|
||||
template <typename T>
|
||||
fastfloat_really_inline adjusted_mantissa to_extended(T value) noexcept {
|
||||
using equiv_uint = typename binary_format<T>::equiv_uint;
|
||||
constexpr equiv_uint exponent_mask = binary_format<T>::exponent_mask();
|
||||
constexpr equiv_uint mantissa_mask = binary_format<T>::mantissa_mask();
|
||||
constexpr equiv_uint hidden_bit_mask = binary_format<T>::hidden_bit_mask();
|
||||
|
||||
adjusted_mantissa am;
|
||||
int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
|
||||
equiv_uint bits;
|
||||
::memcpy(&bits, &value, sizeof(T));
|
||||
if ((bits & exponent_mask) == 0) {
|
||||
// denormal
|
||||
am.power2 = 1 - bias;
|
||||
am.mantissa = bits & mantissa_mask;
|
||||
} else {
|
||||
// normal
|
||||
am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
|
||||
am.power2 -= bias;
|
||||
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
|
||||
}
|
||||
|
||||
return am;
|
||||
}
|
||||
|
||||
// get the extended precision value of the halfway point between b and b+u.
|
||||
// we are given a native float that represents b, so we need to adjust it
|
||||
// halfway between b and b+u.
|
||||
template <typename T>
|
||||
fastfloat_really_inline adjusted_mantissa to_extended_halfway(T value) noexcept {
|
||||
adjusted_mantissa am = to_extended(value);
|
||||
am.mantissa <<= 1;
|
||||
am.mantissa += 1;
|
||||
am.power2 -= 1;
|
||||
return am;
|
||||
}
|
||||
|
||||
// round an extended-precision float to the nearest machine float.
|
||||
template <typename T, typename callback>
|
||||
fastfloat_really_inline void round(adjusted_mantissa& am, callback cb) noexcept {
|
||||
int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
|
||||
if (-am.power2 >= mantissa_shift) {
|
||||
// have a denormal float
|
||||
int32_t shift = -am.power2 + 1;
|
||||
cb(am, std::min<int32_t>(shift, 64));
|
||||
// check for round-up: if rounding-nearest carried us to the hidden bit.
|
||||
am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
|
||||
return;
|
||||
}
|
||||
|
||||
// have a normal float, use the default shift.
|
||||
cb(am, mantissa_shift);
|
||||
|
||||
// check for carry
|
||||
if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
|
||||
am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
|
||||
am.power2++;
|
||||
}
|
||||
|
||||
// check for infinite: we could have carried to an infinite power
|
||||
am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
|
||||
if (am.power2 >= binary_format<T>::infinite_power()) {
|
||||
am.power2 = binary_format<T>::infinite_power();
|
||||
am.mantissa = 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename callback>
|
||||
fastfloat_really_inline
|
||||
void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
|
||||
uint64_t mask;
|
||||
uint64_t halfway;
|
||||
if (shift == 64) {
|
||||
mask = UINT64_MAX;
|
||||
} else {
|
||||
mask = (uint64_t(1) << shift) - 1;
|
||||
}
|
||||
if (shift == 0) {
|
||||
halfway = 0;
|
||||
} else {
|
||||
halfway = uint64_t(1) << (shift - 1);
|
||||
}
|
||||
uint64_t truncated_bits = am.mantissa & mask;
|
||||
bool is_above = truncated_bits > halfway;
|
||||
bool is_halfway = truncated_bits == halfway;
|
||||
|
||||
// shift digits into position
|
||||
if (shift == 64) {
|
||||
am.mantissa = 0;
|
||||
} else {
|
||||
am.mantissa >>= shift;
|
||||
}
|
||||
am.power2 += shift;
|
||||
|
||||
bool is_odd = (am.mantissa & 1) == 1;
|
||||
am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
|
||||
}
|
||||
|
||||
fastfloat_really_inline void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
|
||||
if (shift == 64) {
|
||||
am.mantissa = 0;
|
||||
} else {
|
||||
am.mantissa >>= shift;
|
||||
}
|
||||
am.power2 += shift;
|
||||
}
|
||||
|
||||
fastfloat_really_inline void skip_zeros(const char*& first, const char* last) noexcept {
|
||||
uint64_t val;
|
||||
while (std::distance(first, last) >= 8) {
|
||||
::memcpy(&val, first, sizeof(uint64_t));
|
||||
if (val != 0x3030303030303030) {
|
||||
break;
|
||||
}
|
||||
first += 8;
|
||||
}
|
||||
while (first != last) {
|
||||
if (*first != '0') {
|
||||
break;
|
||||
}
|
||||
first++;
|
||||
}
|
||||
}
|
||||
|
||||
// determine if any non-zero digits were truncated.
|
||||
// all characters must be valid digits.
|
||||
fastfloat_really_inline bool is_truncated(const char* first, const char* last) noexcept {
|
||||
// do 8-bit optimizations, can just compare to 8 literal 0s.
|
||||
uint64_t val;
|
||||
while (std::distance(first, last) >= 8) {
|
||||
::memcpy(&val, first, sizeof(uint64_t));
|
||||
if (val != 0x3030303030303030) {
|
||||
return true;
|
||||
}
|
||||
first += 8;
|
||||
}
|
||||
while (first != last) {
|
||||
if (*first != '0') {
|
||||
return true;
|
||||
}
|
||||
first++;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
fastfloat_really_inline bool is_truncated(byte_span s) noexcept {
|
||||
return is_truncated(s.ptr, s.ptr + s.len());
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
|
||||
value = value * 100000000 + parse_eight_digits_unrolled(p);
|
||||
p += 8;
|
||||
counter += 8;
|
||||
count += 8;
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
void parse_one_digit(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
|
||||
value = value * 10 + limb(*p - '0');
|
||||
p++;
|
||||
counter++;
|
||||
count++;
|
||||
}
|
||||
|
||||
fastfloat_really_inline
|
||||
void add_native(bigint& big, limb power, limb value) noexcept {
|
||||
big.mul(power);
|
||||
big.add(value);
|
||||
}
|
||||
|
||||
fastfloat_really_inline void round_up_bigint(bigint& big, size_t& count) noexcept {
|
||||
// need to round-up the digits, but need to avoid rounding
|
||||
// ....9999 to ...10000, which could cause a false halfway point.
|
||||
add_native(big, 10, 1);
|
||||
count++;
|
||||
}
|
||||
|
||||
// parse the significant digits into a big integer
|
||||
inline void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits, size_t& digits) noexcept {
|
||||
// try to minimize the number of big integer and scalar multiplication.
|
||||
// therefore, try to parse 8 digits at a time, and multiply by the largest
|
||||
// scalar value (9 or 19 digits) for each step.
|
||||
size_t counter = 0;
|
||||
digits = 0;
|
||||
limb value = 0;
|
||||
#ifdef FASTFLOAT_64BIT_LIMB
|
||||
size_t step = 19;
|
||||
#else
|
||||
size_t step = 9;
|
||||
#endif
|
||||
|
||||
// process all integer digits.
|
||||
const char* p = num.integer.ptr;
|
||||
const char* pend = p + num.integer.len();
|
||||
skip_zeros(p, pend);
|
||||
// process all digits, in increments of step per loop
|
||||
while (p != pend) {
|
||||
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
|
||||
parse_eight_digits(p, value, counter, digits);
|
||||
}
|
||||
while (counter < step && p != pend && digits < max_digits) {
|
||||
parse_one_digit(p, value, counter, digits);
|
||||
}
|
||||
if (digits == max_digits) {
|
||||
// add the temporary value, then check if we've truncated any digits
|
||||
add_native(result, limb(powers_of_ten_uint64[counter]), value);
|
||||
bool truncated = is_truncated(p, pend);
|
||||
if (num.fraction.ptr != nullptr) {
|
||||
truncated |= is_truncated(num.fraction);
|
||||
}
|
||||
if (truncated) {
|
||||
round_up_bigint(result, digits);
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
add_native(result, limb(powers_of_ten_uint64[counter]), value);
|
||||
counter = 0;
|
||||
value = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// add our fraction digits, if they're available.
|
||||
if (num.fraction.ptr != nullptr) {
|
||||
p = num.fraction.ptr;
|
||||
pend = p + num.fraction.len();
|
||||
if (digits == 0) {
|
||||
skip_zeros(p, pend);
|
||||
}
|
||||
// process all digits, in increments of step per loop
|
||||
while (p != pend) {
|
||||
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
|
||||
parse_eight_digits(p, value, counter, digits);
|
||||
}
|
||||
while (counter < step && p != pend && digits < max_digits) {
|
||||
parse_one_digit(p, value, counter, digits);
|
||||
}
|
||||
if (digits == max_digits) {
|
||||
// add the temporary value, then check if we've truncated any digits
|
||||
add_native(result, limb(powers_of_ten_uint64[counter]), value);
|
||||
bool truncated = is_truncated(p, pend);
|
||||
if (truncated) {
|
||||
round_up_bigint(result, digits);
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
add_native(result, limb(powers_of_ten_uint64[counter]), value);
|
||||
counter = 0;
|
||||
value = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (counter != 0) {
|
||||
add_native(result, limb(powers_of_ten_uint64[counter]), value);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
|
||||
FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
|
||||
adjusted_mantissa answer;
|
||||
bool truncated;
|
||||
answer.mantissa = bigmant.hi64(truncated);
|
||||
int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
|
||||
answer.power2 = bigmant.bit_length() - 64 + bias;
|
||||
|
||||
round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
|
||||
round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
|
||||
return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
|
||||
});
|
||||
});
|
||||
|
||||
return answer;
|
||||
}
|
||||
|
||||
// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
|
||||
// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
|
||||
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
|
||||
// we then need to scale by `2^(f- e)`, and then the two significant digits
|
||||
// are of the same magnitude.
|
||||
template <typename T>
|
||||
inline adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
|
||||
bigint& real_digits = bigmant;
|
||||
int32_t real_exp = exponent;
|
||||
|
||||
// get the value of `b`, rounded down, and get a bigint representation of b+h
|
||||
adjusted_mantissa am_b = am;
|
||||
// gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
|
||||
round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
|
||||
T b;
|
||||
to_float(false, am_b, b);
|
||||
adjusted_mantissa theor = to_extended_halfway(b);
|
||||
bigint theor_digits(theor.mantissa);
|
||||
int32_t theor_exp = theor.power2;
|
||||
|
||||
// scale real digits and theor digits to be same power.
|
||||
int32_t pow2_exp = theor_exp - real_exp;
|
||||
uint32_t pow5_exp = uint32_t(-real_exp);
|
||||
if (pow5_exp != 0) {
|
||||
FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
|
||||
}
|
||||
if (pow2_exp > 0) {
|
||||
FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
|
||||
} else if (pow2_exp < 0) {
|
||||
FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
|
||||
}
|
||||
|
||||
// compare digits, and use it to director rounding
|
||||
int ord = real_digits.compare(theor_digits);
|
||||
adjusted_mantissa answer = am;
|
||||
round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
|
||||
round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
|
||||
(void)_; // not needed, since we've done our comparison
|
||||
(void)__; // not needed, since we've done our comparison
|
||||
if (ord > 0) {
|
||||
return true;
|
||||
} else if (ord < 0) {
|
||||
return false;
|
||||
} else {
|
||||
return is_odd;
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
return answer;
|
||||
}
|
||||
|
||||
// parse the significant digits as a big integer to unambiguously round the
|
||||
// the significant digits. here, we are trying to determine how to round
|
||||
// an extended float representation close to `b+h`, halfway between `b`
|
||||
// (the float rounded-down) and `b+u`, the next positive float. this
|
||||
// algorithm is always correct, and uses one of two approaches. when
|
||||
// the exponent is positive relative to the significant digits (such as
|
||||
// 1234), we create a big-integer representation, get the high 64-bits,
|
||||
// determine if any lower bits are truncated, and use that to direct
|
||||
// rounding. in case of a negative exponent relative to the significant
|
||||
// digits (such as 1.2345), we create a theoretical representation of
|
||||
// `b` as a big-integer type, scaled to the same binary exponent as
|
||||
// the actual digits. we then compare the big integer representations
|
||||
// of both, and use that to direct rounding.
|
||||
template <typename T>
|
||||
inline adjusted_mantissa digit_comp(parsed_number_string& num, adjusted_mantissa am) noexcept {
|
||||
// remove the invalid exponent bias
|
||||
am.power2 -= invalid_am_bias;
|
||||
|
||||
int32_t sci_exp = scientific_exponent(num);
|
||||
size_t max_digits = binary_format<T>::max_digits();
|
||||
size_t digits = 0;
|
||||
bigint bigmant;
|
||||
parse_mantissa(bigmant, num, max_digits, digits);
|
||||
// can't underflow, since digits is at most max_digits.
|
||||
int32_t exponent = sci_exp + 1 - int32_t(digits);
|
||||
if (exponent >= 0) {
|
||||
return positive_digit_comp<T>(bigmant, exponent);
|
||||
} else {
|
||||
return negative_digit_comp<T>(bigmant, am, exponent);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
|
@ -0,0 +1,63 @@
|
|||
#ifndef FASTFLOAT_FAST_FLOAT_H
|
||||
#define FASTFLOAT_FAST_FLOAT_H
|
||||
|
||||
#include <system_error>
|
||||
|
||||
namespace fast_float {
|
||||
enum chars_format {
|
||||
scientific = 1<<0,
|
||||
fixed = 1<<2,
|
||||
hex = 1<<3,
|
||||
general = fixed | scientific
|
||||
};
|
||||
|
||||
|
||||
struct from_chars_result {
|
||||
const char *ptr;
|
||||
std::errc ec;
|
||||
};
|
||||
|
||||
struct parse_options {
|
||||
constexpr explicit parse_options(chars_format fmt = chars_format::general,
|
||||
char dot = '.')
|
||||
: format(fmt), decimal_point(dot) {}
|
||||
|
||||
/** Which number formats are accepted */
|
||||
chars_format format;
|
||||
/** The character used as decimal point */
|
||||
char decimal_point;
|
||||
};
|
||||
|
||||
/**
|
||||
* This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
|
||||
* a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale.
|
||||
* The resulting floating-point value is the closest floating-point values (using either float or double),
|
||||
* using the "round to even" convention for values that would otherwise fall right in-between two values.
|
||||
* That is, we provide exact parsing according to the IEEE standard.
|
||||
*
|
||||
* Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
|
||||
* parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
|
||||
* `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
|
||||
*
|
||||
* The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
|
||||
*
|
||||
* Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
|
||||
* the type `fast_float::chars_format`. It is a bitset value: we check whether
|
||||
* `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
|
||||
* to determine whether we allow the fixed point and scientific notation respectively.
|
||||
* The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
|
||||
*/
|
||||
template<typename T>
|
||||
from_chars_result from_chars(const char *first, const char *last,
|
||||
T &value, chars_format fmt = chars_format::general) noexcept;
|
||||
|
||||
/**
|
||||
* Like from_chars, but accepts an `options` argument to govern number parsing.
|
||||
*/
|
||||
template<typename T>
|
||||
from_chars_result from_chars_advanced(const char *first, const char *last,
|
||||
T &value, parse_options options) noexcept;
|
||||
|
||||
} // namespace fast_float
|
||||
#include "parse_number.h"
|
||||
#endif // FASTFLOAT_FAST_FLOAT_H
|
|
@ -0,0 +1,699 @@
|
|||
#ifndef FASTFLOAT_FAST_TABLE_H
|
||||
#define FASTFLOAT_FAST_TABLE_H
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
/**
|
||||
* When mapping numbers from decimal to binary,
|
||||
* we go from w * 10^q to m * 2^p but we have
|
||||
* 10^q = 5^q * 2^q, so effectively
|
||||
* we are trying to match
|
||||
* w * 2^q * 5^q to m * 2^p. Thus the powers of two
|
||||
* are not a concern since they can be represented
|
||||
* exactly using the binary notation, only the powers of five
|
||||
* affect the binary significand.
|
||||
*/
|
||||
|
||||
/**
|
||||
* The smallest non-zero float (binary64) is 2^-1074.
|
||||
* We take as input numbers of the form w x 10^q where w < 2^64.
|
||||
* We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076.
|
||||
* However, we have that
|
||||
* (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^-1074.
|
||||
* Thus it is possible for a number of the form w * 10^-342 where
|
||||
* w is a 64-bit value to be a non-zero floating-point number.
|
||||
*********
|
||||
* Any number of form w * 10^309 where w>= 1 is going to be
|
||||
* infinite in binary64 so we never need to worry about powers
|
||||
* of 5 greater than 308.
|
||||
*/
|
||||
template <class unused = void>
|
||||
struct powers_template {
|
||||
|
||||
constexpr static int smallest_power_of_five = binary_format<double>::smallest_power_of_ten();
|
||||
constexpr static int largest_power_of_five = binary_format<double>::largest_power_of_ten();
|
||||
constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1);
|
||||
// Powers of five from 5^-342 all the way to 5^308 rounded toward one.
|
||||
static const uint64_t power_of_five_128[number_of_entries];
|
||||
};
|
||||
|
||||
template <class unused>
|
||||
const uint64_t powers_template<unused>::power_of_five_128[number_of_entries] = {
|
||||
0xeef453d6923bd65a,0x113faa2906a13b3f,
|
||||
0x9558b4661b6565f8,0x4ac7ca59a424c507,
|
||||
0xbaaee17fa23ebf76,0x5d79bcf00d2df649,
|
||||
0xe95a99df8ace6f53,0xf4d82c2c107973dc,
|
||||
0x91d8a02bb6c10594,0x79071b9b8a4be869,
|
||||
0xb64ec836a47146f9,0x9748e2826cdee284,
|
||||
0xe3e27a444d8d98b7,0xfd1b1b2308169b25,
|
||||
0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7,
|
||||
0xb208ef855c969f4f,0xbdbd2d335e51a935,
|
||||
0xde8b2b66b3bc4723,0xad2c788035e61382,
|
||||
0x8b16fb203055ac76,0x4c3bcb5021afcc31,
|
||||
0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d,
|
||||
0xd953e8624b85dd78,0xd71d6dad34a2af0d,
|
||||
0x87d4713d6f33aa6b,0x8672648c40e5ad68,
|
||||
0xa9c98d8ccb009506,0x680efdaf511f18c2,
|
||||
0xd43bf0effdc0ba48,0x212bd1b2566def2,
|
||||
0x84a57695fe98746d,0x14bb630f7604b57,
|
||||
0xa5ced43b7e3e9188,0x419ea3bd35385e2d,
|
||||
0xcf42894a5dce35ea,0x52064cac828675b9,
|
||||
0x818995ce7aa0e1b2,0x7343efebd1940993,
|
||||
0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8,
|
||||
0xca66fa129f9b60a6,0xd41a26e077774ef6,
|
||||
0xfd00b897478238d0,0x8920b098955522b4,
|
||||
0x9e20735e8cb16382,0x55b46e5f5d5535b0,
|
||||
0xc5a890362fddbc62,0xeb2189f734aa831d,
|
||||
0xf712b443bbd52b7b,0xa5e9ec7501d523e4,
|
||||
0x9a6bb0aa55653b2d,0x47b233c92125366e,
|
||||
0xc1069cd4eabe89f8,0x999ec0bb696e840a,
|
||||
0xf148440a256e2c76,0xc00670ea43ca250d,
|
||||
0x96cd2a865764dbca,0x380406926a5e5728,
|
||||
0xbc807527ed3e12bc,0xc605083704f5ecf2,
|
||||
0xeba09271e88d976b,0xf7864a44c633682e,
|
||||
0x93445b8731587ea3,0x7ab3ee6afbe0211d,
|
||||
0xb8157268fdae9e4c,0x5960ea05bad82964,
|
||||
0xe61acf033d1a45df,0x6fb92487298e33bd,
|
||||
0x8fd0c16206306bab,0xa5d3b6d479f8e056,
|
||||
0xb3c4f1ba87bc8696,0x8f48a4899877186c,
|
||||
0xe0b62e2929aba83c,0x331acdabfe94de87,
|
||||
0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14,
|
||||
0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9,
|
||||
0xdb71e91432b1a24a,0xc9e82cd9f69d6150,
|
||||
0x892731ac9faf056e,0xbe311c083a225cd2,
|
||||
0xab70fe17c79ac6ca,0x6dbd630a48aaf406,
|
||||
0xd64d3d9db981787d,0x92cbbccdad5b108,
|
||||
0x85f0468293f0eb4e,0x25bbf56008c58ea5,
|
||||
0xa76c582338ed2621,0xaf2af2b80af6f24e,
|
||||
0xd1476e2c07286faa,0x1af5af660db4aee1,
|
||||
0x82cca4db847945ca,0x50d98d9fc890ed4d,
|
||||
0xa37fce126597973c,0xe50ff107bab528a0,
|
||||
0xcc5fc196fefd7d0c,0x1e53ed49a96272c8,
|
||||
0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a,
|
||||
0x9faacf3df73609b1,0x77b191618c54e9ac,
|
||||
0xc795830d75038c1d,0xd59df5b9ef6a2417,
|
||||
0xf97ae3d0d2446f25,0x4b0573286b44ad1d,
|
||||
0x9becce62836ac577,0x4ee367f9430aec32,
|
||||
0xc2e801fb244576d5,0x229c41f793cda73f,
|
||||
0xf3a20279ed56d48a,0x6b43527578c1110f,
|
||||
0x9845418c345644d6,0x830a13896b78aaa9,
|
||||
0xbe5691ef416bd60c,0x23cc986bc656d553,
|
||||
0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8,
|
||||
0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9,
|
||||
0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53,
|
||||
0xe858ad248f5c22c9,0xd1b3400f8f9cff68,
|
||||
0x91376c36d99995be,0x23100809b9c21fa1,
|
||||
0xb58547448ffffb2d,0xabd40a0c2832a78a,
|
||||
0xe2e69915b3fff9f9,0x16c90c8f323f516c,
|
||||
0x8dd01fad907ffc3b,0xae3da7d97f6792e3,
|
||||
0xb1442798f49ffb4a,0x99cd11cfdf41779c,
|
||||
0xdd95317f31c7fa1d,0x40405643d711d583,
|
||||
0x8a7d3eef7f1cfc52,0x482835ea666b2572,
|
||||
0xad1c8eab5ee43b66,0xda3243650005eecf,
|
||||
0xd863b256369d4a40,0x90bed43e40076a82,
|
||||
0x873e4f75e2224e68,0x5a7744a6e804a291,
|
||||
0xa90de3535aaae202,0x711515d0a205cb36,
|
||||
0xd3515c2831559a83,0xd5a5b44ca873e03,
|
||||
0x8412d9991ed58091,0xe858790afe9486c2,
|
||||
0xa5178fff668ae0b6,0x626e974dbe39a872,
|
||||
0xce5d73ff402d98e3,0xfb0a3d212dc8128f,
|
||||
0x80fa687f881c7f8e,0x7ce66634bc9d0b99,
|
||||
0xa139029f6a239f72,0x1c1fffc1ebc44e80,
|
||||
0xc987434744ac874e,0xa327ffb266b56220,
|
||||
0xfbe9141915d7a922,0x4bf1ff9f0062baa8,
|
||||
0x9d71ac8fada6c9b5,0x6f773fc3603db4a9,
|
||||
0xc4ce17b399107c22,0xcb550fb4384d21d3,
|
||||
0xf6019da07f549b2b,0x7e2a53a146606a48,
|
||||
0x99c102844f94e0fb,0x2eda7444cbfc426d,
|
||||
0xc0314325637a1939,0xfa911155fefb5308,
|
||||
0xf03d93eebc589f88,0x793555ab7eba27ca,
|
||||
0x96267c7535b763b5,0x4bc1558b2f3458de,
|
||||
0xbbb01b9283253ca2,0x9eb1aaedfb016f16,
|
||||
0xea9c227723ee8bcb,0x465e15a979c1cadc,
|
||||
0x92a1958a7675175f,0xbfacd89ec191ec9,
|
||||
0xb749faed14125d36,0xcef980ec671f667b,
|
||||
0xe51c79a85916f484,0x82b7e12780e7401a,
|
||||
0x8f31cc0937ae58d2,0xd1b2ecb8b0908810,
|
||||
0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15,
|
||||
0xdfbdcece67006ac9,0x67a791e093e1d49a,
|
||||
0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0,
|
||||
0xaecc49914078536d,0x58fae9f773886e18,
|
||||
0xda7f5bf590966848,0xaf39a475506a899e,
|
||||
0x888f99797a5e012d,0x6d8406c952429603,
|
||||
0xaab37fd7d8f58178,0xc8e5087ba6d33b83,
|
||||
0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64,
|
||||
0x855c3be0a17fcd26,0x5cf2eea09a55067f,
|
||||
0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e,
|
||||
0xd0601d8efc57b08b,0xf13b94daf124da26,
|
||||
0x823c12795db6ce57,0x76c53d08d6b70858,
|
||||
0xa2cb1717b52481ed,0x54768c4b0c64ca6e,
|
||||
0xcb7ddcdda26da268,0xa9942f5dcf7dfd09,
|
||||
0xfe5d54150b090b02,0xd3f93b35435d7c4c,
|
||||
0x9efa548d26e5a6e1,0xc47bc5014a1a6daf,
|
||||
0xc6b8e9b0709f109a,0x359ab6419ca1091b,
|
||||
0xf867241c8cc6d4c0,0xc30163d203c94b62,
|
||||
0x9b407691d7fc44f8,0x79e0de63425dcf1d,
|
||||
0xc21094364dfb5636,0x985915fc12f542e4,
|
||||
0xf294b943e17a2bc4,0x3e6f5b7b17b2939d,
|
||||
0x979cf3ca6cec5b5a,0xa705992ceecf9c42,
|
||||
0xbd8430bd08277231,0x50c6ff782a838353,
|
||||
0xece53cec4a314ebd,0xa4f8bf5635246428,
|
||||
0x940f4613ae5ed136,0x871b7795e136be99,
|
||||
0xb913179899f68584,0x28e2557b59846e3f,
|
||||
0xe757dd7ec07426e5,0x331aeada2fe589cf,
|
||||
0x9096ea6f3848984f,0x3ff0d2c85def7621,
|
||||
0xb4bca50b065abe63,0xfed077a756b53a9,
|
||||
0xe1ebce4dc7f16dfb,0xd3e8495912c62894,
|
||||
0x8d3360f09cf6e4bd,0x64712dd7abbbd95c,
|
||||
0xb080392cc4349dec,0xbd8d794d96aacfb3,
|
||||
0xdca04777f541c567,0xecf0d7a0fc5583a0,
|
||||
0x89e42caaf9491b60,0xf41686c49db57244,
|
||||
0xac5d37d5b79b6239,0x311c2875c522ced5,
|
||||
0xd77485cb25823ac7,0x7d633293366b828b,
|
||||
0x86a8d39ef77164bc,0xae5dff9c02033197,
|
||||
0xa8530886b54dbdeb,0xd9f57f830283fdfc,
|
||||
0xd267caa862a12d66,0xd072df63c324fd7b,
|
||||
0x8380dea93da4bc60,0x4247cb9e59f71e6d,
|
||||
0xa46116538d0deb78,0x52d9be85f074e608,
|
||||
0xcd795be870516656,0x67902e276c921f8b,
|
||||
0x806bd9714632dff6,0xba1cd8a3db53b6,
|
||||
0xa086cfcd97bf97f3,0x80e8a40eccd228a4,
|
||||
0xc8a883c0fdaf7df0,0x6122cd128006b2cd,
|
||||
0xfad2a4b13d1b5d6c,0x796b805720085f81,
|
||||
0x9cc3a6eec6311a63,0xcbe3303674053bb0,
|
||||
0xc3f490aa77bd60fc,0xbedbfc4411068a9c,
|
||||
0xf4f1b4d515acb93b,0xee92fb5515482d44,
|
||||
0x991711052d8bf3c5,0x751bdd152d4d1c4a,
|
||||
0xbf5cd54678eef0b6,0xd262d45a78a0635d,
|
||||
0xef340a98172aace4,0x86fb897116c87c34,
|
||||
0x9580869f0e7aac0e,0xd45d35e6ae3d4da0,
|
||||
0xbae0a846d2195712,0x8974836059cca109,
|
||||
0xe998d258869facd7,0x2bd1a438703fc94b,
|
||||
0x91ff83775423cc06,0x7b6306a34627ddcf,
|
||||
0xb67f6455292cbf08,0x1a3bc84c17b1d542,
|
||||
0xe41f3d6a7377eeca,0x20caba5f1d9e4a93,
|
||||
0x8e938662882af53e,0x547eb47b7282ee9c,
|
||||
0xb23867fb2a35b28d,0xe99e619a4f23aa43,
|
||||
0xdec681f9f4c31f31,0x6405fa00e2ec94d4,
|
||||
0x8b3c113c38f9f37e,0xde83bc408dd3dd04,
|
||||
0xae0b158b4738705e,0x9624ab50b148d445,
|
||||
0xd98ddaee19068c76,0x3badd624dd9b0957,
|
||||
0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6,
|
||||
0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c,
|
||||
0xd47487cc8470652b,0x7647c3200069671f,
|
||||
0x84c8d4dfd2c63f3b,0x29ecd9f40041e073,
|
||||
0xa5fb0a17c777cf09,0xf468107100525890,
|
||||
0xcf79cc9db955c2cc,0x7182148d4066eeb4,
|
||||
0x81ac1fe293d599bf,0xc6f14cd848405530,
|
||||
0xa21727db38cb002f,0xb8ada00e5a506a7c,
|
||||
0xca9cf1d206fdc03b,0xa6d90811f0e4851c,
|
||||
0xfd442e4688bd304a,0x908f4a166d1da663,
|
||||
0x9e4a9cec15763e2e,0x9a598e4e043287fe,
|
||||
0xc5dd44271ad3cdba,0x40eff1e1853f29fd,
|
||||
0xf7549530e188c128,0xd12bee59e68ef47c,
|
||||
0x9a94dd3e8cf578b9,0x82bb74f8301958ce,
|
||||
0xc13a148e3032d6e7,0xe36a52363c1faf01,
|
||||
0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1,
|
||||
0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9,
|
||||
0xbcb2b812db11a5de,0x7415d448f6b6f0e7,
|
||||
0xebdf661791d60f56,0x111b495b3464ad21,
|
||||
0x936b9fcebb25c995,0xcab10dd900beec34,
|
||||
0xb84687c269ef3bfb,0x3d5d514f40eea742,
|
||||
0xe65829b3046b0afa,0xcb4a5a3112a5112,
|
||||
0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab,
|
||||
0xb3f4e093db73a093,0x59ed216765690f56,
|
||||
0xe0f218b8d25088b8,0x306869c13ec3532c,
|
||||
0x8c974f7383725573,0x1e414218c73a13fb,
|
||||
0xafbd2350644eeacf,0xe5d1929ef90898fa,
|
||||
0xdbac6c247d62a583,0xdf45f746b74abf39,
|
||||
0x894bc396ce5da772,0x6b8bba8c328eb783,
|
||||
0xab9eb47c81f5114f,0x66ea92f3f326564,
|
||||
0xd686619ba27255a2,0xc80a537b0efefebd,
|
||||
0x8613fd0145877585,0xbd06742ce95f5f36,
|
||||
0xa798fc4196e952e7,0x2c48113823b73704,
|
||||
0xd17f3b51fca3a7a0,0xf75a15862ca504c5,
|
||||
0x82ef85133de648c4,0x9a984d73dbe722fb,
|
||||
0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba,
|
||||
0xcc963fee10b7d1b3,0x318df905079926a8,
|
||||
0xffbbcfe994e5c61f,0xfdf17746497f7052,
|
||||
0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633,
|
||||
0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0,
|
||||
0xf9bd690a1b68637b,0x3dfdce7aa3c673b0,
|
||||
0x9c1661a651213e2d,0x6bea10ca65c084e,
|
||||
0xc31bfa0fe5698db8,0x486e494fcff30a62,
|
||||
0xf3e2f893dec3f126,0x5a89dba3c3efccfa,
|
||||
0x986ddb5c6b3a76b7,0xf89629465a75e01c,
|
||||
0xbe89523386091465,0xf6bbb397f1135823,
|
||||
0xee2ba6c0678b597f,0x746aa07ded582e2c,
|
||||
0x94db483840b717ef,0xa8c2a44eb4571cdc,
|
||||
0xba121a4650e4ddeb,0x92f34d62616ce413,
|
||||
0xe896a0d7e51e1566,0x77b020baf9c81d17,
|
||||
0x915e2486ef32cd60,0xace1474dc1d122e,
|
||||
0xb5b5ada8aaff80b8,0xd819992132456ba,
|
||||
0xe3231912d5bf60e6,0x10e1fff697ed6c69,
|
||||
0x8df5efabc5979c8f,0xca8d3ffa1ef463c1,
|
||||
0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2,
|
||||
0xddd0467c64bce4a0,0xac7cb3f6d05ddbde,
|
||||
0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b,
|
||||
0xad4ab7112eb3929d,0x86c16c98d2c953c6,
|
||||
0xd89d64d57a607744,0xe871c7bf077ba8b7,
|
||||
0x87625f056c7c4a8b,0x11471cd764ad4972,
|
||||
0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf,
|
||||
0xd389b47879823479,0x4aff1d108d4ec2c3,
|
||||
0x843610cb4bf160cb,0xcedf722a585139ba,
|
||||
0xa54394fe1eedb8fe,0xc2974eb4ee658828,
|
||||
0xce947a3da6a9273e,0x733d226229feea32,
|
||||
0x811ccc668829b887,0x806357d5a3f525f,
|
||||
0xa163ff802a3426a8,0xca07c2dcb0cf26f7,
|
||||
0xc9bcff6034c13052,0xfc89b393dd02f0b5,
|
||||
0xfc2c3f3841f17c67,0xbbac2078d443ace2,
|
||||
0x9d9ba7832936edc0,0xd54b944b84aa4c0d,
|
||||
0xc5029163f384a931,0xa9e795e65d4df11,
|
||||
0xf64335bcf065d37d,0x4d4617b5ff4a16d5,
|
||||
0x99ea0196163fa42e,0x504bced1bf8e4e45,
|
||||
0xc06481fb9bcf8d39,0xe45ec2862f71e1d6,
|
||||
0xf07da27a82c37088,0x5d767327bb4e5a4c,
|
||||
0x964e858c91ba2655,0x3a6a07f8d510f86f,
|
||||
0xbbe226efb628afea,0x890489f70a55368b,
|
||||
0xeadab0aba3b2dbe5,0x2b45ac74ccea842e,
|
||||
0x92c8ae6b464fc96f,0x3b0b8bc90012929d,
|
||||
0xb77ada0617e3bbcb,0x9ce6ebb40173744,
|
||||
0xe55990879ddcaabd,0xcc420a6a101d0515,
|
||||
0x8f57fa54c2a9eab6,0x9fa946824a12232d,
|
||||
0xb32df8e9f3546564,0x47939822dc96abf9,
|
||||
0xdff9772470297ebd,0x59787e2b93bc56f7,
|
||||
0x8bfbea76c619ef36,0x57eb4edb3c55b65a,
|
||||
0xaefae51477a06b03,0xede622920b6b23f1,
|
||||
0xdab99e59958885c4,0xe95fab368e45eced,
|
||||
0x88b402f7fd75539b,0x11dbcb0218ebb414,
|
||||
0xaae103b5fcd2a881,0xd652bdc29f26a119,
|
||||
0xd59944a37c0752a2,0x4be76d3346f0495f,
|
||||
0x857fcae62d8493a5,0x6f70a4400c562ddb,
|
||||
0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952,
|
||||
0xd097ad07a71f26b2,0x7e2000a41346a7a7,
|
||||
0x825ecc24c873782f,0x8ed400668c0c28c8,
|
||||
0xa2f67f2dfa90563b,0x728900802f0f32fa,
|
||||
0xcbb41ef979346bca,0x4f2b40a03ad2ffb9,
|
||||
0xfea126b7d78186bc,0xe2f610c84987bfa8,
|
||||
0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9,
|
||||
0xc6ede63fa05d3143,0x91503d1c79720dbb,
|
||||
0xf8a95fcf88747d94,0x75a44c6397ce912a,
|
||||
0x9b69dbe1b548ce7c,0xc986afbe3ee11aba,
|
||||
0xc24452da229b021b,0xfbe85badce996168,
|
||||
0xf2d56790ab41c2a2,0xfae27299423fb9c3,
|
||||
0x97c560ba6b0919a5,0xdccd879fc967d41a,
|
||||
0xbdb6b8e905cb600f,0x5400e987bbc1c920,
|
||||
0xed246723473e3813,0x290123e9aab23b68,
|
||||
0x9436c0760c86e30b,0xf9a0b6720aaf6521,
|
||||
0xb94470938fa89bce,0xf808e40e8d5b3e69,
|
||||
0xe7958cb87392c2c2,0xb60b1d1230b20e04,
|
||||
0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2,
|
||||
0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3,
|
||||
0xe2280b6c20dd5232,0x25c6da63c38de1b0,
|
||||
0x8d590723948a535f,0x579c487e5a38ad0e,
|
||||
0xb0af48ec79ace837,0x2d835a9df0c6d851,
|
||||
0xdcdb1b2798182244,0xf8e431456cf88e65,
|
||||
0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff,
|
||||
0xac8b2d36eed2dac5,0xe272467e3d222f3f,
|
||||
0xd7adf884aa879177,0x5b0ed81dcc6abb0f,
|
||||
0x86ccbb52ea94baea,0x98e947129fc2b4e9,
|
||||
0xa87fea27a539e9a5,0x3f2398d747b36224,
|
||||
0xd29fe4b18e88640e,0x8eec7f0d19a03aad,
|
||||
0x83a3eeeef9153e89,0x1953cf68300424ac,
|
||||
0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7,
|
||||
0xcdb02555653131b6,0x3792f412cb06794d,
|
||||
0x808e17555f3ebf11,0xe2bbd88bbee40bd0,
|
||||
0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4,
|
||||
0xc8de047564d20a8b,0xf245825a5a445275,
|
||||
0xfb158592be068d2e,0xeed6e2f0f0d56712,
|
||||
0x9ced737bb6c4183d,0x55464dd69685606b,
|
||||
0xc428d05aa4751e4c,0xaa97e14c3c26b886,
|
||||
0xf53304714d9265df,0xd53dd99f4b3066a8,
|
||||
0x993fe2c6d07b7fab,0xe546a8038efe4029,
|
||||
0xbf8fdb78849a5f96,0xde98520472bdd033,
|
||||
0xef73d256a5c0f77c,0x963e66858f6d4440,
|
||||
0x95a8637627989aad,0xdde7001379a44aa8,
|
||||
0xbb127c53b17ec159,0x5560c018580d5d52,
|
||||
0xe9d71b689dde71af,0xaab8f01e6e10b4a6,
|
||||
0x9226712162ab070d,0xcab3961304ca70e8,
|
||||
0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22,
|
||||
0xe45c10c42a2b3b05,0x8cb89a7db77c506a,
|
||||
0x8eb98a7a9a5b04e3,0x77f3608e92adb242,
|
||||
0xb267ed1940f1c61c,0x55f038b237591ed3,
|
||||
0xdf01e85f912e37a3,0x6b6c46dec52f6688,
|
||||
0x8b61313bbabce2c6,0x2323ac4b3b3da015,
|
||||
0xae397d8aa96c1b77,0xabec975e0a0d081a,
|
||||
0xd9c7dced53c72255,0x96e7bd358c904a21,
|
||||
0x881cea14545c7575,0x7e50d64177da2e54,
|
||||
0xaa242499697392d2,0xdde50bd1d5d0b9e9,
|
||||
0xd4ad2dbfc3d07787,0x955e4ec64b44e864,
|
||||
0x84ec3c97da624ab4,0xbd5af13bef0b113e,
|
||||
0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e,
|
||||
0xcfb11ead453994ba,0x67de18eda5814af2,
|
||||
0x81ceb32c4b43fcf4,0x80eacf948770ced7,
|
||||
0xa2425ff75e14fc31,0xa1258379a94d028d,
|
||||
0xcad2f7f5359a3b3e,0x96ee45813a04330,
|
||||
0xfd87b5f28300ca0d,0x8bca9d6e188853fc,
|
||||
0x9e74d1b791e07e48,0x775ea264cf55347e,
|
||||
0xc612062576589dda,0x95364afe032a819e,
|
||||
0xf79687aed3eec551,0x3a83ddbd83f52205,
|
||||
0x9abe14cd44753b52,0xc4926a9672793543,
|
||||
0xc16d9a0095928a27,0x75b7053c0f178294,
|
||||
0xf1c90080baf72cb1,0x5324c68b12dd6339,
|
||||
0x971da05074da7bee,0xd3f6fc16ebca5e04,
|
||||
0xbce5086492111aea,0x88f4bb1ca6bcf585,
|
||||
0xec1e4a7db69561a5,0x2b31e9e3d06c32e6,
|
||||
0x9392ee8e921d5d07,0x3aff322e62439fd0,
|
||||
0xb877aa3236a4b449,0x9befeb9fad487c3,
|
||||
0xe69594bec44de15b,0x4c2ebe687989a9b4,
|
||||
0x901d7cf73ab0acd9,0xf9d37014bf60a11,
|
||||
0xb424dc35095cd80f,0x538484c19ef38c95,
|
||||
0xe12e13424bb40e13,0x2865a5f206b06fba,
|
||||
0x8cbccc096f5088cb,0xf93f87b7442e45d4,
|
||||
0xafebff0bcb24aafe,0xf78f69a51539d749,
|
||||
0xdbe6fecebdedd5be,0xb573440e5a884d1c,
|
||||
0x89705f4136b4a597,0x31680a88f8953031,
|
||||
0xabcc77118461cefc,0xfdc20d2b36ba7c3e,
|
||||
0xd6bf94d5e57a42bc,0x3d32907604691b4d,
|
||||
0x8637bd05af6c69b5,0xa63f9a49c2c1b110,
|
||||
0xa7c5ac471b478423,0xfcf80dc33721d54,
|
||||
0xd1b71758e219652b,0xd3c36113404ea4a9,
|
||||
0x83126e978d4fdf3b,0x645a1cac083126ea,
|
||||
0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4,
|
||||
0xcccccccccccccccc,0xcccccccccccccccd,
|
||||
0x8000000000000000,0x0,
|
||||
0xa000000000000000,0x0,
|
||||
0xc800000000000000,0x0,
|
||||
0xfa00000000000000,0x0,
|
||||
0x9c40000000000000,0x0,
|
||||
0xc350000000000000,0x0,
|
||||
0xf424000000000000,0x0,
|
||||
0x9896800000000000,0x0,
|
||||
0xbebc200000000000,0x0,
|
||||
0xee6b280000000000,0x0,
|
||||
0x9502f90000000000,0x0,
|
||||
0xba43b74000000000,0x0,
|
||||
0xe8d4a51000000000,0x0,
|
||||
0x9184e72a00000000,0x0,
|
||||
0xb5e620f480000000,0x0,
|
||||
0xe35fa931a0000000,0x0,
|
||||
0x8e1bc9bf04000000,0x0,
|
||||
0xb1a2bc2ec5000000,0x0,
|
||||
0xde0b6b3a76400000,0x0,
|
||||
0x8ac7230489e80000,0x0,
|
||||
0xad78ebc5ac620000,0x0,
|
||||
0xd8d726b7177a8000,0x0,
|
||||
0x878678326eac9000,0x0,
|
||||
0xa968163f0a57b400,0x0,
|
||||
0xd3c21bcecceda100,0x0,
|
||||
0x84595161401484a0,0x0,
|
||||
0xa56fa5b99019a5c8,0x0,
|
||||
0xcecb8f27f4200f3a,0x0,
|
||||
0x813f3978f8940984,0x4000000000000000,
|
||||
0xa18f07d736b90be5,0x5000000000000000,
|
||||
0xc9f2c9cd04674ede,0xa400000000000000,
|
||||
0xfc6f7c4045812296,0x4d00000000000000,
|
||||
0x9dc5ada82b70b59d,0xf020000000000000,
|
||||
0xc5371912364ce305,0x6c28000000000000,
|
||||
0xf684df56c3e01bc6,0xc732000000000000,
|
||||
0x9a130b963a6c115c,0x3c7f400000000000,
|
||||
0xc097ce7bc90715b3,0x4b9f100000000000,
|
||||
0xf0bdc21abb48db20,0x1e86d40000000000,
|
||||
0x96769950b50d88f4,0x1314448000000000,
|
||||
0xbc143fa4e250eb31,0x17d955a000000000,
|
||||
0xeb194f8e1ae525fd,0x5dcfab0800000000,
|
||||
0x92efd1b8d0cf37be,0x5aa1cae500000000,
|
||||
0xb7abc627050305ad,0xf14a3d9e40000000,
|
||||
0xe596b7b0c643c719,0x6d9ccd05d0000000,
|
||||
0x8f7e32ce7bea5c6f,0xe4820023a2000000,
|
||||
0xb35dbf821ae4f38b,0xdda2802c8a800000,
|
||||
0xe0352f62a19e306e,0xd50b2037ad200000,
|
||||
0x8c213d9da502de45,0x4526f422cc340000,
|
||||
0xaf298d050e4395d6,0x9670b12b7f410000,
|
||||
0xdaf3f04651d47b4c,0x3c0cdd765f114000,
|
||||
0x88d8762bf324cd0f,0xa5880a69fb6ac800,
|
||||
0xab0e93b6efee0053,0x8eea0d047a457a00,
|
||||
0xd5d238a4abe98068,0x72a4904598d6d880,
|
||||
0x85a36366eb71f041,0x47a6da2b7f864750,
|
||||
0xa70c3c40a64e6c51,0x999090b65f67d924,
|
||||
0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d,
|
||||
0x82818f1281ed449f,0xbff8f10e7a8921a4,
|
||||
0xa321f2d7226895c7,0xaff72d52192b6a0d,
|
||||
0xcbea6f8ceb02bb39,0x9bf4f8a69f764490,
|
||||
0xfee50b7025c36a08,0x2f236d04753d5b4,
|
||||
0x9f4f2726179a2245,0x1d762422c946590,
|
||||
0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5,
|
||||
0xf8ebad2b84e0d58b,0xd2e0898765a7deb2,
|
||||
0x9b934c3b330c8577,0x63cc55f49f88eb2f,
|
||||
0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb,
|
||||
0xf316271c7fc3908a,0x8bef464e3945ef7a,
|
||||
0x97edd871cfda3a56,0x97758bf0e3cbb5ac,
|
||||
0xbde94e8e43d0c8ec,0x3d52eeed1cbea317,
|
||||
0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd,
|
||||
0x945e455f24fb1cf8,0x8fe8caa93e74ef6a,
|
||||
0xb975d6b6ee39e436,0xb3e2fd538e122b44,
|
||||
0xe7d34c64a9c85d44,0x60dbbca87196b616,
|
||||
0x90e40fbeea1d3a4a,0xbc8955e946fe31cd,
|
||||
0xb51d13aea4a488dd,0x6babab6398bdbe41,
|
||||
0xe264589a4dcdab14,0xc696963c7eed2dd1,
|
||||
0x8d7eb76070a08aec,0xfc1e1de5cf543ca2,
|
||||
0xb0de65388cc8ada8,0x3b25a55f43294bcb,
|
||||
0xdd15fe86affad912,0x49ef0eb713f39ebe,
|
||||
0x8a2dbf142dfcc7ab,0x6e3569326c784337,
|
||||
0xacb92ed9397bf996,0x49c2c37f07965404,
|
||||
0xd7e77a8f87daf7fb,0xdc33745ec97be906,
|
||||
0x86f0ac99b4e8dafd,0x69a028bb3ded71a3,
|
||||
0xa8acd7c0222311bc,0xc40832ea0d68ce0c,
|
||||
0xd2d80db02aabd62b,0xf50a3fa490c30190,
|
||||
0x83c7088e1aab65db,0x792667c6da79e0fa,
|
||||
0xa4b8cab1a1563f52,0x577001b891185938,
|
||||
0xcde6fd5e09abcf26,0xed4c0226b55e6f86,
|
||||
0x80b05e5ac60b6178,0x544f8158315b05b4,
|
||||
0xa0dc75f1778e39d6,0x696361ae3db1c721,
|
||||
0xc913936dd571c84c,0x3bc3a19cd1e38e9,
|
||||
0xfb5878494ace3a5f,0x4ab48a04065c723,
|
||||
0x9d174b2dcec0e47b,0x62eb0d64283f9c76,
|
||||
0xc45d1df942711d9a,0x3ba5d0bd324f8394,
|
||||
0xf5746577930d6500,0xca8f44ec7ee36479,
|
||||
0x9968bf6abbe85f20,0x7e998b13cf4e1ecb,
|
||||
0xbfc2ef456ae276e8,0x9e3fedd8c321a67e,
|
||||
0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e,
|
||||
0x95d04aee3b80ece5,0xbba1f1d158724a12,
|
||||
0xbb445da9ca61281f,0x2a8a6e45ae8edc97,
|
||||
0xea1575143cf97226,0xf52d09d71a3293bd,
|
||||
0x924d692ca61be758,0x593c2626705f9c56,
|
||||
0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c,
|
||||
0xe498f455c38b997a,0xb6dfb9c0f956447,
|
||||
0x8edf98b59a373fec,0x4724bd4189bd5eac,
|
||||
0xb2977ee300c50fe7,0x58edec91ec2cb657,
|
||||
0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed,
|
||||
0x8b865b215899f46c,0xbd79e0d20082ee74,
|
||||
0xae67f1e9aec07187,0xecd8590680a3aa11,
|
||||
0xda01ee641a708de9,0xe80e6f4820cc9495,
|
||||
0x884134fe908658b2,0x3109058d147fdcdd,
|
||||
0xaa51823e34a7eede,0xbd4b46f0599fd415,
|
||||
0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a,
|
||||
0x850fadc09923329e,0x3e2cf6bc604ddb0,
|
||||
0xa6539930bf6bff45,0x84db8346b786151c,
|
||||
0xcfe87f7cef46ff16,0xe612641865679a63,
|
||||
0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e,
|
||||
0xa26da3999aef7749,0xe3be5e330f38f09d,
|
||||
0xcb090c8001ab551c,0x5cadf5bfd3072cc5,
|
||||
0xfdcb4fa002162a63,0x73d9732fc7c8f7f6,
|
||||
0x9e9f11c4014dda7e,0x2867e7fddcdd9afa,
|
||||
0xc646d63501a1511d,0xb281e1fd541501b8,
|
||||
0xf7d88bc24209a565,0x1f225a7ca91a4226,
|
||||
0x9ae757596946075f,0x3375788de9b06958,
|
||||
0xc1a12d2fc3978937,0x52d6b1641c83ae,
|
||||
0xf209787bb47d6b84,0xc0678c5dbd23a49a,
|
||||
0x9745eb4d50ce6332,0xf840b7ba963646e0,
|
||||
0xbd176620a501fbff,0xb650e5a93bc3d898,
|
||||
0xec5d3fa8ce427aff,0xa3e51f138ab4cebe,
|
||||
0x93ba47c980e98cdf,0xc66f336c36b10137,
|
||||
0xb8a8d9bbe123f017,0xb80b0047445d4184,
|
||||
0xe6d3102ad96cec1d,0xa60dc059157491e5,
|
||||
0x9043ea1ac7e41392,0x87c89837ad68db2f,
|
||||
0xb454e4a179dd1877,0x29babe4598c311fb,
|
||||
0xe16a1dc9d8545e94,0xf4296dd6fef3d67a,
|
||||
0x8ce2529e2734bb1d,0x1899e4a65f58660c,
|
||||
0xb01ae745b101e9e4,0x5ec05dcff72e7f8f,
|
||||
0xdc21a1171d42645d,0x76707543f4fa1f73,
|
||||
0x899504ae72497eba,0x6a06494a791c53a8,
|
||||
0xabfa45da0edbde69,0x487db9d17636892,
|
||||
0xd6f8d7509292d603,0x45a9d2845d3c42b6,
|
||||
0x865b86925b9bc5c2,0xb8a2392ba45a9b2,
|
||||
0xa7f26836f282b732,0x8e6cac7768d7141e,
|
||||
0xd1ef0244af2364ff,0x3207d795430cd926,
|
||||
0x8335616aed761f1f,0x7f44e6bd49e807b8,
|
||||
0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6,
|
||||
0xcd036837130890a1,0x36dba887c37a8c0f,
|
||||
0x802221226be55a64,0xc2494954da2c9789,
|
||||
0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c,
|
||||
0xc83553c5c8965d3d,0x6f92829494e5acc7,
|
||||
0xfa42a8b73abbf48c,0xcb772339ba1f17f9,
|
||||
0x9c69a97284b578d7,0xff2a760414536efb,
|
||||
0xc38413cf25e2d70d,0xfef5138519684aba,
|
||||
0xf46518c2ef5b8cd1,0x7eb258665fc25d69,
|
||||
0x98bf2f79d5993802,0xef2f773ffbd97a61,
|
||||
0xbeeefb584aff8603,0xaafb550ffacfd8fa,
|
||||
0xeeaaba2e5dbf6784,0x95ba2a53f983cf38,
|
||||
0x952ab45cfa97a0b2,0xdd945a747bf26183,
|
||||
0xba756174393d88df,0x94f971119aeef9e4,
|
||||
0xe912b9d1478ceb17,0x7a37cd5601aab85d,
|
||||
0x91abb422ccb812ee,0xac62e055c10ab33a,
|
||||
0xb616a12b7fe617aa,0x577b986b314d6009,
|
||||
0xe39c49765fdf9d94,0xed5a7e85fda0b80b,
|
||||
0x8e41ade9fbebc27d,0x14588f13be847307,
|
||||
0xb1d219647ae6b31c,0x596eb2d8ae258fc8,
|
||||
0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb,
|
||||
0x8aec23d680043bee,0x25de7bb9480d5854,
|
||||
0xada72ccc20054ae9,0xaf561aa79a10ae6a,
|
||||
0xd910f7ff28069da4,0x1b2ba1518094da04,
|
||||
0x87aa9aff79042286,0x90fb44d2f05d0842,
|
||||
0xa99541bf57452b28,0x353a1607ac744a53,
|
||||
0xd3fa922f2d1675f2,0x42889b8997915ce8,
|
||||
0x847c9b5d7c2e09b7,0x69956135febada11,
|
||||
0xa59bc234db398c25,0x43fab9837e699095,
|
||||
0xcf02b2c21207ef2e,0x94f967e45e03f4bb,
|
||||
0x8161afb94b44f57d,0x1d1be0eebac278f5,
|
||||
0xa1ba1ba79e1632dc,0x6462d92a69731732,
|
||||
0xca28a291859bbf93,0x7d7b8f7503cfdcfe,
|
||||
0xfcb2cb35e702af78,0x5cda735244c3d43e,
|
||||
0x9defbf01b061adab,0x3a0888136afa64a7,
|
||||
0xc56baec21c7a1916,0x88aaa1845b8fdd0,
|
||||
0xf6c69a72a3989f5b,0x8aad549e57273d45,
|
||||
0x9a3c2087a63f6399,0x36ac54e2f678864b,
|
||||
0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd,
|
||||
0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5,
|
||||
0x969eb7c47859e743,0x9f644ae5a4b1b325,
|
||||
0xbc4665b596706114,0x873d5d9f0dde1fee,
|
||||
0xeb57ff22fc0c7959,0xa90cb506d155a7ea,
|
||||
0x9316ff75dd87cbd8,0x9a7f12442d588f2,
|
||||
0xb7dcbf5354e9bece,0xc11ed6d538aeb2f,
|
||||
0xe5d3ef282a242e81,0x8f1668c8a86da5fa,
|
||||
0x8fa475791a569d10,0xf96e017d694487bc,
|
||||
0xb38d92d760ec4455,0x37c981dcc395a9ac,
|
||||
0xe070f78d3927556a,0x85bbe253f47b1417,
|
||||
0x8c469ab843b89562,0x93956d7478ccec8e,
|
||||
0xaf58416654a6babb,0x387ac8d1970027b2,
|
||||
0xdb2e51bfe9d0696a,0x6997b05fcc0319e,
|
||||
0x88fcf317f22241e2,0x441fece3bdf81f03,
|
||||
0xab3c2fddeeaad25a,0xd527e81cad7626c3,
|
||||
0xd60b3bd56a5586f1,0x8a71e223d8d3b074,
|
||||
0x85c7056562757456,0xf6872d5667844e49,
|
||||
0xa738c6bebb12d16c,0xb428f8ac016561db,
|
||||
0xd106f86e69d785c7,0xe13336d701beba52,
|
||||
0x82a45b450226b39c,0xecc0024661173473,
|
||||
0xa34d721642b06084,0x27f002d7f95d0190,
|
||||
0xcc20ce9bd35c78a5,0x31ec038df7b441f4,
|
||||
0xff290242c83396ce,0x7e67047175a15271,
|
||||
0x9f79a169bd203e41,0xf0062c6e984d386,
|
||||
0xc75809c42c684dd1,0x52c07b78a3e60868,
|
||||
0xf92e0c3537826145,0xa7709a56ccdf8a82,
|
||||
0x9bbcc7a142b17ccb,0x88a66076400bb691,
|
||||
0xc2abf989935ddbfe,0x6acff893d00ea435,
|
||||
0xf356f7ebf83552fe,0x583f6b8c4124d43,
|
||||
0x98165af37b2153de,0xc3727a337a8b704a,
|
||||
0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c,
|
||||
0xeda2ee1c7064130c,0x1162def06f79df73,
|
||||
0x9485d4d1c63e8be7,0x8addcb5645ac2ba8,
|
||||
0xb9a74a0637ce2ee1,0x6d953e2bd7173692,
|
||||
0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437,
|
||||
0x910ab1d4db9914a0,0x1d9c9892400a22a2,
|
||||
0xb54d5e4a127f59c8,0x2503beb6d00cab4b,
|
||||
0xe2a0b5dc971f303a,0x2e44ae64840fd61d,
|
||||
0x8da471a9de737e24,0x5ceaecfed289e5d2,
|
||||
0xb10d8e1456105dad,0x7425a83e872c5f47,
|
||||
0xdd50f1996b947518,0xd12f124e28f77719,
|
||||
0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f,
|
||||
0xace73cbfdc0bfb7b,0x636cc64d1001550b,
|
||||
0xd8210befd30efa5a,0x3c47f7e05401aa4e,
|
||||
0x8714a775e3e95c78,0x65acfaec34810a71,
|
||||
0xa8d9d1535ce3b396,0x7f1839a741a14d0d,
|
||||
0xd31045a8341ca07c,0x1ede48111209a050,
|
||||
0x83ea2b892091e44d,0x934aed0aab460432,
|
||||
0xa4e4b66b68b65d60,0xf81da84d5617853f,
|
||||
0xce1de40642e3f4b9,0x36251260ab9d668e,
|
||||
0x80d2ae83e9ce78f3,0xc1d72b7c6b426019,
|
||||
0xa1075a24e4421730,0xb24cf65b8612f81f,
|
||||
0xc94930ae1d529cfc,0xdee033f26797b627,
|
||||
0xfb9b7cd9a4a7443c,0x169840ef017da3b1,
|
||||
0x9d412e0806e88aa5,0x8e1f289560ee864e,
|
||||
0xc491798a08a2ad4e,0xf1a6f2bab92a27e2,
|
||||
0xf5b5d7ec8acb58a2,0xae10af696774b1db,
|
||||
0x9991a6f3d6bf1765,0xacca6da1e0a8ef29,
|
||||
0xbff610b0cc6edd3f,0x17fd090a58d32af3,
|
||||
0xeff394dcff8a948e,0xddfc4b4cef07f5b0,
|
||||
0x95f83d0a1fb69cd9,0x4abdaf101564f98e,
|
||||
0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1,
|
||||
0xea53df5fd18d5513,0x84c86189216dc5ed,
|
||||
0x92746b9be2f8552c,0x32fd3cf5b4e49bb4,
|
||||
0xb7118682dbb66a77,0x3fbc8c33221dc2a1,
|
||||
0xe4d5e82392a40515,0xfabaf3feaa5334a,
|
||||
0x8f05b1163ba6832d,0x29cb4d87f2a7400e,
|
||||
0xb2c71d5bca9023f8,0x743e20e9ef511012,
|
||||
0xdf78e4b2bd342cf6,0x914da9246b255416,
|
||||
0x8bab8eefb6409c1a,0x1ad089b6c2f7548e,
|
||||
0xae9672aba3d0c320,0xa184ac2473b529b1,
|
||||
0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e,
|
||||
0x8865899617fb1871,0x7e2fa67c7a658892,
|
||||
0xaa7eebfb9df9de8d,0xddbb901b98feeab7,
|
||||
0xd51ea6fa85785631,0x552a74227f3ea565,
|
||||
0x8533285c936b35de,0xd53a88958f87275f,
|
||||
0xa67ff273b8460356,0x8a892abaf368f137,
|
||||
0xd01fef10a657842c,0x2d2b7569b0432d85,
|
||||
0x8213f56a67f6b29b,0x9c3b29620e29fc73,
|
||||
0xa298f2c501f45f42,0x8349f3ba91b47b8f,
|
||||
0xcb3f2f7642717713,0x241c70a936219a73,
|
||||
0xfe0efb53d30dd4d7,0xed238cd383aa0110,
|
||||
0x9ec95d1463e8a506,0xf4363804324a40aa,
|
||||
0xc67bb4597ce2ce48,0xb143c6053edcd0d5,
|
||||
0xf81aa16fdc1b81da,0xdd94b7868e94050a,
|
||||
0x9b10a4e5e9913128,0xca7cf2b4191c8326,
|
||||
0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0,
|
||||
0xf24a01a73cf2dccf,0xbc633b39673c8cec,
|
||||
0x976e41088617ca01,0xd5be0503e085d813,
|
||||
0xbd49d14aa79dbc82,0x4b2d8644d8a74e18,
|
||||
0xec9c459d51852ba2,0xddf8e7d60ed1219e,
|
||||
0x93e1ab8252f33b45,0xcabb90e5c942b503,
|
||||
0xb8da1662e7b00a17,0x3d6a751f3b936243,
|
||||
0xe7109bfba19c0c9d,0xcc512670a783ad4,
|
||||
0x906a617d450187e2,0x27fb2b80668b24c5,
|
||||
0xb484f9dc9641e9da,0xb1f9f660802dedf6,
|
||||
0xe1a63853bbd26451,0x5e7873f8a0396973,
|
||||
0x8d07e33455637eb2,0xdb0b487b6423e1e8,
|
||||
0xb049dc016abc5e5f,0x91ce1a9a3d2cda62,
|
||||
0xdc5c5301c56b75f7,0x7641a140cc7810fb,
|
||||
0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d,
|
||||
0xac2820d9623bf429,0x546345fa9fbdcd44,
|
||||
0xd732290fbacaf133,0xa97c177947ad4095,
|
||||
0x867f59a9d4bed6c0,0x49ed8eabcccc485d,
|
||||
0xa81f301449ee8c70,0x5c68f256bfff5a74,
|
||||
0xd226fc195c6a2f8c,0x73832eec6fff3111,
|
||||
0x83585d8fd9c25db7,0xc831fd53c5ff7eab,
|
||||
0xa42e74f3d032f525,0xba3e7ca8b77f5e55,
|
||||
0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb,
|
||||
0x80444b5e7aa7cf85,0x7980d163cf5b81b3,
|
||||
0xa0555e361951c366,0xd7e105bcc332621f,
|
||||
0xc86ab5c39fa63440,0x8dd9472bf3fefaa7,
|
||||
0xfa856334878fc150,0xb14f98f6f0feb951,
|
||||
0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3,
|
||||
0xc3b8358109e84f07,0xa862f80ec4700c8,
|
||||
0xf4a642e14c6262c8,0xcd27bb612758c0fa,
|
||||
0x98e7e9cccfbd7dbd,0x8038d51cb897789c,
|
||||
0xbf21e44003acdd2c,0xe0470a63e6bd56c3,
|
||||
0xeeea5d5004981478,0x1858ccfce06cac74,
|
||||
0x95527a5202df0ccb,0xf37801e0c43ebc8,
|
||||
0xbaa718e68396cffd,0xd30560258f54e6ba,
|
||||
0xe950df20247c83fd,0x47c6b82ef32a2069,
|
||||
0x91d28b7416cdd27e,0x4cdc331d57fa5441,
|
||||
0xb6472e511c81471d,0xe0133fe4adf8e952,
|
||||
0xe3d8f9e563a198e5,0x58180fddd97723a6,
|
||||
0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,};
|
||||
using powers = powers_template<>;
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
|
@ -0,0 +1,458 @@
|
|||
#ifndef FASTFLOAT_FLOAT_COMMON_H
|
||||
#define FASTFLOAT_FLOAT_COMMON_H
|
||||
|
||||
#include <cfloat>
|
||||
#include <cstdint>
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <type_traits>
|
||||
|
||||
#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) \
|
||||
|| defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \
|
||||
|| defined(__MINGW64__) \
|
||||
|| defined(__s390x__) \
|
||||
|| (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) )
|
||||
#define FASTFLOAT_64BIT 1
|
||||
#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) \
|
||||
|| defined(__arm__) || defined(_M_ARM) \
|
||||
|| defined(__MINGW32__) || defined(__EMSCRIPTEN__))
|
||||
#define FASTFLOAT_32BIT 1
|
||||
#else
|
||||
// Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
|
||||
// We can never tell the register width, but the SIZE_MAX is a good approximation.
|
||||
// UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability.
|
||||
#if SIZE_MAX == 0xffff
|
||||
#error Unknown platform (16-bit, unsupported)
|
||||
#elif SIZE_MAX == 0xffffffff
|
||||
#define FASTFLOAT_32BIT 1
|
||||
#elif SIZE_MAX == 0xffffffffffffffff
|
||||
#define FASTFLOAT_64BIT 1
|
||||
#else
|
||||
#error Unknown platform (not 32-bit, not 64-bit?)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__))
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER) && !defined(__clang__)
|
||||
#define FASTFLOAT_VISUAL_STUDIO 1
|
||||
#endif
|
||||
|
||||
#if defined __BYTE_ORDER__ && defined __ORDER_BIG_ENDIAN__
|
||||
#define FASTFLOAT_IS_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
|
||||
#elif defined _WIN32
|
||||
#define FASTFLOAT_IS_BIG_ENDIAN 0
|
||||
#else
|
||||
#if defined(__APPLE__) || defined(__FreeBSD__)
|
||||
#include <machine/endian.h>
|
||||
#elif defined(sun) || defined(__sun)
|
||||
#include <sys/byteorder.h>
|
||||
#else
|
||||
#ifdef __has_include
|
||||
#if __has_include(<endian.h>)
|
||||
#include <endian.h>
|
||||
#endif //__has_include(<endian.h>)
|
||||
#endif //__has_include
|
||||
#endif
|
||||
#
|
||||
#ifndef __BYTE_ORDER__
|
||||
// safe choice
|
||||
#define FASTFLOAT_IS_BIG_ENDIAN 0
|
||||
#endif
|
||||
#
|
||||
#ifndef __ORDER_LITTLE_ENDIAN__
|
||||
// safe choice
|
||||
#define FASTFLOAT_IS_BIG_ENDIAN 0
|
||||
#endif
|
||||
#
|
||||
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
||||
#define FASTFLOAT_IS_BIG_ENDIAN 0
|
||||
#else
|
||||
#define FASTFLOAT_IS_BIG_ENDIAN 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
#define fastfloat_really_inline __forceinline
|
||||
#else
|
||||
#define fastfloat_really_inline inline __attribute__((always_inline))
|
||||
#endif
|
||||
|
||||
#ifndef FASTFLOAT_ASSERT
|
||||
#define FASTFLOAT_ASSERT(x) { if (!(x)) abort(); }
|
||||
#endif
|
||||
|
||||
#ifndef FASTFLOAT_DEBUG_ASSERT
|
||||
#include <cassert>
|
||||
#define FASTFLOAT_DEBUG_ASSERT(x) assert(x)
|
||||
#endif
|
||||
|
||||
// rust style `try!()` macro, or `?` operator
|
||||
#define FASTFLOAT_TRY(x) { if (!(x)) return false; }
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
// Compares two ASCII strings in a case insensitive manner.
|
||||
inline bool fastfloat_strncasecmp(const char *input1, const char *input2,
|
||||
size_t length) {
|
||||
char running_diff{0};
|
||||
for (size_t i = 0; i < length; i++) {
|
||||
running_diff |= (input1[i] ^ input2[i]);
|
||||
}
|
||||
return (running_diff == 0) || (running_diff == 32);
|
||||
}
|
||||
|
||||
#ifndef FLT_EVAL_METHOD
|
||||
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
|
||||
#endif
|
||||
|
||||
// a pointer and a length to a contiguous block of memory
|
||||
template <typename T>
|
||||
struct span {
|
||||
const T* ptr;
|
||||
size_t length;
|
||||
span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {}
|
||||
span() : ptr(nullptr), length(0) {}
|
||||
|
||||
constexpr size_t len() const noexcept {
|
||||
return length;
|
||||
}
|
||||
|
||||
const T& operator[](size_t index) const noexcept {
|
||||
FASTFLOAT_DEBUG_ASSERT(index < length);
|
||||
return ptr[index];
|
||||
}
|
||||
};
|
||||
|
||||
struct value128 {
|
||||
uint64_t low;
|
||||
uint64_t high;
|
||||
value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
|
||||
value128() : low(0), high(0) {}
|
||||
};
|
||||
|
||||
/* result might be undefined when input_num is zero */
|
||||
fastfloat_really_inline int leading_zeroes(uint64_t input_num) {
|
||||
assert(input_num > 0);
|
||||
#ifdef FASTFLOAT_VISUAL_STUDIO
|
||||
#if defined(_M_X64) || defined(_M_ARM64)
|
||||
unsigned long leading_zero = 0;
|
||||
// Search the mask data from most significant bit (MSB)
|
||||
// to least significant bit (LSB) for a set bit (1).
|
||||
_BitScanReverse64(&leading_zero, input_num);
|
||||
return (int)(63 - leading_zero);
|
||||
#else
|
||||
int last_bit = 0;
|
||||
if(input_num & uint64_t(0xffffffff00000000)) input_num >>= 32, last_bit |= 32;
|
||||
if(input_num & uint64_t( 0xffff0000)) input_num >>= 16, last_bit |= 16;
|
||||
if(input_num & uint64_t( 0xff00)) input_num >>= 8, last_bit |= 8;
|
||||
if(input_num & uint64_t( 0xf0)) input_num >>= 4, last_bit |= 4;
|
||||
if(input_num & uint64_t( 0xc)) input_num >>= 2, last_bit |= 2;
|
||||
if(input_num & uint64_t( 0x2)) input_num >>= 1, last_bit |= 1;
|
||||
return 63 - last_bit;
|
||||
#endif
|
||||
#else
|
||||
return __builtin_clzll(input_num);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef FASTFLOAT_32BIT
|
||||
|
||||
// slow emulation routine for 32-bit
|
||||
fastfloat_really_inline uint64_t emulu(uint32_t x, uint32_t y) {
|
||||
return x * (uint64_t)y;
|
||||
}
|
||||
|
||||
// slow emulation routine for 32-bit
|
||||
#if !defined(__MINGW64__)
|
||||
fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd,
|
||||
uint64_t *hi) {
|
||||
uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
|
||||
uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
|
||||
uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
|
||||
uint64_t adbc_carry = !!(adbc < ad);
|
||||
uint64_t lo = bd + (adbc << 32);
|
||||
*hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
|
||||
(adbc_carry << 32) + !!(lo < bd);
|
||||
return lo;
|
||||
}
|
||||
#endif // !__MINGW64__
|
||||
|
||||
#endif // FASTFLOAT_32BIT
|
||||
|
||||
|
||||
// compute 64-bit a*b
|
||||
fastfloat_really_inline value128 full_multiplication(uint64_t a,
|
||||
uint64_t b) {
|
||||
value128 answer;
|
||||
#if defined(_M_ARM64) && !defined(__MINGW32__)
|
||||
// ARM64 has native support for 64-bit multiplications, no need to emulate
|
||||
// But MinGW on ARM64 doesn't have native support for 64-bit multiplications
|
||||
answer.high = __umulh(a, b);
|
||||
answer.low = a * b;
|
||||
#elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__))
|
||||
answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
|
||||
#elif defined(FASTFLOAT_64BIT)
|
||||
__uint128_t r = ((__uint128_t)a) * b;
|
||||
answer.low = uint64_t(r);
|
||||
answer.high = uint64_t(r >> 64);
|
||||
#else
|
||||
#error Not implemented
|
||||
#endif
|
||||
return answer;
|
||||
}
|
||||
|
||||
struct adjusted_mantissa {
|
||||
uint64_t mantissa{0};
|
||||
int32_t power2{0}; // a negative value indicates an invalid result
|
||||
adjusted_mantissa() = default;
|
||||
bool operator==(const adjusted_mantissa &o) const {
|
||||
return mantissa == o.mantissa && power2 == o.power2;
|
||||
}
|
||||
bool operator!=(const adjusted_mantissa &o) const {
|
||||
return mantissa != o.mantissa || power2 != o.power2;
|
||||
}
|
||||
};
|
||||
|
||||
// Bias so we can get the real exponent with an invalid adjusted_mantissa.
|
||||
constexpr static int32_t invalid_am_bias = -0x8000;
|
||||
|
||||
constexpr static double powers_of_ten_double[] = {
|
||||
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
|
||||
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
|
||||
constexpr static float powers_of_ten_float[] = {1e0f, 1e1f, 1e2f, 1e3f, 1e4f, 1e5f,
|
||||
1e6f, 1e7f, 1e8f, 1e9f, 1e10f};
|
||||
// used for max_mantissa_double and max_mantissa_float
|
||||
constexpr uint64_t constant_55555 = 5 * 5 * 5 * 5 * 5;
|
||||
// Largest integer value v so that (5**index * v) <= 1<<53.
|
||||
// 0x10000000000000 == 1 << 53
|
||||
constexpr static uint64_t max_mantissa_double[] = {
|
||||
0x10000000000000,
|
||||
0x10000000000000 / 5,
|
||||
0x10000000000000 / (5 * 5),
|
||||
0x10000000000000 / (5 * 5 * 5),
|
||||
0x10000000000000 / (5 * 5 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555),
|
||||
0x10000000000000 / (constant_55555 * 5),
|
||||
0x10000000000000 / (constant_55555 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * 5 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * 5 * 5 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * 5 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5),
|
||||
0x10000000000000 / (constant_55555 * constant_55555 * constant_55555 * constant_55555 * 5 * 5 * 5 * 5)};
|
||||
// Largest integer value v so that (5**index * v) <= 1<<24.
|
||||
// 0x1000000 == 1<<24
|
||||
constexpr static uint64_t max_mantissa_float[] = {
|
||||
0x1000000,
|
||||
0x1000000 / 5,
|
||||
0x1000000 / (5 * 5),
|
||||
0x1000000 / (5 * 5 * 5),
|
||||
0x1000000 / (5 * 5 * 5 * 5),
|
||||
0x1000000 / (constant_55555),
|
||||
0x1000000 / (constant_55555 * 5),
|
||||
0x1000000 / (constant_55555 * 5 * 5),
|
||||
0x1000000 / (constant_55555 * 5 * 5 * 5),
|
||||
0x1000000 / (constant_55555 * 5 * 5 * 5 * 5),
|
||||
0x1000000 / (constant_55555 * constant_55555),
|
||||
0x1000000 / (constant_55555 * constant_55555 * 5)};
|
||||
|
||||
template <typename T> struct binary_format {
|
||||
using equiv_uint = typename std::conditional<sizeof(T) == 4, uint32_t, uint64_t>::type;
|
||||
|
||||
static inline constexpr int mantissa_explicit_bits();
|
||||
static inline constexpr int minimum_exponent();
|
||||
static inline constexpr int infinite_power();
|
||||
static inline constexpr int sign_index();
|
||||
static inline constexpr int min_exponent_fast_path(); // used when fegetround() == FE_TONEAREST
|
||||
static inline constexpr int max_exponent_fast_path();
|
||||
static inline constexpr int max_exponent_round_to_even();
|
||||
static inline constexpr int min_exponent_round_to_even();
|
||||
static inline constexpr uint64_t max_mantissa_fast_path(int64_t power);
|
||||
static inline constexpr uint64_t max_mantissa_fast_path(); // used when fegetround() == FE_TONEAREST
|
||||
static inline constexpr int largest_power_of_ten();
|
||||
static inline constexpr int smallest_power_of_ten();
|
||||
static inline constexpr T exact_power_of_ten(int64_t power);
|
||||
static inline constexpr size_t max_digits();
|
||||
static inline constexpr equiv_uint exponent_mask();
|
||||
static inline constexpr equiv_uint mantissa_mask();
|
||||
static inline constexpr equiv_uint hidden_bit_mask();
|
||||
};
|
||||
|
||||
template <> inline constexpr int binary_format<double>::min_exponent_fast_path() {
|
||||
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
|
||||
return 0;
|
||||
#else
|
||||
return -22;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<float>::min_exponent_fast_path() {
|
||||
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
|
||||
return 0;
|
||||
#else
|
||||
return -10;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() {
|
||||
return 52;
|
||||
}
|
||||
template <> inline constexpr int binary_format<float>::mantissa_explicit_bits() {
|
||||
return 23;
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<double>::max_exponent_round_to_even() {
|
||||
return 23;
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<float>::max_exponent_round_to_even() {
|
||||
return 10;
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<double>::min_exponent_round_to_even() {
|
||||
return -4;
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<float>::min_exponent_round_to_even() {
|
||||
return -17;
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<double>::minimum_exponent() {
|
||||
return -1023;
|
||||
}
|
||||
template <> inline constexpr int binary_format<float>::minimum_exponent() {
|
||||
return -127;
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<double>::infinite_power() {
|
||||
return 0x7FF;
|
||||
}
|
||||
template <> inline constexpr int binary_format<float>::infinite_power() {
|
||||
return 0xFF;
|
||||
}
|
||||
|
||||
template <> inline constexpr int binary_format<double>::sign_index() { return 63; }
|
||||
template <> inline constexpr int binary_format<float>::sign_index() { return 31; }
|
||||
|
||||
template <> inline constexpr int binary_format<double>::max_exponent_fast_path() {
|
||||
return 22;
|
||||
}
|
||||
template <> inline constexpr int binary_format<float>::max_exponent_fast_path() {
|
||||
return 10;
|
||||
}
|
||||
template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
|
||||
return uint64_t(2) << mantissa_explicit_bits();
|
||||
}
|
||||
template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path(int64_t power) {
|
||||
// caller is responsible to ensure that
|
||||
// power >= 0 && power <= 22
|
||||
//
|
||||
return max_mantissa_double[power];
|
||||
}
|
||||
template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
|
||||
return uint64_t(2) << mantissa_explicit_bits();
|
||||
}
|
||||
template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path(int64_t power) {
|
||||
// caller is responsible to ensure that
|
||||
// power >= 0 && power <= 10
|
||||
//
|
||||
return max_mantissa_float[power];
|
||||
}
|
||||
|
||||
template <>
|
||||
inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) {
|
||||
return powers_of_ten_double[power];
|
||||
}
|
||||
template <>
|
||||
inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
|
||||
|
||||
return powers_of_ten_float[power];
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
inline constexpr int binary_format<double>::largest_power_of_ten() {
|
||||
return 308;
|
||||
}
|
||||
template <>
|
||||
inline constexpr int binary_format<float>::largest_power_of_ten() {
|
||||
return 38;
|
||||
}
|
||||
|
||||
template <>
|
||||
inline constexpr int binary_format<double>::smallest_power_of_ten() {
|
||||
return -342;
|
||||
}
|
||||
template <>
|
||||
inline constexpr int binary_format<float>::smallest_power_of_ten() {
|
||||
return -65;
|
||||
}
|
||||
|
||||
template <> inline constexpr size_t binary_format<double>::max_digits() {
|
||||
return 769;
|
||||
}
|
||||
template <> inline constexpr size_t binary_format<float>::max_digits() {
|
||||
return 114;
|
||||
}
|
||||
|
||||
template <> inline constexpr binary_format<float>::equiv_uint
|
||||
binary_format<float>::exponent_mask() {
|
||||
return 0x7F800000;
|
||||
}
|
||||
template <> inline constexpr binary_format<double>::equiv_uint
|
||||
binary_format<double>::exponent_mask() {
|
||||
return 0x7FF0000000000000;
|
||||
}
|
||||
|
||||
template <> inline constexpr binary_format<float>::equiv_uint
|
||||
binary_format<float>::mantissa_mask() {
|
||||
return 0x007FFFFF;
|
||||
}
|
||||
template <> inline constexpr binary_format<double>::equiv_uint
|
||||
binary_format<double>::mantissa_mask() {
|
||||
return 0x000FFFFFFFFFFFFF;
|
||||
}
|
||||
|
||||
template <> inline constexpr binary_format<float>::equiv_uint
|
||||
binary_format<float>::hidden_bit_mask() {
|
||||
return 0x00800000;
|
||||
}
|
||||
template <> inline constexpr binary_format<double>::equiv_uint
|
||||
binary_format<double>::hidden_bit_mask() {
|
||||
return 0x0010000000000000;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
fastfloat_really_inline void to_float(bool negative, adjusted_mantissa am, T &value) {
|
||||
uint64_t word = am.mantissa;
|
||||
word |= uint64_t(am.power2) << binary_format<T>::mantissa_explicit_bits();
|
||||
word = negative
|
||||
? word | (uint64_t(1) << binary_format<T>::sign_index()) : word;
|
||||
#if FASTFLOAT_IS_BIG_ENDIAN == 1
|
||||
if (std::is_same<T, float>::value) {
|
||||
::memcpy(&value, (char *)&word + 4, sizeof(T)); // extract value at offset 4-7 if float on big-endian
|
||||
} else {
|
||||
::memcpy(&value, &word, sizeof(T));
|
||||
}
|
||||
#else
|
||||
// For little-endian systems:
|
||||
::memcpy(&value, &word, sizeof(T));
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
|
@ -0,0 +1,205 @@
|
|||
#ifndef FASTFLOAT_PARSE_NUMBER_H
|
||||
#define FASTFLOAT_PARSE_NUMBER_H
|
||||
|
||||
#include "ascii_number.h"
|
||||
#include "decimal_to_binary.h"
|
||||
#include "digit_comparison.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <system_error>
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
|
||||
namespace detail {
|
||||
/**
|
||||
* Special case +inf, -inf, nan, infinity, -infinity.
|
||||
* The case comparisons could be made much faster given that we know that the
|
||||
* strings a null-free and fixed.
|
||||
**/
|
||||
template <typename T>
|
||||
from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept {
|
||||
from_chars_result answer;
|
||||
answer.ptr = first;
|
||||
answer.ec = std::errc(); // be optimistic
|
||||
bool minusSign = false;
|
||||
if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
|
||||
minusSign = true;
|
||||
++first;
|
||||
}
|
||||
if (last - first >= 3) {
|
||||
if (fastfloat_strncasecmp(first, "nan", 3)) {
|
||||
answer.ptr = (first += 3);
|
||||
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
|
||||
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
|
||||
if(first != last && *first == '(') {
|
||||
for(const char* ptr = first + 1; ptr != last; ++ptr) {
|
||||
if (*ptr == ')') {
|
||||
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
|
||||
break;
|
||||
}
|
||||
else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_'))
|
||||
break; // forbidden char, not nan(n-char-seq-opt)
|
||||
}
|
||||
}
|
||||
return answer;
|
||||
}
|
||||
if (fastfloat_strncasecmp(first, "inf", 3)) {
|
||||
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) {
|
||||
answer.ptr = first + 8;
|
||||
} else {
|
||||
answer.ptr = first + 3;
|
||||
}
|
||||
value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
|
||||
return answer;
|
||||
}
|
||||
}
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
return answer;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true if the floating-pointing rounding mode is to 'nearest'.
|
||||
* It is the default on most system. This function is meant to be inexpensive.
|
||||
* Credit : @mwalcott3
|
||||
*/
|
||||
fastfloat_really_inline bool rounds_to_nearest() noexcept {
|
||||
// See
|
||||
// A fast function to check your floating-point rounding mode
|
||||
// https://lemire.me/blog/2022/11/16/a-fast-function-to-check-your-floating-point-rounding-mode/
|
||||
//
|
||||
// This function is meant to be equivalent to :
|
||||
// prior: #include <cfenv>
|
||||
// return fegetround() == FE_TONEAREST;
|
||||
// However, it is expected to be much faster than the fegetround()
|
||||
// function call.
|
||||
//
|
||||
// The volatile keywoard prevents the compiler from computing the function
|
||||
// at compile-time.
|
||||
// There might be other ways to prevent compile-time optimizations (e.g., asm).
|
||||
// The value does not need to be std::numeric_limits<float>::min(), any small
|
||||
// value so that 1 + x should round to 1 would do (after accounting for excess
|
||||
// precision, as in 387 instructions).
|
||||
static volatile float fmin = std::numeric_limits<float>::min();
|
||||
float fmini = fmin; // we copy it so that it gets loaded at most once.
|
||||
//
|
||||
// Explanation:
|
||||
// Only when fegetround() == FE_TONEAREST do we have that
|
||||
// fmin + 1.0f == 1.0f - fmin.
|
||||
//
|
||||
// FE_UPWARD:
|
||||
// fmin + 1.0f > 1
|
||||
// 1.0f - fmin == 1
|
||||
//
|
||||
// FE_DOWNWARD or FE_TOWARDZERO:
|
||||
// fmin + 1.0f == 1
|
||||
// 1.0f - fmin < 1
|
||||
//
|
||||
// Note: This may fail to be accurate if fast-math has been
|
||||
// enabled, as rounding conventions may not apply.
|
||||
#if FASTFLOAT_VISUAL_STUDIO
|
||||
# pragma warning(push)
|
||||
// todo: is there a VS warning?
|
||||
// see https://stackoverflow.com/questions/46079446/is-there-a-warning-for-floating-point-equality-checking-in-visual-studio-2013
|
||||
#elif defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
# pragma clang diagnostic ignored "-Wfloat-equal"
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic push
|
||||
# pragma GCC diagnostic ignored "-Wfloat-equal"
|
||||
#endif
|
||||
return (fmini + 1.0f == 1.0f - fmini);
|
||||
#if FASTFLOAT_VISUAL_STUDIO
|
||||
# pragma warning(pop)
|
||||
#elif defined(__clang__)
|
||||
# pragma clang diagnostic pop
|
||||
#elif defined(__GNUC__)
|
||||
# pragma GCC diagnostic pop
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
template<typename T>
|
||||
from_chars_result from_chars(const char *first, const char *last,
|
||||
T &value, chars_format fmt /*= chars_format::general*/) noexcept {
|
||||
return from_chars_advanced(first, last, value, parse_options{fmt});
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
from_chars_result from_chars_advanced(const char *first, const char *last,
|
||||
T &value, parse_options options) noexcept {
|
||||
|
||||
static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported");
|
||||
|
||||
|
||||
from_chars_result answer;
|
||||
if (first == last) {
|
||||
answer.ec = std::errc::invalid_argument;
|
||||
answer.ptr = first;
|
||||
return answer;
|
||||
}
|
||||
parsed_number_string pns = parse_number_string(first, last, options);
|
||||
if (!pns.valid) {
|
||||
return detail::parse_infnan(first, last, value);
|
||||
}
|
||||
answer.ec = std::errc(); // be optimistic
|
||||
answer.ptr = pns.lastmatch;
|
||||
// The implementation of the Clinger's fast path is convoluted because
|
||||
// we want round-to-nearest in all cases, irrespective of the rounding mode
|
||||
// selected on the thread.
|
||||
// We proceed optimistically, assuming that detail::rounds_to_nearest() returns
|
||||
// true.
|
||||
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && !pns.too_many_digits) {
|
||||
// Unfortunately, the conventional Clinger's fast path is only possible
|
||||
// when the system rounds to the nearest float.
|
||||
//
|
||||
// We expect the next branch to almost always be selected.
|
||||
// We could check it first (before the previous branch), but
|
||||
// there might be performance advantages at having the check
|
||||
// be last.
|
||||
if(detail::rounds_to_nearest()) {
|
||||
// We have that fegetround() == FE_TONEAREST.
|
||||
// Next is Clinger's fast path.
|
||||
if (pns.mantissa <=binary_format<T>::max_mantissa_fast_path()) {
|
||||
value = T(pns.mantissa);
|
||||
if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
|
||||
else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
|
||||
if (pns.negative) { value = -value; }
|
||||
return answer;
|
||||
}
|
||||
} else {
|
||||
// We do not have that fegetround() == FE_TONEAREST.
|
||||
// Next is a modified Clinger's fast path, inspired by Jakub Jelínek's proposal
|
||||
if (pns.exponent >= 0 && pns.mantissa <=binary_format<T>::max_mantissa_fast_path(pns.exponent)) {
|
||||
#if defined(__clang__)
|
||||
// Clang may map 0 to -0.0 when fegetround() == FE_DOWNWARD
|
||||
if(pns.mantissa == 0) {
|
||||
value = 0;
|
||||
return answer;
|
||||
}
|
||||
#endif
|
||||
value = T(pns.mantissa) * binary_format<T>::exact_power_of_ten(pns.exponent);
|
||||
if (pns.negative) { value = -value; }
|
||||
return answer;
|
||||
}
|
||||
}
|
||||
}
|
||||
adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
|
||||
if(pns.too_many_digits && am.power2 >= 0) {
|
||||
if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
|
||||
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
|
||||
}
|
||||
}
|
||||
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
|
||||
// then we need to go the long way around again. This is very uncommon.
|
||||
if(am.power2 < 0) { am = digit_comp<T>(pns, am); }
|
||||
to_float(pns.negative, am, value);
|
||||
return answer;
|
||||
}
|
||||
|
||||
} // namespace fast_float
|
||||
|
||||
#endif
|
|
@ -0,0 +1,360 @@
|
|||
#ifndef FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H
|
||||
#define FASTFLOAT_GENERIC_DECIMAL_TO_BINARY_H
|
||||
|
||||
/**
|
||||
* This code is meant to handle the case where we have more than 19 digits.
|
||||
*
|
||||
* It is based on work by Nigel Tao (at https://github.com/google/wuffs/)
|
||||
* who credits Ken Thompson for the design (via a reference to the Go source
|
||||
* code).
|
||||
*
|
||||
* Rob Pike suggested that this algorithm be called "Simple Decimal Conversion".
|
||||
*
|
||||
* It is probably not very fast but it is a fallback that should almost never
|
||||
* be used in real life. Though it is not fast, it is "easily" understood and debugged.
|
||||
**/
|
||||
#include "ascii_number.h"
|
||||
#include "decimal_to_binary.h"
|
||||
#include <cstdint>
|
||||
|
||||
namespace fast_float {
|
||||
|
||||
namespace detail {
|
||||
|
||||
// remove all final zeroes
|
||||
inline void trim(decimal &h) {
|
||||
while ((h.num_digits > 0) && (h.digits[h.num_digits - 1] == 0)) {
|
||||
h.num_digits--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
inline uint32_t number_of_digits_decimal_left_shift(const decimal &h, uint32_t shift) {
|
||||
shift &= 63;
|
||||
constexpr uint16_t number_of_digits_decimal_left_shift_table[65] = {
|
||||
0x0000, 0x0800, 0x0801, 0x0803, 0x1006, 0x1009, 0x100D, 0x1812, 0x1817,
|
||||
0x181D, 0x2024, 0x202B, 0x2033, 0x203C, 0x2846, 0x2850, 0x285B, 0x3067,
|
||||
0x3073, 0x3080, 0x388E, 0x389C, 0x38AB, 0x38BB, 0x40CC, 0x40DD, 0x40EF,
|
||||
0x4902, 0x4915, 0x4929, 0x513E, 0x5153, 0x5169, 0x5180, 0x5998, 0x59B0,
|
||||
0x59C9, 0x61E3, 0x61FD, 0x6218, 0x6A34, 0x6A50, 0x6A6D, 0x6A8B, 0x72AA,
|
||||
0x72C9, 0x72E9, 0x7B0A, 0x7B2B, 0x7B4D, 0x8370, 0x8393, 0x83B7, 0x83DC,
|
||||
0x8C02, 0x8C28, 0x8C4F, 0x9477, 0x949F, 0x94C8, 0x9CF2, 0x051C, 0x051C,
|
||||
0x051C, 0x051C,
|
||||
};
|
||||
uint32_t x_a = number_of_digits_decimal_left_shift_table[shift];
|
||||
uint32_t x_b = number_of_digits_decimal_left_shift_table[shift + 1];
|
||||
uint32_t num_new_digits = x_a >> 11;
|
||||
uint32_t pow5_a = 0x7FF & x_a;
|
||||
uint32_t pow5_b = 0x7FF & x_b;
|
||||
constexpr uint8_t
|
||||
number_of_digits_decimal_left_shift_table_powers_of_5[0x051C] = {
|
||||
5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3,
|
||||
9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8,
|
||||
1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1,
|
||||
0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8,
|
||||
7, 8, 9, 0, 6, 2, 5, 7, 6, 2, 9, 3, 9, 4, 5, 3, 1, 2, 5, 3, 8, 1, 4, 6,
|
||||
9, 7, 2, 6, 5, 6, 2, 5, 1, 9, 0, 7, 3, 4, 8, 6, 3, 2, 8, 1, 2, 5, 9, 5,
|
||||
3, 6, 7, 4, 3, 1, 6, 4, 0, 6, 2, 5, 4, 7, 6, 8, 3, 7, 1, 5, 8, 2, 0, 3,
|
||||
1, 2, 5, 2, 3, 8, 4, 1, 8, 5, 7, 9, 1, 0, 1, 5, 6, 2, 5, 1, 1, 9, 2, 0,
|
||||
9, 2, 8, 9, 5, 5, 0, 7, 8, 1, 2, 5, 5, 9, 6, 0, 4, 6, 4, 4, 7, 7, 5, 3,
|
||||
9, 0, 6, 2, 5, 2, 9, 8, 0, 2, 3, 2, 2, 3, 8, 7, 6, 9, 5, 3, 1, 2, 5, 1,
|
||||
4, 9, 0, 1, 1, 6, 1, 1, 9, 3, 8, 4, 7, 6, 5, 6, 2, 5, 7, 4, 5, 0, 5, 8,
|
||||
0, 5, 9, 6, 9, 2, 3, 8, 2, 8, 1, 2, 5, 3, 7, 2, 5, 2, 9, 0, 2, 9, 8, 4,
|
||||
6, 1, 9, 1, 4, 0, 6, 2, 5, 1, 8, 6, 2, 6, 4, 5, 1, 4, 9, 2, 3, 0, 9, 5,
|
||||
7, 0, 3, 1, 2, 5, 9, 3, 1, 3, 2, 2, 5, 7, 4, 6, 1, 5, 4, 7, 8, 5, 1, 5,
|
||||
6, 2, 5, 4, 6, 5, 6, 6, 1, 2, 8, 7, 3, 0, 7, 7, 3, 9, 2, 5, 7, 8, 1, 2,
|
||||
5, 2, 3, 2, 8, 3, 0, 6, 4, 3, 6, 5, 3, 8, 6, 9, 6, 2, 8, 9, 0, 6, 2, 5,
|
||||
1, 1, 6, 4, 1, 5, 3, 2, 1, 8, 2, 6, 9, 3, 4, 8, 1, 4, 4, 5, 3, 1, 2, 5,
|
||||
5, 8, 2, 0, 7, 6, 6, 0, 9, 1, 3, 4, 6, 7, 4, 0, 7, 2, 2, 6, 5, 6, 2, 5,
|
||||
2, 9, 1, 0, 3, 8, 3, 0, 4, 5, 6, 7, 3, 3, 7, 0, 3, 6, 1, 3, 2, 8, 1, 2,
|
||||
5, 1, 4, 5, 5, 1, 9, 1, 5, 2, 2, 8, 3, 6, 6, 8, 5, 1, 8, 0, 6, 6, 4, 0,
|
||||
6, 2, 5, 7, 2, 7, 5, 9, 5, 7, 6, 1, 4, 1, 8, 3, 4, 2, 5, 9, 0, 3, 3, 2,
|
||||
0, 3, 1, 2, 5, 3, 6, 3, 7, 9, 7, 8, 8, 0, 7, 0, 9, 1, 7, 1, 2, 9, 5, 1,
|
||||
6, 6, 0, 1, 5, 6, 2, 5, 1, 8, 1, 8, 9, 8, 9, 4, 0, 3, 5, 4, 5, 8, 5, 6,
|
||||
4, 7, 5, 8, 3, 0, 0, 7, 8, 1, 2, 5, 9, 0, 9, 4, 9, 4, 7, 0, 1, 7, 7, 2,
|
||||
9, 2, 8, 2, 3, 7, 9, 1, 5, 0, 3, 9, 0, 6, 2, 5, 4, 5, 4, 7, 4, 7, 3, 5,
|
||||
0, 8, 8, 6, 4, 6, 4, 1, 1, 8, 9, 5, 7, 5, 1, 9, 5, 3, 1, 2, 5, 2, 2, 7,
|
||||
3, 7, 3, 6, 7, 5, 4, 4, 3, 2, 3, 2, 0, 5, 9, 4, 7, 8, 7, 5, 9, 7, 6, 5,
|
||||
6, 2, 5, 1, 1, 3, 6, 8, 6, 8, 3, 7, 7, 2, 1, 6, 1, 6, 0, 2, 9, 7, 3, 9,
|
||||
3, 7, 9, 8, 8, 2, 8, 1, 2, 5, 5, 6, 8, 4, 3, 4, 1, 8, 8, 6, 0, 8, 0, 8,
|
||||
0, 1, 4, 8, 6, 9, 6, 8, 9, 9, 4, 1, 4, 0, 6, 2, 5, 2, 8, 4, 2, 1, 7, 0,
|
||||
9, 4, 3, 0, 4, 0, 4, 0, 0, 7, 4, 3, 4, 8, 4, 4, 9, 7, 0, 7, 0, 3, 1, 2,
|
||||
5, 1, 4, 2, 1, 0, 8, 5, 4, 7, 1, 5, 2, 0, 2, 0, 0, 3, 7, 1, 7, 4, 2, 2,
|
||||
4, 8, 5, 3, 5, 1, 5, 6, 2, 5, 7, 1, 0, 5, 4, 2, 7, 3, 5, 7, 6, 0, 1, 0,
|
||||
0, 1, 8, 5, 8, 7, 1, 1, 2, 4, 2, 6, 7, 5, 7, 8, 1, 2, 5, 3, 5, 5, 2, 7,
|
||||
1, 3, 6, 7, 8, 8, 0, 0, 5, 0, 0, 9, 2, 9, 3, 5, 5, 6, 2, 1, 3, 3, 7, 8,
|
||||
9, 0, 6, 2, 5, 1, 7, 7, 6, 3, 5, 6, 8, 3, 9, 4, 0, 0, 2, 5, 0, 4, 6, 4,
|
||||
6, 7, 7, 8, 1, 0, 6, 6, 8, 9, 4, 5, 3, 1, 2, 5, 8, 8, 8, 1, 7, 8, 4, 1,
|
||||
9, 7, 0, 0, 1, 2, 5, 2, 3, 2, 3, 3, 8, 9, 0, 5, 3, 3, 4, 4, 7, 2, 6, 5,
|
||||
6, 2, 5, 4, 4, 4, 0, 8, 9, 2, 0, 9, 8, 5, 0, 0, 6, 2, 6, 1, 6, 1, 6, 9,
|
||||
4, 5, 2, 6, 6, 7, 2, 3, 6, 3, 2, 8, 1, 2, 5, 2, 2, 2, 0, 4, 4, 6, 0, 4,
|
||||
9, 2, 5, 0, 3, 1, 3, 0, 8, 0, 8, 4, 7, 2, 6, 3, 3, 3, 6, 1, 8, 1, 6, 4,
|
||||
0, 6, 2, 5, 1, 1, 1, 0, 2, 2, 3, 0, 2, 4, 6, 2, 5, 1, 5, 6, 5, 4, 0, 4,
|
||||
2, 3, 6, 3, 1, 6, 6, 8, 0, 9, 0, 8, 2, 0, 3, 1, 2, 5, 5, 5, 5, 1, 1, 1,
|
||||
5, 1, 2, 3, 1, 2, 5, 7, 8, 2, 7, 0, 2, 1, 1, 8, 1, 5, 8, 3, 4, 0, 4, 5,
|
||||
4, 1, 0, 1, 5, 6, 2, 5, 2, 7, 7, 5, 5, 5, 7, 5, 6, 1, 5, 6, 2, 8, 9, 1,
|
||||
3, 5, 1, 0, 5, 9, 0, 7, 9, 1, 7, 0, 2, 2, 7, 0, 5, 0, 7, 8, 1, 2, 5, 1,
|
||||
3, 8, 7, 7, 7, 8, 7, 8, 0, 7, 8, 1, 4, 4, 5, 6, 7, 5, 5, 2, 9, 5, 3, 9,
|
||||
5, 8, 5, 1, 1, 3, 5, 2, 5, 3, 9, 0, 6, 2, 5, 6, 9, 3, 8, 8, 9, 3, 9, 0,
|
||||
3, 9, 0, 7, 2, 2, 8, 3, 7, 7, 6, 4, 7, 6, 9, 7, 9, 2, 5, 5, 6, 7, 6, 2,
|
||||
6, 9, 5, 3, 1, 2, 5, 3, 4, 6, 9, 4, 4, 6, 9, 5, 1, 9, 5, 3, 6, 1, 4, 1,
|
||||
8, 8, 8, 2, 3, 8, 4, 8, 9, 6, 2, 7, 8, 3, 8, 1, 3, 4, 7, 6, 5, 6, 2, 5,
|
||||
1, 7, 3, 4, 7, 2, 3, 4, 7, 5, 9, 7, 6, 8, 0, 7, 0, 9, 4, 4, 1, 1, 9, 2,
|
||||
4, 4, 8, 1, 3, 9, 1, 9, 0, 6, 7, 3, 8, 2, 8, 1, 2, 5, 8, 6, 7, 3, 6, 1,
|
||||
7, 3, 7, 9, 8, 8, 4, 0, 3, 5, 4, 7, 2, 0, 5, 9, 6, 2, 2, 4, 0, 6, 9, 5,
|
||||
9, 5, 3, 3, 6, 9, 1, 4, 0, 6, 2, 5,
|
||||
};
|
||||
const uint8_t *pow5 =
|
||||
&number_of_digits_decimal_left_shift_table_powers_of_5[pow5_a];
|
||||
uint32_t i = 0;
|
||||
uint32_t n = pow5_b - pow5_a;
|
||||
for (; i < n; i++) {
|
||||
if (i >= h.num_digits) {
|
||||
return num_new_digits - 1;
|
||||
} else if (h.digits[i] == pow5[i]) {
|
||||
continue;
|
||||
} else if (h.digits[i] < pow5[i]) {
|
||||
return num_new_digits - 1;
|
||||
} else {
|
||||
return num_new_digits;
|
||||
}
|
||||
}
|
||||
return num_new_digits;
|
||||
}
|
||||
|
||||
inline uint64_t round(decimal &h) {
|
||||
if ((h.num_digits == 0) || (h.decimal_point < 0)) {
|
||||
return 0;
|
||||
} else if (h.decimal_point > 18) {
|
||||
return UINT64_MAX;
|
||||
}
|
||||
// at this point, we know that h.decimal_point >= 0
|
||||
uint32_t dp = uint32_t(h.decimal_point);
|
||||
uint64_t n = 0;
|
||||
for (uint32_t i = 0; i < dp; i++) {
|
||||
n = (10 * n) + ((i < h.num_digits) ? h.digits[i] : 0);
|
||||
}
|
||||
bool round_up = false;
|
||||
if (dp < h.num_digits) {
|
||||
round_up = h.digits[dp] >= 5; // normally, we round up
|
||||
// but we may need to round to even!
|
||||
if ((h.digits[dp] == 5) && (dp + 1 == h.num_digits)) {
|
||||
round_up = h.truncated || ((dp > 0) && (1 & h.digits[dp - 1]));
|
||||
}
|
||||
}
|
||||
if (round_up) {
|
||||
n++;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
// computes h * 2^-shift
|
||||
inline void decimal_left_shift(decimal &h, uint32_t shift) {
|
||||
if (h.num_digits == 0) {
|
||||
return;
|
||||
}
|
||||
uint32_t num_new_digits = number_of_digits_decimal_left_shift(h, shift);
|
||||
int32_t read_index = int32_t(h.num_digits - 1);
|
||||
uint32_t write_index = h.num_digits - 1 + num_new_digits;
|
||||
uint64_t n = 0;
|
||||
|
||||
while (read_index >= 0) {
|
||||
n += uint64_t(h.digits[read_index]) << shift;
|
||||
uint64_t quotient = n / 10;
|
||||
uint64_t remainder = n - (10 * quotient);
|
||||
if (write_index < max_digits) {
|
||||
h.digits[write_index] = uint8_t(remainder);
|
||||
} else if (remainder > 0) {
|
||||
h.truncated = true;
|
||||
}
|
||||
n = quotient;
|
||||
write_index--;
|
||||
read_index--;
|
||||
}
|
||||
while (n > 0) {
|
||||
uint64_t quotient = n / 10;
|
||||
uint64_t remainder = n - (10 * quotient);
|
||||
if (write_index < max_digits) {
|
||||
h.digits[write_index] = uint8_t(remainder);
|
||||
} else if (remainder > 0) {
|
||||
h.truncated = true;
|
||||
}
|
||||
n = quotient;
|
||||
write_index--;
|
||||
}
|
||||
h.num_digits += num_new_digits;
|
||||
if (h.num_digits > max_digits) {
|
||||
h.num_digits = max_digits;
|
||||
}
|
||||
h.decimal_point += int32_t(num_new_digits);
|
||||
trim(h);
|
||||
}
|
||||
|
||||
// computes h * 2^shift
|
||||
inline void decimal_right_shift(decimal &h, uint32_t shift) {
|
||||
uint32_t read_index = 0;
|
||||
uint32_t write_index = 0;
|
||||
|
||||
uint64_t n = 0;
|
||||
|
||||
while ((n >> shift) == 0) {
|
||||
if (read_index < h.num_digits) {
|
||||
n = (10 * n) + h.digits[read_index++];
|
||||
} else if (n == 0) {
|
||||
return;
|
||||
} else {
|
||||
while ((n >> shift) == 0) {
|
||||
n = 10 * n;
|
||||
read_index++;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
h.decimal_point -= int32_t(read_index - 1);
|
||||
if (h.decimal_point < -decimal_point_range) { // it is zero
|
||||
h.num_digits = 0;
|
||||
h.decimal_point = 0;
|
||||
h.negative = false;
|
||||
h.truncated = false;
|
||||
return;
|
||||
}
|
||||
uint64_t mask = (uint64_t(1) << shift) - 1;
|
||||
while (read_index < h.num_digits) {
|
||||
uint8_t new_digit = uint8_t(n >> shift);
|
||||
n = (10 * (n & mask)) + h.digits[read_index++];
|
||||
h.digits[write_index++] = new_digit;
|
||||
}
|
||||
while (n > 0) {
|
||||
uint8_t new_digit = uint8_t(n >> shift);
|
||||
n = 10 * (n & mask);
|
||||
if (write_index < max_digits) {
|
||||
h.digits[write_index++] = new_digit;
|
||||
} else if (new_digit > 0) {
|
||||
h.truncated = true;
|
||||
}
|
||||
}
|
||||
h.num_digits = write_index;
|
||||
trim(h);
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
template <typename binary>
|
||||
adjusted_mantissa compute_float(decimal &d) {
|
||||
adjusted_mantissa answer;
|
||||
if (d.num_digits == 0) {
|
||||
// should be zero
|
||||
answer.power2 = 0;
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
// At this point, going further, we can assume that d.num_digits > 0.
|
||||
//
|
||||
// We want to guard against excessive decimal point values because
|
||||
// they can result in long running times. Indeed, we do
|
||||
// shifts by at most 60 bits. We have that log(10**400)/log(2**60) ~= 22
|
||||
// which is fine, but log(10**299995)/log(2**60) ~= 16609 which is not
|
||||
// fine (runs for a long time).
|
||||
//
|
||||
if(d.decimal_point < -324) {
|
||||
// We have something smaller than 1e-324 which is always zero
|
||||
// in binary64 and binary32.
|
||||
// It should be zero.
|
||||
answer.power2 = 0;
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
} else if(d.decimal_point >= 310) {
|
||||
// We have something at least as large as 0.1e310 which is
|
||||
// always infinite.
|
||||
answer.power2 = binary::infinite_power();
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
constexpr uint32_t max_shift = 60;
|
||||
constexpr uint32_t num_powers = 19;
|
||||
constexpr uint8_t decimal_powers[19] = {
|
||||
0, 3, 6, 9, 13, 16, 19, 23, 26, 29, //
|
||||
33, 36, 39, 43, 46, 49, 53, 56, 59, //
|
||||
};
|
||||
int32_t exp2 = 0;
|
||||
while (d.decimal_point > 0) {
|
||||
uint32_t n = uint32_t(d.decimal_point);
|
||||
uint32_t shift = (n < num_powers) ? decimal_powers[n] : max_shift;
|
||||
detail::decimal_right_shift(d, shift);
|
||||
if (d.decimal_point < -decimal_point_range) {
|
||||
// should be zero
|
||||
answer.power2 = 0;
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
exp2 += int32_t(shift);
|
||||
}
|
||||
// We shift left toward [1/2 ... 1].
|
||||
while (d.decimal_point <= 0) {
|
||||
uint32_t shift;
|
||||
if (d.decimal_point == 0) {
|
||||
if (d.digits[0] >= 5) {
|
||||
break;
|
||||
}
|
||||
shift = (d.digits[0] < 2) ? 2 : 1;
|
||||
} else {
|
||||
uint32_t n = uint32_t(-d.decimal_point);
|
||||
shift = (n < num_powers) ? decimal_powers[n] : max_shift;
|
||||
}
|
||||
detail::decimal_left_shift(d, shift);
|
||||
if (d.decimal_point > decimal_point_range) {
|
||||
// we want to get infinity:
|
||||
answer.power2 = binary::infinite_power();
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
exp2 -= int32_t(shift);
|
||||
}
|
||||
// We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2].
|
||||
exp2--;
|
||||
constexpr int32_t minimum_exponent = binary::minimum_exponent();
|
||||
while ((minimum_exponent + 1) > exp2) {
|
||||
uint32_t n = uint32_t((minimum_exponent + 1) - exp2);
|
||||
if (n > max_shift) {
|
||||
n = max_shift;
|
||||
}
|
||||
detail::decimal_right_shift(d, n);
|
||||
exp2 += int32_t(n);
|
||||
}
|
||||
if ((exp2 - minimum_exponent) >= binary::infinite_power()) {
|
||||
answer.power2 = binary::infinite_power();
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
|
||||
const int mantissa_size_in_bits = binary::mantissa_explicit_bits() + 1;
|
||||
detail::decimal_left_shift(d, mantissa_size_in_bits);
|
||||
|
||||
uint64_t mantissa = detail::round(d);
|
||||
// It is possible that we have an overflow, in which case we need
|
||||
// to shift back.
|
||||
if(mantissa >= (uint64_t(1) << mantissa_size_in_bits)) {
|
||||
detail::decimal_right_shift(d, 1);
|
||||
exp2 += 1;
|
||||
mantissa = detail::round(d);
|
||||
if ((exp2 - minimum_exponent) >= binary::infinite_power()) {
|
||||
answer.power2 = binary::infinite_power();
|
||||
answer.mantissa = 0;
|
||||
return answer;
|
||||
}
|
||||
}
|
||||
answer.power2 = exp2 - binary::minimum_exponent();
|
||||
if(mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) { answer.power2--; }
|
||||
answer.mantissa = mantissa & ((uint64_t(1) << binary::mantissa_explicit_bits()) - 1);
|
||||
return answer;
|
||||
}
|
||||
|
||||
template <typename binary>
|
||||
adjusted_mantissa parse_long_mantissa(const char *first, const char* last, parse_options options) {
|
||||
decimal d = parse_decimal(first, last, options);
|
||||
return compute_float<binary>(d);
|
||||
}
|
||||
|
||||
} // namespace fast_float
|
||||
#endif
|
Loading…
Reference in New Issue