duckstation/dep/lzma/src/LzmaEnc.c

2977 lines
74 KiB
C
Raw Normal View History

2020-01-30 05:47:11 +00:00
/* LzmaEnc.c -- LZMA Encoder
2019-01-10: Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
/* #define SHOW_STAT */
/* #define SHOW_STAT2 */
#if defined(SHOW_STAT) || defined(SHOW_STAT2)
#include <stdio.h>
#endif
#include "LzmaEnc.h"
#include "LzFind.h"
#ifndef _7ZIP_ST
#include "LzFindMt.h"
#endif
#ifdef SHOW_STAT
static unsigned g_STAT_OFFSET = 0;
#endif
#define kLzmaMaxHistorySize ((UInt32)3 << 29)
/* #define kLzmaMaxHistorySize ((UInt32)7 << 29) */
#define kNumTopBits 24
#define kTopValue ((UInt32)1 << kNumTopBits)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
#define kProbInitValue (kBitModelTotal >> 1)
#define kNumMoveReducingBits 4
#define kNumBitPriceShiftBits 4
#define kBitPrice (1 << kNumBitPriceShiftBits)
#define REP_LEN_COUNT 64
void LzmaEncProps_Init(CLzmaEncProps *p)
{
p->level = 5;
p->dictSize = p->mc = 0;
p->reduceSize = (UInt64)(Int64)-1;
p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
p->writeEndMark = 0;
}
void LzmaEncProps_Normalize(CLzmaEncProps *p)
{
int level = p->level;
if (level < 0) level = 5;
p->level = level;
if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level <= 7 ? (1 << 25) : (1 << 26)));
if (p->dictSize > p->reduceSize)
{
unsigned i;
UInt32 reduceSize = (UInt32)p->reduceSize;
for (i = 11; i <= 30; i++)
{
if (reduceSize <= ((UInt32)2 << i)) { p->dictSize = ((UInt32)2 << i); break; }
if (reduceSize <= ((UInt32)3 << i)) { p->dictSize = ((UInt32)3 << i); break; }
}
}
if (p->lc < 0) p->lc = 3;
if (p->lp < 0) p->lp = 0;
if (p->pb < 0) p->pb = 2;
if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
if (p->numHashBytes < 0) p->numHashBytes = 4;
if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
if (p->numThreads < 0)
p->numThreads =
#ifndef _7ZIP_ST
((p->btMode && p->algo) ? 2 : 1);
#else
1;
#endif
}
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
{
CLzmaEncProps props = *props2;
LzmaEncProps_Normalize(&props);
return props.dictSize;
}
#if (_MSC_VER >= 1400)
/* BSR code is fast for some new CPUs */
/* #define LZMA_LOG_BSR */
#endif
#ifdef LZMA_LOG_BSR
#define kDicLogSizeMaxCompress 32
#define BSR2_RET(pos, res) { unsigned long zz; _BitScanReverse(&zz, (pos)); res = (zz + zz) + ((pos >> (zz - 1)) & 1); }
static unsigned GetPosSlot1(UInt32 pos)
{
unsigned res;
BSR2_RET(pos, res);
return res;
}
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
#else
#define kNumLogBits (9 + sizeof(size_t) / 2)
/* #define kNumLogBits (11 + sizeof(size_t) / 8 * 3) */
#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
static void LzmaEnc_FastPosInit(Byte *g_FastPos)
{
unsigned slot;
g_FastPos[0] = 0;
g_FastPos[1] = 1;
g_FastPos += 2;
for (slot = 2; slot < kNumLogBits * 2; slot++)
{
size_t k = ((size_t)1 << ((slot >> 1) - 1));
size_t j;
for (j = 0; j < k; j++)
g_FastPos[j] = (Byte)slot;
g_FastPos += k;
}
}
/* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */
/*
#define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
(0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
res = p->g_FastPos[pos >> zz] + (zz * 2); }
*/
/*
#define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
(0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \
res = p->g_FastPos[pos >> zz] + (zz * 2); }
*/
#define BSR2_RET(pos, res) { unsigned zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \
res = p->g_FastPos[pos >> zz] + (zz * 2); }
/*
#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
p->g_FastPos[pos >> 6] + 12 : \
p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
*/
#define GetPosSlot1(pos) p->g_FastPos[pos]
#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos & (kNumFullDistances - 1)]; else BSR2_RET(pos, res); }
#endif
#define LZMA_NUM_REPS 4
typedef UInt16 CState;
typedef UInt16 CExtra;
typedef struct
{
UInt32 price;
CState state;
CExtra extra;
// 0 : normal
// 1 : LIT : MATCH
// > 1 : MATCH (extra-1) : LIT : REP0 (len)
UInt32 len;
UInt32 dist;
UInt32 reps[LZMA_NUM_REPS];
} COptimal;
// 18.06
#define kNumOpts (1 << 11)
#define kPackReserve (kNumOpts * 8)
// #define kNumOpts (1 << 12)
// #define kPackReserve (1 + kNumOpts * 2)
#define kNumLenToPosStates 4
#define kNumPosSlotBits 6
#define kDicLogSizeMin 0
#define kDicLogSizeMax 32
#define kDistTableSizeMax (kDicLogSizeMax * 2)
#define kNumAlignBits 4
#define kAlignTableSize (1 << kNumAlignBits)
#define kAlignMask (kAlignTableSize - 1)
#define kStartPosModelIndex 4
#define kEndPosModelIndex 14
#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
typedef
#ifdef _LZMA_PROB32
UInt32
#else
UInt16
#endif
CLzmaProb;
#define LZMA_PB_MAX 4
#define LZMA_LC_MAX 8
#define LZMA_LP_MAX 4
#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
#define kLenNumLowBits 3
#define kLenNumLowSymbols (1 << kLenNumLowBits)
#define kLenNumHighBits 8
#define kLenNumHighSymbols (1 << kLenNumHighBits)
#define kLenNumSymbolsTotal (kLenNumLowSymbols * 2 + kLenNumHighSymbols)
#define LZMA_MATCH_LEN_MIN 2
#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
#define kNumStates 12
typedef struct
{
CLzmaProb low[LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)];
CLzmaProb high[kLenNumHighSymbols];
} CLenEnc;
typedef struct
{
unsigned tableSize;
UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
// UInt32 prices1[LZMA_NUM_PB_STATES_MAX][kLenNumLowSymbols * 2];
// UInt32 prices2[kLenNumSymbolsTotal];
} CLenPriceEnc;
#define GET_PRICE_LEN(p, posState, len) \
((p)->prices[posState][(size_t)(len) - LZMA_MATCH_LEN_MIN])
/*
#define GET_PRICE_LEN(p, posState, len) \
((p)->prices2[(size_t)(len) - 2] + ((p)->prices1[posState][((len) - 2) & (kLenNumLowSymbols * 2 - 1)] & (((len) - 2 - kLenNumLowSymbols * 2) >> 9)))
*/
typedef struct
{
UInt32 range;
unsigned cache;
UInt64 low;
UInt64 cacheSize;
Byte *buf;
Byte *bufLim;
Byte *bufBase;
ISeqOutStream *outStream;
UInt64 processed;
SRes res;
} CRangeEnc;
typedef struct
{
CLzmaProb *litProbs;
unsigned state;
UInt32 reps[LZMA_NUM_REPS];
CLzmaProb posAlignEncoder[1 << kNumAlignBits];
CLzmaProb isRep[kNumStates];
CLzmaProb isRepG0[kNumStates];
CLzmaProb isRepG1[kNumStates];
CLzmaProb isRepG2[kNumStates];
CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
CLzmaProb posEncoders[kNumFullDistances];
CLenEnc lenProbs;
CLenEnc repLenProbs;
} CSaveState;
typedef UInt32 CProbPrice;
typedef struct
{
void *matchFinderObj;
IMatchFinder matchFinder;
unsigned optCur;
unsigned optEnd;
unsigned longestMatchLen;
unsigned numPairs;
UInt32 numAvail;
unsigned state;
unsigned numFastBytes;
unsigned additionalOffset;
UInt32 reps[LZMA_NUM_REPS];
unsigned lpMask, pbMask;
CLzmaProb *litProbs;
CRangeEnc rc;
UInt32 backRes;
unsigned lc, lp, pb;
unsigned lclp;
BoolInt fastMode;
BoolInt writeEndMark;
BoolInt finished;
BoolInt multiThread;
BoolInt needInit;
// BoolInt _maxMode;
UInt64 nowPos64;
unsigned matchPriceCount;
// unsigned alignPriceCount;
int repLenEncCounter;
unsigned distTableSize;
UInt32 dictSize;
SRes result;
#ifndef _7ZIP_ST
BoolInt mtMode;
// begin of CMatchFinderMt is used in LZ thread
CMatchFinderMt matchFinderMt;
// end of CMatchFinderMt is used in BT and HASH threads
#endif
CMatchFinder matchFinderBase;
#ifndef _7ZIP_ST
Byte pad[128];
#endif
// LZ thread
CProbPrice ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
UInt32 alignPrices[kAlignTableSize];
UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
CLzmaProb posAlignEncoder[1 << kNumAlignBits];
CLzmaProb isRep[kNumStates];
CLzmaProb isRepG0[kNumStates];
CLzmaProb isRepG1[kNumStates];
CLzmaProb isRepG2[kNumStates];
CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
CLzmaProb posEncoders[kNumFullDistances];
CLenEnc lenProbs;
CLenEnc repLenProbs;
#ifndef LZMA_LOG_BSR
Byte g_FastPos[1 << kNumLogBits];
#endif
CLenPriceEnc lenEnc;
CLenPriceEnc repLenEnc;
COptimal opt[kNumOpts];
CSaveState saveState;
#ifndef _7ZIP_ST
Byte pad2[128];
#endif
} CLzmaEnc;
#define COPY_ARR(dest, src, arr) memcpy(dest->arr, src->arr, sizeof(src->arr));
void LzmaEnc_SaveState(CLzmaEncHandle pp)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
CSaveState *dest = &p->saveState;
dest->state = p->state;
dest->lenProbs = p->lenProbs;
dest->repLenProbs = p->repLenProbs;
COPY_ARR(dest, p, reps);
COPY_ARR(dest, p, posAlignEncoder);
COPY_ARR(dest, p, isRep);
COPY_ARR(dest, p, isRepG0);
COPY_ARR(dest, p, isRepG1);
COPY_ARR(dest, p, isRepG2);
COPY_ARR(dest, p, isMatch);
COPY_ARR(dest, p, isRep0Long);
COPY_ARR(dest, p, posSlotEncoder);
COPY_ARR(dest, p, posEncoders);
memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << p->lclp) * sizeof(CLzmaProb));
}
void LzmaEnc_RestoreState(CLzmaEncHandle pp)
{
CLzmaEnc *dest = (CLzmaEnc *)pp;
const CSaveState *p = &dest->saveState;
dest->state = p->state;
dest->lenProbs = p->lenProbs;
dest->repLenProbs = p->repLenProbs;
COPY_ARR(dest, p, reps);
COPY_ARR(dest, p, posAlignEncoder);
COPY_ARR(dest, p, isRep);
COPY_ARR(dest, p, isRepG0);
COPY_ARR(dest, p, isRepG1);
COPY_ARR(dest, p, isRepG2);
COPY_ARR(dest, p, isMatch);
COPY_ARR(dest, p, isRep0Long);
COPY_ARR(dest, p, posSlotEncoder);
COPY_ARR(dest, p, posEncoders);
memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << dest->lclp) * sizeof(CLzmaProb));
}
SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
CLzmaEncProps props = *props2;
LzmaEncProps_Normalize(&props);
if (props.lc > LZMA_LC_MAX
|| props.lp > LZMA_LP_MAX
|| props.pb > LZMA_PB_MAX
|| props.dictSize > ((UInt64)1 << kDicLogSizeMaxCompress)
|| props.dictSize > kLzmaMaxHistorySize)
return SZ_ERROR_PARAM;
p->dictSize = props.dictSize;
{
unsigned fb = props.fb;
if (fb < 5)
fb = 5;
if (fb > LZMA_MATCH_LEN_MAX)
fb = LZMA_MATCH_LEN_MAX;
p->numFastBytes = fb;
}
p->lc = props.lc;
p->lp = props.lp;
p->pb = props.pb;
p->fastMode = (props.algo == 0);
// p->_maxMode = True;
p->matchFinderBase.btMode = (Byte)(props.btMode ? 1 : 0);
{
unsigned numHashBytes = 4;
if (props.btMode)
{
if (props.numHashBytes < 2)
numHashBytes = 2;
else if (props.numHashBytes < 4)
numHashBytes = props.numHashBytes;
}
p->matchFinderBase.numHashBytes = numHashBytes;
}
p->matchFinderBase.cutValue = props.mc;
p->writeEndMark = props.writeEndMark;
#ifndef _7ZIP_ST
/*
if (newMultiThread != _multiThread)
{
ReleaseMatchFinder();
_multiThread = newMultiThread;
}
*/
p->multiThread = (props.numThreads > 1);
#endif
return SZ_OK;
}
void LzmaEnc_SetDataSize(CLzmaEncHandle pp, UInt64 expectedDataSiize)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
p->matchFinderBase.expectedDataSize = expectedDataSiize;
}
#define kState_Start 0
#define kState_LitAfterMatch 4
#define kState_LitAfterRep 5
#define kState_MatchAfterLit 7
#define kState_RepAfterLit 8
static const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
static const Byte kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
static const Byte kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
static const Byte kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
#define IsLitState(s) ((s) < 7)
#define GetLenToPosState2(len) (((len) < kNumLenToPosStates - 1) ? (len) : kNumLenToPosStates - 1)
#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
#define kInfinityPrice (1 << 30)
static void RangeEnc_Construct(CRangeEnc *p)
{
p->outStream = NULL;
p->bufBase = NULL;
}
#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
#define RangeEnc_GetProcessed_sizet(p) ((size_t)(p)->processed + ((p)->buf - (p)->bufBase) + (size_t)(p)->cacheSize)
#define RC_BUF_SIZE (1 << 16)
static int RangeEnc_Alloc(CRangeEnc *p, ISzAllocPtr alloc)
{
if (!p->bufBase)
{
p->bufBase = (Byte *)ISzAlloc_Alloc(alloc, RC_BUF_SIZE);
if (!p->bufBase)
return 0;
p->bufLim = p->bufBase + RC_BUF_SIZE;
}
return 1;
}
static void RangeEnc_Free(CRangeEnc *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->bufBase);
p->bufBase = 0;
}
static void RangeEnc_Init(CRangeEnc *p)
{
/* Stream.Init(); */
p->range = 0xFFFFFFFF;
p->cache = 0;
p->low = 0;
p->cacheSize = 0;
p->buf = p->bufBase;
p->processed = 0;
p->res = SZ_OK;
}
MY_NO_INLINE static void RangeEnc_FlushStream(CRangeEnc *p)
{
size_t num;
if (p->res != SZ_OK)
return;
num = p->buf - p->bufBase;
if (num != ISeqOutStream_Write(p->outStream, p->bufBase, num))
p->res = SZ_ERROR_WRITE;
p->processed += num;
p->buf = p->bufBase;
}
MY_NO_INLINE static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
{
UInt32 low = (UInt32)p->low;
unsigned high = (unsigned)(p->low >> 32);
p->low = (UInt32)(low << 8);
if (low < (UInt32)0xFF000000 || high != 0)
{
{
Byte *buf = p->buf;
*buf++ = (Byte)(p->cache + high);
p->cache = (unsigned)(low >> 24);
p->buf = buf;
if (buf == p->bufLim)
RangeEnc_FlushStream(p);
if (p->cacheSize == 0)
return;
}
high += 0xFF;
for (;;)
{
Byte *buf = p->buf;
*buf++ = (Byte)(high);
p->buf = buf;
if (buf == p->bufLim)
RangeEnc_FlushStream(p);
if (--p->cacheSize == 0)
return;
}
}
p->cacheSize++;
}
static void RangeEnc_FlushData(CRangeEnc *p)
{
int i;
for (i = 0; i < 5; i++)
RangeEnc_ShiftLow(p);
}
#define RC_NORM(p) if (range < kTopValue) { range <<= 8; RangeEnc_ShiftLow(p); }
#define RC_BIT_PRE(p, prob) \
ttt = *(prob); \
newBound = (range >> kNumBitModelTotalBits) * ttt;
// #define _LZMA_ENC_USE_BRANCH
#ifdef _LZMA_ENC_USE_BRANCH
#define RC_BIT(p, prob, bit) { \
RC_BIT_PRE(p, prob) \
if (bit == 0) { range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } \
else { (p)->low += newBound; range -= newBound; ttt -= ttt >> kNumMoveBits; } \
*(prob) = (CLzmaProb)ttt; \
RC_NORM(p) \
}
#else
#define RC_BIT(p, prob, bit) { \
UInt32 mask; \
RC_BIT_PRE(p, prob) \
mask = 0 - (UInt32)bit; \
range &= mask; \
mask &= newBound; \
range -= mask; \
(p)->low += mask; \
mask = (UInt32)bit - 1; \
range += newBound & mask; \
mask &= (kBitModelTotal - ((1 << kNumMoveBits) - 1)); \
mask += ((1 << kNumMoveBits) - 1); \
ttt += (Int32)(mask - ttt) >> kNumMoveBits; \
*(prob) = (CLzmaProb)ttt; \
RC_NORM(p) \
}
#endif
#define RC_BIT_0_BASE(p, prob) \
range = newBound; *(prob) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
#define RC_BIT_1_BASE(p, prob) \
range -= newBound; (p)->low += newBound; *(prob) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); \
#define RC_BIT_0(p, prob) \
RC_BIT_0_BASE(p, prob) \
RC_NORM(p)
#define RC_BIT_1(p, prob) \
RC_BIT_1_BASE(p, prob) \
RC_NORM(p)
static void RangeEnc_EncodeBit_0(CRangeEnc *p, CLzmaProb *prob)
{
UInt32 range, ttt, newBound;
range = p->range;
RC_BIT_PRE(p, prob)
RC_BIT_0(p, prob)
p->range = range;
}
static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 sym)
{
UInt32 range = p->range;
sym |= 0x100;
do
{
UInt32 ttt, newBound;
// RangeEnc_EncodeBit(p, probs + (sym >> 8), (sym >> 7) & 1);
CLzmaProb *prob = probs + (sym >> 8);
UInt32 bit = (sym >> 7) & 1;
sym <<= 1;
RC_BIT(p, prob, bit);
}
while (sym < 0x10000);
p->range = range;
}
static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 sym, UInt32 matchByte)
{
UInt32 range = p->range;
UInt32 offs = 0x100;
sym |= 0x100;
do
{
UInt32 ttt, newBound;
CLzmaProb *prob;
UInt32 bit;
matchByte <<= 1;
// RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (sym >> 8)), (sym >> 7) & 1);
prob = probs + (offs + (matchByte & offs) + (sym >> 8));
bit = (sym >> 7) & 1;
sym <<= 1;
offs &= ~(matchByte ^ sym);
RC_BIT(p, prob, bit);
}
while (sym < 0x10000);
p->range = range;
}
static void LzmaEnc_InitPriceTables(CProbPrice *ProbPrices)
{
UInt32 i;
for (i = 0; i < (kBitModelTotal >> kNumMoveReducingBits); i++)
{
const unsigned kCyclesBits = kNumBitPriceShiftBits;
UInt32 w = (i << kNumMoveReducingBits) + (1 << (kNumMoveReducingBits - 1));
unsigned bitCount = 0;
unsigned j;
for (j = 0; j < kCyclesBits; j++)
{
w = w * w;
bitCount <<= 1;
while (w >= ((UInt32)1 << 16))
{
w >>= 1;
bitCount++;
}
}
ProbPrices[i] = (CProbPrice)((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
// printf("\n%3d: %5d", i, ProbPrices[i]);
}
}
#define GET_PRICE(prob, bit) \
p->ProbPrices[((prob) ^ (unsigned)(((-(int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
#define GET_PRICEa(prob, bit) \
ProbPrices[((prob) ^ (unsigned)((-((int)(bit))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
#define GET_PRICEa_0(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
#define GET_PRICEa_1(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 sym, const CProbPrice *ProbPrices)
{
UInt32 price = 0;
sym |= 0x100;
do
{
unsigned bit = sym & 1;
sym >>= 1;
price += GET_PRICEa(probs[sym], bit);
}
while (sym >= 2);
return price;
}
static UInt32 LitEnc_Matched_GetPrice(const CLzmaProb *probs, UInt32 sym, UInt32 matchByte, const CProbPrice *ProbPrices)
{
UInt32 price = 0;
UInt32 offs = 0x100;
sym |= 0x100;
do
{
matchByte <<= 1;
price += GET_PRICEa(probs[offs + (matchByte & offs) + (sym >> 8)], (sym >> 7) & 1);
sym <<= 1;
offs &= ~(matchByte ^ sym);
}
while (sym < 0x10000);
return price;
}
static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, unsigned numBits, unsigned sym)
{
UInt32 range = rc->range;
unsigned m = 1;
do
{
UInt32 ttt, newBound;
unsigned bit = sym & 1;
// RangeEnc_EncodeBit(rc, probs + m, bit);
sym >>= 1;
RC_BIT(rc, probs + m, bit);
m = (m << 1) | bit;
}
while (--numBits);
rc->range = range;
}
static void LenEnc_Init(CLenEnc *p)
{
unsigned i;
for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)); i++)
p->low[i] = kProbInitValue;
for (i = 0; i < kLenNumHighSymbols; i++)
p->high[i] = kProbInitValue;
}
static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, unsigned sym, unsigned posState)
{
UInt32 range, ttt, newBound;
CLzmaProb *probs = p->low;
range = rc->range;
RC_BIT_PRE(rc, probs);
if (sym >= kLenNumLowSymbols)
{
RC_BIT_1(rc, probs);
probs += kLenNumLowSymbols;
RC_BIT_PRE(rc, probs);
if (sym >= kLenNumLowSymbols * 2)
{
RC_BIT_1(rc, probs);
rc->range = range;
// RcTree_Encode(rc, p->high, kLenNumHighBits, sym - kLenNumLowSymbols * 2);
LitEnc_Encode(rc, p->high, sym - kLenNumLowSymbols * 2);
return;
}
sym -= kLenNumLowSymbols;
}
// RcTree_Encode(rc, probs + (posState << kLenNumLowBits), kLenNumLowBits, sym);
{
unsigned m;
unsigned bit;
RC_BIT_0(rc, probs);
probs += (posState << (1 + kLenNumLowBits));
bit = (sym >> 2) ; RC_BIT(rc, probs + 1, bit); m = (1 << 1) + bit;
bit = (sym >> 1) & 1; RC_BIT(rc, probs + m, bit); m = (m << 1) + bit;
bit = sym & 1; RC_BIT(rc, probs + m, bit);
rc->range = range;
}
}
static void SetPrices_3(const CLzmaProb *probs, UInt32 startPrice, UInt32 *prices, const CProbPrice *ProbPrices)
{
unsigned i;
for (i = 0; i < 8; i += 2)
{
UInt32 price = startPrice;
UInt32 prob;
price += GET_PRICEa(probs[1 ], (i >> 2));
price += GET_PRICEa(probs[2 + (i >> 2)], (i >> 1) & 1);
prob = probs[4 + (i >> 1)];
prices[i ] = price + GET_PRICEa_0(prob);
prices[i + 1] = price + GET_PRICEa_1(prob);
}
}
MY_NO_INLINE static void MY_FAST_CALL LenPriceEnc_UpdateTables(
CLenPriceEnc *p,
unsigned numPosStates,
const CLenEnc *enc,
const CProbPrice *ProbPrices)
{
UInt32 b;
{
unsigned prob = enc->low[0];
UInt32 a, c;
unsigned posState;
b = GET_PRICEa_1(prob);
a = GET_PRICEa_0(prob);
c = b + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
for (posState = 0; posState < numPosStates; posState++)
{
UInt32 *prices = p->prices[posState];
const CLzmaProb *probs = enc->low + (posState << (1 + kLenNumLowBits));
SetPrices_3(probs, a, prices, ProbPrices);
SetPrices_3(probs + kLenNumLowSymbols, c, prices + kLenNumLowSymbols, ProbPrices);
}
}
/*
{
unsigned i;
UInt32 b;
a = GET_PRICEa_0(enc->low[0]);
for (i = 0; i < kLenNumLowSymbols; i++)
p->prices2[i] = a;
a = GET_PRICEa_1(enc->low[0]);
b = a + GET_PRICEa_0(enc->low[kLenNumLowSymbols]);
for (i = kLenNumLowSymbols; i < kLenNumLowSymbols * 2; i++)
p->prices2[i] = b;
a += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
}
*/
// p->counter = numSymbols;
// p->counter = 64;
{
unsigned i = p->tableSize;
if (i > kLenNumLowSymbols * 2)
{
const CLzmaProb *probs = enc->high;
UInt32 *prices = p->prices[0] + kLenNumLowSymbols * 2;
i -= kLenNumLowSymbols * 2 - 1;
i >>= 1;
b += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
do
{
/*
p->prices2[i] = a +
// RcTree_GetPrice(enc->high, kLenNumHighBits, i - kLenNumLowSymbols * 2, ProbPrices);
LitEnc_GetPrice(probs, i - kLenNumLowSymbols * 2, ProbPrices);
*/
// UInt32 price = a + RcTree_GetPrice(probs, kLenNumHighBits - 1, sym, ProbPrices);
unsigned sym = --i + (1 << (kLenNumHighBits - 1));
UInt32 price = b;
do
{
unsigned bit = sym & 1;
sym >>= 1;
price += GET_PRICEa(probs[sym], bit);
}
while (sym >= 2);
{
unsigned prob = probs[(size_t)i + (1 << (kLenNumHighBits - 1))];
prices[(size_t)i * 2 ] = price + GET_PRICEa_0(prob);
prices[(size_t)i * 2 + 1] = price + GET_PRICEa_1(prob);
}
}
while (i);
{
unsigned posState;
size_t num = (p->tableSize - kLenNumLowSymbols * 2) * sizeof(p->prices[0][0]);
for (posState = 1; posState < numPosStates; posState++)
memcpy(p->prices[posState] + kLenNumLowSymbols * 2, p->prices[0] + kLenNumLowSymbols * 2, num);
}
}
}
}
/*
#ifdef SHOW_STAT
g_STAT_OFFSET += num;
printf("\n MovePos %u", num);
#endif
*/
#define MOVE_POS(p, num) { \
p->additionalOffset += (num); \
p->matchFinder.Skip(p->matchFinderObj, (UInt32)(num)); }
static unsigned ReadMatchDistances(CLzmaEnc *p, unsigned *numPairsRes)
{
unsigned numPairs;
p->additionalOffset++;
p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
*numPairsRes = numPairs;
#ifdef SHOW_STAT
printf("\n i = %u numPairs = %u ", g_STAT_OFFSET, numPairs / 2);
g_STAT_OFFSET++;
{
unsigned i;
for (i = 0; i < numPairs; i += 2)
printf("%2u %6u | ", p->matches[i], p->matches[i + 1]);
}
#endif
if (numPairs == 0)
return 0;
{
unsigned len = p->matches[(size_t)numPairs - 2];
if (len != p->numFastBytes)
return len;
{
UInt32 numAvail = p->numAvail;
if (numAvail > LZMA_MATCH_LEN_MAX)
numAvail = LZMA_MATCH_LEN_MAX;
{
const Byte *p1 = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
const Byte *p2 = p1 + len;
ptrdiff_t dif = (ptrdiff_t)-1 - p->matches[(size_t)numPairs - 1];
const Byte *lim = p1 + numAvail;
for (; p2 != lim && *p2 == p2[dif]; p2++)
{}
return (unsigned)(p2 - p1);
}
}
}
}
#define MARK_LIT ((UInt32)(Int32)-1)
#define MakeAs_Lit(p) { (p)->dist = MARK_LIT; (p)->extra = 0; }
#define MakeAs_ShortRep(p) { (p)->dist = 0; (p)->extra = 0; }
#define IsShortRep(p) ((p)->dist == 0)
#define GetPrice_ShortRep(p, state, posState) \
( GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]))
#define GetPrice_Rep_0(p, state, posState) ( \
GET_PRICE_1(p->isMatch[state][posState]) \
+ GET_PRICE_1(p->isRep0Long[state][posState])) \
+ GET_PRICE_1(p->isRep[state]) \
+ GET_PRICE_0(p->isRepG0[state])
MY_FORCE_INLINE
static UInt32 GetPrice_PureRep(const CLzmaEnc *p, unsigned repIndex, size_t state, size_t posState)
{
UInt32 price;
UInt32 prob = p->isRepG0[state];
if (repIndex == 0)
{
price = GET_PRICE_0(prob);
price += GET_PRICE_1(p->isRep0Long[state][posState]);
}
else
{
price = GET_PRICE_1(prob);
prob = p->isRepG1[state];
if (repIndex == 1)
price += GET_PRICE_0(prob);
else
{
price += GET_PRICE_1(prob);
price += GET_PRICE(p->isRepG2[state], repIndex - 2);
}
}
return price;
}
static unsigned Backward(CLzmaEnc *p, unsigned cur)
{
unsigned wr = cur + 1;
p->optEnd = wr;
for (;;)
{
UInt32 dist = p->opt[cur].dist;
unsigned len = (unsigned)p->opt[cur].len;
unsigned extra = (unsigned)p->opt[cur].extra;
cur -= len;
if (extra)
{
wr--;
p->opt[wr].len = (UInt32)len;
cur -= extra;
len = extra;
if (extra == 1)
{
p->opt[wr].dist = dist;
dist = MARK_LIT;
}
else
{
p->opt[wr].dist = 0;
len--;
wr--;
p->opt[wr].dist = MARK_LIT;
p->opt[wr].len = 1;
}
}
if (cur == 0)
{
p->backRes = dist;
p->optCur = wr;
return len;
}
wr--;
p->opt[wr].dist = dist;
p->opt[wr].len = (UInt32)len;
}
}
#define LIT_PROBS(pos, prevByte) \
(p->litProbs + (UInt32)3 * (((((pos) << 8) + (prevByte)) & p->lpMask) << p->lc))
static unsigned GetOptimum(CLzmaEnc *p, UInt32 position)
{
unsigned last, cur;
UInt32 reps[LZMA_NUM_REPS];
unsigned repLens[LZMA_NUM_REPS];
UInt32 *matches;
{
UInt32 numAvail;
unsigned numPairs, mainLen, repMaxIndex, i, posState;
UInt32 matchPrice, repMatchPrice;
const Byte *data;
Byte curByte, matchByte;
p->optCur = p->optEnd = 0;
if (p->additionalOffset == 0)
mainLen = ReadMatchDistances(p, &numPairs);
else
{
mainLen = p->longestMatchLen;
numPairs = p->numPairs;
}
numAvail = p->numAvail;
if (numAvail < 2)
{
p->backRes = MARK_LIT;
return 1;
}
if (numAvail > LZMA_MATCH_LEN_MAX)
numAvail = LZMA_MATCH_LEN_MAX;
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
repMaxIndex = 0;
for (i = 0; i < LZMA_NUM_REPS; i++)
{
unsigned len;
const Byte *data2;
reps[i] = p->reps[i];
data2 = data - reps[i];
if (data[0] != data2[0] || data[1] != data2[1])
{
repLens[i] = 0;
continue;
}
for (len = 2; len < numAvail && data[len] == data2[len]; len++)
{}
repLens[i] = len;
if (len > repLens[repMaxIndex])
repMaxIndex = i;
}
if (repLens[repMaxIndex] >= p->numFastBytes)
{
unsigned len;
p->backRes = (UInt32)repMaxIndex;
len = repLens[repMaxIndex];
MOVE_POS(p, len - 1)
return len;
}
matches = p->matches;
if (mainLen >= p->numFastBytes)
{
p->backRes = matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
MOVE_POS(p, mainLen - 1)
return mainLen;
}
curByte = *data;
matchByte = *(data - reps[0]);
last = repLens[repMaxIndex];
if (last <= mainLen)
last = mainLen;
if (last < 2 && curByte != matchByte)
{
p->backRes = MARK_LIT;
return 1;
}
p->opt[0].state = (CState)p->state;
posState = (position & p->pbMask);
{
const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
(!IsLitState(p->state) ?
LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
LitEnc_GetPrice(probs, curByte, p->ProbPrices));
}
MakeAs_Lit(&p->opt[1]);
matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
// 18.06
if (matchByte == curByte && repLens[0] == 0)
{
UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, p->state, posState);
if (shortRepPrice < p->opt[1].price)
{
p->opt[1].price = shortRepPrice;
MakeAs_ShortRep(&p->opt[1]);
}
if (last < 2)
{
p->backRes = p->opt[1].dist;
return 1;
}
}
p->opt[1].len = 1;
p->opt[0].reps[0] = reps[0];
p->opt[0].reps[1] = reps[1];
p->opt[0].reps[2] = reps[2];
p->opt[0].reps[3] = reps[3];
// ---------- REP ----------
for (i = 0; i < LZMA_NUM_REPS; i++)
{
unsigned repLen = repLens[i];
UInt32 price;
if (repLen < 2)
continue;
price = repMatchPrice + GetPrice_PureRep(p, i, p->state, posState);
do
{
UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, repLen);
COptimal *opt = &p->opt[repLen];
if (price2 < opt->price)
{
opt->price = price2;
opt->len = (UInt32)repLen;
opt->dist = (UInt32)i;
opt->extra = 0;
}
}
while (--repLen >= 2);
}
// ---------- MATCH ----------
{
unsigned len = repLens[0] + 1;
if (len <= mainLen)
{
unsigned offs = 0;
UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
if (len < 2)
len = 2;
else
while (len > matches[offs])
offs += 2;
for (; ; len++)
{
COptimal *opt;
UInt32 dist = matches[(size_t)offs + 1];
UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
unsigned lenToPosState = GetLenToPosState(len);
if (dist < kNumFullDistances)
price += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)];
else
{
unsigned slot;
GetPosSlot2(dist, slot);
price += p->alignPrices[dist & kAlignMask];
price += p->posSlotPrices[lenToPosState][slot];
}
opt = &p->opt[len];
if (price < opt->price)
{
opt->price = price;
opt->len = (UInt32)len;
opt->dist = dist + LZMA_NUM_REPS;
opt->extra = 0;
}
if (len == matches[offs])
{
offs += 2;
if (offs == numPairs)
break;
}
}
}
}
cur = 0;
#ifdef SHOW_STAT2
/* if (position >= 0) */
{
unsigned i;
printf("\n pos = %4X", position);
for (i = cur; i <= last; i++)
printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price);
}
#endif
}
// ---------- Optimal Parsing ----------
for (;;)
{
unsigned numAvail;
UInt32 numAvailFull;
unsigned newLen, numPairs, prev, state, posState, startLen;
UInt32 litPrice, matchPrice, repMatchPrice;
BoolInt nextIsLit;
Byte curByte, matchByte;
const Byte *data;
COptimal *curOpt, *nextOpt;
if (++cur == last)
break;
// 18.06
if (cur >= kNumOpts - 64)
{
unsigned j, best;
UInt32 price = p->opt[cur].price;
best = cur;
for (j = cur + 1; j <= last; j++)
{
UInt32 price2 = p->opt[j].price;
if (price >= price2)
{
price = price2;
best = j;
}
}
{
unsigned delta = best - cur;
if (delta != 0)
{
MOVE_POS(p, delta);
}
}
cur = best;
break;
}
newLen = ReadMatchDistances(p, &numPairs);
if (newLen >= p->numFastBytes)
{
p->numPairs = numPairs;
p->longestMatchLen = newLen;
break;
}
curOpt = &p->opt[cur];
position++;
// we need that check here, if skip_items in p->opt are possible
/*
if (curOpt->price >= kInfinityPrice)
continue;
*/
prev = cur - curOpt->len;
if (curOpt->len == 1)
{
state = (unsigned)p->opt[prev].state;
if (IsShortRep(curOpt))
state = kShortRepNextStates[state];
else
state = kLiteralNextStates[state];
}
else
{
const COptimal *prevOpt;
UInt32 b0;
UInt32 dist = curOpt->dist;
if (curOpt->extra)
{
prev -= (unsigned)curOpt->extra;
state = kState_RepAfterLit;
if (curOpt->extra == 1)
state = (dist < LZMA_NUM_REPS ? kState_RepAfterLit : kState_MatchAfterLit);
}
else
{
state = (unsigned)p->opt[prev].state;
if (dist < LZMA_NUM_REPS)
state = kRepNextStates[state];
else
state = kMatchNextStates[state];
}
prevOpt = &p->opt[prev];
b0 = prevOpt->reps[0];
if (dist < LZMA_NUM_REPS)
{
if (dist == 0)
{
reps[0] = b0;
reps[1] = prevOpt->reps[1];
reps[2] = prevOpt->reps[2];
reps[3] = prevOpt->reps[3];
}
else
{
reps[1] = b0;
b0 = prevOpt->reps[1];
if (dist == 1)
{
reps[0] = b0;
reps[2] = prevOpt->reps[2];
reps[3] = prevOpt->reps[3];
}
else
{
reps[2] = b0;
reps[0] = prevOpt->reps[dist];
reps[3] = prevOpt->reps[dist ^ 1];
}
}
}
else
{
reps[0] = (dist - LZMA_NUM_REPS + 1);
reps[1] = b0;
reps[2] = prevOpt->reps[1];
reps[3] = prevOpt->reps[2];
}
}
curOpt->state = (CState)state;
curOpt->reps[0] = reps[0];
curOpt->reps[1] = reps[1];
curOpt->reps[2] = reps[2];
curOpt->reps[3] = reps[3];
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
curByte = *data;
matchByte = *(data - reps[0]);
posState = (position & p->pbMask);
/*
The order of Price checks:
< LIT
<= SHORT_REP
< LIT : REP_0
< REP [ : LIT : REP_0 ]
< MATCH [ : LIT : REP_0 ]
*/
{
UInt32 curPrice = curOpt->price;
unsigned prob = p->isMatch[state][posState];
matchPrice = curPrice + GET_PRICE_1(prob);
litPrice = curPrice + GET_PRICE_0(prob);
}
nextOpt = &p->opt[(size_t)cur + 1];
nextIsLit = False;
// here we can allow skip_items in p->opt, if we don't check (nextOpt->price < kInfinityPrice)
// 18.new.06
if ((nextOpt->price < kInfinityPrice
// && !IsLitState(state)
&& matchByte == curByte)
|| litPrice > nextOpt->price
)
litPrice = 0;
else
{
const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
litPrice += (!IsLitState(state) ?
LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
LitEnc_GetPrice(probs, curByte, p->ProbPrices));
if (litPrice < nextOpt->price)
{
nextOpt->price = litPrice;
nextOpt->len = 1;
MakeAs_Lit(nextOpt);
nextIsLit = True;
}
}
repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
numAvailFull = p->numAvail;
{
unsigned temp = kNumOpts - 1 - cur;
if (numAvailFull > temp)
numAvailFull = (UInt32)temp;
}
// 18.06
// ---------- SHORT_REP ----------
if (IsLitState(state)) // 18.new
if (matchByte == curByte)
if (repMatchPrice < nextOpt->price) // 18.new
// if (numAvailFull < 2 || data[1] != *(data - reps[0] + 1))
if (
// nextOpt->price >= kInfinityPrice ||
nextOpt->len < 2 // we can check nextOpt->len, if skip items are not allowed in p->opt
|| (nextOpt->dist != 0
// && nextOpt->extra <= 1 // 17.old
)
)
{
UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, state, posState);
// if (shortRepPrice <= nextOpt->price) // 17.old
if (shortRepPrice < nextOpt->price) // 18.new
{
nextOpt->price = shortRepPrice;
nextOpt->len = 1;
MakeAs_ShortRep(nextOpt);
nextIsLit = False;
}
}
if (numAvailFull < 2)
continue;
numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
// numAvail <= p->numFastBytes
// ---------- LIT : REP_0 ----------
if (!nextIsLit
&& litPrice != 0 // 18.new
&& matchByte != curByte
&& numAvailFull > 2)
{
const Byte *data2 = data - reps[0];
if (data[1] == data2[1] && data[2] == data2[2])
{
unsigned len;
unsigned limit = p->numFastBytes + 1;
if (limit > numAvailFull)
limit = numAvailFull;
for (len = 3; len < limit && data[len] == data2[len]; len++)
{}
{
unsigned state2 = kLiteralNextStates[state];
unsigned posState2 = (position + 1) & p->pbMask;
UInt32 price = litPrice + GetPrice_Rep_0(p, state2, posState2);
{
unsigned offset = cur + len;
if (last < offset)
last = offset;
// do
{
UInt32 price2;
COptimal *opt;
len--;
// price2 = price + GetPrice_Len_Rep_0(p, len, state2, posState2);
price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len);
opt = &p->opt[offset];
// offset--;
if (price2 < opt->price)
{
opt->price = price2;
opt->len = (UInt32)len;
opt->dist = 0;
opt->extra = 1;
}
}
// while (len >= 3);
}
}
}
}
startLen = 2; /* speed optimization */
{
// ---------- REP ----------
unsigned repIndex = 0; // 17.old
// unsigned repIndex = IsLitState(state) ? 0 : 1; // 18.notused
for (; repIndex < LZMA_NUM_REPS; repIndex++)
{
unsigned len;
UInt32 price;
const Byte *data2 = data - reps[repIndex];
if (data[0] != data2[0] || data[1] != data2[1])
continue;
for (len = 2; len < numAvail && data[len] == data2[len]; len++)
{}
// if (len < startLen) continue; // 18.new: speed optimization
{
unsigned offset = cur + len;
if (last < offset)
last = offset;
}
{
unsigned len2 = len;
price = repMatchPrice + GetPrice_PureRep(p, repIndex, state, posState);
do
{
UInt32 price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState, len2);
COptimal *opt = &p->opt[cur + len2];
if (price2 < opt->price)
{
opt->price = price2;
opt->len = (UInt32)len2;
opt->dist = (UInt32)repIndex;
opt->extra = 0;
}
}
while (--len2 >= 2);
}
if (repIndex == 0) startLen = len + 1; // 17.old
// startLen = len + 1; // 18.new
/* if (_maxMode) */
{
// ---------- REP : LIT : REP_0 ----------
// numFastBytes + 1 + numFastBytes
unsigned len2 = len + 1;
unsigned limit = len2 + p->numFastBytes;
if (limit > numAvailFull)
limit = numAvailFull;
len2 += 2;
if (len2 <= limit)
if (data[len2 - 2] == data2[len2 - 2])
if (data[len2 - 1] == data2[len2 - 1])
{
unsigned state2 = kRepNextStates[state];
unsigned posState2 = (position + len) & p->pbMask;
price += GET_PRICE_LEN(&p->repLenEnc, posState, len)
+ GET_PRICE_0(p->isMatch[state2][posState2])
+ LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
data[len], data2[len], p->ProbPrices);
// state2 = kLiteralNextStates[state2];
state2 = kState_LitAfterRep;
posState2 = (posState2 + 1) & p->pbMask;
price += GetPrice_Rep_0(p, state2, posState2);
for (; len2 < limit && data[len2] == data2[len2]; len2++)
{}
len2 -= len;
// if (len2 >= 3)
{
{
unsigned offset = cur + len + len2;
if (last < offset)
last = offset;
// do
{
UInt32 price2;
COptimal *opt;
len2--;
// price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
opt = &p->opt[offset];
// offset--;
if (price2 < opt->price)
{
opt->price = price2;
opt->len = (UInt32)len2;
opt->extra = (CExtra)(len + 1);
opt->dist = (UInt32)repIndex;
}
}
// while (len2 >= 3);
}
}
}
}
}
}
// ---------- MATCH ----------
/* for (unsigned len = 2; len <= newLen; len++) */
if (newLen > numAvail)
{
newLen = numAvail;
for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
matches[numPairs] = (UInt32)newLen;
numPairs += 2;
}
// startLen = 2; /* speed optimization */
if (newLen >= startLen)
{
UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
UInt32 dist;
unsigned offs, posSlot, len;
{
unsigned offset = cur + newLen;
if (last < offset)
last = offset;
}
offs = 0;
while (startLen > matches[offs])
offs += 2;
dist = matches[(size_t)offs + 1];
// if (dist >= kNumFullDistances)
GetPosSlot2(dist, posSlot);
for (len = /*2*/ startLen; ; len++)
{
UInt32 price = normalMatchPrice + GET_PRICE_LEN(&p->lenEnc, posState, len);
{
COptimal *opt;
unsigned lenNorm = len - 2;
lenNorm = GetLenToPosState2(lenNorm);
if (dist < kNumFullDistances)
price += p->distancesPrices[lenNorm][dist & (kNumFullDistances - 1)];
else
price += p->posSlotPrices[lenNorm][posSlot] + p->alignPrices[dist & kAlignMask];
opt = &p->opt[cur + len];
if (price < opt->price)
{
opt->price = price;
opt->len = (UInt32)len;
opt->dist = dist + LZMA_NUM_REPS;
opt->extra = 0;
}
}
if (len == matches[offs])
{
// if (p->_maxMode) {
// MATCH : LIT : REP_0
const Byte *data2 = data - dist - 1;
unsigned len2 = len + 1;
unsigned limit = len2 + p->numFastBytes;
if (limit > numAvailFull)
limit = numAvailFull;
len2 += 2;
if (len2 <= limit)
if (data[len2 - 2] == data2[len2 - 2])
if (data[len2 - 1] == data2[len2 - 1])
{
for (; len2 < limit && data[len2] == data2[len2]; len2++)
{}
len2 -= len;
// if (len2 >= 3)
{
unsigned state2 = kMatchNextStates[state];
unsigned posState2 = (position + len) & p->pbMask;
unsigned offset;
price += GET_PRICE_0(p->isMatch[state2][posState2]);
price += LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
data[len], data2[len], p->ProbPrices);
// state2 = kLiteralNextStates[state2];
state2 = kState_LitAfterMatch;
posState2 = (posState2 + 1) & p->pbMask;
price += GetPrice_Rep_0(p, state2, posState2);
offset = cur + len + len2;
if (last < offset)
last = offset;
// do
{
UInt32 price2;
COptimal *opt;
len2--;
// price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
price2 = price + GET_PRICE_LEN(&p->repLenEnc, posState2, len2);
opt = &p->opt[offset];
// offset--;
if (price2 < opt->price)
{
opt->price = price2;
opt->len = (UInt32)len2;
opt->extra = (CExtra)(len + 1);
opt->dist = dist + LZMA_NUM_REPS;
}
}
// while (len2 >= 3);
}
}
offs += 2;
if (offs == numPairs)
break;
dist = matches[(size_t)offs + 1];
// if (dist >= kNumFullDistances)
GetPosSlot2(dist, posSlot);
}
}
}
}
do
p->opt[last].price = kInfinityPrice;
while (--last);
return Backward(p, cur);
}
#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
static unsigned GetOptimumFast(CLzmaEnc *p)
{
UInt32 numAvail, mainDist;
unsigned mainLen, numPairs, repIndex, repLen, i;
const Byte *data;
if (p->additionalOffset == 0)
mainLen = ReadMatchDistances(p, &numPairs);
else
{
mainLen = p->longestMatchLen;
numPairs = p->numPairs;
}
numAvail = p->numAvail;
p->backRes = MARK_LIT;
if (numAvail < 2)
return 1;
// if (mainLen < 2 && p->state == 0) return 1; // 18.06.notused
if (numAvail > LZMA_MATCH_LEN_MAX)
numAvail = LZMA_MATCH_LEN_MAX;
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
repLen = repIndex = 0;
for (i = 0; i < LZMA_NUM_REPS; i++)
{
unsigned len;
const Byte *data2 = data - p->reps[i];
if (data[0] != data2[0] || data[1] != data2[1])
continue;
for (len = 2; len < numAvail && data[len] == data2[len]; len++)
{}
if (len >= p->numFastBytes)
{
p->backRes = (UInt32)i;
MOVE_POS(p, len - 1)
return len;
}
if (len > repLen)
{
repIndex = i;
repLen = len;
}
}
if (mainLen >= p->numFastBytes)
{
p->backRes = p->matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
MOVE_POS(p, mainLen - 1)
return mainLen;
}
mainDist = 0; /* for GCC */
if (mainLen >= 2)
{
mainDist = p->matches[(size_t)numPairs - 1];
while (numPairs > 2)
{
UInt32 dist2;
if (mainLen != p->matches[(size_t)numPairs - 4] + 1)
break;
dist2 = p->matches[(size_t)numPairs - 3];
if (!ChangePair(dist2, mainDist))
break;
numPairs -= 2;
mainLen--;
mainDist = dist2;
}
if (mainLen == 2 && mainDist >= 0x80)
mainLen = 1;
}
if (repLen >= 2)
if ( repLen + 1 >= mainLen
|| (repLen + 2 >= mainLen && mainDist >= (1 << 9))
|| (repLen + 3 >= mainLen && mainDist >= (1 << 15)))
{
p->backRes = (UInt32)repIndex;
MOVE_POS(p, repLen - 1)
return repLen;
}
if (mainLen < 2 || numAvail <= 2)
return 1;
{
unsigned len1 = ReadMatchDistances(p, &p->numPairs);
p->longestMatchLen = len1;
if (len1 >= 2)
{
UInt32 newDist = p->matches[(size_t)p->numPairs - 1];
if ( (len1 >= mainLen && newDist < mainDist)
|| (len1 == mainLen + 1 && !ChangePair(mainDist, newDist))
|| (len1 > mainLen + 1)
|| (len1 + 1 >= mainLen && mainLen >= 3 && ChangePair(newDist, mainDist)))
return 1;
}
}
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
for (i = 0; i < LZMA_NUM_REPS; i++)
{
unsigned len, limit;
const Byte *data2 = data - p->reps[i];
if (data[0] != data2[0] || data[1] != data2[1])
continue;
limit = mainLen - 1;
for (len = 2;; len++)
{
if (len >= limit)
return 1;
if (data[len] != data2[len])
break;
}
}
p->backRes = mainDist + LZMA_NUM_REPS;
if (mainLen != 2)
{
MOVE_POS(p, mainLen - 2)
}
return mainLen;
}
static void WriteEndMarker(CLzmaEnc *p, unsigned posState)
{
UInt32 range;
range = p->rc.range;
{
UInt32 ttt, newBound;
CLzmaProb *prob = &p->isMatch[p->state][posState];
RC_BIT_PRE(&p->rc, prob)
RC_BIT_1(&p->rc, prob)
prob = &p->isRep[p->state];
RC_BIT_PRE(&p->rc, prob)
RC_BIT_0(&p->rc, prob)
}
p->state = kMatchNextStates[p->state];
p->rc.range = range;
LenEnc_Encode(&p->lenProbs, &p->rc, 0, posState);
range = p->rc.range;
{
// RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[0], (1 << kNumPosSlotBits) - 1);
CLzmaProb *probs = p->posSlotEncoder[0];
unsigned m = 1;
do
{
UInt32 ttt, newBound;
RC_BIT_PRE(p, probs + m)
RC_BIT_1(&p->rc, probs + m);
m = (m << 1) + 1;
}
while (m < (1 << kNumPosSlotBits));
}
{
// RangeEnc_EncodeDirectBits(&p->rc, ((UInt32)1 << (30 - kNumAlignBits)) - 1, 30 - kNumAlignBits); UInt32 range = p->range;
unsigned numBits = 30 - kNumAlignBits;
do
{
range >>= 1;
p->rc.low += range;
RC_NORM(&p->rc)
}
while (--numBits);
}
{
// RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
CLzmaProb *probs = p->posAlignEncoder;
unsigned m = 1;
do
{
UInt32 ttt, newBound;
RC_BIT_PRE(p, probs + m)
RC_BIT_1(&p->rc, probs + m);
m = (m << 1) + 1;
}
while (m < kAlignTableSize);
}
p->rc.range = range;
}
static SRes CheckErrors(CLzmaEnc *p)
{
if (p->result != SZ_OK)
return p->result;
if (p->rc.res != SZ_OK)
p->result = SZ_ERROR_WRITE;
if (p->matchFinderBase.result != SZ_OK)
p->result = SZ_ERROR_READ;
if (p->result != SZ_OK)
p->finished = True;
return p->result;
}
MY_NO_INLINE static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
{
/* ReleaseMFStream(); */
p->finished = True;
if (p->writeEndMark)
WriteEndMarker(p, nowPos & p->pbMask);
RangeEnc_FlushData(&p->rc);
RangeEnc_FlushStream(&p->rc);
return CheckErrors(p);
}
MY_NO_INLINE static void FillAlignPrices(CLzmaEnc *p)
{
unsigned i;
const CProbPrice *ProbPrices = p->ProbPrices;
const CLzmaProb *probs = p->posAlignEncoder;
// p->alignPriceCount = 0;
for (i = 0; i < kAlignTableSize / 2; i++)
{
UInt32 price = 0;
unsigned sym = i;
unsigned m = 1;
unsigned bit;
UInt32 prob;
bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
prob = probs[m];
p->alignPrices[i ] = price + GET_PRICEa_0(prob);
p->alignPrices[i + 8] = price + GET_PRICEa_1(prob);
// p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
}
}
MY_NO_INLINE static void FillDistancesPrices(CLzmaEnc *p)
{
// int y; for (y = 0; y < 100; y++) {
UInt32 tempPrices[kNumFullDistances];
unsigned i, lps;
const CProbPrice *ProbPrices = p->ProbPrices;
p->matchPriceCount = 0;
for (i = kStartPosModelIndex / 2; i < kNumFullDistances / 2; i++)
{
unsigned posSlot = GetPosSlot1(i);
unsigned footerBits = (posSlot >> 1) - 1;
unsigned base = ((2 | (posSlot & 1)) << footerBits);
const CLzmaProb *probs = p->posEncoders + (size_t)base * 2;
// tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base, footerBits, i - base, p->ProbPrices);
UInt32 price = 0;
unsigned m = 1;
unsigned sym = i;
unsigned offset = (unsigned)1 << footerBits;
base += i;
if (footerBits)
do
{
unsigned bit = sym & 1;
sym >>= 1;
price += GET_PRICEa(probs[m], bit);
m = (m << 1) + bit;
}
while (--footerBits);
{
unsigned prob = probs[m];
tempPrices[base ] = price + GET_PRICEa_0(prob);
tempPrices[base + offset] = price + GET_PRICEa_1(prob);
}
}
for (lps = 0; lps < kNumLenToPosStates; lps++)
{
unsigned slot;
unsigned distTableSize2 = (p->distTableSize + 1) >> 1;
UInt32 *posSlotPrices = p->posSlotPrices[lps];
const CLzmaProb *probs = p->posSlotEncoder[lps];
for (slot = 0; slot < distTableSize2; slot++)
{
// posSlotPrices[slot] = RcTree_GetPrice(encoder, kNumPosSlotBits, slot, p->ProbPrices);
UInt32 price;
unsigned bit;
unsigned sym = slot + (1 << (kNumPosSlotBits - 1));
unsigned prob;
bit = sym & 1; sym >>= 1; price = GET_PRICEa(probs[sym], bit);
bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
bit = sym & 1; sym >>= 1; price += GET_PRICEa(probs[sym], bit);
prob = probs[(size_t)slot + (1 << (kNumPosSlotBits - 1))];
posSlotPrices[(size_t)slot * 2 ] = price + GET_PRICEa_0(prob);
posSlotPrices[(size_t)slot * 2 + 1] = price + GET_PRICEa_1(prob);
}
{
UInt32 delta = ((UInt32)((kEndPosModelIndex / 2 - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
for (slot = kEndPosModelIndex / 2; slot < distTableSize2; slot++)
{
posSlotPrices[(size_t)slot * 2 ] += delta;
posSlotPrices[(size_t)slot * 2 + 1] += delta;
delta += ((UInt32)1 << kNumBitPriceShiftBits);
}
}
{
UInt32 *dp = p->distancesPrices[lps];
dp[0] = posSlotPrices[0];
dp[1] = posSlotPrices[1];
dp[2] = posSlotPrices[2];
dp[3] = posSlotPrices[3];
for (i = 4; i < kNumFullDistances; i += 2)
{
UInt32 slotPrice = posSlotPrices[GetPosSlot1(i)];
dp[i ] = slotPrice + tempPrices[i];
dp[i + 1] = slotPrice + tempPrices[i + 1];
}
}
}
// }
}
void LzmaEnc_Construct(CLzmaEnc *p)
{
RangeEnc_Construct(&p->rc);
MatchFinder_Construct(&p->matchFinderBase);
#ifndef _7ZIP_ST
MatchFinderMt_Construct(&p->matchFinderMt);
p->matchFinderMt.MatchFinder = &p->matchFinderBase;
#endif
{
CLzmaEncProps props;
LzmaEncProps_Init(&props);
LzmaEnc_SetProps(p, &props);
}
#ifndef LZMA_LOG_BSR
LzmaEnc_FastPosInit(p->g_FastPos);
#endif
LzmaEnc_InitPriceTables(p->ProbPrices);
p->litProbs = NULL;
p->saveState.litProbs = NULL;
}
CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc)
{
void *p;
p = ISzAlloc_Alloc(alloc, sizeof(CLzmaEnc));
if (p)
LzmaEnc_Construct((CLzmaEnc *)p);
return p;
}
void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->litProbs);
ISzAlloc_Free(alloc, p->saveState.litProbs);
p->litProbs = NULL;
p->saveState.litProbs = NULL;
}
void LzmaEnc_Destruct(CLzmaEnc *p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
#ifndef _7ZIP_ST
MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
#endif
MatchFinder_Free(&p->matchFinderBase, allocBig);
LzmaEnc_FreeLits(p, alloc);
RangeEnc_Free(&p->rc, alloc);
}
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
ISzAlloc_Free(alloc, p);
}
static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, UInt32 maxPackSize, UInt32 maxUnpackSize)
{
UInt32 nowPos32, startPos32;
if (p->needInit)
{
p->matchFinder.Init(p->matchFinderObj);
p->needInit = 0;
}
if (p->finished)
return p->result;
RINOK(CheckErrors(p));
nowPos32 = (UInt32)p->nowPos64;
startPos32 = nowPos32;
if (p->nowPos64 == 0)
{
unsigned numPairs;
Byte curByte;
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
return Flush(p, nowPos32);
ReadMatchDistances(p, &numPairs);
RangeEnc_EncodeBit_0(&p->rc, &p->isMatch[kState_Start][0]);
// p->state = kLiteralNextStates[p->state];
curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset);
LitEnc_Encode(&p->rc, p->litProbs, curByte);
p->additionalOffset--;
nowPos32++;
}
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
for (;;)
{
UInt32 dist;
unsigned len, posState;
UInt32 range, ttt, newBound;
CLzmaProb *probs;
if (p->fastMode)
len = GetOptimumFast(p);
else
{
unsigned oci = p->optCur;
if (p->optEnd == oci)
len = GetOptimum(p, nowPos32);
else
{
const COptimal *opt = &p->opt[oci];
len = opt->len;
p->backRes = opt->dist;
p->optCur = oci + 1;
}
}
posState = (unsigned)nowPos32 & p->pbMask;
range = p->rc.range;
probs = &p->isMatch[p->state][posState];
RC_BIT_PRE(&p->rc, probs)
dist = p->backRes;
#ifdef SHOW_STAT2
printf("\n pos = %6X, len = %3u pos = %6u", nowPos32, len, dist);
#endif
if (dist == MARK_LIT)
{
Byte curByte;
const Byte *data;
unsigned state;
RC_BIT_0(&p->rc, probs);
p->rc.range = range;
data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
probs = LIT_PROBS(nowPos32, *(data - 1));
curByte = *data;
state = p->state;
p->state = kLiteralNextStates[state];
if (IsLitState(state))
LitEnc_Encode(&p->rc, probs, curByte);
else
LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0]));
}
else
{
RC_BIT_1(&p->rc, probs);
probs = &p->isRep[p->state];
RC_BIT_PRE(&p->rc, probs)
if (dist < LZMA_NUM_REPS)
{
RC_BIT_1(&p->rc, probs);
probs = &p->isRepG0[p->state];
RC_BIT_PRE(&p->rc, probs)
if (dist == 0)
{
RC_BIT_0(&p->rc, probs);
probs = &p->isRep0Long[p->state][posState];
RC_BIT_PRE(&p->rc, probs)
if (len != 1)
{
RC_BIT_1_BASE(&p->rc, probs);
}
else
{
RC_BIT_0_BASE(&p->rc, probs);
p->state = kShortRepNextStates[p->state];
}
}
else
{
RC_BIT_1(&p->rc, probs);
probs = &p->isRepG1[p->state];
RC_BIT_PRE(&p->rc, probs)
if (dist == 1)
{
RC_BIT_0_BASE(&p->rc, probs);
dist = p->reps[1];
}
else
{
RC_BIT_1(&p->rc, probs);
probs = &p->isRepG2[p->state];
RC_BIT_PRE(&p->rc, probs)
if (dist == 2)
{
RC_BIT_0_BASE(&p->rc, probs);
dist = p->reps[2];
}
else
{
RC_BIT_1_BASE(&p->rc, probs);
dist = p->reps[3];
p->reps[3] = p->reps[2];
}
p->reps[2] = p->reps[1];
}
p->reps[1] = p->reps[0];
p->reps[0] = dist;
}
RC_NORM(&p->rc)
p->rc.range = range;
if (len != 1)
{
LenEnc_Encode(&p->repLenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
--p->repLenEncCounter;
p->state = kRepNextStates[p->state];
}
}
else
{
unsigned posSlot;
RC_BIT_0(&p->rc, probs);
p->rc.range = range;
p->state = kMatchNextStates[p->state];
LenEnc_Encode(&p->lenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
// --p->lenEnc.counter;
dist -= LZMA_NUM_REPS;
p->reps[3] = p->reps[2];
p->reps[2] = p->reps[1];
p->reps[1] = p->reps[0];
p->reps[0] = dist + 1;
p->matchPriceCount++;
GetPosSlot(dist, posSlot);
// RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], posSlot);
{
UInt32 sym = (UInt32)posSlot + (1 << kNumPosSlotBits);
range = p->rc.range;
probs = p->posSlotEncoder[GetLenToPosState(len)];
do
{
CLzmaProb *prob = probs + (sym >> kNumPosSlotBits);
UInt32 bit = (sym >> (kNumPosSlotBits - 1)) & 1;
sym <<= 1;
RC_BIT(&p->rc, prob, bit);
}
while (sym < (1 << kNumPosSlotBits * 2));
p->rc.range = range;
}
if (dist >= kStartPosModelIndex)
{
unsigned footerBits = ((posSlot >> 1) - 1);
if (dist < kNumFullDistances)
{
unsigned base = ((2 | (posSlot & 1)) << footerBits);
RcTree_ReverseEncode(&p->rc, p->posEncoders + base, footerBits, (unsigned)(dist /* - base */));
}
else
{
UInt32 pos2 = (dist | 0xF) << (32 - footerBits);
range = p->rc.range;
// RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
/*
do
{
range >>= 1;
p->rc.low += range & (0 - ((dist >> --footerBits) & 1));
RC_NORM(&p->rc)
}
while (footerBits > kNumAlignBits);
*/
do
{
range >>= 1;
p->rc.low += range & (0 - (pos2 >> 31));
pos2 += pos2;
RC_NORM(&p->rc)
}
while (pos2 != 0xF0000000);
// RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
{
unsigned m = 1;
unsigned bit;
bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
bit = dist & 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit);
p->rc.range = range;
// p->alignPriceCount++;
}
}
}
}
}
nowPos32 += (UInt32)len;
p->additionalOffset -= len;
if (p->additionalOffset == 0)
{
UInt32 processed;
if (!p->fastMode)
{
/*
if (p->alignPriceCount >= 16) // kAlignTableSize
FillAlignPrices(p);
if (p->matchPriceCount >= 128)
FillDistancesPrices(p);
if (p->lenEnc.counter <= 0)
LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
*/
if (p->matchPriceCount >= 64)
{
FillAlignPrices(p);
// { int y; for (y = 0; y < 100; y++) {
FillDistancesPrices(p);
// }}
LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
}
if (p->repLenEncCounter <= 0)
{
p->repLenEncCounter = REP_LEN_COUNT;
LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
}
}
if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
break;
processed = nowPos32 - startPos32;
if (maxPackSize)
{
if (processed + kNumOpts + 300 >= maxUnpackSize
|| RangeEnc_GetProcessed_sizet(&p->rc) + kPackReserve >= maxPackSize)
break;
}
else if (processed >= (1 << 17))
{
p->nowPos64 += nowPos32 - startPos32;
return CheckErrors(p);
}
}
}
p->nowPos64 += nowPos32 - startPos32;
return Flush(p, nowPos32);
}
#define kBigHashDicLimit ((UInt32)1 << 24)
static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
UInt32 beforeSize = kNumOpts;
if (!RangeEnc_Alloc(&p->rc, alloc))
return SZ_ERROR_MEM;
#ifndef _7ZIP_ST
p->mtMode = (p->multiThread && !p->fastMode && (p->matchFinderBase.btMode != 0));
#endif
{
unsigned lclp = p->lc + p->lp;
if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp)
{
LzmaEnc_FreeLits(p, alloc);
p->litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
p->saveState.litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
if (!p->litProbs || !p->saveState.litProbs)
{
LzmaEnc_FreeLits(p, alloc);
return SZ_ERROR_MEM;
}
p->lclp = lclp;
}
}
p->matchFinderBase.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0);
if (beforeSize + p->dictSize < keepWindowSize)
beforeSize = keepWindowSize - p->dictSize;
#ifndef _7ZIP_ST
if (p->mtMode)
{
RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes,
LZMA_MATCH_LEN_MAX
+ 1 /* 18.04 */
, allocBig));
p->matchFinderObj = &p->matchFinderMt;
p->matchFinderBase.bigHash = (Byte)(
(p->dictSize > kBigHashDicLimit && p->matchFinderBase.hashMask >= 0xFFFFFF) ? 1 : 0);
MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
}
else
#endif
{
if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
return SZ_ERROR_MEM;
p->matchFinderObj = &p->matchFinderBase;
MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
}
return SZ_OK;
}
void LzmaEnc_Init(CLzmaEnc *p)
{
unsigned i;
p->state = 0;
p->reps[0] =
p->reps[1] =
p->reps[2] =
p->reps[3] = 1;
RangeEnc_Init(&p->rc);
for (i = 0; i < (1 << kNumAlignBits); i++)
p->posAlignEncoder[i] = kProbInitValue;
for (i = 0; i < kNumStates; i++)
{
unsigned j;
for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
{
p->isMatch[i][j] = kProbInitValue;
p->isRep0Long[i][j] = kProbInitValue;
}
p->isRep[i] = kProbInitValue;
p->isRepG0[i] = kProbInitValue;
p->isRepG1[i] = kProbInitValue;
p->isRepG2[i] = kProbInitValue;
}
{
for (i = 0; i < kNumLenToPosStates; i++)
{
CLzmaProb *probs = p->posSlotEncoder[i];
unsigned j;
for (j = 0; j < (1 << kNumPosSlotBits); j++)
probs[j] = kProbInitValue;
}
}
{
for (i = 0; i < kNumFullDistances; i++)
p->posEncoders[i] = kProbInitValue;
}
{
UInt32 num = (UInt32)0x300 << (p->lp + p->lc);
UInt32 k;
CLzmaProb *probs = p->litProbs;
for (k = 0; k < num; k++)
probs[k] = kProbInitValue;
}
LenEnc_Init(&p->lenProbs);
LenEnc_Init(&p->repLenProbs);
p->optEnd = 0;
p->optCur = 0;
{
for (i = 0; i < kNumOpts; i++)
p->opt[i].price = kInfinityPrice;
}
p->additionalOffset = 0;
p->pbMask = (1 << p->pb) - 1;
p->lpMask = ((UInt32)0x100 << p->lp) - ((unsigned)0x100 >> p->lc);
}
void LzmaEnc_InitPrices(CLzmaEnc *p)
{
if (!p->fastMode)
{
FillDistancesPrices(p);
FillAlignPrices(p);
}
p->lenEnc.tableSize =
p->repLenEnc.tableSize =
p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
p->repLenEncCounter = REP_LEN_COUNT;
LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
}
static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
unsigned i;
for (i = kEndPosModelIndex / 2; i < kDicLogSizeMax; i++)
if (p->dictSize <= ((UInt32)1 << i))
break;
p->distTableSize = i * 2;
p->finished = False;
p->result = SZ_OK;
RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
LzmaEnc_Init(p);
LzmaEnc_InitPrices(p);
p->nowPos64 = 0;
return SZ_OK;
}
static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
p->matchFinderBase.stream = inStream;
p->needInit = 1;
p->rc.outStream = outStream;
return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
ISeqInStream *inStream, UInt32 keepWindowSize,
ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
p->matchFinderBase.stream = inStream;
p->needInit = 1;
return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
}
static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
{
p->matchFinderBase.directInput = 1;
p->matchFinderBase.bufferBase = (Byte *)src;
p->matchFinderBase.directInputRem = srcLen;
}
SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
LzmaEnc_SetInputBuf(p, src, srcLen);
p->needInit = 1;
LzmaEnc_SetDataSize(pp, srcLen);
return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
}
void LzmaEnc_Finish(CLzmaEncHandle pp)
{
#ifndef _7ZIP_ST
CLzmaEnc *p = (CLzmaEnc *)pp;
if (p->mtMode)
MatchFinderMt_ReleaseStream(&p->matchFinderMt);
#else
UNUSED_VAR(pp);
#endif
}
typedef struct
{
ISeqOutStream vt;
Byte *data;
SizeT rem;
BoolInt overflow;
} CLzmaEnc_SeqOutStreamBuf;
static size_t SeqOutStreamBuf_Write(const ISeqOutStream *pp, const void *data, size_t size)
{
CLzmaEnc_SeqOutStreamBuf *p = CONTAINER_FROM_VTBL(pp, CLzmaEnc_SeqOutStreamBuf, vt);
if (p->rem < size)
{
size = p->rem;
p->overflow = True;
}
memcpy(p->data, data, size);
p->rem -= size;
p->data += size;
return size;
}
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
{
const CLzmaEnc *p = (CLzmaEnc *)pp;
return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
}
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
{
const CLzmaEnc *p = (CLzmaEnc *)pp;
return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
}
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, BoolInt reInit,
Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
UInt64 nowPos64;
SRes res;
CLzmaEnc_SeqOutStreamBuf outStream;
outStream.vt.Write = SeqOutStreamBuf_Write;
outStream.data = dest;
outStream.rem = *destLen;
outStream.overflow = False;
p->writeEndMark = False;
p->finished = False;
p->result = SZ_OK;
if (reInit)
LzmaEnc_Init(p);
LzmaEnc_InitPrices(p);
nowPos64 = p->nowPos64;
RangeEnc_Init(&p->rc);
p->rc.outStream = &outStream.vt;
if (desiredPackSize == 0)
return SZ_ERROR_OUTPUT_EOF;
res = LzmaEnc_CodeOneBlock(p, desiredPackSize, *unpackSize);
*unpackSize = (UInt32)(p->nowPos64 - nowPos64);
*destLen -= outStream.rem;
if (outStream.overflow)
return SZ_ERROR_OUTPUT_EOF;
return res;
}
static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
{
SRes res = SZ_OK;
#ifndef _7ZIP_ST
Byte allocaDummy[0x300];
allocaDummy[0] = 0;
allocaDummy[1] = allocaDummy[0];
#endif
for (;;)
{
res = LzmaEnc_CodeOneBlock(p, 0, 0);
if (res != SZ_OK || p->finished)
break;
if (progress)
{
res = ICompressProgress_Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
if (res != SZ_OK)
{
res = SZ_ERROR_PROGRESS;
break;
}
}
}
LzmaEnc_Finish(p);
/*
if (res == SZ_OK && !Inline_MatchFinder_IsFinishedOK(&p->matchFinderBase))
res = SZ_ERROR_FAIL;
}
*/
return res;
}
SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
}
SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
{
CLzmaEnc *p = (CLzmaEnc *)pp;
unsigned i;
UInt32 dictSize = p->dictSize;
if (*size < LZMA_PROPS_SIZE)
return SZ_ERROR_PARAM;
*size = LZMA_PROPS_SIZE;
props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
if (dictSize >= ((UInt32)1 << 22))
{
UInt32 kDictMask = ((UInt32)1 << 20) - 1;
if (dictSize < (UInt32)0xFFFFFFFF - kDictMask)
dictSize = (dictSize + kDictMask) & ~kDictMask;
}
else for (i = 11; i <= 30; i++)
{
if (dictSize <= ((UInt32)2 << i)) { dictSize = (2 << i); break; }
if (dictSize <= ((UInt32)3 << i)) { dictSize = (3 << i); break; }
}
for (i = 0; i < 4; i++)
props[1 + i] = (Byte)(dictSize >> (8 * i));
return SZ_OK;
}
unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle pp)
{
return ((CLzmaEnc *)pp)->writeEndMark;
}
SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
int writeEndMark, ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
SRes res;
CLzmaEnc *p = (CLzmaEnc *)pp;
CLzmaEnc_SeqOutStreamBuf outStream;
outStream.vt.Write = SeqOutStreamBuf_Write;
outStream.data = dest;
outStream.rem = *destLen;
outStream.overflow = False;
p->writeEndMark = writeEndMark;
p->rc.outStream = &outStream.vt;
res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
if (res == SZ_OK)
{
res = LzmaEnc_Encode2(p, progress);
if (res == SZ_OK && p->nowPos64 != srcLen)
res = SZ_ERROR_FAIL;
}
*destLen -= outStream.rem;
if (outStream.overflow)
return SZ_ERROR_OUTPUT_EOF;
return res;
}
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
SRes res;
if (!p)
return SZ_ERROR_MEM;
res = LzmaEnc_SetProps(p, props);
if (res == SZ_OK)
{
res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
if (res == SZ_OK)
res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
writeEndMark, progress, alloc, allocBig);
}
LzmaEnc_Destroy(p, alloc, allocBig);
return res;
}